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Abstract
Neural Operators offer a powerful, data-driven tool for solving parametric PDEs as they can represent maps between infinite-
dimensional function spaces. In this work, we employ physics-informed Neural Operators in the context of high-dimensional,
Bayesian inverse problems. Traditional solution strategies necessitate an enormous, and frequently infeasible, number of
forward model solves, as well as the computation of parametric derivatives. In order to enable efficient solutions, we extend
Deep Operator Networks (DeepONets) by employing a RealNVP architecture which yields an invertible and differentiable
map between the parametric input and the branch-net output. This allows us to construct accurate approximations of the
full posterior, irrespective of the number of observations and the magnitude of the observation noise, without any need for
additional forward solves nor for cumbersome, iterative sampling procedures.We demonstrate the efficacy and accuracy of the
proposedmethodology in the context of inverse problems for three benchmarks: an anti-derivative equation, reaction-diffusion
dynamics and flow through porous media.

Keywords Data-driven surrogates · Invertible neural networks · Bayesian inverse problems · Semi-supervised learning

1 Introduction

Nonlinear Partial Differential Equations (PDEs) depending
on high- or even infinite-dimensional parametric inputs are
ubiquitous in applied physics and engineering and appear in
the context of several problems such as model calibration
and validation or model-based design/optimization/control.
In all these cases, theymust be solved repeatedly for different
values of the input parameters which poses an often insur-
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mountable obstacle as each of these simulations can imply a
significant computational cost. An obvious way to overcome
these difficulties is to develop less-expensive but accurate
surrogates which can be used on their own or in combination
with a reduced number of runs of the high-fidelity, expen-
sive, reference solver. The construction of such surrogates
has been based on physical/mathematical considerations or
data i.e. input-output pairs (and sometimes derivatives). Our
contribution belongs to the latter category of data-driven
surrogates which has attracted a lot of attention in recent
years due to the significant progress in the fields of statisti-
cal or machine learning [18,24]. We emphasize however that
unlike typical supervised learning problems in data sciences,
in the context of computational physics there are several
distinguishing features. Firstly, surrogate construction is by
definition a Small (or smallest possible) Data problem. The
reason we want to have a surrogate in the first place is to
avoid using the reference solver which is the one that gener-
ates the training data. Secondly, pertinent problems are rich
in domain knowledge which should be incorporated as much
as possible, not only in order to reduce the requisite training
data but also to achieve higher predictive accuracy particu-
larly in out-of-distribution settings. In the context ofBayesian
inverse problemswhichwe investigate in this paper, one does
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not know a priori where the posterior might be concentrated
in the parametric space and cannot guarantee that all such
regionswill be sufficiently represented in the training dataset.
Nevertheless the surrogate learned must be accurate enough
in these regions in order to resolve the sought posterior.

Data-driven surrogates which are trained in an offline
phase and are subsequently used for various downstream
tasks have attracted a lot of attention in recent years [5].
Most of these surrogates are constructed by learning a non-
linear operator, e.g. a mapping between function spaces and
thus between the inputs and the outputs of the PDE, which
may depend on additional input parameters. A notable such
strategy based on Deep Learning are the Physics-informed
Neural Networks (PINNs) [25,33]. An alternative is offered
by Deep Operator Networks (DeepONets, [31,36]), which
in contrast to PINNs, not only take the spatial and temporal
location as an input but can also account for the dependence
of the PDE solution on input parameters such as the viscosity
in the Navier-Stokes equation. Furthermore, Fourier Neural
Networks [28] have shown promising results by parametriz-
ing the integral kernel directly in Fourier Space and thus
restricting the operator to a convolution. Finally, the Learn-
ing Operators with Coupled Attention (LOCA) framework
[20] builds upon the well-known attention mechanism that
has already shown promising results in natural language pro-
cessing.
We note that all of the Deep Learning frameworks mentioned
fulfill the universal approximation theoremand, under certain
conditions, can approximate the non-linear operator to arbi-
trary accuracy. Another option, is offered by the Optimizing
a Discrete Loss (ODIL, [17]) framework. It does not rely on
Deep Learning and was shown to be faster than PINNs due
to the reduced number of tunable parameters but can only
approximate the solution on a discrete grid.
Apart from the aforementioned techniques and for time-
dependent PDEs in particular, the solution can be approx-
imated by methods based on Koopman-operator theory [22]
which identifies a transformation of the original system that
gives rise to linear dynamics [21]. Nevertheless, these meth-
ods [8,12,27] usually require a large set of reduced-order
coordinates or an effective encoder/decoder structure. Espe-
cially for physical systems, the restricted dynamics can be
endowed with stability and physical, inductive bias [14–16].

A common limitation of the aforementioned architec-
tures is that they usually learn only the forward operator
whereas for the solution of an inverse problem, its inverse
would bemore useful. In this work, we extend the DeepONet
framework by replacing parts of the previously proposed
neural-network architecture with an invertible one. To the
authors’ best knowledge, we are thus presenting the first
invertibleNeuralOperator framework.This allows one to per-

form both forward and inverse passes with the same neural
network and the forward and inverse operators can be learned
simultaneously. In particular, we make use of the RealNVP
architecture [10] which has an analytical inverse.
Furthermore we make use of both labeled and unlabeled (i.e.
only inputs and residuals) training data in a physics-aware,
semi-supervised approach. While the use of labeled training
data is straight-forward, unlabeled training data are incorpo-
rated by using the governing equations and minimizing the
associated residuals, similarly to the physics-informedDeep-
ONet [36]. Since it is easier and less-expensive to procure
unlabeled data in comparison to labeled ones, this leads to
significant efficiency gains. Even though our algorithm can
produce accurate predictions without any labeled training
data and by using only a physics-informed loss, we observe
empirically that the addition of labeled training data gener-
ally improves the results.
Finally, we show that the proposed invertible DeepONet
can be used to very efficiently solve Bayesian inverse prob-
lems, i.e. to approximate the whole posterior distribution,
without any need for multiple likelihood evaluations and
cumbersome iterations as required by alternative inference
schemes such as Markov Chain Monte Carlo (MCMC, [4])
or Sequential Monte Carlo (SMC, [23]) or Stochastic Varia-
tional Inference (SVI, [9]). In particular, we propose a novel
approximation that employs a mixture of Gaussians, the
parameters of which are computed semi-analytically. When
the proposed Neural Operator framework is trained solely on
unlabeled data, this means that we can obtain the solution to
the (forward and) inverse problem without ever solving the
underlying PDE.WhileDeep Learning has been successfully
applied to inverse problems before [1,2,32], our work differs
by making use of a fully invertible, operator-learning archi-
tecture which leads to a highly efficient approximation of the
whole posterior.

The rest of the paper is structured as follows. In Sect. 2 we
review thebasic elements of invertible neural networks (NNs)
and DeepONets and subsequently illustrate how these can be
combined and trained with labeled and unlabeled data. Fur-
thermore we present how the resulting invertible DeepONet
can be employed in order to approximate the posterior of
a model-based, Bayesian inverse problem at minimal addi-
tional cost. We illustrate several features of the proposed
methodology and assess its performance in Sect. 3 where it
is applied to a reaction-diffusion PDE and a Darcy-diffusion
problem. The cost and accuracy of the posterior approxima-
tion in the context of pertinent Bayesian inverse problems
are demonstrated in Sect. 3.4. Finally, we conclude in Sect. 4
with a summary of the main findings and a discussion on the
(dis)advantages of the proposed architecture and potential
avenues for improvements.
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2 Methodology

We first review some basic concepts of invertible neural net-
works and DeepONets. We subsequently present our novel
contributions which consist of an invertible DeepONet archi-
tecture and its use for solving efficiently Bayesian inverse
problems.

2.1 Invertible neural networks

Neural Networks are in general not invertible which restricts
their application in problems requiring inverse operations.
Invertibility can be achieved by adding a momentum term
[34], restricting the Lipschitz-constant of each layer to be
smaller than one [3] or using special building blocks [10].
These formulations have primarily been developed for flow-
based architectures but we will apply them to operator
learning in this work. In particular, we make use of the
RealNVP [10] as this architecture enables an analytical
inversewhich ensures efficient computations. EachRealNVP
building block consists of the transformation below which
includes two neural networks denoted by k(.) and r(.). Given
a D dimensional input x = {xi }Di=1 of an invertible layer, the
output y = {yi }Di=1 is obtained as follows:

y1:d = x1:d (1)

yd+1:D = xd+1:D ◦ exp(k(x1:d)) + r(x1:d), (2)

where d < D. Here, ◦ is the Hadamard or element-wise
product and d is usually chosen to be half of the dimension
of the input vector i.e. d = D/2.
As only d of the components are updated, the input entries
after each building block are permuted, e.g. by reversing the
vector, to ensure that after a second building block all of them
are modified. Therefore, for d = D/2, at least two building
blocks are needed in order to modify all entries. We note,
that the dimension of the input cannot change and it needs to
be identical to the dimension of the output. The two neural
networks involved can consist of arbitrary layers as long as
their output and input dimensions are consistent with Eq. (2).
The maps defined can be easily inverted which leads to the
following equations:

x1:d = y1:d (3)

xd+1:D = (yd+1:D − r(x1:d)) ◦ exp(−k(x1:d)) (4)

We note that due to this structure, the Jacobian is lower-
triangular and its determinant can be obtained bymultiplying
the diagonal entries only.

2.2 DeepONets

Before presenting our novel architecture for invertible Deep-
ONets, we briefly review the original DeepONet formulation
by [31]. DeepONets have been developed to solve parametric
PDEs and significantly extend the Physics-Informed Neural
Network (PINNs, [33]) framework as no additional train-
ing phase is required if the input parameters of the PDE
are changed. We consider a, potentially nonlinear and time-
dependent, PDE with an input function u ∈ U and solution
function s ∈ S where U ,S are appropriate Banach spaces.
The former can represent e.g. source terms, boundary or ini-
tial conditions, material properties. Let:

N (u, s)(ξ) = 0 (5)

denote the governing PDE where N : U × S → V is an
appropriate differential operator and ξ the spatio-temporal
coordinates. Furthermore, let:

B(u, s)(ξ) = 0 (6)

denote the operator B : U × S → V associated with the
boundary or initial conditions. Assuming that the solution s
for eachu ∈ U is unique,wedenotewithG : U → S the solu-
tion operator that maps from any input u to the corresponding
solution s. The goal of DeepONets is to approximate it with
an operator Gθ that depends on tunable parameters θ . The
latter can yield an approximation to the actual solution at
any spatio-temporal point ξ which we denote by Gθ (ξ). It is
based on a separated representation [31]1:

Gθ (u)(ξ) =
Q∑

j=1

b j

⎛

⎝ u(η1), ..., u(ηF )︸ ︷︷ ︸
u

⎞

⎠ t j (ξ) (7)

and consists of the so-called branch networkwhose terms b j

depend on the values of the input function u at F fixed spatio-
temporal locations2 {ηl}Fl=1 which we summarily denote
with the vector u ∈ R

F , and the so-called trunk network
whose terms t j depend on the spatio-temporal coordinates ξ

(see Fig. 1b). Both networks have trainable weight and bias
parameters which we denote collectively by θ . We empha-
size that, once trained, theDeepONet can provide predictions
of the solution at any spatio-temporal location ξ , a feature
that is very convenient in the context of inverse problems as
the same DeepONet can be used for solving problems with
different sets of observations.

1 We omit the NN parameters θ on the right-hand side in order to
simplify the notation.
2 These points are usually chosen to be uniformly distributed over the
entire domain, but it is also possible to increase their density in certain
areas, e.g. with high variability.
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Fig. 1 (Left) Classical
DeepONet [30] and (Right)
proposed Invertible DeepONet
architecture

We note that in the next section, we will use a vectorized
formulation of Eq. (7) and process various spatio-temporal
coordinate datapoints together as this is needed to ensure
invertibility of the DeepONet.

Labeled data can be used for training which consist of
pairs of u and corresponding solutions s = G(u) evaluated
at certain spatio-temporal locations. Unlabeled training data
(i.e. only inputs) can also be employed in a physics-informed
approach as introduced in [36], by including the govern-
ing PDE in Eq. (5) in an additional loss term as discussed
Sect. 2.4.

2.3 Invertible DeepONets

The invertible RealNVP introduced in Sect. 2.1 is employed
exclusively on the branch network i.e. we assume that:

D = F = Q (8)

and the input x of Sect. 2.1 is the vector u ∈ R
F containing

the values of the PDE-input at D = F spatio-temporal loca-
tions whereas the output y of Sect. 2.1 is now the D = Q
values of the branch net b = [b1, . . . , bQ]T ∈ R

D . We note
that this restriction regarding the equality of the dimension
of the input u and the output of the branch network b is due
to the use of an invertible architecture. As a consequence, the
dimension of the trunk-network output i.e. {t j (ξ)}Qj=1 is also
the same as the dimension of u. This requirement does not
reduce the generality of the methodology advocated as Q is
a free parameter in the definition of the operator Gθ in Eq.
(7).

In view of the inverse problems we would like to address,
we consider K spatio-temporal locations, {ξ k}Kk=1 and we
denotewith s ∈ R

K the vector containing the PDE-solution’s
values at these locations i.e. s = [

s(ξ1), . . . , s(ξ K )
]T .

Finally we denote with Y the K × D matrix constructed by
the values of the trunk network outputs at the aforementioned
locations, i.e.:

Y =
⎡

⎣
t1(ξ1) ... tD(ξ1)

... ...

t1(ξ K ) ... tD(ξ K )

⎤

⎦ . (9)

As a result of Eq. (7), we can write that:

s = Yb (10)

As the matrix Y is in general non-invertible, one can deter-
mine b given s by solving a least-squares problem, i.e.:

min
b

‖s − Yb‖22 (11)

or a better-behaved, regularized version thereof:

min
b

‖s − Yb‖22 + ε‖b‖22 (12)

where a small value is generally sufficient for the regular-
ization parameter ε << 1. We note that given s and once b
has been determined by solving Eqs. (11) or eqrefeq:min2,
we can make use of the invertibility of the branch net in
order to obtain the input vector u. While other approaches
are possible in order to determine b, we recommend using the
regularized, least-squares formulation, as this led to robust
results in our experiments. It is nevertheless important to
use the same method during training and when deterministic
predictions are sought, since different methods can lead to
different b’s for the same s. We note that in the proposed
method for the solution of Bayesian inverse problems (see
Sect. 2.5), no use of Eq. (12) is made except for the training
of the DeepONet (see Sect. 2.4).

For the ensuing equations we denote the forward map
implied by equation (10) as:

s = Fθ (u,Y) (13)

and the inverse obtained by the two steps described above as:

u = Iθ (s,Y) (14)

where we explicitly account for the NN parameters θ .

2.4 A semi-supervised approach for invertible
DeepONets

As mentioned earlier and in order to train the invertible
DeepONet proposed, i.e. to find the optimal values for the
parameters θ , we employ both labeled (i.e pairs of PDE-
inputs u and PDE-outputs s) and unlabled data (i.e. only
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PDE-inputs u) in combination with the governing equations.
The loss function L employed is therefore decomposed into
two parts as3:

L = Llabeled + Lunlabeled (15)

The first term Llabeled pertains to the labeled data and is
further decomposed as:

Llabeled = Ll, f orward + Ll,inverse (16)

Without loss of generality and in order to keep the nota-
tion as simple as possible we assume that Nl pairs of labeled
data are available, each of which consists of the values
of the PDE-input u at D locations which we denote with
u(i) ∈ R

D, i = 1, . . . Nl and the values of the PDE-
output at K spatio-temporal locations which we denote with
s(i) ∈ R

K , i = 1, . . . Nl . If the K ×D matrix Y is defined as
in Eq. (9) and in view of the forward (Eq. (13)) and inverse
(Eq. (14)) maps defined earlier, we write:

Ll, f orward = 1

Nl

Nl∑

i=1

‖s(i) − Fθ (u
(i),Y)‖22 (17)

and:

Ll,inverse = 1

Nl

Nl∑

i=1

‖u(i) − Iθ (s
(i),Y)‖22. (18)

By employing both loss terms, the NN parameters θ can
balance the accuracy of the approximation in both maps.

Furthermore and assuming Nu PDE-inputs are available
each of which is evaluated at D spatio-temporal points
{ξ (l)}Dl=1 with u(i) ∈ R

D denoting these values, we express
the Lunlabeled loss term as:

Lunlabeled = LBC + Lres + Lu,inverse. (19)

The first LBC and second Lres terms are physics-informed
[36] and account for the residuals in the boundary (and/or
initial) conditions and the governing PDE respectively. In
the case of LBC we select NB (uniformly distributed) points
along the boundary, say ξ

( j)
B , l = 1, . . . , NB . Then, in view

of Eq. (6), we employ:

LBC = 1

NuNB

Nu∑

i=1

NB∑

l=1

‖B(u(i),Gθ (u
(i)))(ξ

(l)
B )‖22 (20)

3 All loss functions depend on θ which we omit in order to simplify the
notation.

In the interior of the problem domain and in view of Eq. (5),
we employ a loss:

Lres = 1

Nu Nres

Nu∑

i=1

Nres∑

l=1

‖N (u(i),Gθ (u
(i))(ξ (l))‖22 (21)

which involves Nres collocation points.
The third term Lu,inverse pertains to the forward and

inverse maps in Eqs. (13), (14) and can be expressed as:

Lu,inverse = 1

Nu

Nu∑

i=1

‖ui − Iθ (Fθ (u
(i),Y),Y))‖22 (22)

where the matrix Y is defined as in Eq. (9).
The minimization of the combined loss L , with respect to

the NN parameters θ of the branch and trunk network, is per-
formed with stochastic gradient descent and the ADAM [19]
scheme in particular. Gradients of the loss were computed
using the automatic differentiation tools of the JAX library
[7]. We finally note that the D spatioemporal locations need
not be the same nor do they need to be equal in number
in all data instances as assumed in the equations above. In
such cases the vector of the observables and the matrices Y
involved would differ which would further complicate the
notation but the same DeepONet parameters θ would appear
in all terms.

2.5 Invertible DeepONets for Bayesian inverse
problems

In this section we present how the invertible DeepONets pro-
posed and trained as previously discussed, can be used to
efficiently approximate the solution of a Bayesian inverse
problem in the presence of, potentially noisy, observations
as well as prior uncertainty about the unknowns. A central
role is played by the readily available invertible map which
the RealNVP architecture affords. In particular, let ŝ ∈ R

K

denote a vector of noisy observations of the PDE-solution
at certain K spatio-temporal locations. These are assumed
to be related to the PDE-solution’s values at these locations,
denoted summarily by s ∈ R

K , as follows:

ŝ = s + σ η, η ∼ N (0, I). (23)

where σ 2 is the variance of the observational noise. This in
turn defines a conditional density (likelihood) p(ŝ | s):

p(ŝ | s) = N (ŝ | s, σ 2 I). (24)

In the context of a Bayesian formulation and given the
implicit dependence of the PDE-output s on u, the likeli-
hood would be combined with the a prior density pu(u) on
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the PDE-inputs in order to define the sought posterior:

p(u | ŝ) ∝ p(ŝ | s) pu(u).

Even if the trained DeepONet were used to infer p(u | ŝ)
(e.g. using MCMC) several evaluations would be needed
especially if the dimension of u was high. In the sequel we
demonstrate how one can take advantage of the invertible NN
architecture in order to obtain a semi-analytic approximation
of the posterior in the form of a mixture of Gaussians and by
avoiding iterative algorithms like MCMC altogether.

We note first that by combining the likelihood with Eq.
(10), we can write it in terms of the D−dimensional, branch-
network output vector b as:

p(ŝ | b) = N (ŝ | Y b, σ 2 I). (25)

Since u ∈ R
D is related to b through the invertible RealNVP

bNN : RD → R
D , we can also obtain a prior density pb(b)

on b as:

pb(b) = pu(b
−1
NN (b)) J (b) (26)

where b−1
NN denotes the inverse and J (b) = | ∂b−1

NN
∂b | is the

determinant of its Jacobian. The latter, as mentioned in
Sect. 2.1, is a triangular matrix and its determinant can be
readily computed at a cost O(D).

We choose not to directly operate with the prior pb(b),
but construct an approximation pb,G(b) to this in the form
of a mixture of D−dimensional Gaussians as this allows
as to facilitate subsequent steps in finding the posterior. In
particular:

pb,G(b) =
M∑

m=1

w j N (b | mb,m, Sb,m) (27)

where M denotes the number of mixture components and
mb,m , Sb,m the mean vector and covariance matrix of the
mth component respectively. Such an approximation can be
readily computed, e.g. using Variational Inference [35] and
without any forward or inverse model evaluations by exploit-
ing the fact that samples from pb can be readily drawn using
ancestral sampling i.e. by drawing samples of u from pu and
propagating those with bNN . We note that finding this rep-
resentation can become more diffucult in case M is large but
the complexity of the algorithms involved in general scales
linearly with M [6].

By combining the (approximate prior) pb,G(b) abovewith
the Gaussian likelihood p(ŝ | b) of Eq. (25) we obtain an
expression for the posterior p̃(b | ŝ) using Bayes’ theorem:

p̃(b | ŝ) ∝ p(ŝ | b)pb,G(b) (28)

Due to the conjugacy of prior and likelihood, we can directly
conclude that the (approximate) posterior is also a mixture
of Gaussians [6]. Therefore, using expressions for the afore-
mentioned likelihood/prior pair, we obtain a closed-form
posterior p̃(b | ŝ) on b of the form:

p̃(b | ŝ) =
M∑

m=1

w̃ j N (b | μb,m,Cb,m) (29)

where the mean μb,m and covariance Cb,m of each mixture
component can be computed as:

C−1
b,m = σ−2Y TY + S−1

b,m
C−1
b,mμb,m = σ−2Y T ŝ + S−1

b mb,m
(30)

The weights w̃m (
∑M

m=1 w̃m = 1) would be proportional to:

w̃m ∝ wm | Dm |−1/2 exp(− 1
2 (ŝ − Ymb,m)T

D−1
m (ŝ − Ymb,m))

(31)

where:

Dm = σ 2 I + Y Sb,mY T (32)

Therefore inference tasks on the sought u can be readily
carried out by sampling b from the mixture-of-Gaussians
posterior above and propagating those samples through the
inverse map b−1

NN to obtain u-samples. We note that by
employing a mixture of Gaussians with sufficient compo-
nents M , one can approximate with arbitrary accuracy any
non-Gaussian density as well as capture multimodal poste-
riors, a task that is extremely cumbersome with standard,
Bayesian inference schemes [11].

3 Numerical illustrations

We applied the proposed framework to three examples, i.e.
the antiderivate operator , a reaction-diffusion PDE as well
as a Darcy-type elliptic PDE. In each of these cases, we
report the relative errors of forward and inverse maps (on
test data) when trained with varying amounts of labeled
and unlabeled training data. For the reaction-diffusion PDE
and the Darcy-type elliptic PDE, we also use the proposed
invertible-DeepONet-surrogate to solve pertinent Bayesian
inverse problems. The code for the aforementioned numeri-
cal illustrations is available here4 In Table 1, we summarize
the most important dimensions for each of the following
examples, namely D: the dimension of the PDE-input, K :

4 https://github.com/pkmtum/Semi-supervised_Invertible_Neural_
Operators.
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Table 1 Main dimensions for
each numerical illustration

Sects. 3.1 3.2 3.3 3.4.1 3.4.2

D 100 100 64 100 64

K 200 200 3844 25, 100 1922, 3844

Nl 102, 103, 104 0, 500, 5000 103 500 5000

Nu 104 5000 103 104 5000

Nres 200 200 3844 200 200

NBC – 300 – – –

Table 2 Relative test errors and their standard deviations depending on
the amount of labeled training data for the anti-derivative operator. The
percentage of labeled data is the amount of data used in comparison to

unlabeled training data, e.g. in the 10% case we used ten times more
unlabeled training data whereas in the 100% case the amount of labeled
and unlabeled training data was the same

labeled data [%] 1 10 100

Relative error s (forward map) 0.0152 ± 0.0151 0.00791 ± 0.00799 0.00728 ± 0.00797

Relative error u (inverse map) 0.0371 ± 0.0241 0.034 ± 0.024 0.0215 ± 0.0153

the dimension of the observed PDE-output, Nl : number of
labeled data (Eqs. (17), (18)), Nu : the number of unlabeled
data (e.g. Eq. (22)), Nres : the number of interior collocation
points (Eq. (21)) and NBC the number of boundary colloca-
tion points (Eq. (20)).

3.1 Anti-derivative operator

As a first test case we considered the antiderivative operator
on the interval ξ ∈ [0, 1] with:
ds(ξ)

dξ
= u(ξ) with s(0) = 0 (33)

i.e.when the inputu corresponds to the right-hand-side of this
ODE and the operator G(u) that we attempt to approximate
is simply the integral operator G(u)(ξ) = ∫ ξ

0 u(t) dt . We
generated Nu = 10000 unlabeled training data by sampling
inputs u from a Gaussian process with zero mean and expo-
nential quadratic covariance kernel with a length scale � =
0.2. Their values at the same D = 100 uniformly-distributed
locations in [0, 1]were recorded.We subsequently randomly
choose Nres = 200 collocation points to evaluate the resid-
uals (see Eq. (21)).

Moreover, we used up to Nl = 10000 labeled training
data, for which the inputs were generated as for the unlabeled
training data, and the outputs were obtained by solving the
ODE above and evaluating it at K = 200 randomly chosen
points. We trained the invertible DeepONet on Nu = 10000
unlabeled training data with a batch size of 100. In each batch
we added 1, 10 or 100 labeled training data points per batch
(i.e. Nl = 100, 1000, 10000 respectively in Eqs. (17), (18)).
A minimum of one labeled datapoint is required in order
to set the initial condition correctly as we did not enforce
this separately in the unlabeled loss part. With regards to the

architecture of the networks used, we employed a MLP with
four layers and 100 neurons each for the trunk network and 6
RealNVP building blocks for the branch networkwhichwere
parametrized by a two-layeredMLP. Variations around these
values in the number of neurons, layers were also explored
(in the subsequent examples as well) and did not impact sig-
nificantly the performance.

Using the ADAM optimizer and an initial learning rate of
10−3, we run the model training for 4 × 104 iterations with
an exponential learning rate decay with rate 0.9 every 1000
iterations. As test data, we used 1000 new (i.e. not included
in the training data) input-output pairs and compared the pre-
dicted forward and inverse solutionswith the actual ones. The
results obtained in terms of the relative errors are summarized
in Table 2.

The error values indicate that both the forward as well as
the inverse maps are very well approximated by the proposed
invertible DeepONet. The addition of more labeled training
data results in even lower errors especially for the inverse
map for which the relative error is decreased from almost
∼ 4% to ∼ 2%.
In order to visualize the results we plot for four randomly-
chosen test cases the predictions (when trained with 10%
labeled data) of both the forward (Fig. 2) and inverse (Fig.
3) operator. In all cases, the predictions are indistinguishable
from the reference functions.

In Appendix A we include additional results for this prob-
lem with varying amounts of unlabeled and labeled training
data in order to further show their influence.

3.2 Reaction-diffusion dynamics

The second illustrative example involves the reaction-diffusion
equation on the space-time domain ξ = (x, t) ∈ [0, 1] ×
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Fig. 2 Forward map - Comparison of the true PDE-output/solution s (given a PDE-input u) with the one predicted by the proposed invertible
DeepONet and for the anti-derivative operator

Fig. 3 Inverse map - Comparison of the true PDE-input u (given the PDE-output/solution s) with the one predicted by the proposed invertible
DeepONet and for the anti-derivative operator

Table 3 Relative errors on test
data depending on the amount of
labeled training data for the
reaction-diffusion case

labeled data [%] 0 10 100

Relative error for s 0.00925 ± 0.00492 0.0105 ± 0.00519 0.00813 ± 0.00445

Relative error for u 0.024 ± 0.01021 0.0184 ± 0.00578 0.0162 ± 0.00592

[0, 1]:
∂s

∂t
= Ds

∂2s

∂x2
+ ks2 + u(x) (34)

Here, Ds = 0.01 is the diffusion constant, k = 0.01 the
reaction rate and the source-term u(x) is chosen to be the
PDE-input. We used zero values as initial conditions and
boundary conditions. We generated random source terms by
sampling from a Gaussian process with zero mean and and
exponential quadratic covariance kernel with a length scale
� = 0.2 which were then evaluated at D = 100 uniformly
distributed points over [0, 1]. The PDE was subsequently
solved using an implicit Finite-Difference scheme and eval-
uated at 200 randomly chosen points to generate the labeled
training data.

We trained our model with Nu = 5000 unlabeled data
which were processed in batches of 100 samples and to
which varying amounts of labeled data were added. Since
for this problem the boundary conditions were enforced sep-
arately, the amount of labeled training data used could also
be zero. All unlabeled training data points were evaluated
at Nres = 200 randomly selected collocation points. With
regards to the network architecture,we employed aMLPwith
five layers and 100 neurons each for the trunk network and 3

RealNVP building blocks for the branch networkwhichwere
parametrized by a three-layeredMLP.Using theADAMopti-
mizer and an initial learning rate of 10−3, we run the model
training for 12× 104 iterations with an exponential learning
rate decay with rate 0.9 every 2000 iterations. For our test
dataset, we generated 1000 new (unseen) source terms u and
corresponding solutions s. A summary of the relative errors
obtained is contained in Table 3.

We note that again for all three settings we achieve very
lowerror rates,which decrease as the amount of labeled train-
ing data increases. In Figs. 4 and 5 we show the predictions
(trained with 500 i.e. 10% labeled data) of both forward and
inverse map for three randomly chosen test cases.

3.3 Flow through porousmedia

In the final example we considered the Darcfy-flow elliptic
PDE in the two-dimensional domain ξ = (x1, x2) ∈ [0, 1]2

∇ · (u(ξ)∇s(ξ)) = 10 (35)

where the PDE-input u corresponds to the permeability
field. We assumed zero values for the solution s along all
boundaries which we a-priori incorporated in our operator
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Fig. 4 Forward map - Comparison of the true PDE-output/solution s (given the PDE-input u) with the one predicted by the proposed invertible
DeepONet and for Reaction-Diffusion PDE

approximation by multiplying the DeepONet expansion in
Eq. (7) with the polynomial x1(1− x1) x2(1− x2). We used
Nu = 1000 unlabeled training data points with Nres = 3844
collocation points (Eq. (21)) during training and added either
no labeled training data at all (i.e. Nl = 0) or Nl = 1000. In
order to obtain the latter we solved Eq. (35) with the Finite
Element library FEniCS [29] on a 128× 128 mesh with lin-
ear elements and evaluated the solution at 3844 regularly
distributed points.We represent the PDE-input u as follows5:

ln(u) =
4∑

f1=1

4∑

f2=1

c f1, f2,1 sin( f1x1) cos( f2x2)

+ c f1, f2,2 sin( f1x1) sin( f2x2)

+ c f1, f2,3 cos( f1x1) sin( f2x2)

+ c f1, f2,4 cos( f1x1) cos( f2x2) (36)

using 64 feature functions and corresponding coefficients c.
In order to generate the training data, we sampled each of the
aforementioned 64 coefficients from a uniform distribution

5 We employ this expansion for the logarithm of u in order to ensure
that the resulting permeability field is positive

in [0, 1]. In this example the 64-dimensional vector of the
c’s serves as the input in the branch network (i.e. D = 64).
With the help of the c’s and of Eq. (36), one can reconstruct
the full permeability field.

With regards to the network architecture, we employed a
MLP with five layers and 64 Neurons each for the trunk net-
work and 3 RealNVP building blocks for the branch network
which were parametrized by a three-layered MLP. Using the
ADAM optimizer and an initial learning rate of 10−3, we
run the model training for 105 iterations with an exponen-
tial learning rate decay with rate 0.9 every 2000 iterations.
We tested the trained model on 2500 unseen test data and
obtained the results in Table 4. As in the previous examples,
the inclusion of labeled data significantly improves the pre-
dictive accuracy of the trained model. For the case without
data the predictive accuracy of the forward map is slightly
lower but the accuracy in the inverse map is comparably low.
The addition of labeled data improves the predictive accuracy
for both maps.

In Fig. 6 we compare the reference solution for two illus-
trative test cases with the the forward map learned with
labeled training data. As suggested by the cumulative results
in Table 4 the two predictions are very close to the reference

123



460 Computational Mechanics (2023) 72:451–470

Fig. 5 Inverse map - Comparison of the true PDE-input u (given the
PDE-output/solution s) with the one predicted by the proposed invert-
ible DeepONet and for Reaction-Diffusion PDE

Table 4 Relative errors on test data depending on the amount of labeled
training data for the Darcy example with feature coefficients as inputs

labeled data [%] 0 100

Relative error for s 0.0134 ± 0.00509 0.0245 ± 0.0108

Relative error for u 0.235 ± 0.137 0.0566 ± 0.0198

and the accuracy is very high. In Figs. 7 (without labeled
training) and 8 (with labeled training) the results for two
illustrative inverse test cases are shown. While locally the
error can be significant, the main characteristics of the PDE-
input field u can be captured.

We discuss in the next section the case where the input
permeability field u is not represented with respect to some
feature functions but rather as a discretized continuous field
[13].

3.3.1 Coarse-grained (CG) input parameters

In this sub-case, we modeled the permeability field u with an
exponentiated (to ensure positivity) Gaussian Process with
mean zero and exponential quadratic covariance with length
scale � = 0.1. The PDEwas then again solved on a 128×128

FE mesh and the values of the solution s were assumed to be
observed at 3844 regularly distributed points. We moreover
sub-sampled the generated PDE input on a regular 8 × 8
grid and its D = 64 values represented the branch network
input u. We generated Nu = 1000 unlabeled fields u in total
and used Nres = 3844 collocation points (Eq. (21)) during
training. We also trained the model with Nl = 1000 labeled
training data.

The results obtained can be found in Table 5. The test data
in this table consists of 2500 unseen, discretized, permeabil-
ity fields and their respective solutions. The error rates are
computed with respect to the coarse-grained reference input.
As in the previous setting, we observe a significant improve-
ment in the accuracy of the inverse map when labeled data
are used in training.

In Fig. 9 we compare the reference solution for two illus-
trative test cases with the the forward map learned with
labeled training data. As suggested by the cumulative results
in Table 5 the two predictions are very close to the reference
and the accuracy is very high.

In Figs. 10 (without labeled training) and 11 (with labeled
training) the results for two illustrative inverse test cases are
shown. We note again that the main features of the PDE-
input’s spatial variability are captured, despite the presence
of localized errors.

3.4 Bayesian inverse problems

In this section we demonstrate the utility of the invertible
DeepONet proposed in the solution of Bayesian inverse
problems and in obtaining accurate approximations of the
posterior without any need for additional reference model
runs nor for any costly and asymptotically-exact sampling.
For each of the examples considered, only one observed
output ŝ was assumed to be given. The variance of the obser-
vational noiseσ 2 was assumed to begiven although this could
readily be inferred, especially if a conjugate inverse-Gamma
prior was used for it. In this manner, any deviations from
the actual posterior could be attributed to inaccuracies of the
DeepONet-based surrogate. Errors due to the approximation
of the prior with a mixture of Gaussians as in Eq. (27) can be
made arbitrarily small by increasing the number of mixture
components M .

3.4.1 Reaction-diffusion dynamics

Weemployed the trainedmodel of the reaction-diffusion sys-
tem (with 10% labeled training data), in combinationwith the
formulation detailed in Sect. 2.5 for approximating the pos-
terior. We use a prior pu(u) arising from the discretization of
Gaussian Process with zero mean and exponential quadratic
covariance kernel with a length scale � = 0.2. For the Gaus-
sian mixture models involved for the prior and subsequently
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Fig. 6 Forward map - Comparison of the true PDE-output/solution s (given feature coefficients as the PDE-input u) with the one predicted by the
proposed invertible DeepONet and for Darcy-type PDE

Fig. 7 Inversemap - Comparison of the reconstructed PDE-input (given the PDE-output/solution s) with the one predicted by the proposed invertible
DeepONet and for Darcy-type PDE with zero labeled training data
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Fig. 8 Inversemap - Comparison of the reconstructed PDE-input (given the PDE-output/solution s) with the one predicted by the proposed invertible
DeepONet and for Darcy-type PDE

Table 5 Relative errors on test data depending on the amount of labeled
training data for the Darcy example with coarse-grained input parame-
ters

labeled data [%] 0 100

Relative error for s 0.0164 ± 0.00712 0.0164 ± 0.00748

Relative error for u 0.121 ± 0.041 0.0656 ± 0.0168

the posterior on b we used two components i.e. M = 2 in
Eqs. (27), (29). The results can be seen in the following Fig-
ures. The obtained posterior encapsulates the true parameter
input for all three cases.

In Fig. 12 we used test cases with 100 observed solution
data points for each parameter input and a noise level of
σ 2 = 0.001 (see Eq. (23)). In Fig. 13 we increased the noise
level ten-fold, to σ 2 = 0.01 and, as expected, so did the
posterior uncertainty. In Fig. 14 we used σ 2 = 0.001 but
decreased the number of observations of the PDE-solution
to 25 points (instead of 100). As expected, this led to an
increase in posterior uncertainty.

Our method can therefore be used as a fast approach
without any need for optimization and MCMC sampling to
generate an approximate posterior. We note that the posterior
uncertainty increases if number of observations decreases or
if the observation noise σ 2 increases. In Appendix B, we
show the excellent agreement of the approximate posterior

computed with the actual one as obtained by costly and time-
consuming MCMC simulations.

3.4.2 Flow through porous media

We also solved a Bayesian inverse problem in the context of
the Darcy-type PDE by using our trained model of Sect. 3.3
with added labeled training data. We computed an approxi-
mate posterior based on the algorithm presented in Sect. 2.5
and compared it with the true PDE-input. For the Gaussian
mixture models involved for the prior and subsequently the
posterior on b we used two mixture components i.e. M = 2
in Eqs. (27), (29).

Firstly,we consideredpermeabilityfields representedwith
respect to 64 known feature functions as described in Sect.
3.3. The 64 coefficients c (Eq. (36)) represented the sought
PDE-inputs and a uniform prior in [0, 1]64 was employed.
The results in terms of the permeability field u can be seen
in the following Figures. The obtained posterior is in good
agreement with the ground truth, e.g. the PDE-input field
used to generate the data with the PDE-solver.

In particular, in Fig. 15we assumed that 3844 observations
of the PDE-output were available, on a 62× 62 regular grid.
The data that was synthetically generated was contaminated
with Gaussian noise with σ 2 = 0.001 (see Eq. (23)). In
Fig. 16 we increased the noise level and subsequently the
posterior uncertainty was slightly higher but the posterior
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Fig. 9 Forward map - Comparison of the true PDE-output/solution s (given the coarse-grained PDE-input u) with the one predicted by the proposed
invertible DeepONet and for Darcy-type PDE

Fig. 10 Inverse map - Comparison of the coarse-grained PDE-input u (given the PDE-output/solution s) with the one predicted by the proposed
invertible DeepONet and for Darcy-type PDE with zero labeled training data

mean is still close to the ground truth. In Fig. 17weusedσ 2 =
0.01 but decreased the number of observations by 50% to
1922. As expected, the posterior uncertainty increased again
but still encapsulated the ground truth.

Finally, we considered the case where the PDE-input is
represented on a regular 8 × 8 grid as in Sect. 3.3.1. The
discretizedGP described thereinwas used as the prior. In Fig.
18 we compare the ground truth with the posterior mean and

standard deviation as obtained from 3844 observations on a
62 × 62 regular grid and for a noise level of σ 2 = 0.01 (see
Eq. (23)). In Fig. 19 we used lower noise with σ 2 = 0.001
level and, as expected, the posterior uncertainty was lower
and the posterior mean was closer to the ground truth. In Fig.
20 we again choose the previous noise level but decreased
the number of observations by half, to 1922. As expected,
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Fig. 11 Inverse map - Comparison of the coarse-grained PDE-input (given the PDE-output/solution s) with the one predicted by the proposed
invertible DeepONet and for Darcy-type PDE

Fig. 12 Bayesian Inverse Problem for Reaction-Diffusion PDE: 100
observed data points with σ 2 = 0.001 and a 100-dimensional paramet-
ric input

the posterior uncertainty increased but still encapsulated the
ground truth.

Fig. 13 Bayesian Inverse Problem for Reaction-Diffusion PDE: 100
observed data points with σ 2 = 0.01 and a 100-dimensional parametric
input

4 Conclusions

We introduced an invertible DeepONet architecture for
constructing data-driven surrogates of PDEs with paramet-
ric inputs. The use of the RealNVP architecture in the
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Fig. 14 Bayesian Inverse Problem for Reaction-Diffusion PDE: 25
observed data points with σ 2 = 0.001 and a 100-dimensional para-
metric input

branch-network enables one to obtain simultaneously accu-
rate approximations of both the forward and the inverse map
(i.e. from PDE-solution to PDE-input). The latter is par-

ticularly useful for deterministic and stochastic (Bayesian),
PDE-based, inverse problems for which accurate solutions
can be readily obtained once the proposed DeepONet has
been trained offline. The training framework can make use
of expensive, labeled data (i.e. PDE input-output pairs) as
well as inexpensive, unlabeled data (i.e. only PDE-inputs) by
incorporating residuals of the governing PDE and its bound-
ary/initial conditions into the loss function. The use of labeled
data was generally shown to improve predictive accuracy and
especially in terms of the inversemapwhich is something that
warrants further investigation.

In the case of Bayesian formulations in particular, we
showed that the availability of the inverse map can lead
to highly-efficient approximations of the sought posterior
without the need of additional PDE solves and without any
cumbersome sampling (e.g. due to MCMC, SMC) or itera-
tions (e.g. due to SVI).

The performance of the proposed strategy was demon-
strated on several PDEs with modest- to high-dimensional
parametric inputs and its efficiency was assessed in terms
of the amounts of labeled vs unlabeled data. Furthermore,
the approximate posterior obtained was in very good agree-
ment with the exact posterior obtained with the reference
solver and MCMC. The accuracy persisted for various levels
of noise in the data as well as when changing the number
of available observations. We note finally that unbiased esti-
mates with respect to the exact posterior could be readily
obtainedwith Importance Sampling and by using the approx-
imate posterior as the importance sampling density. This

Fig. 15 Bayesian Inverse Problem for Darcy-type PDE: 3844 observed data points with σ 2 = 0.001 and a 64-dimensional parametric input
representing feature coefficients
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Fig. 16 Bayesian Inverse Problem for Darcy-type PDE: 3844 observed data points with σ 2 = 0.01 and a 64-dimensional parametric input
representing feature coefficients

Fig. 17 Bayesian Inverse Problem for Darcy-type PDE: 1922 observed data points with σ 2 = 0.01 and a 64-dimensional parameter input
representing feature coefficients

123



Computational Mechanics (2023) 72:451–470 467

Fig. 18 Bayesian Inverse Problem for Darcy-type PDE: 3844 observations with σ 2 = 0.01 and a 64-dimensional, discretized permeability field

Fig. 19 Bayesian Inverse Problem for Darcy-type PDE: 3844 observations with σ 2 = 0.001 and a 64-dimensional discretized permeability field
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Fig. 20 Bayesian Inverse Problem for Darcy-type PDE: 1922 observations with σ 2 = 0.01 and a 64-dimensional discretized permeability field

Fig. 21 Relative errors on test data for the forward and inverse map
depending on the amount of labeled and unlabeled training data

would nevertheless imply additional PDE solves which we
would expect to be modest in number given the accuracy of
the approximation i.e. the proximity of the Importance Sam-
pling density with the actual posterior.

Funding Open Access funding enabled and organized by Projekt
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Appendix: A influence of the amount of data

This section contains additional results as obtained for the
antiderivative example and for different amounts of train-
ing data. We chose exactly the same settings as described in
Sect. 3.1 and varied only the amount of labeled and unla-
beled training data. In Fig. 21 we plot the relative error in
the foward and inverse map with regards to the amount of
unlabeled training data. The color indicates the amount of
labeled training data used, i.e. blue curves correspond to 1%
labeled training data, whereas red curves correspond to 100%
labeled training data.

We observe that although the relative errors decrease with
the addition of more data, the benefit is more pronounced
with the addition of labeled data.
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Fig. 22 Bayesian Inverse Problem for Reaction-Diffusion PDE: 100 observed data points with σ 2 = 0.01 and a 100-dimensional parameter input.
Left: Posterior based on MCMC (NUTS), Right: Posterior obtained by our algorithm

B Comparison with MCMC

In themain part of this article we already showed that the true
parameter input is encapsulated by the posterior. In this sec-
tion we compare the approximate posterior computed with
the reference posterior obtained by MCMC.

In particular, for two, randomly-chosen cases in the
reaction-diffusion example, the true posterior was computed
using the NUTS sampler from the Blackjax library [26]. As
is the case with all MCMC-based inference schemes, these
provide the reference posterior (asymptotically). The results
shown in Fig. 22 in terms of the posterior mean ± 2 pos-
terior standard deviations indicate excellent accuracy of the
posterior approximation proposed. While our method does
not require any new forward model evaluation or model gra-
dients, the MCMC algorithms require a forward model solve
and its gradients for each sample. For the MCMC-based
results displayed in total 40000 samples were generated.
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