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Abstract
We present a T-splines computational method and its implementation where structures with different parametric dimensions
are connected with continuity and smoothness. We derive the basis functions in the context of connecting structures with 2D
and 1D parametric dimensions. Derivation of the basis functions with a desired smoothness involves proper selection of a
scale factor for the knot vector of the 1D structure and results in new control-point locations. While the method description
focuses on C0 and C1 continuity, paths to higher-order continuity are marked where needed. In presenting the method and
its implementation, we refer to the 2D structure as “membrane” and the 1D structure as “cable.” It goes without saying that
the method and its implementation are applicable also to other 2D–1D cases, such as shell–cable and shell–beam structures.
We present test computations not only for membrane–cable structures but also for shell–cable structures. The computations
demonstrate how the method performs.

Keywords Isogeometric analysis · T-splines · Membrane–cable structure · Shell–cable structure · Shell–beam structure ·
Continuity · Smoothness

1 Introduction

The isogeometric analysis (IGA), with the superior accuracy
it offers, brought fluid and solid mechanics computations to
a new level [1–4]. Being able to use the IGA basis functions
also in time in the context of space–time (ST) computational
analysis expended the scope of the IGA and led to the intro-
duction of the ST-IGA [5–7]. The terminology “ST-IGA”
implies, depending on the context, discretization with IGA
basis functions in space or time or both. In the 2D test cases
reported in [5], the computation of flow past an airfoil was
with IGA basis functions in space, and the advection com-
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putations with IGA basis functions in both space and time.
The advection computations, accompanied by a stability and
accuracy analysis for the pure equation, showed the advan-
tages of using higher-order basis functions, not only in space,
but also in time. Related to that, keeping in mind that the
increased accuracy the ST-IGA with IGA basis functions in
space brings is attained with fewer control points, the effec-
tive element sizes will be larger. With that, larger time steps
can be taken while still keeping the Courant number at or
below the levels we target for good accuracy.

Using IGA basis functions in time is uniquely offered by
the ST framework, and partly because of that the effort was
focused on that track in the early years of the ST-IGA compu-
tations [5,6,8]. Taking advantage of that opportunity brings
higher accuracy in representing the motion of a solid sur-
face, a mesh motion consistent with that surface motion,
and better efficiency in representing the mesh motion and
in remeshing. The ST/NURBS Mesh Update Method (STN-
MUM) [6,9] was built around these positive attributes of the
ST-IGA. Using IGA basis functions in time with C2 con-
tinuity was instrumental in obtaining good-quality solutions
in flapping-wing aerodynamics computations [6,10–15]. The
method “ST-C” another example of the good continuity prop-
erty of the ST-IGA with IGA basis functions in time. The
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letter “C” in “ST-C” means “continuous.” This is a method
for extracting time-continuous data from the computed data,
and it can work as a data compression method in dealing
with large data volumes [16–29]. The classes of problems
computed by using the ST-IGA with IGA basis functions
in time include wind turbines [9,24,25,30–33], turboma-
chinery [7,20,21,24,25,34,35], flapping-wing aerodynamics
[6,10–15], spacecraft cover separation aerodynamics [36],
and higher-order temporal IGA discretization [37].

The classes of problems computed by using the ST-IGA
with IGA basis functions in space include wind turbines [24–
28,32,33], turbomachinery [7,20,21,24,25,34,35], ground
vehicles and tires [29,33,38–43], fluid films [40,43,44],
parachutes [22,23,45,46], cardiovascular medicine [47–57],
Taylor–Couette flow [58], U-ducts [58], higher-order tempo-
ral IGA discretization [37], boundary-layer mesh resolution
studies [59], and long-wake flows [60].

Moving to solid and structural mechanics computations
with IGA basis functions in space, it was pointed out as early
as in 2007 (see [61]) that the image-based geometries used
in patient-specific arterial FSI computations are not for the
zero-stress state (ZSS) of the artery and that a ZSS estimation
method is needed. The ZSS estimation methods introduced
in and after 2016 [51,62–65] stand on the IGAbasis functions
in space, and so does the related hyperelastic shell analysis
[66,67]. The IGA basis functions in space have been a part
of quite a few advanced computational methods targeting
design and structural analysis, those reported in [68–77] are
examples of that, and turbine blades and heart valves are
among the examples.

In IGA discretization, specifying Dirichlet boundary con-
ditions could be challenging. That is because the basis
functions are generally not interpolatory. In the case of dif-
ferential equations allowing Dirichlet conditions also on the
derivatives, specifying conditions on the derivatives could
be easier in IGA discretization than it is in finite element
discretization. For example, specifying the slope can be
accomplished by constraining the motion of the nearest inte-
rior point to the horizontal line passing through the boundary
point.

Our objective in the work presented here is to address
a related challenge. That is, computational structural anal-
ysis where structures with different parametric dimensions
are connected with continuity and smoothness. In structural
analysis of a membrane and cable, for example, connecting
the two with C0 or C1 continuity involves challenges similar
to those associated with specifying Dirichlet boundary con-
ditions in IGA discretization. Even if the two structures have
the same parametric dimensions, connecting them with C1

continuity could still be challenging.
There has been some earlier related work. They include

the bending-stripmethod for shell–shell [78] and shell–beam
[79] structures, where the beam is actually a bending-

stabilized cable, penalty formulation [80], and techniques
based on Nitsche’s method [81]. They also include using
extramesh refinement along themembrane edge [45] to attain
C0 continuity in both the edge direction and the other direc-
tion. Using T-splines [82] to attain C1 continuity when the
two structures have the same parametric dimensions is also
among the earlier related work.

In our work here, we derive the basis functions that give
us the desired smoothness between structures with 2D and
1D parametric dimensions. The derivation involves proper
selection of a scale factor for the knot vector of the 1D struc-
ture and results in new control-point locations. While our
method descriptionwill focus onC0 andC1 continuity, paths
to higher-order continuity will be marked where needed. In
presenting the method and its implementation, we will refer
to the 2D structure as “membrane” and the 1D structure as
“cable.” The method and its implementation will, of course,
be applicable also to other 2D–1D cases, such as shell–cable
and shell–beamstructures.When themembrane and cable are
connected with smoothness, the strain and rotational free-
doms are transferred between the two structures. For easy
and efficient implementation of the method, we introduce
the Bézier extraction row operators to be used in obtaining
the basis functions.

As the limitations of the method we will be presenting,
we can mention two points. The smoothness can only be
achieved along the cable and its parametric-line continuation
in the membrane. The starting membrane and cable meshes
need to meet some additional requirements if they are to be
connected with a continuity higher than C1.

We present test computations not only for membrane–
cable structures but also for shell–cable structures. We
use four structure models: membrane–cable, membrane–
bending-stabilized-cable, shell–cable, and shell–bending-
stabilized-cable. We use meshes with C0 continuity and C2

continuity. In total, we compute eight test cases.
In Sect. 2, we introduce themethod for connecting amem-

brane and cable by T-splines. The test computations are
presented in Sect. 3, and the concluding remarks are given
in Sect. 4. In Appendix A, we provide the details on the mesh
examples, and in Appendix B, we give the derivation of the
smoothness constraints used in the method.

2 Connecting amembrane and cable by
T-splines

In IGA, connecting a 1D structure, such as a cable, to a 2D
structure, such as a membrane, is not that straightforward.
For example, in [45], in connecting the cables to the ram-air
parachute, extra mesh refinement was used along the mem-
brane edge to attain C0 continuity in both the edge direction
and the other direction. The extra refinement, because of the
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Fig. 1 The membrane and cable elements before connecting them. The
red circles represent the control points. Each area enclosed by green
lines represents an element, and it is labeled with a green number. The
brown line represents a cable element, and it is labeled with a brown
number. In all elements, the local parametric coordinates are defined
from left to right in the first direction and from bottom to top (for
membrane only) in the second direction. (Color figure online)

Fig. 2 The membrane and cable elements after connecting them

knot insertion, reduces not only the computational efficiency
but also the continuity. Especially with isogeometric shells
andbending-stabilized cables [79], the continuity is essential.
Here we describe methods to connect a cable to a membrane
at any location along its edge, and we also describe methods
to attain smoothness along the cable and its parametric-line
continuation in the membrane.

2.1 Connecting the cable to themembrane

We assume that the membrane is of rectangular shape. For
illustration purposes, it is made of 2 × 3 quadratic B-spline
elements, and the cable consists of one quadratic B-spline
element. Figure1 shows the membrane and cable (for more
details on the mesh, see Appendix A.1), and Fig. 2 shows the
mesh after connecting them (for more details on the mesh,
seeAppendixA.2).Wewill explain howwe obtain thismesh.

We represent the local basis functions in the parametric
space −1 ≤ ξα ≤ 1, where α = 1, . . . , npd, and npd is the
number of parametric dimensions. For a global basis function

index a or b in element e, we denote the local basis functions
as Me

a(ξ
1, ξ2) for the membrane elements and as Le

b(ξ
1) for

the cable elements. They are expressed as

Me
a(ξ

1, ξ2) = Ne,1
a1

(ξ1)Ne,2
a2

(ξ2) (1)

and

Le
b(ξ

1) = Ne,1
b1

(ξ1), (2)

with the index mapping e, a → (a1(e, a), a2(e, a)) and
e, b → b1(e, b), and we are dropping “(e, a)” and “(e, b)”
not to crowd the notation. Here, Ne,α

k represent 1D func-
tions identified by element number e, direction α, and local
index k. Although it is not included, the polynomial order is
assumed to be p = pe,α , and we may omit the superscripts
for notational convenience. The index aα denotes the local
index in α direction, and there is no unique mapping from aα

to a. In fact, quite often, aα corresponds to multiple a. The
symbolsMe and Le represent, for the membrane and cable,
the sets of functions with nonzero value in element e.

Remark 1 All the T-splines used in this article can be
expressed in this product form. Therefore, Eq. (1) is applica-
ble even after connecting the cable to the membrane. Some
of the notation may not be general enough as in NURBS,
but they should be straightforward. We are giving up some
generality so that we do not further complicate the notation.

Referring to Fig. 1, we are connecting the cable end point
with ξ1 = ξ

B,1
c = −1 in element B = 6 to the membrane

edge point with ξ1 = ξ
A,1
c = 1 and ξ2 = ξ

A,2
c in element

A = 3. In those membrane and cable elements, the connec-
tion point xc can be represented as

(
xhc

)
M

=
∑

a∈MA

xaM A
a (ξ A,1

c , ξ A,2
c ) (3)

and
(
xhc

)
L

=
∑

b∈LB

xbLB
b (ξ B,1

c ). (4)

Remark 2 Depending on the parametrization, i) one of ξ
A,α
c

is either −1 or 1, and ii) ξ B,1 is either −1 or 1.

Wenote that N A,1
a1

(ξ
A,1
c ) is either 1or 0 at themembrane edge.

We define the set of functions with value 1 at the membrane

edge as MA
c =

{
a ∈ MA

∣∣∣∣N A,1
a1

(ξ
A,1
c ) = 1

}
. With that, the

connection point as represented by the membrane becomes

(
xhc

)
M

=
∑

a∈MA
c

xaN
A,2
a2

(ξ A,2
c ). (5)
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Fig. 3 The elements that the global basis function 7 is contributing to.
The blue shading and blue highlight indicate those elements. (Color
figure online)

Similarly, at the cable end, N B,1
b1

(ξ
B,1
c ) is either 1 or 0, and,

in fact, there is only one function that has value 1, and that
is b1 = c. With that, the connection point as represented by
the cable becomes

(
xhc

)
L

= xc. (6)

To connect the membrane and cable, we need
(
xhc

)
M =(

xhc
)
L , and this can be enforced at the basis-function level.

For that, we first exclude the basis function and control point
associated with c from the cable element (and actually from
the mesh). Then, we add control points xa , where a ∈ MA

c ,
to the cable element. The corresponding basis functions,
indexed by b = a, are

L
B
b (ξ1) = N A,2

a2
(ξ A,2

c )N B,1
c (ξ1), (7)

and the overbar is for distinguishing between the basis func-
tions before and after connecting the cable to the membrane.
With that, the cable end is always on the membrane edge.
The number of functions in the cable element becomes∣∣LB

∣∣ − 1+ ∣∣MA
c

∣∣, where |X | represents the cardinality of a
set X .

Figures 3, 4 and 5 illustrate how the basis functions cor-
responding to the three control points on the membrane edge
contribute to the membrane and cable elements. The figures
are for 7, 11, and 15, the three control points inMA

c . The basis
function 22 is removed from the cable and represented by 7,
11,and 15. With that, the modified cable element consists of
functions 7, 11, 15, 20, and 21.

Remark 3 The control points 7, 11, and 15 are distinct
because of the membrane.

Remark 4 If the membrane and cable had rotational free-
doms, they would not be transferred between the two.

Fig. 4 The elements that the global basis function 11 is contributing
to. The blue shading and blue highlight indicate those elements . (Color
figure online)

Fig. 5 The elements that the global basis function 15 is contributing
to. The blue shading and blue highlight indicate those elements. (Color
figure online)

Remark 5 By generalizing Eq. (5), the method discussed so
far can be extended to cases where the connection point is
not on the membrane edge but anywhere in the interior.

2.2 Representation of the connected cable with
Bézier extraction operators

We now describe how connecting the cable is implemented
by using Bézier extraction operators (see the notation in [83,
84]). A basis function of order p can be represented with
Bernstein polynomials B p

b , which are expressed as

B p
k (ξ) =

(
p
k

)
2−p (1 + ξ)k (1 − ξ)p−k , (8)

where k = 0, . . . , p, and

(
p
k

)
= k!

k!(p−k)! are the binomial

coefficients. The representation of the 1D basis functions we
have in Eqs. (1) and (2) will then be in the form

N A,α
l (ξ) =

pA,α∑
k=0

CA,α
lk B pA,α

k (ξ) (9)
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for l = 0, . . . , p. The set of coefficient matrices CCCA,α =[
CA,α
lk

]
∈ R

(pA,α+1)×(pA,α+1) are the Bézier extraction oper-

ators. However, in a T-spline element, the number of unique
N A,α functions may not be equal to pA,α + 1, and the order
of the rows has no significance. Therefore, we represent the
Bézier extraction operator as a set of row operators, denoted
by CCCA,α

l ∈ R
1×(pA,α+1), with l being the index that identifies

the unique function number in an element A, in direction α.
With that, the membrane local basis functions can now be

expressed as

MA
a (ξ1, ξ2) =

⎛
⎝

pA,1∑
k=0

CA,1
a1k

B pA,1

k (ξ1)

⎞
⎠

⎛
⎝

pA,2∑
k=0

CA,2
a2k

B pA,2

k (ξ2)

⎞
⎠ ,

(10)

and the cable local basis functions can be expressed as

LB
b (ξ1) =

pB,1∑
k=0

CB,1
b1k

B pB,1

k (ξ1). (11)

From that and Eq. (2), Eq. (7) can be written as

L
B
b (ξ1) =

⎛
⎝

pA,2∑
l=0

CA,2
a2l

B pA,2

l (ξ A,2
c )

⎞
⎠

︸ ︷︷ ︸
scalar

⎛
⎝

pB,1∑
k=0

CB,1
ck B pB,1

k (ξ1)

⎞
⎠ .

(12)

The scalar term can be expressed in a matrix form. For that,
we first define a column matrix with the evaluated Bézier
functions as its components:

BBBpA,2

c =
[
B pA,2

l (ξ A,2
c )

]
∈ R

pA,2+1. (13)

Then the scalar is written as

pA,2∑
l=0

CA,2
a2l

B pA,2

l (ξ A,2
c ) = CCCA,2

a2
BBBpA,2

c . (14)

We note that this scalar depends on a2. With that, the Bézier

extraction operator CCC
B,1
b associated with Eq. (12) becomes

CCC
B,1

b
1 = CCCA,2

a2
BBBpA,2

c CCCB,1
c . (15)

Now, for the examples in Figs. 1 and 2, we express the
Bézier extraction row operators for the cable element. The
original cable element has

CCC6,1
221

= [
1 0 0

]
, (16)

CCC6,1
211

= [
0 1 0

]
, (17)

Fig. 6 The membrane and cable elements with C1 continuity along the
cable line

CCC6,1
201

= [
0 0 1

]
. (18)

After the connection, we have

CCC
6,1
71 = 0.245

[
1 0 0

]
, (19)

CCC
6,1
111 = 0.710

[
1 0 0

]
, (20)

CCC
6,1
151 = 0.045

[
1 0 0

]
, (21)

CCC
6,1
211 = [

0 1 0
]
, (22)

CCC
6,1
201 = [

0 0 1
]
. (23)

Remark 6 The scalars seen in front of the row operators in
Eqs. (19)–(21) can be calculated from Eq. (14).

2.3 Connecting themembrane and cable with
smoothness

The smoothness can play a role if the bending stiffness of
the cable will influence themembrane structure. For that pur-
pose, we describe the case with higher-order continuity in the
cable direction at the connection point. In this method, the
smoothness is along the cable and its parametric-line contin-
uation in the membrane. Again, we use Fig. 1 as an example,
and Fig. 6 shows the mesh after connecting the cable and
membrane with C1 continuity along the cable line (for more
details on the mesh, see Appendix A.3). The smoothness is
along the cable and the parametric line ξ2 = ξ

A,2
c in the

membrane element. We use the knot removal technique to
have the desired continuity in the function space. We will
next explain the process.

In the B-spline mesh (Fig. 1), the basis functions N A,1
a1

for

a ∈ MA
c are the same. In other words, a = 7, 11, and 15 are

pointing to the same index a1. Moreover, a = 6, 10, and 14
are pointing to a common index a1, and a = 5, 9, and 13 are
pointing to a common index a1. We group them asMA

c1 and
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MA
c0. The position along the parametric line is expressed as

x(ξ1, ξ A,2) =
∑

a∈MA
c0

xaM A
a (ξ1, ξ A,2

c )

+
∑

a∈MA
c1

xaM A
a (ξ1, ξ A,2

c )

+
∑

a∈MA
c

xaM A
a (ξ1, ξ A,2

c ). (24)

We know that

∑

a∈MA
c0

N A,2
a2

(ξ A,2
c ) = 1, (25)

∑

a∈MA
c1

N A,2
a2

(ξ A,2
c ) = 1, (26)

∑

a∈MA
c

N A,2
a2

(ξ A,2
c ) = 1. (27)

From Eqs. (24)–(27), we observe the apparent directional
basis functions and control points along the parametric line
to be

M̃ A
0 (ξ1) =

∑

a∈MA
c0

MA
a (ξ1, ξ A,2

c ) (28)

= N A,1
a1

(ξ1), (29)

M̃ A
1 (ξ1) =

∑

a∈MA
c1

MA
a (ξ1, ξ A,2

c ) (30)

= N A,1
a1

(ξ1), (31)

M̃ A
2 (ξ1) =

∑

a∈MA
c

MA
a (ξ1, ξ A,2

c ) (32)

= N A,1
a1

(ξ1) (33)

and

x̃A0 =
∑

a∈MA
c0

xaN
A,2
a2

(ξ2c ), (34)

x̃A1 =
∑

a∈MA
c1

xaN
A,2
a2

(ξ2c ), (35)

x̃A2 =
∑

a∈MA
c

xaN
A,2
a2

(ξ2c ). (36)

Similar observations can be made for the adjacent element
2. For notational convenience, we map the control points of
the cable as

xB0 = x22, (37)

xB1 = x21, (38)

Fig. 7 Apparent basis functions in the 1D representation along the cable
line. The green ones are for the membrane, and the brown ones are for
the cable. ΔΞM and ΔΞL mark the neighboring nonzero knot spans of
the membrane and cable. (Color figure online)

xB2 = x20. (39)

Figure7 shows the apparent basis functions. These basis
functions can be identified by the knot vector ΞΞΞ =
{0, 0, 0, 1, 2, 2, 2, 3, 3, 3}, with 0 ≤ Ξ ≤ 2 for themem-
brane and 2 ≤ Ξ ≤ 3 for the cable.

Remark 7 The linear transformation of the knot vector val-
ues does not change the basis functions. When we connect
two patches, a linear transformation can be applied in each
patch. For example, if we scale the knots for the cable by a
factor 0.5, we get ΞΞΞ = {0, 0, 0, 1, 2, 2, 2, 2.5, 2.5, 2.5}.
Although the parametric spacewould be different, this would
not change the element-wise functions and would not influ-
ence the discretization. However, the choice of the scale
factor influences how the cable andmembrane are connected.
In fact, the desired smoothness can only be achieved with the
correct scale factor. We will explain this more in Remark 8,
after explaining the procedure for connecting the cable and
membrane.

Figure8 shows the functions after the first and second knot
removals atΞ = 2. At each knot removal, one basis function
vanishes, which means that the corresponding control point
is removed. It is assumed that the geometry will not change
after the knot removals. Therefore, the following relationship
holds in each element:

p∑
k=0

Nkxk =
p∑

k=0

Nkxk, (40)

where k is the element-wise index, and Nk and Nk are the
directional basis functions before and after the knot removals.
Using theBézier extraction operators,we can rewriteEq. (40)
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as

p∑
k=0

p∑
l=0

xkCkl Bl =
p∑

k=0

p∑
l=0

xkCkl Bl . (41)

Because Bl are linearly independent, we obtain the following
relationship for l = 0, . . . , p:

xk =
p∑

l=0

xl

[
CCC

(
CCC
)−1

]

lk
. (42)

For notational convenience, we rearrange this as

xk =
p∑

l=0

[(
CCC
)−ᵀ

CCCᵀ
]

kl
xl . (43)

Figure9 shows an example of the context for Eq. (43) in
control-point conversions for an element. The example is
based on

CCC =
⎡
⎣

1
2 0 0
1
2 1 0
0 0 1

⎤
⎦ (44)

and

CCC =
⎡
⎣

1
2 0 0
1
2 1 1

2
0 0 1

2

⎤
⎦ . (45)

The continuity desired after the second knot removal can be
expressed by the equations

x̃
A
1 = xB0 , (46)

x̃
A
2 = xB1 . (47)

We note that A and B are the elements in the membrane and
the cable, and those positions are calculated from Eq. (43)
for the membrane and cable elements. Figure10 shows an
example of the conversions for both the membrane and cable
elements.

Remark 8 As explained in Remark 7, the scale factor for the
cable knot vector influences how the cable andmembrane are
connected, and the desired smoothness can only be achieved
with the correct factor. Different scale factors give different

x̃
A
2 . For p = 2, Eqs. (46) and (47) translate to

x̃A2 = xB0 , (48)

x̃A2 = sx̃A1 + xB1
s + 1

, (49)

Fig. 8 Apparent basis functions in the 1D representation along the
cable line. After the first (top) and second (bottom) knot removals

Fig. 9 An example of the context for Eq. (43) in control-point con-
versions for an element. The curve (thick green line) and control points
(dark green circles), and the control points obtained with Eq. (43) (light
green circles). (Color figure online)

where s is the ratio of the neighboring nonzero knot spans of
the cable (ΔΞL ) and membrane (ΔΞM ):

s = ΔΞL

ΔΞM
. (50)

The derivation can be found in Appendix B. With Eq. (49),
we select s. In the example of Fig. 1, that gives us s = 1.

Remark 9 To have the highest continuity in using B-splines
with polynomial order p, we need to satisfy p conditions
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Fig. 10 An example of the context for Eq. (43) in control-point conver-
sions for both the membrane and cable elements. The membrane (thick
green curve) and the apparent control points (dark green circles). The
cable (thick brown curve) and the control points (dark brown circles).
The control points after the conversions are light green circles (mem-
brane) and light brown circles (cable). If Eqs. (46) and (47) are satisfied
after the conversions, the curve will have the desired continuity and the
two knots can be removed without changing the geometry

that are generalization of those in Eqs. (46) and (47). The
conditions are

x̃
A
k = xBk−1, (51)

for k = 1, . . . , p.

Then, we remove the control points 22 and 21. The new
positions of the control points 7, 11, 15, 6, 10, and 14
are obtained from Eq. (43). With the basis functions cor-
responding to those, we can form the basis functions in the
cable element. This can be done in the same way we did
in connecting the cable and membrane with C0 continuity.
The corresponding basis functions, indexed by b = a ∈
MA

c1 ∪ MA
c , are

L
B
b (ξ1) = N

A,2
a2 (ξc)N

B,1

b
1 (ξ1). (52)

The control points and Bézier extraction operators for the
membrane elements also change. We provide the Bézier
extraction operators in Appendix A.3, and Eq. (43) can be
used for obtaining xAa , where a ∈ MA

c1 ∪ MA
c .

Figures 11, 12, 13, 14, 15 and 16 illustrate how the basis
functions in MA

c1 and MA
c contribute to the membrane and

cable elements. The figures are for 7, 11, and 15, the three
control points in MA

c , and 6, 10, and 14, the three control
points in MA

c1. As mentioned earlier, the basis functions 22
and 21 are removed from the cable. The new cable element
consists of the basis functions 6, 10, 14, 7, 11, 15, and 20,
and we can see the first three as replacements for 22, and the
second three as replacements for 21.

Remark 10 In the membrane, up to (2p + 1)×(p − 1) ele-
ments need to bemodified, (2p+1) in the edge direction, and
(p − 1) in the other direction. In the cable, up to p elements
neighboring the membrane need to be modified.

Fig. 11 The elements that the global basis function 7 is contributing
to. The blue shading and blue highlight indicate those elements. (Color
figure online)

Fig. 12 The elements that the global basis function 11 is contributing
to. The blue shading and blue highlight indicate those elements. (Color
figure online)

Fig. 13 The elements that the global basis function 15 is contributing
to. The blue shading and blue highlight indicate those elements. (Color
figure online)

Remark 11 The control points 7, 11, and 15 are distinct
because of the membrane.

Remark 12 The strain and rotational freedoms are transferred
between the two structures. Even if they are not based on
a shell model or bending-stabilized cable, this smoothness
requirement would add some kind of bending effect to the
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Fig. 14 The elements that the global basis function 6 is contributing
to. The blue shading and blue highlight indicate those elements. (Color
figure online)

Fig. 15 The elements that the global basis function 10 is contributing
to. The blue shading and blue highlight indicate those elements. (Color
figure online)

Fig. 16 The elements that the global basis function 14 is contributing
to. The blue shading and blue highlight indicate those elements. (Color
figure online)

solution, which will be smaller and smaller with mesh refine-
ment.

Fig. 17 The membrane and cable meshes before connecting them.
The checkerboard pattern and alternating colors are for differentiating
between the elements, and circles represent the control points

3 Test computations

We use four structure models: membrane–cable, membrane–
bending-stabilized-cable, shell–cable, and shell–bending-
stabilized-cable. We use meshes with C0 and C2 continuity
between the membrane and cable. In total, we compute eight
test cases. The membrane does not have bending stiffness;
the shell does. The membrane includes a wrinkling model
[85]. The shell model is from [66]. The cable includes a
slacking model, which precludes compression. The bending-
stabilized cable is based on the model in [79], where the
bending stress is represented by the second area moment and
the curvature.

3.1 Problem setup

Figure17 shows the mesh before connecting the membrane
and cable. The material properties for the membrane, shell,
cable, and bending-stabilized cable are shown in Tables 1 and
2. The meshes with C0 and C2 continuity between the mem-
brane and cable will be called “C0 Mesh” and “C2 Mesh.”
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Table 1 Material properties for themembrane and shell. Young’s mod-
ulus E , thickness hth, density ρ, and Poisson’s ratio ν

Ehth (N/m) ρhth (kg/m2) ν (–) hth (mm)

Membrane 30,000 0.456 0.3 –

Shell 30,000 0.456 0.3 0.400

Table 2 Material properties for the cable and bending-stabilized cable.
Young’s modulus E , area A, density ρ, and second area moment I0

E A (N) ρA (kg/m) E I0 (N · mm2)

Cable 48 0.000730 –

Bending-stabilized cable 48 0.000730 2.56

Both are based on cubic B-splines. Figures18 and 19 show
the meshes. We hook the membrane and cables at the two
corners and two ends shown in those figures, all at the same
elevation. The gravity is 9.81 m/s2.We gradually shorten the

Fig. 18 C0 Mesh. The checkerboard pattern and alternating colors
are for differentiating between the elements, and circles represent the
control points. The red control points are those with specified position
in the computation

Fig. 19 C2 Mesh. The checkerboard pattern and alternating colors
are for differentiating between the elements, and circles represent the
control points. The red control points are those with specified position
in the computation

distance between the hooked membrane edge and cable ends
from 171 to 85.5mm by moving the cable ends.

Remark 13 To obtain the settled solution in each test case
computed, depending on the test case, we either use the
steady-state formulation or the unsteady formulation with
a relatively large time-step size. The unsteady formulation is
used to avoid the matrix singularities associated with slack-
ing.

3.2 Results

Figure20 shows the settled solution for all eight cases. Look-
ing at the cases with C0 Mesh, we can clearly see that the
rotational freedom is not transferred between the membrane
and cables. In the cases with C2 Mesh, we see smoothness
along the 1D structure and its parametric-line continuation
in the 2D structure, as expected, even if the 2D structure is
membrane or the 1D structure is cable. Naturally, how local
the smoothness is in computations with the C2 Mesh, i.e.,
how small the radius of curvature is, depends on the element
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Fig. 20 Settled solution for all
eight cases computed

123



668 Computational Mechanics (2023) 71:657–675

sizes near where the 2D and 1D structures are connected.
Therefore, the decision to seek smoothness or just continuity
would depend on those element sizes.

4 Concluding remarks

We have presented a T-splines computational method and its
implementation for structural analysis where structures with
different parametric dimensions are connected with continu-
ity and smoothness. We derived basis functions that give us
the desired smoothness between structures with 2D and 1D
parametric dimensions. The derivation involves proper selec-
tion of a scale factor for the knot vector of the 1D structure
and results in new control-point locations. While the method
description focused onC0 andC1 continuity, paths to higher-
order continuity were marked where needed. In presenting
the method and its implementation, we referred to the 2D
structure as “membrane” and the 1D structure as “cable.” The
method and its implementation are of course applicable also
to other 2D–1D cases, such as shell–cable and shell–beam
structures.When themembrane and cable are connectedwith
smoothness, the strain and rotational freedomsare transferred
between the two structures. For easy and efficient implemen-
tation of themethod, we introduced the Bézier extraction row
operators used in obtaining the basis functions.We presented
test computations for combinations for four structuralmodels
and two meshes. The structural models were membrane–
cable, membrane–bending-stabilized-cable, shell–cable, and
shell–bending-stabilized-cable. The meshes were with C0

continuity and C2 continuity. The computations clearly
demonstrate how themethod performs in the classes of struc-
tural mechanics problems targeted.
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A Examples of meshes

A.1 Before connecting the cable andmembrane

The example in Fig. 1 has twoquadraticB-spline patches, one
for the membrane and one for the cable. The membrane knot
vectors in the two directions are ΞΞΞ1

M = {0, 0, 0, 1, 2, 2, 2}
and ΞΞΞ2

M = {0, 0, 0, 1, 2, 3, 3, 3}. The cable knot vector is
ΞΞΞ1

L = {0, 0, 0, 1, 1, 1}. Figure21 shows a mesh with the
same basis functions as those in the mesh in Fig. 1. Just the
geometry is more complex. We provide in Table 3 the global
basis function indices used in each element, and correspond-
ing element-wise indices for the directional basis functions.
In Table 4, we provide the Bézier extraction row operators
corresponding to those element-wise indices.

A.2 After connecting the cable andmembrane with
C0 continuity

Figure22 shows the mesh obtained by upgrading the mesh
in Fig. 21 to C0 continuity in connecting the membrane and
cable. The new mesh is no longer represented by B-splines.
We provide in Table 5 the global basis function indices used
in each element and the corresponding element-wise indices
for the directional basis functions. In Table 6, we provide
the Bézier extraction row operators corresponding to those
element-wise indices.

A.3 After connecting the cable andmembrane with
C1 continuity

Figure23 shows the mesh obtained by upgrading the mesh
in Fig. 21 to C1 continuity in connecting the membrane and
cable. Like the mesh in Fig. 22, it is no longer represented
by B-splines. We provide in Table 7 the global basis function

Fig. 21 The membrane and cable elements before connecting them.
The basis functions are the same as those in Fig. 1
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Fig. 22 The membrane and cable elements after connecting them with
C0 continuity. The basis functions are the same as those in Fig. 2

indices used in each element and the corresponding element-
wise indices for the directional basis functions. In Table 8, we
provide the Bézier extraction row operators corresponding to
those element-wise indices.

Table 3 The membrane and cable elements before connecting them.
For each element e, the global indices a or b, and their element-wise
indices k = a1 and a2 or k = b1. The corresponding Bézier extraction
row operators are provided in Table 4

Table 4 The membrane and cable elements before connecting them.
For element e and element-wise index k, the Bézier extraction row
operator for the directional basis functions

B Derivation of the smoothness constraints
given by Eqs. (48) and (49)

We do the derivation for a general case of the knot removals
in connecting a membrane and cable. For p = 2, with the
knot spans of {ΔΞ1, ΔΞ2, ΔΞ3}, where ΔΞ2 is the knot
span for the element in consideration, the Bézier extraction
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Table 5 The membrane and cable elements after connecting them with
C0 continuity. For each element e, the global indices a or b, and their
element-wise indices k = a1 and a2 or k = b1. The corresponding
Bézier extraction row operators are provided in Table 6

Fig. 23 The membrane and cable elements after connecting them with
C1 continuity. The basis functions are the same as those in Fig. 6

operator can be written as

CCC =
⎡
⎢⎣

ΔΞ2
ΔΞ1+ΔΞ2

0 0
ΔΞ1

ΔΞ1+ΔΞ2
1 ΔΞ3

ΔΞ2+ΔΞ3

0 0 ΔΞ2
ΔΞ2+ΔΞ3

⎤
⎥⎦ . (53)

The membrane knot spans are {(ΔΞM )1, ΔΞM , 0}. The
last knot span is zero because it is at the end of the patch.

Table 6 The membrane and cable elements after connecting them with
C0 continuity. For element e and element-wise index k, the Bézier
extraction row operator for the directional basis functions
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Table 7 The membrane and cable elements after connecting them with
C1 continuity. For each element e, the global indices a or b, and their
element-wise indices k = a1 and a2 or k = b1. The corresponding
Bézier extraction row operators are provided in Table 8

With that, from Eq. (53), the Bézier extraction operator for
the membrane is expressed as

CCCA =
⎡
⎣
c1 0 0
c2 1 0
0 0 1

⎤
⎦ , (54)

where c1 = ΔΞM
(ΔΞ)1+ΔΞM

and c2 = 1 − c1. For the cable, the
knot spans are {0, ΔΞL , (ΔΞL)3}, and theBézier extraction
operator is expressed as

CCCB =
⎡
⎣
1 0 0
0 1 c3
0 0 c4

⎤
⎦ , (55)

where c4 = ΔΞL
ΔΞL+(ΔΞL )3

and c3 = 1−c4. After the two knot
removals, we obtain the following knot spans:

ΔΞΞΞ = { ,

B︷ ︸︸ ︷
(ΔΞM )1, ΔΞM , ΔΞL︸ ︷︷ ︸

A

, (ΔΞL)3} . (56)

Table 8 The membrane and cable elements after connecting them with
C1 continuity. For element e and element-wise index k, the Bézier
extraction row operator for the directional basis functions
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This gives

CCC
A =

⎡
⎣
c1 0 0
c2 1 s

1+s
0 0 1

1+s

⎤
⎦ (57)

and

CCC
B =

⎡
⎣

s
1+s 0 0
1

1+s 1 c3
0 0 c4

⎤
⎦ , (58)

where s is as defined in Eq. (50).
From that, we get

(
CCC
A
)−ᵀ (

CCCA
)ᵀ

=
⎡
⎣
1 0 0
0 1 0
0 −s 1 + s

⎤
⎦ (59)

and

(
CCC
B
)−ᵀ (

CCCB
)ᵀ

=
⎡
⎣

1+s
s − 1

s 0
0 1 0
0 0 1

⎤
⎦ . (60)

With that, we obtain

x̃
A
1 = x̃A1 , (61)

x̃
A
2 = −sx̃A1 + (1 + s)x̃A2 , (62)

and

xB0 = (1 + s)xB0 − xB1
s

, (63)

xB1 = xB1 . (64)

We substitute them into Eqs. (46) and (47), and obtain the
following equations:

x̃A1 = (1 + s)xB0 − xB1
s

, (65)

− sx̃A1 + (1 + s)x̃A2 = xB1 . (66)

After some rearrangement, we get

x̃A2 = xB0 , (67)

x̃A2 = sx̃A1 + xB1
s + 1

. (68)
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