
Computational Mechanics (2023) 71:1015–1039
https://doi.org/10.1007/s00466-023-02285-z

ORIG INAL PAPER

An enriched phase-field method for the efficient simulation of fracture
processes

Stefan Loehnert1 · Christian Krüger1 · Verena Klempt1 · Lukas Munk1

Received: 6 October 2022 / Accepted: 5 February 2023 / Published online: 4 March 2023
© The Author(s) 2023

Abstract
The efficient simulation of complex fracture processes is still a challenging task. In this contribution, an enriched phase-field
method for the simulation of 2D fracture processes is presented. It has the potential to drastically reduce computational cost
compared to the classical phase-field method (PFM). The method is based on the combination of a phase-field approach with
an ansatz transformation for the simulation of fracture processes and an enrichment technique for the displacement field as
it is used in the extended finite element method (XFEM) or generalised finite element method (GFEM). This combination
allows for the application of significantly coarser meshes than it is possible in PFM while still obtaining accurate solutions.
In contrast to classical XFEM / GFEM, the presented method does not require level set techniques or explicit representations
of crack geometries, considerably simplifying the simulation of crack initiation, propagation, and coalescence. The efficiency
and accuracy of this new method is shown in 2D simulations.

Keywords Phase-field · XFEM · Brittle fracture · Enrichment · Crack propagation

1 Introduction

During the last decade, the phase-field method (PFM) has
become one of the most popular techniques for the sim-
ulation of fracture processes. Starting from the variational
formulation of Griffith’s theory of fracture [25] and its reg-
ularised approach by Bourdin et al. [13], there now exists a
large body of research, especially regarding phase-field for-
mulations of brittle fracture.Comprehensive overviews of the
method can be found in [1,18,64], additionally we refer to
[5,14,37,46,47,61]. Proceeding from brittle fracture, many
contributions branched out into the investigation of phase-
field approaches to ductile fracture, e.g. [2,3,12,22,39,48],
dynamics, e.g. [10,15,34,36,55,59] andmore recently fatigue
processes, e.g. [4,16,56,57]. The big advantage of the PFM
compared to other popular techniques like the extended finite
element method (XFEM) or the generalised finite element
method (GFEM) is the ability to simulate crack nucleation,
propagation, branching, and coalescence processes in 2D and
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3Dwithout the necessity for crack tracking algorithms. How-
ever, one of the biggest disadvantages of the PFM is that a
very fine discretisation of the domain is required and, already
for linear elastic fracture problems, a highly non-linear equa-
tion systemhas to be solved, resulting in a high computational
effort even for 2D simulations. Therefore, several techniques
have been developed to improve the solution process and
speed up simulations [1,29,32,35,46].

Unlike the PFM, the XFEM / GFEM [9,20,27,45,50]
allows for the accurate simulation of fracture processes with
rather coarse meshes. For linear elastic fracture mechanics,
the resulting equation system remains linear, leading to a
much lower computational effort compared to PFM simula-
tions. However, within the XFEM / GFEM crack tracking
techniques like the level set method [53,60], the fast march-
ingmethod [17,58] or explicit crack advancement techniques
[21] are required to reproduce the change of the crack geom-
etry in space during propagation. Hence, phenomena like
crack coalescence and branching involve significantly more
difficulties, especially in 3D [7]. In addition to the necessity
for crack tracking techniques, criteria determining whether
the crack propagates, in which direction and how far it prop-
agates need to be evaluated.

During the last years, several techniques were developed
to overcome these difficulties by combining the XFEM with
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the PFM or a damage model, respectively. In [28] both meth-
ods are coupled in amultiscale context. ThePFM is applied in
a fine scale simulation in the vicinity of a crack tip to deter-
mine the local crack advancement. In a concurrent coarse
scale simulation, the XFEM is applied to account for the
crack behaviour away from the propagating crack tip(s). The
so-called Xfield-method [31] is based upon two different
grids: the development of the crack at the crack tip is sim-
ulated by the PFM on a moving fine grid, behind the crack
front the crack path is represented by level sets in the context
of the XFEM on a coarse background mesh. An alternative
approach is the thick level setmethod [49,62].Here, a damage
model is applied within a small domain defined by a sin-
gle level set function. Enrichment functions as they are used
within the XFEM improve the reproduction of displacement
discontinuities in parts of the domain that are fully damaged.

To take advantage of the knowledge that the solution of
the phase-field differential equation has exponential qual-
ity, in [38] exponential shape functions for the phase-field
in two dimensions are proposed. The presented ansatz can
reduce the number of elements perpendicular to the crack
enormously, however, parallel to the crack a rather fine mesh
is still necessary. Another drawback of the approach is, that
the crack path must be known a priori because the crack can
only develop along element edges. This foils one of the main
advantages of the PFM: the mesh independent development
of cracks.

For heterogeneities, a new phase-field approach has been
introduced by Finel et al. [23]. The basic idea of this so-
called sharp phase-field method (SPFM) is to transform the
ansatz space in such a way, that the solution can be captured
more accurately for a given discretisation. The transformed
ansatz functions directly depend on standard ansatz functions
interpolating between nodes. This method was first used in
[24] and has been successfully applied to grain growth in the
context of the finite difference method [19].

In the present contribution, the respective advantageous
properties of the PFM and the XFEM are combined to the
extended phase-field method (XPFM) designed to simulate
fracture processes. A transformed ansatz is used to reproduce
the exponential character of the phase-field function. Addi-
tional enrichment functions are incorporated into the ansatz
space of the displacement field to capture the discontinuity
(i.e. the jump across the crack surface) behind the crack front
and the transition zone from fully degradedmaterial to sound
material ahead of the crack front. These enrichment functions
are directly determined from the degrees of freedom of the
phase-field. No additional level set functions or explicit rep-
resentations of cracks are necessary, and geometrical crack
tracking algorithms are not required.

The article is structured as follows. In Sect. 2, the stan-
dard PFM for brittle fracture is summarised and discussed.
Particular attention is given to some discretisation aspects.

Next (Sect. 3), the XPFM for 2D is derived from some
preliminary investigations in one dimension. Furthermore,
stabilisation and blending techniques are discussed. The
algorithmic framework is introduced in Sect. 4. Numerical
and analytical studies regarding quadrature and the differ-
ent model parameters are conducted in Sect. 5. In Sect. 6
numerical examples are shown and compared to results from
literature to demonstrate the applicability and efficiency of
the XPFM. A conclusion and an outlook to future work is
given in Sect. 7.

2 Phase-fieldmodel of brittle fracture

In this section, the basic equations of the classical phase-field
approach to fracture are summarised. Some one-dimensional
considerations and a discussion of discretisation aspects
motivate the XPFM presented in the subsequent sections.

2.1 Governing equations

Following Griffith’s theory of brittle fracture [33], a pre-
defined crack in an elastic solid body B ⊂ R

2 will only
propagate if the energy release rate is at least equal to the
surface energy dissipated by the formation of new crack
surfaces. Francfort and Marigo [25] reformulate this as min-
imisation problem of the total energy Etot . It is defined as

Etot := Ee − Eext + Es → min . (1)

The elastic strain energy

Ee =
∫
B

ψ0 dv (2)

stored in the body, with the elastic strain energy density func-
tion ψ0, dependent on the displacements u, and the external
work

Eext =
∫
B
u · b dv +

∫
∂Bt

u · t̄ da (3)

due to external body forces b and tractions t̄ are considered.
∂Bt ⊂ ∂B describes the Neumann boundary for imposed
tractions on the body and ∂Bu ⊂ ∂B is the Dirichlet bound-
ary where displacement boundary conditions ū are applied.
Assuming small deformation theory and isotropic linear elas-
tic material behaviour, the strain tensor ε is defined by

ε(u) := 1

2

(
u ⊗ ∇ + (u ⊗ ∇)T

)
. (4)
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The strain energy density function of an undamaged body is
given by

ψ0(ε) := λ

2
(tr(ε))2 + μ tr(ε2) (5)

with λ being the first Lamé parameter and μ being the shear
modulus.With σ 0 := ∂ψ0/∂ε the stresses of the intact mate-
rial result in

σ 0(ε) = 2με + λ tr(ε)1 . (6)

Here, 1 denotes the second order identity tensor. The for-
mation of new surfaces due to crack growth evokes a certain
energy dissipation,which is called the fracture surface energy
Es . It is proportional to the newly created surface area
Γ through the material-depended critical fracture energy
release rate Gc

Es = Gc Γ . (7)

Due to its dissipative nature Es is only allowed to grow
whereas the elastic part Ee of the total energy can be recov-
ered.

To treat the energy minimisation approach numerically a
damage type parameter φ, the so-called phase-field param-
eter, is introduced in [13]. It interpolates smoothly between
the fully broken state (φ = 1) and the intact state (φ = 0)
of the material. Depending on this phase-transition, the
strain energy density and the stresses can be degraded by
a degradation function g(φ). This function must be mono-
tonically decreasing and has to fulfil the properties g(0) = 1,
g(1) = 0, g′(0) < 0 and g′(1) = 0. In this contribution, for
simplicity the degradation function most frequently applied
in literature is employed:

g(φ) := (1 − φ)2 + kg (8)

resulting in

ψ(φ, ε) := g(φ)ψ0(ε) (9)

and

σ (φ, ε) := g(φ) σ 0(ε) . (10)

Herein, kg is a small stabilisation parameter which ensures
that even in the fully degraded state a small residual stiffness
remains.The influence of the parameter kg on the solution
and its importance to the choice of discretisation are shown
in Sect. 2.2 and in Sect. 2.3, respectively.

The crack surface Γ is approximated by Γl with

Γ ≈ Γl :=
∫
B

γl dv (11)

where γl is the crack density function. One possible choice
for γl is

γl(φ,∇φ) := 1

2l

(
φ2 + l2‖∇φ‖2

)
(12)

as proposed in [47] and in a similar way much earlier in [13].
The crack density function depends on the phase-field vari-
able φ and its gradient ∇φ. The internal length parameter
l governs the width of the transition zone between broken
and unbroken state. The combination of this definition with
the variation of the total energy of the phase-field problem
(cf. Eq. (13)) leads to an inhomogeneous Helmholtz-type
equation reminiscent of gradient enhanced damage (GED)
formulations [54]. However, both approaches (PFM and
GED) differ regarding their motivation and regarding the
respective crack-driving source term. The PFM is motivated
from an energetic approach and, therefore, the strain energy
density serves as crack driving parameter. A comparison
between the two methods is presented in [1,65].

Inserting the individual parts into Eq. (1) the total energy
El of the regularised problem reads

El (u, φ) :=
∫
B
g(φ)ψ0(ε(u)) dv

+Gc

∫
B

1

2l

(
φ2 + l2‖∇φ‖2

)
dv

−
∫
B
u · b dv −

∫
∂Bt

u · t̄ da + Πirr → min. (13)

This total energy El is minimised with respect to the primary
variables u and φ. The additional penalty potential Πirr with

Πirr := 1

εirr

∫
Γ̄

(φ − 1.0)2 da (14)

prevents healingof a fully developed crack. Γ̄ are the surfaces
in the domain, where φ ≈ 1.0 applies. Here, εirr is a small
penalty parameter [30]. To inhibit non-physical crack prop-
agation under compression, only certain parts of the strain
energy density function should be degraded. Different splits
of the strain energy density function have been developed,
e.g. the volumetric-deviatoric split [5] and the spectral split
[46,47]. In this contribution, the spectral split is used in com-
bination with the hybrid model by Ambati et al. introduced
in [1] (cf. Sect. 4.1).

2.2 One-dimensional considerations

Miehe et al. [47] examine an infinitely expanded bar Ω =
A × L with L = [−∞,∞] where A represents the cross-
section, L the length of the bar and x indicates the current
position along the axis of the bar. The regularised crack sur-
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face Γl of this one-dimensional bar reads

Γl = 1

2l

∫
Ω

(
φ2 + l2φ2

,x

)
dv (15)

with dv = A dx . For the fully broken state with a crack
located at x = 0 (i.e. φ(0) = 1 and φ(±∞) = 0) Γl = A
must hold. For this case, the solution

φ(x) = exp (−|x |/l) (16)

can be identified. This was derived in a similar way in [10]
while taking into account the mechanical part of the prob-
lem and in [37] for a slightly reformulated definition of the
crack surface density function. To the best of our knowledge,
for all cases with only a partially developed phase-field with
0 < φ(x = 0) < 1 and φ(x = ±∞) = 0, no direct analyt-
ical solution for φ(x) could be found yet. Borden et al. [10]
deduced an analytical solution, but had to evaluate the aris-
ing integrals numerically. They state, that only for the fully
broken case (φ(x = 0) = 1) a kink occurs in φ(x = 0), for
all other cases (i.e. the crack has not developed completely)
the function φ(x) remains smooth.

The degraded strain energy of a linear elastic bar reads

Ee = E A

2

∫
Ω

((1 − φ)2 + kg) u
2
,x dx → min . (17)

The variation of this equation with respect to the displace-
ments u results in
∫

Ω

((1 − φ)2 + kg) u,x δu,x dx = 0 . (18)

Assuming φ(x) = exp (−|x |/l), kg = 0 and the boundary
conditions u(−∞) = 0 and u(∞) = ū, the solution for the
displacements yields

u(x) = H(x) ū with H(x) :=
{
0 x ≤ 0

1 x > 0
(19)

where H(x) represents the Heaviside step function. If
φ(x = 0) < 1, the material is not degraded completely at
x = 0. In order to still fulfil Eq. (18), high strains u,x corre-
spond to themaximum values of φ(x). As a consequence, the
shape of the displacement function u(x) is a smooth sigmoid
function which converges to the Heaviside function in the
fully broken state. To show this effect, different predefined
phase-field functions representing different states in the pro-
cess of a developing crack were applied to a one-dimensional
bar with L = [−1, 1]. The regularising internal length was
chosen to be l = 2. The mechanical part of the problem
(Eq. (18)) was solved via FE-simulation for the displace-
ment field u(x) across the crack, with the applied boundary

−1 −0.5 0 0.5 1

−1

0

1

x

u
(x

)

φ(x = 0) := 1.0
φ(x = 0) := 0.9
φ(x = 0) := 0.8

Fig. 1 Displacement field solution in the one dimensional bar for dif-
ferent phase-field states and for kg = 0

−1 −0.5 0 0.5 1

−1

0

1

x

u
(x

)

kg = 0.00
kg = 10−3

kg = 10−5

Fig. 2 Displacement field solution in the one dimensional bar for a
fully developed phase-field (predefined, φ(x = 0) := 1) and different
kg

conditions u(x = −1) = −1 and u(x = 1) = 1. 10,000
elements were used over the bar to ensure a sufficiently accu-
rate approximation of the different slopes using linear ansatz
functions. The resulting displacement functions are depicted
in Fig. 1.

If kg is chosen to be kg �= 0, even for a fully developed
phase-field, a small residual stiffness remains. Therefore, the
displacement field u(x) will obtain the shape of a sigmoid
function, the slope ofwhich depends on the chosen parameter
kg . This is shown in Fig. 2 for the same FE-simulation.

2.3 Discretisation aspects

Equation (13) is solved within the framework of the finite
element method (FEM). For classical finite elements, the
solution for the primary fields φ and u as well as their gra-
dients can only be reproduced adequately using standard
polynomial ansatz functions if the mesh size is sufficiently
small or the ansatz order appropriately high. As shown in
Sect. 2.2, high gradients alongwith non-polynomial and non-
smooth solutions will occur for u and φ. As an upper bound
for the element size h, Miehe et al. [47] suggests l/h > 2
for first order quadrilateral elements in order to minimise
the approximation error of the phase-field. Linse et al. [41]
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l/h = 5
l/h = 15
l/h = 25

Fig. 3 Displacement functions over a one-dimensional bar correspond-
ing to the predefined phase-field function with different element sizes
and a kg = 10−5

note, that Miehe et al. only took the phase-field approxima-
tion and its gradient into account and neglected the coupled
mechanical problem in their considerations. Therefore, they
suggested an even higher threshold for adequate l/h-ratios
than given in [47].

Bymeans of a one-dimensional bar, it is shown in [44] that
there exists a discrepancy between the theoretically proved
Γ -convergence and numerical results if l → 0. They state
that the ratio l/h should lie within a specific range in order
to minimise the error. This range depends on the specific
example. In [41] even ratios l/h ≥ 32 are applied to a one-
dimensional problem, where quadratic ansatz functions are
employed. From a practical point of view, Wu [65] suggest
a ratio from l/h ≥ 5 to l/h ≥ 10 for two-dimensional prob-
lems, which is also adopted in [43].

However, in studies addressing the l/h-ratio, the depen-
dency on the chosen kg is not yet investigated. In a one-
dimensional setting, the parameter kg influences the slope
of the sigmoid function the displacement field is tending to
for a growing phase-field. Therefore, kg exhibits regularis-
ing properties. Choosing an l/h-ratio which is too large for a
given kg leads to anoverly stiff behaviour.Hence, for the stan-
dard phase-field approach, themesh size h needs to be chosen
not only dependent on the length scale l but also in rela-
tion to the artificial stiffness kg . This becomes evident when
solving the mechanical part of the problem (Eq. (18)) for a
fully developed, predefined phase-field, such as described in
Eq. (16), with l = 2 and a chosen kg = 10−5 again over a
one-dimensional bar (cf. Sect. 2.2) for different meshes (10,
30 and50 elements).Again, linear shape functionswere used.
The respective resulting displacement functions are depicted
in Fig. 3. This overly stiff behaviour leads to a spreading of
the phase-field in the coupled phase-field problem until at
least one element is fully degraded.

Furthermore, independent of l and for kg = 0, the element
sizemust fulfilh → 0 tobe able to represent the displacement
jump across the crack exactly.

Bourdin et al. [14] suggest a correction of the critical
fracture energy release rate Gc depending on the l/h-ratio
reading Ḡc = Gc(1 + h/(4l)) to handle the localisation
error due to the finite element dimensions. A detailed study
on this effective critical fracture energy release rate Ḡc can
be found in [11]. Among others, this corrected energy release
rate has been investigated in [44,51,61]. In this contribution
such a correction is not necessary, since the presented numer-
ical framework can handle localisation independently of the
mesh.

In [43] the influence of a uniform mesh and the length
scale l on the mesh bias of a developing crack is inves-
tigated. It is observed, that for undersized l/h-ratios, the
phase-field profile follows the element edges. Adjusting the
ratio to l/h = 15 the sensitivity towards the mesh bias van-
ishes. We believe, the authors neglect one important reason
which is in accordance with their observations: in order to
represent the discontinuity of the displacement field which
appears if no stiffness remains along the crack (kg = 0)
for low order elements, at least one fully degraded element
is necessary. Otherwise, the displacement jump across the
crack can not be approximated adequately. To illustrate this,
a tension-test of a notched plate in a two-dimensional setup is
examined (boundary conditions in Fig. 31a). The fully devel-
oped phase-field and the corresponding displacement field
in y-direction is shown in Fig. 4 on the left. For the exam-
ple, an internal length scale parameter of l = 0.008mm has
been applied. A detailed view of the phase-field and the dis-
placement field for three different element sizes (h/l = 1,
l/h = 2 and l/h = 5) is given in Fig. 4 on the right. The
mesh, consisting of second order 6-node triangular elements,
is regular but not parallel to the expected crack path (bias
7◦). It can be seen that for an increasing l/h-ratio, the sen-
sitivity towards the mesh size vanishes. The finer the mesh,
the less a zigzag-pattern of the phase-field due to the mesh
is observable on a global scale. Nevertheless, regarding the
displacement field even for a bigger l/h-ratio, the crack still
follows themesh geometry.Also, themesh orientation affects
the crack position. Only with increasing l/h-ratio, the crack
can be reproduced at the correct position. Without special
treatment, it is not possible to capture the approximated jump
in the displacement field at the correct position independently
of the mesh.

In the context of the finite difference method, Finel et al.
[23] consider a rather similar problem for a phase-field cap-
turing the transition zone between two different material
phases. There, the shape of the smeared transition zone con-
forms to a sigmoid-type hyperbolic tangent function (tanh)
which is approximated by linear functions between the grid
points. It can be observed that the approximated function can
not develop independently of the position of the grid points
of the underlying grid. In order to overcome this so-called
grid pinning, the authors propose a transformedansatz,which
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l/h = 1 l/h = 2 l/h = 5

Fig. 4 Phase-field φ (top) and displacement field uy (bottom) of a mode I tension test for different ratios l/h with l = 0.008mm and a mesh bias
of 7◦, boundary conditions cf. Fig. 31a

can reproduce a hyperbolic tangent function at any position
of the grid independently of the grid point positions. Instead
of a minimum of eight grid points necessary for the standard
formulation, only one grid point is enough to capture the
tanh-profile adequately. With this sharp phase-field method
(SPFM) the number of grid points necessary can be reduced
without any significant loss of accuracy.

3 Extended phase-field method (XPFM)

Motivated by the reduction of the computational cost of
phase-field simulations of brittle fracture by reducing the
l/h-ratio without loss of accuracy and with insensitivity to
mesh bias, the new concept of the XPFM is presented in the
following. It adapts concepts from the well known XFEM
and the newly developed SPFM.

3.1 Derivation of the XPFM in 1D

For the derivation of the XPFM, it is reasonable to focus
on the phase-field approximation ansatz first and to address
the displacement field approximation afterwards. Particu-
larly, the phase-field ansatz is based on the known analytical
solution of the phase-field problem in 1D. Then again, the
displacement field ansatz is based on the phase-field approx-
imation.

3.1.1 Approximation of the phase-field

The FEM is able to reproduce every function which is
included in the ansatz space exactly. Usually, linear or
quadratic polynomial shape functions are applied. These
are solely able to approximate the exponential shape of the
phase-field if h → 0. Within one second order element, an
arbitrary quadratic function f can be defined as

f (x) := a(x − b)2 + c (20)

where a, b and c, {a, b, c} ∈ R, are parameters defining
the shape of f . This function f can be utilised to define a
transformation of the phase-field ansatz:

φ(x) := ϑ( f (x)) . (21)

A possible choice for ϑ , following Eq. (16) is

ϑ( f ) := e−
√

f /l2 . (22)

For a fully developed crack (c → 0), Eq. (16) can be repro-
duced exactly:

lim
c→0

ϑ( f (x)) = e−
√

a(x−b)2/l2 = e−√
a|x−b|/l . (23)

Furthermore, the limiting cases

lim
f (x)→0+ ϑ( f (x)) = 1 (24)
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(a) f(x) = 2(x + 0.5)2

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

x

f
(x

),
φ
(x

)

f

φ

(b) f(x) = (x − 0.2)2 + 0.3

Fig. 5 Phase-field representation (orange), dependent on quadratic
basis function f (blue) with l = 1. (Color figure online)

and

lim
f (x)→∞ ϑ( f (x)) = 0 (25)

can be identified which correspond to the previously defined
bounds of φ. As shown in Fig. 5, different choices of a, b
and c can scale the phase-field andmove it in all directions. It
must hold for every x that f (x) ≥ 0 (namely a > 0, c > 0),
otherwise ϑ( f (x)) /∈ R.

φ and its basis function f both have one extremum at
the position where the crack is located. The maximum in φ

always corresponds to the minimum in f . Only for the fully
broken state the transformation ensures a kink in ϑ( f ) at the
position of the crack, for all other states ϑ( f ) and therefore
φ remains smooth.

The transformation of the phase-field ansatz (Eq. (22))
presents two challenges: Firstly, the representation ofφ(x) =
0 is not unique since φ(x) → 0 if f (x) → ∞ and, secondly,
if φ(x) → 1 the derivative of the root function in ϑ( f ) tends
to infinity for f (x) → 0. The first problem is resolved by
applying the transformed ansatz only in regions where it is
required (cf. Sect. 3.3). Secondly, the root function close to
zero is approximated by a polynomial function with finite
derivative. To ensure C2-continuity between the square root
function and its approximation near zero, a third order poly-
nomial function ς is defined as

ς( f ) := 1

8
√
kφ

(
3

k2φ
f 3 − 10

kφ

f 2 + 15 f

)
(26)

where kφ is a threshold value. Employing this regularisation
function for f < kφ , the transformation function becomes

ϑ( f ) :=
{
exp (−ς( f )/l) if f < kφ

exp
(−√

f /l
)

else .
(27)

The stabilised root function is depicted in Fig. 6. The solid
graph corresponds to the final composed, stabilised root func-

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f

ς(
f
),

√
f

√
f for f ≥ kφ

ς(f) for f < kφ√
f for f < kφ

ς(f) for f ≥ kφ

Fig. 6 Stabilisation of the root function according to Eq. (26), kφ = 0.4

tion, the dashed graphs display
√

f and ς( f ) outside their
respectively defined bounds.

3.1.2 Approximation of the displacement field

Besides being able to reflect the localisation behaviour for
a developing crack, the displacement field must be able to
reflect rigid body modes and all other deformation modes
that can be captured by a classical at least first order finite ele-
ment ansatz. As a consequence, we employ an XFEM ansatz
introducing an enrichment function, which is able to capture
the characteristics of the displacement-field as described in
Sect. 2.2. Such an enrichment function can directly be con-
structed utilising the basis function f of the transformed
phase-field ansatz. One possible enrichment function uφ

reads

uφ(x) := f,x (x)

2
√
4 f (x)

. (28)

This function converges to the sign function for the fully
broken state (c = 0):

lim
c→0

uφ(x) = a(x − b)√
4a|(x − b)| = sgn(x − b)

√
a

4
. (29)

For all other cases (c > 0), uφ is a smooth sigmoid function.
In Fig. 7 the enrichment function (Eq. (28)) is presented for
different maximal values of the phase-field.

3.2 Categorisation of element types in 2D

When expanding the presented one-dimensional method to
2D, different element types have to be considered, since
not for all elements a transformed phase-field ansatz or an
enriched displacement ansatz is required. Triangular ele-
ments with six nodes each are used. They are able to
reproduce arbitrary quadratic functions, which are necessary
for the transformed phase-field ansatz. The following four
element types are introduced:
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Fig. 7 Displacement field representation, directly depending on the
phase-field through f . Different values of c correspond to different
maximum phase-field values (a = 1, b = 0.2)

1 Standard elements (SE): non-enriched elements, all
nodes belong to the nodal subset I S

2 Transformed elements (TE): elements with transformed
phase-field ansatz but without displacement field enrich-
ment, all nodes belong to the nodal subset I T .

3 Crack front enriched elements (FE): elements with full
crack front displacement enrichment, all nodes belong to
the nodal subset I F .

4 Jump enriched elements (JE): fully cracked elements
with regularised jump enrichment function, all nodes
belong to the nodal subset I J .

The entity of all nodes is declared I . It must hold that

I = I S ∪ I T and ∅ = I S ∩ I T (30)

as well as

I F ⊂ I T and I J ⊂ I T . (31)

Furthermore, blending element types are needed for a suit-
able transition of enrichment functions between elements of
different type:

2b Transformed-Standard blending elements (TSb): ele-
ments, where the transformed phase-field ansatz is
blended into the standard ansatz, nodes connected to
transformed elements belong to I T , the other nodes to
I S

3b Front-Transformed blending elements (FTb): elements,
where the crack front enrichment is blended out with a
ramp function ρF (cf. Sect. 3.4.1), all nodes belong to
the nodal subset I F ∪ I J

4b Front-Jump blending elements (FJb): elements, where
the regularised jump enrichment function is blended into
the crack front enrichment function with a ramp function
ρ J , all nodes belong to the nodal subsets I F ∪ I J .

An exemplary element type distribution, the mapping of the
nodes to their corresponding nodal subset and the ramp func-

SE TE TSb

JE FE FTb FJb

i ∈ IF ∪ IJ

i ∈ IS

i ∈ IT

i ∈ IF

i ∈ IJ

ramp function ρF ramp function ρJ

crackpoint

Fig. 8 Top: element types and corresponding nodal subsets, the crack
is represented by the white line, crack points are defined, where the
crack intersects the element edges; bottom: ramp functions ρF and ρ J ,
fading out the corresponding enrichment functions from 1 (black) to 0

tions for a single crack are displayed in Fig. 8. Parallel to the
crack, the ramp function ρ J does not need to be considered,
cf. Sect. 3.4.2.
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3.3 Approximation of the phase-field

In standard elements (SE) the phase-field is approximated by
the quadratic interpolation

φh =
∑
i∈I S

2Niφi (32)

where 2Ni are the six Lagrangian shape functions of a sec-
ondorder 6-node triangular element andφi are the phase-field
values at the nodes. In all other elements (except the blend-
ing type TSb) a transformed ansatz referred to Eq. (27) is
introduced:

φh = ϑ
(
f h

)
with f h =

∑
i∈I T

2Ni fi . (33)

Note that the nodal values fi do not represent the nodal
phase-field values directly anymore. This transformed ansatz
(Eq. (33)) is only introduced in elements where φh exceeds
a certain threshold value φt . This guarantees, that in ele-
ments with phase-field values that are (nearly) zero, f h does
not tend to infinity. Between elements with the transformed
ansatz and elements with the standard ansatz, blending ele-
ments with the ansatz function

φh =
∑
i∈I S

2Niφi +
∑
i∈I T

2Niϑ ( fi ) (34)

need to be defined. This blending technique only guarantees
continuity at the nodes, but not across the edges of an element.
It becomes apparent that this limitation can be neglected if
the threshold value φt is small enough (cf. Sect. 4.2).

It is emphasised that additional standard FEM approxi-
mation terms are neglected in the formulated transformed
phase-field ansatz, since no constant phase-field modes
(comparable to rigid body modes of a displacement field
approximation) have to be considered due to the nature of the
underlying phase-field differential equation. Besides, addi-
tional standard FEM ansatz functions would lead to linear
dependencies between the standard degrees of freedom and
the degrees of freedom of the transformed ansatz.

3.4 Approximation of the displacement field

The displacement field approximation is based on the XFEM
in terms of enriching the ansatz space with special enrich-
ment functions. Two enrichment functions are introduced to
capture the displacement jump behind the crack and the crack
opening at the crack front adequately. The approximation uh

of the displacement field reads

uh =
∑
i∈I

2Niui +
∑
i∈I J

2Niχ
J ai +

∑
i∈I F

2Niχ
F bi (35)

where ui are the standard displacement degrees of freedom
and {ai , bi } the additional enriched degrees of freedom. The
enrichment function χ J represents the crack jump behind
the crack front. The front enrichment function χ F is similar
in nature to the regularised jump enrichment function χ J .
They both enable the ansatz function to reproduce a sigmoid
function, however with different slopes.

The two-dimensional extension of Eq. (28) for the enrich-
ment functions is not straightforward, since additional infor-
mation about the crack geometry is required. The crack
position and geometry in the XFEM / GFEM are typically
described by level set functions [60] or explicit crack rep-
resentations [21]. Within the XPFM, however, the crack
position and geometry is extracted from the phase-field and
is not described directly. As a result, there is no need to
introduce level set functions or explicit representations of
the geometry of the discontinuity.

3.4.1 Crack front enrichment

At the crack front, the transition between the crack jump and
the intact material must be represented by the enrichment
function χ F . Therefore, Eq. (28) is rewritten, resulting in

uF
φ := Dr f h

2
√
4 f h + kreg

. (36)

Here Dr f h is the directional derivative of f h in the direction
of r , where r is the normalised direction perpendicular to the
crack surface (cf. Sect. 3.4.4). The additional parameter kreg
corresponds to the regularisation of the enrichment function
behind the crack front (cf. Sect. 3.4.2). This parameter kreg
can be correlated to kg , since, as described inSect. 2.3, it leads
to a similar regularisation of the displacement function. In
the following, however, the residual stiffness is chosen to be
kg = 0 and kreg is therefore opted to be a small, but non-zero
quantity to ensure numerical stability.

To avoid (almost) linear dependencies between the stan-
dard and the enriched term in Eq. (35) a stabilisation of the
enrichment function similar to the SGFEM approach [8] is
introduced. Furthermore, a ramp function ρF in the FTb-
elements is used to ensure the fulfilment of the partition of
unity in the blending elements [26,40,42]. The nodal values
ρF
i of the ramp function take the value ρi = 1 at all nodes

belonging to FE- and FJb-elements and ρi = 0 at the corner
nodes of FTb-elements which are not also nodes of an FE- or
FJb-element, respectively (cf. Fig. 8). In between, the values
of the ramp function are interpolated linearly. Thus, the final
front enrichment function reads

χ F :=
∑
i∈I F

1Niρ
F
i

⎛
⎝uF

φ −
∑
j∈I F

1N ju
F
φ, j

⎞
⎠ . (37)
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3.4.2 Regularised jump enrichment

Theoretically, the same enrichment functionχ F could also be
used to represent the regularised displacement jump behind
the crack front. However, the values for f h as well as for
Dr f h tend to zero for the fully broken state. It turns out, that

uJ
φ := Dr f h

2
√(

Dr f h
)2 + kreg

(38)

is a good choice for a robust enrichment function. The small
parameter kreg controls the width of the regularised zone. For
kreg = 0 the modified Heaviside step function commonly
used in classical XFEM [50] can be reproduced. Applying
the same stabilisation technique as before, the enrichment
function for the jump enriched elements (JE) reads

χ J :=
∑
i∈I J

1Niρ
J
i

⎛
⎝uJ

φ −
∑
j∈I J

1N ju
J
φ, j

⎞
⎠ . (39)

Note, that the directional derivative of the basis function
perpendicular to the crack Dr f h takes on level set like prop-
erties. Furthermore, along the edges of the jump enriched
elements where the crack does not intersect, the jump enrich-
ment is almost exactly zero, due to its stabilisation. Hence, no
blending is necessary in the neighbouring elements behind
the crack front (element type TE). Near the crack front, how-
ever, in element type FJb the ramp function ρ J is used.

3.4.3 Computation of the directional derivative Dr f h

The directional derivative Dr f h is defined as

Dr f
h := ∇ f h · r . (40)

Since the transformed phase-field ansatz retains the C0-
continuity of the standard ansatz, the gradient ∇ f h is
discontinuous across the element edges and thus cannot
directly be used as part of the enrichment function for the
displacement field. Therefore, Dr f h is approximated by a
function ϕh , which must fulfil the following properties: ϕh

has to be a C0-continuous, e.g. piece-wise linear function,
and its iso-zero line must coincide exactly with the minimum
of f h (and thus with the maximum of φh) for the fully bro-
ken state. The first two properties can be achieved by fitting
ϕh to Dr f h using linear shape functions utilising a least-
square-fit. The third property is guaranteed by introducing a
Lagrange multiplier term. The resulting problem

∫
BE

1

2

(
Dr f

h − ϕh
)2

dv +
∫

Γ̄

Λhϕh da → min (41)

has to be solved on the limited subdomain BE around the
crack, containing all elements of types JE, FE, FTb and FJb.
The unknowns ϕh and Λh are approximated using linear
shape functions 1Ni with i = 1 . . . 3:

ϕh =
∑
i∈I E

1Niϕi and Λh =
∑
i∈I E

1NiΛi . (42)

The Lagrangemultiplier term is evaluated along the crack.
Within one element, the transformed phase-field ansatz is
merely able to represent a straight crack. Hence, the posi-
tion of the crack inside an element can be identified by just
two points. Advantageously, these two points per cracked
element are localised at the element edges. Therefore, the
directional derivatives of f h along the three element edges
are calculated. If one of these directional derivatives takes
the value zero within the bounds of the investigated element
and the phase-field value φ is virtually 1 at this position, then
this point is defined to be a crack point xc (cf. Fig. 8).

3.4.4 Computation of the direction r perpendicular to the
crack

In Eq. (40) the direction r perpendicular to the crack has to
be determined. A purposeful approach is to use the eigen-
vector corresponding to the greatest positive eigenvalue of
the strain tensor ε. This principle strain direction is (nearly)
perpendicular to the developing crack surface at the crack
front and also in front of the crack, cf. Fig. 9b. Behind the
crack front, the direction r is fixed in order to maintain the
perpendicularity to the crack even in case of a mode II or a
mixed mode crack. It is remarked, that this choice is physi-
cally meaningful, since the greatest positive principal strain
at the crack front is primarily responsible for crack opening
phenomena [52].

The strainfieldε is discontinuous across the element edges
when applying C0-continuous displacement-field ansatz
functions. A least-square-fit of the form

∫
BE

1

2
(ε − ε̄)2 dv → min (43)

in conjunction with a lumped projection strategy and a piece-
wise linear approximation of the projected smooth strain field
ε̄ is used

ε̄ =
∑
i∈I E

1Ni ε̄i . (44)

to obtain a C0-continuous strain field. Then, at each node i
the eigenvalue problem

ε̄ n̄i = ε̄i n̄i (45)
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(a) Gradient ∇fh in phase-field φ.

(b) Direction r in displacement field uy.

Fig. 9 Crack front of a bent crack obtained by changing the load direc-
tion

is solved,where ε̄i are the eigenvalues and n̄i the eigenvectors
of ε̄. The vector r is defined to be the eigenvector n̄i to the
greatest positive eigenvalue ε̄i .

4 Algorithmic aspects

Solving Eq. (13) with respect to the unknowns {u, φ},
the convergence to the correct solution within a standard
Newton-Raphson-scheme can not be guaranteed. Several
approaches have been developed to overcome this problem,
e.g. [29,32,35,36,47]. Most commonly used is the staggered
solution process, proposed in [13,46] for phase-field calcu-
lations in the context of brittle fracture. Due to its simplicity
and effectiveness, this approach is utilised in this contribu-
tion.

4.1 Staggered solution process

The idea of a staggered solution process is to solve the gov-
erning equations iteratively, alternating between the equa-
tions to solve as well as the unknowns to solve for. The
variation of Eq. (13) is divided into

δuEl(u, φ) =
∫
B
ḡ(φ) σ 0(ε(u)) δε dv

−
∫
B

δu · b dv +
∫

∂Bt

δu · t̄ da (46)

with

δε = 1

2

(
δu ⊗ ∇ + (δu ⊗ ∇)T

)
(47)

and

δφEl(u, φ) = −
∫
B
2 (1 − φ) ψ+(ε(u)) δφ dv

+ Gc

∫
B
1

l

(
φδφ + l2∇φ · ∇δφ

)
dv

+ δφΠirr . (48)

Note that in Eq. (48) ψ+ drives the phase-field instead of ψ0

to avoid crack propagation under compression [46]. Here,
the strains ε are decomposed into a tensile part ε+ and a
compressive part ε−. Only ε+ is supposed to contribute to
driving the crack growth. This split of the strains reads

ε± :=
n∑

i=1

〈εi 〉±ni ⊗ ni (49)

with n being the spatial dimension, εi the i-th principal strain,
ni the corresponding principal strain direction and the def-
inition 〈•〉± := (• ± |•|)/2. The parts of the strain energy
density which are associated to tension (+) and compression
(−) are defined as

ψ±(ε) := λ

2
〈tr(ε)〉2± + μ tr(ε2±) . (50)

To circumvent the evaluation of the derivatives of ε± with
respect to ε which would ensue from introducing the split
into Eq. (46), Ambati et al. [1] propose to degrade the whole
strain energy density function if ψ+ ≥ ψ−, otherwise, no
degradation is considered, such that

ḡ(φ) :=
{
g(φ) if ψ+ ≥ ψ−
1.0 else .

(51)

In an alternating manner,

δuEl(u, φ) = 0 and (52a)

δφEl(u, φ) = 0 (52b)

are solved for u and φ, respectively. Due to the transformed
phase-field ansatz, Eq. (48) is non-linear with respect to
the unknown degrees of freedom fi (but remains linear
with respect to φi ) whereas Eq. (46) remains linear in the
unknowns ui , ai and bi even for the enriched state. Thus,
Eq. (48) is solved by means of a Newton-Raphson proce-
dure. Typically between 2 and 4 iterations are necessary to
reach convergence without crack propagation and between
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6 and 12 iterations if the crack propagates. The entire solu-
tion process is depicted in Fig. 10. The number of staggered
iterations nstag as well as the load step size Δt are fixed and
defined explicitly.

Within every staggered iteration, first Eq. (52a) is solved
for the displacement field uh and then Eq. (52b) is solved
for the phase-field φh . Subsequently, the enrichment func-
tions uφ are recalculated from the phase-field values and the
eigenvectors of the strains. If an adjustment of the enrich-
ment scheme is detected (i.e. an adjustment of the element
types), the current staggered iteration is repeated with the
new enrichment scheme until no adjustment of the enrich-
ment scheme is necessary anymore.

4.2 Update of the enrichment scheme

The enrichment scheme has to be updated if a crack prop-
agates. If the phase-field φh exceeds a certain threshold
value φt at an integration point, the element type is changed
from standard (SE) to transformed (TE) type. Thereby, the
interpretation of the phase-field degrees of freedom change.
Hence, the degrees of freedom have to be shifted by

fi∈I T := ln
(
φi∈I S

)2 (53)

if a node i ∈ I S is transformed to a node i ∈ I T . A reasonable
threshold value φt is in the range of φt = 0.1 . . . 0.2. This
choice prevents algorithmic difficulties within the blending
elements of type TSb. Elements with a phase-field value
φh > φe (φe > φt , e.g. φe = 0.4 . . . 0.5) at an integration
point are considered as candidates for displacement enriched
elements (type JE or FE). In these elements, Eq. (41) is solved
to compute the fitted directional derivative ϕh for the enrich-
ment functions uF

φ and uJ
φ . Thereby, the positions of the crack

points are determined as described in Sect. 3.4.3. In elements
with exactly two crack points, the regularised jump enrich-
ment function uJ

φ is used (JE). Elements with one or less

crack points and non-constant enrichment function uF
φ are

regarded as front enriched elements (FE). Following this,
the blending scheme and the ramp functions ρF and ρ J are
defined as depicted in Fig. 8.

4.3 DampedNewton–Raphson-procedure

For the calculation of φn+1
i+1 a damped Newton–Raphson

method including a line search algorithm is used to avoid
nodal phase-field values φi > 1 during the iteration process.
Therefore, the updated solution vector φn+1

i+1,k+1 = φn+1
i+1,k +

Δφ is checked for negative values fi (which would lead to
nodal phase-field values φi > 1). For those entries, a factor

Initialise
φ0 = 0, u0 = 0

Load step loop
n = 1...nmax

φn+1
1 = φn, un+1

1 = un

Staggered loop
i = 1...nstag

Enrichment loop

solve (52a) for un+1
i+1

with φn+1
i and uφ

i

(linear problem)

solve (52b) for φn+1
i+1

with un+1
i+1

(Newton-procedure)

Recalculate
enrichment uφ

i+1

New
scheme?

i = nstag?

n = nmax?

Finalise
Stop simulation

No Yes

No

i = i + 1

Yes

No

n = n + 1

Yes

Fig. 10 Staggered solution process with enrichment scheme update
procedure

αi is calculated with

αi = Δφi − fi
Δφi

, (54)

Δφi being the change of the degree of freedom of the con-
sidered node. The increment Δφ is reduced by the factor
αmin = mini [αi ] which results in

φn+1
i+1,k+1 = φn+1

i+1,k + αminΔφ . (55)
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Theparameterαmin canbe interpreted as a line-searchparam-
eter which controls the increment in such a way, that no
negative values fi occur.

5 Quadrature aspects and parametric study

The accuracy and numerical efficiency of the presented
method depend on the choice of the stabilisation parameters
kφ and kreg, on the l/h-ratio and, furthermore, on the choice
of integration scheme. It can be seen from Sect. 3.1.1, that
for a parameter kφ → 0 the phase-field tends to the expected
solution for fully developed cracks, but, as shown in the fol-
lowing section, a small kφ leads to an increased numerical
effort due to the need for a more accurate quadrature rule.

Furthermore, as noted in Sect. 2.3, for standard PFM-
simulations the l/h-ratio must be sufficiently large to enable
an accurate approximation of the phase-field, the displace-
ment field and their respective gradients. For the XPFM, the
l/h-ratio can be chosen much smaller. However, the repro-
ducible width of the phase-field and thus the applicability
of the method for small l/h-ratios certainly depends on the
numerical quadrature scheme, which can lead to a quite high
computational effort on the element level in a few elements
and in extreme cases. Naturally, the aim is to keep the com-
putational effort lowwhilemaintaining accurate solutions. In
the following, several studies for the right choice of the dif-
ferent parameters are conducted and presented. Furthermore,
the choice of the numerical quadrature scheme is discussed
and assessed.

5.1 Preliminary Investigation in 1D

To get a good understanding of the influence of the param-
eters kφ , l and kreg on efficiency and accuracy, two different
aspects are preliminarily analysed in one dimension. Firstly,
the error of the crack surface integral computed with the
stabilised phase-field solution compared to the analytical
solution is studied. Secondly, a usable quadrature scheme
is presented and investigated for the crack density function
γ

ς
l depending on the phase-field approximation and for the
strain energy density functionψ0 depending on the displace-
ment field.

5.1.1 Error of the stabilised crack surface

The analytical solution φ (Eq. (16)) of the phase-field prob-
lem (Eq. (18)) and its stabilised counterpart φς (Eq. (27)) as
depicted in Fig. 11 are employed to calculate the regularised
crack surface. Note, that both functions are identical apart
from the stabilised area around the phase-field peak (magni-
fied)whose size depends on the parameter kφ (cf. also Fig. 6).

−2 −1 0 1 2
0

0.5

1

x [mm]

φ
(x

) [
−]

φ

φς

Fig. 11 Analytical and stabilised phase-field with l = 1.0mm and
kφ = 0.002, magnified at the phase-field peak
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l

Fig. 12 Crack density function with an analytical and stabilised phase-
fieldwith l = 1.0mm and kφ = 0.002,magnified close to the deviations
due to stabilisation

With Eq. (12) the depicted phase-field functions yield the
crack density functions γl and γ

ς
l = γl(φ

ς ) shown in Fig. 12.
The integral of γl is the regularised crack surface Γl and the
integral of γ ς

l , Γ
ς
l , should be a close approximation depend-

ing on kφ . The smoothing of the phase-field tip is necessary
to make the transformed phase-field ansatz differentiable at
the crack. However, this leads to significant deviations of the
approximated crack density function γ

ς
l from γl . These devi-

ations originate in the gradient of the stabilised phase-field
function, which is incorporated in the crack density func-
tion. With decreasing kφ , the deviations increase and tighten,
which corresponds to a smaller error of the crack surface
compared to the analytical solution of the phase-field but
also to increasing difficulties concerning accurate numerical
quadrature.

Taking into account that Γl = A, the error

eΓl :=
∣∣∣Γ

ς
l − Γl

Γl

∣∣∣

=
∣∣∣
∫ √

kφ l

−√
kφ l

γ
ς
l (x) dx −

∫ √
kφ l

−√
kφ l

γl(x) dx
∣∣∣ (56)
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Fig. 13 Error of stabilised crack surface dependent on kφ with l =
1.0mm (blue) and dependent on l with kφ = 0.002 (orange). (Color
figure online)

of the stabilised crack surface in comparison to the analytical
solution for different stabilisation parameter kφ (blue) and
length parameter l (orange) is depicted in Fig. 13. It becomes
obvious that eΓl is solely dependent on kφ and independent
of l. Furthermore, kφ ≤ 0.006 seems to be a natural choice
to ensure an error of less than 1% for 1D problems.

5.1.2 Integration strategy

The integration within a one-dimensional reference element
with the reference coordinate −1mm ≤ ξ ≤ 1mm is
investigated. The phase-field and therefore the crack density
function is prescribed in the whole element with the maxi-
mum of φmax at the location ξ = ξmax with a chosen basis
function f (cf. Eq. (20)) with

a = 1/l2, b = ξmax and c = ln(φmax )
2 . (57)

In Fig. 14 the stabilised functions φς (blue) and γ
ς
l (orange)

are depicted firstly for a crack in the middle of the element
(ξmax = 0mm, solid lines) and secondly (dashed lines) with
φmax = 1.0 (if not denoted explicitly different) in a pseudo-
random location ξmax ≈ 0.3351mm where it is ensured, that
no integration point position coincides exactly with ξmax .

To reproduce the crack surface Γ
ς
l satisfyingly, a suit-

able quadrature scheme is necessary. The standard Gauss-
Legendre-quadrature for polynomials is not very accurate,
since depending on the position of the crack the underlying
function is piece-wise defined and, in general, the location
of the crack is not known a priori. Therefore, a subdivi-
sion of elements is used to be able to capture the function
more accurately. The integration is then carried out over
each subelement. A regular subdivision in evenly-sized ele-
ments seems to be the best choice to account for the unknown
crack position. Aside from that, it should be noted, that this
kind of subdivision does not imply an increase in degrees of

−1 −0.5 0 0.5 1
0

0.5

1

ξ

φ
(ξ

),
γ

l
(ξ

)

φς

γς
l

Fig. 14 Phase-field and crack energy density function for centred (solid
lines) and shifted (dashed lines) crack with l/h = 1 and kφ = 0.002

ξ

1 GP
nip = 1 · nsub; wip = wgp/nsub

−1 mm 1mm

2 GP
nip = 2 · nsub; wip = wgp/nsub

3 GP
nip = 3 · nsub; wip = wgp/nsub

4 GP
nip = 4 · nsub; wip = wgp/nsub

6 GP
nip = 6 · nsub; wip = wgp/nsub

subelement

Fig. 15 Quadrature schemes in one dimension

freedom, since the subelements are solely used for integra-
tion purposes. Other choices of integration are an interesting
subject of further research due to the great potential of reduc-
ing numerical effort and increasing accuracy of the XPFM
even more. In Fig. 15 the five tested integration schemes
can be seen. Each subelement contains one, two, three, four,
or six Gauss-integration points which allow for a different
order polynomial Gauss-Legendre-integration within that
subelement.

The accuracy of numerical quadrature is evaluated by the
means of the error

eint
Γ

ς
l

:=
∣∣∣ Γ̃l − Γ

ς
l

Γ
ς
l

∣∣∣

=
∣∣∣∣
∑nip

i γ
ς
l (ξi )wi − ∫ 1.0mm

−1.0mm γ
ς
l (ξ) dξ∫ 1.0mm

−1.0mm γ
ς
l (ξ) dξ

∣∣∣∣. (58)

Fig. 16 displays the quadrature error for different parame-
ter kφ depending on the number of integration points for the
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Fig. 16 Quadrature error for centre positioned crack (top) and shifted
positioned crack (bottom) for different kφ with l/h = 1.0 and one GP
per subelement

centred crack and the shifted crack, respectively. For this, the
integration with oneGauss-quadrature point per subelement
(1 GP) is chosen. In Fig. 16 (top) the influence of the posi-
tion of integration points becomes obvious due to the widely
different results for even numbers of integration points com-
pared to odd numbers,which only congregatewith increasing
number. This behaviour is less obvious in Fig. 16 (bottom),
but still existent.

To be able tomake reliable assertionswithout knowing the
position of the crack a priori, the envelope curves depicted in
the diagrams serve as a threshold for the highest quadrature
error possible, dependingon the number of integrationpoints.
The fact that, as shown in Fig. 17, the envelope curves match
for the different crack positionswith increasing nip , indicates
that these curves serve as a reliable threshold independent of
the crack position. For clarity and comprehensibility, in the
following graphs solely the envelope curves are depicted for
comparison.

Furthermore, it can be seen that the necessary number of
subelements and therefore, the necessary number of quadra-
ture points, is strongly dependent on the choice of kφ . By
choosing a smaller kφ , the gain of accuracy is negligible (less
than 0.5%, cf. Fig. 13) compared to the increase of compu-
tational effort due to the higher number of integration points
(approximately factor two, cf. Fig. 17).

In Fig. 18 a similar comparison of envelope curves for
kφ = 0.002 and different l/h-ratios shows a strong depen-
dence of the quadrature error on the l/h-ratio as well, and
it demonstrates the requirement to carefully choose the
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Fig. 17 Comparison of envelope curves with different kφ and l/h =
1.0, Quadrature: 1 GP per subelement; centred crack: solid lines, shifted
crack: dashed lines
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Fig. 18 Comparison of envelope curves with different l and kφ =
0.002, Quadrature: 1 GP per subelement; centre crack: solid lines,
shifted crack: dashed lines
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Fig. 19 Comparison of envelope curves with l/h = 1.0, kφ = 0.002
and different maximum phase-field φmax , Quadrature: 1 GP per subele-
ment; centred crack: solid lines, shifted crack: dashed lines

quadrature scheme. With decreasing l/h-ratio, the number
of necessary quadrature points increases drastically.

In Fig. 19 the integration errors for not yet fully devel-
oped cracks are compared. The l/h-ratio is chosen to be
l/h = 1 and the stabilisation parameter kφ = 0.002. It can be
seen that the necessary number of quadrature points and thus
the computational effort reduces drastically for not yet fully
developed cracks. Therefore, in the FE-simulation, it might
be advantageous to gradually introduce integration points
dependent on the phase-field growth.
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Fig. 20 Comparison of envelope curves with the different subelement
quadrature schemes with l/h = 1.0 and kφ = 0.002; centred crack:
solid lines, shifted crack: dashed lines

The comparison of the different integration strategies of
the subelements (cf. Fig. 15) is shown in Fig. 20. For the
centred crack as well as for the shifted crack, the quadrature
scheme with one Gauss-integration point per subelement
seems to be the most effective one, since compared to
the alternative strategies the reliable error for this scheme
decreases most rapidly with regard to the total number of
quadrature points. This behaviour has been observed for dif-
ferent parameter kφ and l/h-ratios as well. Therefore, for the
integration of the crack density function with the stabilised
exponential ansatz (cf. Eq. (27)) equidistant and equally
weighted integration points seem to be the best choice as
they lead to the most accurate results with the lowest compu-
tational effort. Beyond that, this choice of quadrature scheme
is advantageous with respect to simplicity and independence
of the position of the crack. It also shows advantages for the
identification of enriched elements by evaluating the phase-
field value at each integration point (cf. Sect. 4.2).

In addition to investigating the integration of the crack
density function, the integration of the driving force, the
strain energy density function (cf. Eq. (17)), is analysed. As
discussed in Sect. 3.4 for a fully developed crack, a Heav-
iside-function is introduced for the displacement field. For
this case, an integration as presented in [63] would be suit-
able. For developing cracks a possible displacement function
u(ξ) and the corresponding strain energy density function
ψ0 incorporating the enrichment function derived from the
phase-field are given by

ψ0(ξ) = E A

2
u2,ξ and u(ξ) = f,ξ

2
√

f
. (59)

with f again being the basis function. In Fig. 21 both func-
tions are depicted for the centered (solid lines) and the shifted
(dashed lines) crack with φmax = 0.9.

−1 −0.5 0 0.5 1

−1

0

1

ξ [mm]

u
(ξ

)[
m

m
],

ψ
0
(ξ

)[
E

A
] u

ψ0

Fig. 21 Displacement and strain energy density function for centred
(solid lines) and shifted (dashed lines) crack with l/h = 1 and φmax =
0.9
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Fig. 22 Comparison of envelope curves with different l and φmax =
0.9, Quadrature: 1 GP per subelement; centred crack: solid lines, shifted
crack: dashed lines

The exact error to evaluate the accuracy of the numerical
quadrature of the strain energy density function reads

eintEe
:=

∣∣∣ Ẽe − Ee

Ee

∣∣∣

=
∣∣∣∣
∑nip

i ψ0(ξi )wi − ∫ 1.0mm
−1.0mm ψ0(ξ) dξ∫ 1.0mm

−1.0mm ψ0(ξ) dξ

∣∣∣∣

=
∣∣∣∣
∑nip

i u2,ξ (xi )wi − ∫ 1.0mm
−1.0mm u2,ξ (ξ) dξ∫ 1.0mm

−1.0mm u2,ξ (ξ) dξ

∣∣∣∣ . (60)

with ξi being the position of each integration point and wi

being its respective weight.
The l/h-ratio plays an important role for the slope of the

displacement curve and thus for the width of ψ0 which is
crucial for the accuracy of the quadrature.As shown inFig. 22
the computational effort for the numerical integration reduces
drastically with increasing l/h-ratio.

Furthermore, it can be seen in Fig. 23 that, similar to the
quadrature of the crack density function, the computational
effort for the quadrature of the strain energy density function
reduces significantly for lower φmax .

The comparison of the different quadrature schemes
shown in Fig. 24 indicates that also for the mechanical part
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Fig. 23 Comparison of envelope curves with different φ and l = 1.0,
Quadrature: 1 GP per subelement; centred crack: solid lines, shifted
crack: dashed lines
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Fig. 24 Comparison of envelope curves with the different subelement
quadrature schemes with l/h = 1.0 and φmax = 0.9; centred crack:
solid lines, shifted crack: dashed lines

of the problem, equally weighted and equidistant integration
points should be chosen for effective integration. This sup-
ports the observations for the quadrature of the crack density
function.

In general, the computational effort for the accurate inte-
gration of the strain energy density function is significantly
lower compared to the effort required for the integration of
the crack density function. Since crack propagation is driven
by the strain energy density, it is especially important to place
a sufficient number of integration points on the developing
crack. This, however, is always ensured by the quadrature
scheme chosen for the accurate integration of the crack den-
sity function.

5.2 Integration Scheme in 2D

Extending the integration strategy discussed in Sect. 5.1.2
to two dimensions is straightforward. The triangular refer-
ence element is subdivided again into congruent subtriangles
which are provided with one integration point each. A sketch
can be found in Fig. 25. This integration scheme, how-
ever, is only applied in the elements with the transformed
phase-field ansatz, since in SE and TSb only a quadratic
ansatz function needs to be integrated for which a three-point
Gauss-integration is sufficient.

1 GP
nip = 1 · nsub;
wip = wgp/nsub

ξ

η

subelement

Fig. 25 Subtriangulation of the reference elementwith 1GPper subele-
ment, here with 4 subtriangles per direction and therefore nsub = 42

To evaluate this integration scheme for different crack
positions within one finite element, the plate depicted in
Fig. 26a is tested for different subtriangulation orders. The
crack is enforced in different positions via a penalty for-
mulation which ensures φ(y = yc) = 1.0. In Fig. 26b the
respective crack position is shown in detail. The character-
istic length is chosen to be l = 0.01mm, which results in
the ratio l/h = 1. Furthermore, kφ = 0.01 is chosen. The
theoretical crack surface should match the width of the plate
and should therefore be Γ = 0.1mm.

The numerically attained crack surface Γ h
l is once again

evaluated by the error defined as

enumΓ :=
∣∣∣Γ

h
l − Γ

Γ

∣∣∣ =
∣∣∣∣Γ

h
l − 0.1mm

0.1mm

∣∣∣∣ . (61)

In Fig. 27 enumΓ is plotted over the number of subtriangles
within one finite element for the different crack positions.
Most noticeable are the results for the crack positioned right
on the element edge. The ansatz is able to reproduce the
kink in the fully developed phase-field and can therefore
reproduce the correct phase-field function better, than the
stabilised ansatz. For the crack positions shifted more to the
middle of the element and due to the restrictions of accuracy
of the stabilised phase-field ansatz dependent on kφ , the error
is not able to reduce beyond a certain threshold value, even
with extremely accurate integration. This can be seen by the
convergence of all the envelope curves to a constant value
(except for yc = 0). Nevertheless, it can be seen that the
error can be reduced to less than 1%with a sufficient number
of integration points.
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Fig. 26 Parameter test setup in two dimensions with different crack
positions
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Fig. 27 Comparison of envelope curves with different crack positions
as depicted in Fig. 26 with l/h = 1, l = 0.01mm and kφ = 0.01

5.3 Investigation of stabilisation parameter k�

The simulation as set up in Fig. 26 is tested again for different
kφ and a crack position with yc = 0.004mm. To ensure
adequate integration accuracy in each case, 80 subtriangles
in each direction are used. In Fig. 28 the error enumΓ (blue, cf.
Eq. (61)) is plotted over the different kφ . It can be seen that
the error is below 1% for kφ = 0.01 in this case. Apart from
this, the curve is comparable to the related 1D investigation
depicted in Fig. 13. Additionally, the error of the numerical
solution compared to the stabilised analytical solution

enum
Γ

ς
l

:=
∣∣∣Γ

h
l − Γ

ς
l

Γ
ς
l

∣∣∣ (62)
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Fig. 28 Comparison of envelope curves with different kφ with l/h = 1,
l = 0.01mm and yc = 0.004mm

is depicted (orange). Interestingly, the numerical solution
does not match the stabilised solution perfectly, even though
the error is small and constant up to approximately kφ = 0.2.
Nevertheless, it can be seen, that for too large kφ , the error
enum
Γ

ς
l

increases. This is due to the fact, that the stabilisation

area has become too large and φς deviates too much from
φ to be the best approximation the given ansatz is able to
reproduce.

5.4 Convergence to the correct crack length and
L2-error-convergence

To assess the properties of the XPFM in comparison with the
classical PFM, the convergence to the correct crack length
and the quality of the displacement-field approximation is
examined for the plate under tension depicted in Fig. 26a.
A predefined crack (by enforcing φh = 1.0 at the crack)
cuts the plate transversely (inclination of 11,3◦ to the hori-
zontal). The analytical solution of the crack surface Γ and
the displacement field u is known for this case. For a con-
stant internal length parameter l = 0.01mm and a prescribed
displacement ū y = 5 · 10−5 mm at the top of the plate the
crack surface Γ h

l and the L2-error of the displacements uh

for different l/h-ratios (variable element size h of the regular
mesh), defined as

L2(eu) =
(∫

B
eu · eu dv

) 1
2

with eu = u − uh (63)

are evaluated numerically for both, the standard phase-field
approach and the presented extended approach. The results
are displayed in Fig. 29. In case of the XPFM simulation, a
maximum number of 80 integration points per direction have
been used in the required elements.Moreover, the parameters
kφ = 5 · 10−3 and kreg = 4 · 10−7 were applied.

Figure 29 reveals that the standard phase-field method is
highly sensitive to the l/h-ratio. It can be seen that the crack
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Fig. 30 L2-error of the displacements for varying kreg within the
XPFM, marked kreg is used in Fig. 29

surface Γ can not be reproduced adequately for l/h < 5.
However, the XPFM does not show such a dependency on
the element size for an arbitrary positioned crack. Further-
more, the L2-error in the displacements is constant (and
thereby independent) of the element size for the XPFM as
well, whereas an appropriate approximation of the displace-
ments in the standard phase-field approach requires a large
l/h-ratio. The quality of the approximation of the displace-
ments within the XPFM only depends on the regularisation
parameter kreg. For a varying kreg, the L2-error of the dis-
placements is displayed in Fig. 30.
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(a) Mode I test setup.
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(b) Mode II test setup.

Fig. 31 Two-dimensional tension and shear test setups (red: explic-
itly modelled initial crack, dotted: expected crack path). (Color figure
online)

6 Crack propagation simulations

One of the advantages of the PFM for fracture problems is
that crack propagation is calculated automatically, i.e. unlike
for the XFEM / GFEM it is not necessary to evaluate a crack
propagation criterion, a crack propagation direction and a
crack increment length. In the following, the newly devel-
oped XPFM is compared to the standard PFM for the crack
propagation examples of a standard tension test (mode I) and
a standard shear test (mode II) of a square plate to assess
whether the XPFM is able to capture the expected force-
displacement curves as well as the expected crack paths. For
both tests the stabilisation and regularisation parameters are
set to kφ = 5 · 10−3 and kreg = 2 · 10−4 · l2.

6.1 Mode I: plate under tension

The plate under tension depicted in Fig. 31a is tested first. A
linear elastic material for small strains with Lamé-constants
λ = 121.15 kN/mm2 and μ = 80.77 kN/mm2, a critical
energy release rate ofGc = 2.7·10−3 kN/mmand an internal
length of l = 0.008mm is chosen.

6.1.1 Behaviour of the standard PFM approach

In order to contextualise the results of the developed method,
results of the standard phase-field approach are presented
first. A staggered solution process with a fixed number of
staggered iterations nstag per load step is applied. The load
stepping scheme is taken from [46]. For the first 500 load
steps, an increment of Δu = 10−5 mm of the prescribed dis-
placement is applied. After that, the increment is reduced to
Δu = 10−6 mm until failure. The initial crack is modelled
explicitly. Within the staggered solution process, no global
convergence criteria is evaluated. This leads to slightly differ-
ent results for different number of staggered iterations nstag
and different load steps sizes [1]. For nstag = 8 the mode I
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Fig. 32 Force-displacement curves of standard PFM mode I tension
test with constant nstag = 8 and varying ratio l/h
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Fig. 33 Force-displacement curves of standard PFM mode I tension
test with constant ratio l/h = 10 and varying number of staggered
iterations nstag per load step

crack is simulated on three different meshes, featuring the
ratios l/h = {2, 5, 10} in the critical regionwhere the crack is
expected. The force–deflection curves are depicted in Fig. 32.
It can be seen that with increasing ratio the curves converge
to the same solution. The choice of a ratio of l/h ≈ 5 . . . 10
seems to be sufficient to obtain accurate results.

For a small number of staggered iterations nstag con-
vergence is not achieved. This can be seen in the force-
displacement curves depicted in Fig. 33 for a ratio of l/h =
10. It becomes obvious, that the number of staggered iter-
ations influences visibly how steep the curve declines after
exceeding the peak load.

In the following, the results of the XPFM simulations are
compared to a standard PFM simulation with l/h = 10 in
the critical region and nstag = 8 to ensure a comparison to a
(nearly) converged numerical solution.

Table 1 Comparison of the peak load Fmax for PFMandXPFMsimula-
tions of mode I tension test for different ratios l/h, reference simulation
is PFM for l/h = 10

l/h Fmax [kN] Error [%]

PFM 10 0.7011 (Reference)

PFM 2 0.6969 0.6029

PFM 5 0.7001 0.1426

XPFM 1 0.7062 0.7228

XPFM 2 0.7014 0.0479
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Fig. 34 Force-displacement curves of standard PFM mode I tension
test (l/h = 10) compared to XPFM simulations with different l/h-
ratios

6.1.2 Comparison of results obtained with the XPFM and
the PFM approach

The mode I tension simulation using the XPFM is carried
out on two meshes, obtaining a ratio of l/h = {1, 2}. Due to
the brittle material behaviour and the abrupt load drop after
exceeding the peak load, a Γl -controlled adaptive load step-
ping is applied. A minimal possible displacement increment
of Δumin = 10−12 mm is allowed. Therefore, and by rea-
son of the additional enrichment loop, only one staggered
iteration nstag per load step is sufficient.

Figure 34 shows the load displacement curves compared
to the reference solution computed using the standard PFM
with l/h = 10. The curves converge rapidly, i.e. the XPFM
leads to accurate results even for quite coarse meshes. The
resulting peak loads are summarised and compared to stan-
dard PFM simulations in Table 1. It can be seen that the error
decreases to the reference solution for the PFM as well as
for the XPFM with decreasing element size. However, even
for the coarsest chosen mesh with a ratio of l/h = 1 the
error of the XPFM solution is already less than 1%. This
means that using the XPFM, sufficiently accurate solutions
can be obtained at a significantly lower computational cost
compared to the standard PFM.
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The insensitivity against the mesh size and mesh orien-
tation of the presented approach is demonstrated in Fig. 35.
For the crack state directly before final rupture, three crack
details are shown: the starting point of the crack, the middle
of the crack and the crack tip. Independent of the position
of the nodes and the orientation of elements, the phase-field
can develop in the whole domain. The (slightly regularised)
jump in the displacement field always corresponds to the
phase-field and is also independent of the mesh. Due to the
stabilisation (cf. Eqs. (39), (37)) the crack can also cut ele-
ments close or even through nodes. At the crack tip, the
sigmoid-like enrichment function interpolates between the
fully broken and the intact material.

6.1.3 Crack initiation in comparison to the analytical
solution

For an ideal traction-controlled mode I tension test, the ana-
lytical solution of the critical external load σc leading to
unstable crack propagation is known. For plane strain con-
ditions, the relation between the critical energy release rate
Gc and σc is

Gc = 1 − ν2

E
σ 2
c πaY 2 (64)

with a and Y being parameters depending on the geometry.
For the geometry depicted in Fig. 36a the crack length a is
a = 0.1mm and the factor Y is Y = 1.1957 [6]. Figure36b
shows the analytical solution for the critical stress σc for
different critical energy release ratesGc as well as the XPFM

solution for the stress at which crack propagation occurs. It
can be seen that the numerical results obtained with XPFM
are able to reproduce the analytical results quite accurately.

6.2 Mode II: plate under shear

To demonstrate that the XPFM is able to predict the expected
crack path, a mode II example is simulated. Here, the same
material parameters as for the mode I tension test are used.
The boundary conditions are depicted in Fig. 31b. A quasi-
static displacement increment is applied with 140 steps and
Δu = 5 · 10−5 mm for each load step. After that, the
displacement increment is set toΔu = 1·10−6 mm until fail-
ure. To suitably compare the PFM approach and the XPFM
approach, one staggered iteration per load step (nstag = 1) is
applied in both cases. The standard PFMsimulation is carried
out on a mesh with l/h = 5 in the critical region, compared
to l/h = {1, 2} for the XPFM simulation. As can be seen
from the load-deflection curves in Fig. 37 the XPFM can
reproduce the expected curve, even for a mesh with l/h = 1.

Besides the final phase-field φ and the corresponding dis-
placements ux in x-direction of the XPFM simulation with
l/h = 1, Fig. 38 shows detailed views of the crack for the
XPFMand the PFM simulation. It can be seen that the resolu-
tion of themesh for the PFMsimulation is still not sufficiently
fine to allow for a smooth crackgeometry approximation.The
crack follows the mesh in a zig–zag-pattern. In contrast, the
XPFM is able to capture the smooth crack path independently
of the mesh orientation and node positions.

0
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μ
m

6

0

1

φ

Fig. 35 Half-cracked state of a mode I tension test of a notched plate (cf. Fig. 31a) applying the XPFM with a l/h-ratio of 1. It can be seen that the
crack develops independently of the mesh orientation and the node positions
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Fig. 36 Traction controlled mode I tension test
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Fig. 37 Force-displacement curves of standard PFMmode II shear test
(l/h = 5) compared to XPFM simulations with different l/h-ratios

Both examples demonstrate the great advantage of the
developed XPFM compared to the standard PFM. The crack
can be represented entirely independent of the mesh orien-
tation. Much coarser meshes can be used without any need
of an a priori or adaptive mesh refinement in regions where
the crack is expected to grow. In two dimensions an XPFM
simulation using a mesh with l/h = 1 compared to a com-
parably accurate PFM simulation using a mesh with l/h = 5
reduces the number of degrees of freedom approximately
by the factor of 25. For the extension to three dimensions,
this factor is expected to be approximately 125. Despite the
higher number of iterations due to the nonlinear transformed
phase-field approach, a huge potential in reducing the com-
putational effort, especially in three dimensions, can be seen.

0 ux in μm 110 1φ

Fig. 38 Final phase-field φ (left) and displacements ux (right) directly
before full failure of a mode II tension test (cf. Fig. 31b). Top: whole
domain (XPFM), Middle: marked detail XPFM (l/h = 1), Bottom:
marked detail PFM (l/h = 5)

7 Conclusions and outlook

In this contribution, an extended approach to the phase-field
method for brittle fracture was proposed. It is based on a
transformation of the phase-field ansatz and an enrichment
strategy of the displacement field ansatz. The method offers
the possibility to resolve the phase-field profile and the cor-
responding jump in the displacement-field on much coarser
meshes compared to standard phase-field approaches. Good
results can already be obtained for a ratio of l/h = 1. A
possible robust staggered solution algorithm with enrich-
ment schemeupdate and an effective integration schemewere
introduced and tested. Furthermore, numerous testswere per-
formed to give an insight into the different aspects of the
method with regard to parameter setting and to enable the
comparison to approaches and results described in litera-
ture. The carried-out simulations exhibit the great potential
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of this method due to the tremendously reduced computa-
tional effort compared to classical phase-field approaches.
Furthermore, the extension to three dimensions is expected
to be straightforward.

Nevertheless, since this contribution serves solely as an
introduction into the XPFM, possible algorithmic improve-
ments and extensions to themethod are numerous such as the
application to ductile fracture, dynamic fracture and fatigue
processes. With this method, the global number of degrees
of freedom and thus the main computational effort can be
reduced enormously, which is especially advantageous look-
ing ahead at 3D simulations. However, the computational
effort on the element level increases compared to the stan-
dard phase-field method, since the currently used integration
scheme is much more cost intensive. This still offers room
for improvement, which can increase the efficiency of the
approach evenmore. Furthermore, the research about conver-
gence criteria and auto-time stepping of phase-field problems
in general and of the extended approach in particular poses
an interesting starting point for more in-depth investigations.
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