
Computational Mechanics (2023) 71:563–581
https://doi.org/10.1007/s00466-022-02250-2

A surrogate model for the prediction of permeabilities and flow
through porous media: a machine learning approach based on
stochastic Brownian motion

Rainer Niekamp1 · Johanna Niemann1 · Jörg Schröder1

Received: 13 June 2022 / Accepted: 6 November 2022 / Published online: 6 December 2022
© The Author(s) 2022

Abstract
In this contribution we propose a data-driven surrogate model for the prediction of permeabilities and laminar flow through
two-dimensional random micro-heterogeneous materials; here Darcy’s law is used. The philosophy of the proposed scheme
is to provide a large number of training sets through a numerically “cheap” (stochastic) model instead of using an “expensive”
(FEM) one. In order to achieve an efficient computational tool for the generation of the database (up to 103 and much more
realizations), needed for the training of the neural networks, we apply a stochastic model based on the Brownian motion. An
efficient algebraic algorithm compared to a classical Monte Carlo approach is based on the evaluation of stochastic transition
matrices. For the encoding of the microstructure and the optimization of the surrogate model, we compare two architectures,
the so-called UResNet model and the Fourier Convolutional Neural Network (FCNN). Here we analyze two FCNNs, one
based on the discrete cosine transformation and one based on the complex-valued discrete Fourier transformation. Finally,
we compare the flux fields and the permeabilities for independent microstructures (not used in the training set) with results
from the FE2 method, a numerical homogenization scheme, in order to demonstrate the efficiency of the proposed surrogate
model.

Keywords Effective permeabilities of porous media · Machine learning · Surrogate model · Darcy flow · Brownian motion ·
UResNet · FCNN

1 Introduction

For several years now, data-driven science has become
increasingly important for gaining scientific knowledge, see
[38]. Starting from experimentally based knowledge about
the phenomena of nature, the underlying laws have been
explored for centuries by means of the theoretical sciences.
Nowadays, ever-increasing computer performance enables
detailed simulation-based predictions of complicated phe-
nomena, which can be used purposefully by means of AI
to assess and optimise complex boundary value problems.
Especially supervised and unsupervised deep neural net-
works (DNNs) have emerged in this field. Supervised trained
DNNs can also be used as efficient surrogate models as an
alternative to e.g. traditional reduced order models. As a

B Jörg Schröder
j.schroeder@uni-due.de

1 Institute of Mechanics, University of Duisburg-Essen,
Universitätsstr. 15, 45141 Essen, Germany

data based method DNNs need large training data sets, see
e.g. [31], which can be obtained by simulations using artifi-
cial input data. For an overview of applications in material
science where deep learning has become a game-changing
technique for the prediction ofmaterial properties see [1]. For
the philosophy of data-driven computations in solid mechan-
ics, bypassing explicit constitutive models, we refer to [22].
As a model system we have chosen the laminar flow through
a porous medium at low Reynolds numbers assuming a
linear relation between the flux and the pressure gradient.
This linear relation is governed by the permeability tensor
k which in an inhomogeneous material depends on its loca-
tion.We assume that the laminar fluid flowcan bemodeled on
both scales, the micro- and macroscale, with Darcy’s equa-
tion [6]. In order to characterize the effective flow behavior
on the macroscale we have to determine the homogenized
(effective) permeability tensor k̄. One approach is to find
heuristic or semi-analytical approximations for the estima-
tion of the effective permeability as a function of geometrical
and statistical properties of the micro-heterogeneous mate-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-022-02250-2&domain=pdf

564 Computational Mechanics (2023) 71:563–581

rial, for an overview we refer to [28]. Furthermore the FE2

method, see e.g. [27,35] and the references therein, is an
establishedmethod to determine the homogenized properties
of the underlying representative micro-structure. For a vari-
ationally consistent homogenization of flow through porous
media we refer to [33,34]. The FE2 method gives accurate
results but is computationally very expensive.
Therefore we need another computational inexpensive sim-
ulation scheme (that is, from our motivation, an non Finite-
Element-based method) for the generation of a sufficiently
large training set for the DNN in order to obtain a predictive
surrogate model. For an overview of general requirements to
achieve surrogate models within a data based approach using
large training sets in a deep learning framework see [23] and
[9,13,14,30] as examples of applications of trained DNNs
as surrogate models in mechanics. Furthermore, e.g. in the
context of optimization or parameter identification problems,
where a large number of evaluations has to be performed, a
fast surrogate model should be designed for efficiency rea-
sons.

The solutions of Darcy’s flow problem can be consid-
ered as the stationary state of a diffusion process. In order
to achieve a computational efficient scheme we use the fact
that such processes can be formulated with a particle based
atomistic description, the so called Brownian motion of par-
ticles, see [3]. This process is driven by a thermal induced
stochastic motion of the particles and can in the averaged
form be described by the Poisson equation [12]. Therefore
the stationary state of the diffusion process is described by
the Laplace equation. The advantage of this particle based
approach to solve Darcy’s problems compared to Finite Ele-
ment based methods is that no meshing is needed and the
computation of the flux fields is computationally simple and
fast. The resulting simulation performs random movements
of particles to neighbored cells on a equidistant grid and can
be realized either by aMonteCarlomethod are by a pure alge-
braic method using the related stochastic transition matrices
as described e.g. in [7]. This simulation method is used for
fast generation of pairs of random geometries and resulting
flux fields which can serve as a training set formachine learn-
ing algorithms.

In the growing scientific field of data driven mechanics
DNNs serve e.g. as substitutes for constitutive laws, see
e.g. [20,37] for applications in elastic mechanics and [4,8]
for viscoelastic, viscoplastic and fracture problems. Physi-
cal informed Neural Networks, see e.g. [39,40], are applied
in order to take into account physical constraints during the
training process. Furthermore, DNNs have also been suc-
cesfully used for the fast determination of quasi-optimal
coupling constraints for the FETI-DP domain decomposition
solver [19].

Deep Convolutional Neural Networks (DCNN) have been
used for image classification and image segmentation at a

pixel level with great success in the past, see e.g. [11].
Furthermore, DCNNs are used as fast surrogate models in
computational fluid dynamics (CFD), see [10,18]. TheU-Net
architecture was initially introduced by [31] for biomedical
image segmentation and is based on a fully convolutional
neural network. U-Net models were also used for steady-
state and dynamic CFD applications, see [5,10], as well as
for the prediction of surface waves, [25]. A modified ver-
sion of the UResNet model used for the prediction of the
horizontal and vertical flux components per pixel using the
nearest neighbor upsampling was proposed in [36]. It is
well known that using spectral analysis for Darcy’s flow in
inhomogenous media has several advantages, see e.g. [2].
Therefore, the application of a Fourier Convolutional Neu-
ral Network (FCNN) seems reasonable. A Fourier neural
operator is a deep learning method that has been recently
introduced and can outperform most existing machine learn-
ing approaches, see [24,41]. It captures global interactions by
convolution with low-frequency functions and yields high-
frequencymodes by compositionwith an activation function,
so it can approximate functions with slow Fourier mode
decay.

In this contribution we discuss, focussing on laminar flow
through amicro-heterogenousmedium, how training sets can
be validated and generated in an efficient way. Furthermore
we present and compare two different architectures of DNNs
concerning their training behavior and approximation qual-
ity. For the efficient generation of training sets we apply a
stochastic Brownian motion model and discuss its numeri-
cal treatment within a Monte Carlo approach. This model
is then extended to an algebraic model based on stochastic
transition matrices, Sect. 2. The applied DNNs are moti-
vated and described in Sect. 3. The first one is a modified
U-shaped residual network (UResNet) with an hierarchical
structure. The second one is based on a Fourier Convolutional
Neural Network (FCNN), where we compare the discrete
Fourier Cosine transform (DCT-II) and the classical discrete
complex-valued Fourier transform (DFT). Here, the FCNN
architecture consists of two parallel branches, one path act-
ing in the frequency space and a second one performing
convolutions in euclidean space. Section4 presents the FE2

homogenization scheme for the prediction of the effective
permeabilities, used for the comparison with the predictions
from the surrogate models. Representative numerical exam-
ples are discussed in Sect. 5, evaluating the training speed
and the quality of the surrogate models, based on correlation
coefficients and error measures.

123

Computational Mechanics (2023) 71:563–581 565

2 Stochastic modeling of Darcy flow

2.1 Strong form of Darcy’s law

Let B ⊂ IR3 be the body of interest parametrized in x, the
surface of B is denoted by ∂B. The later is subdivided into
a part ∂Bq where the flux across the surface is described
and a remaining part ∂Bp where the pressure is described.
The decomposition of the boundary satisfies the relations
∂B = ∂Bq ∪ ∂Bp and ∂Bq ∩ ∂Bp = ∅ . For a fully saturated
porousmedium themass conservation lawwith constant den-
sityρ and porosity appears as div(ρ q) = − f ∗ with themass
source density f ∗ and the flow rate q. This so-called Darcy’s
law is suitable for the approximate solution of laminar flows.
We use the reformulation

divq + f = 0 with q = −k · ∇ p and f = f ∗/ρ . (1)

Here, the spatially constant permeability k := k∗/μ is intro-
duced, where k∗, measured in N−1s−1, denotes the tensorial
intrinsic permeability andμ the fluid viscosity in Ns/m2.The
boundary conditions have to be specified

q · n = q0 on ∂Bq and p = p0 on ∂Bp , (2)

where n is the outward unit normal on ∂B, and [p]SI =
Pa = N/m2, [q]SI = m/s. The Darcy equation is valid for a
slow flux under isothermal conditions. In order to get a large
number of trainings sets in reasonable time, we use a sim-
ple simulation tool based on a stochastic Brownian motion.
The simulation generates random geometries and computes
the resulting flux under given periodic boundary condition.
These pairs of geometry with the resulting flux build the
training set.

2.2 Brownianmotion based on aMonte Carlo
approach

In the following we consider a two dimensional micro-
heterogenous structure consisting of two phases, an imper-
meable phase A and a permeable matrix. Phase A is given
by the union of the inclusions which are defined by a given
number of circles with random centers inside the considered
domain [0, l]×[0, h] and with radii r ∈ [rmin, rmax] varying
uniform randomly. The set S of admissible points, i.e. the
matrix domain, is given by

S = {(i, j) ∈ [1, L] × [1, H]} / ∪ {inclusions} (3)

where i and j are the indices of the equidistant L · H grid
points. At the initial state all fluid particles are positioned
randomly at admissible points at the left boundary, i.e. at
the left column of the discretized region given by j = 1

Fig. 1 Admissible moves of particles

and i = 1 . . . H and (i, j) ∈ S. Each particle can move
potentially to all four directions provided the target position
is admissible. In each iteration step the following rules of
motion are applied to each particle:

1. Exactly one of the four direct neighbors (left, right, lower,
upper) can be visited with probability 1

4 .
2. This movement is rejected if the chosen neighbor is not

in S.
3. If the particle wants to cross a horizontal boundary edge

i = 1 or i = H the particle ismoved to the corresponding
position on the upper/lower side, see Fig. 1 green lines.

4. If the particle wants to cross a vertical boundary (j = 1
or j = L) the particle is moved to a randomly chosen
admissible point on the left boundary, see Fig. 1 red lines.

If the move is rejected, i.e. the target position is not in S,
the particle stays for this step at the current position. An
iteration step inside this algorithm can be written in pseudo
code, considering only rule 1. and 2., as:

These transition rules, see Fig. 1, assign a cylindrical
topology and define the left edge as inflow and the right as
outflow boundary. It is important to observe that this tran-
sition rules keep the number of moving particles constant
and that the sum of probabilities for the possible moves of
each particle is 1. Figure 2 shows two snapshots of a Monte
Carlo simulation with 1000 × 1000 grid points and 800.000
particles. The most time critical part of the algorithm is

123

566 Computational Mechanics (2023) 71:563–581

Fig. 2 Brownian motion,
distribution of 800.000 particles
after (left) 20.000 and (right)
100.000 time steps. Only due to
overexposedness, the left areas
look constant

the generation of the random numbers. The simulation of
100.000 time steps needs on a standard laptop 10min.

2.3 Brownianmotion based on stochastic matrix
approach

In the proposed framework the Brownian motion approach
is implemented using the corresponding stochastic transition
matrix M yielding a faster algebraic algorithm compared to
the Monte Carlo implementation. Let for

(I , J) ∈ {1, . . . , L · H} × {1, . . . , L · H} MI ,J ∈ [0, 1]
(4)

be the probability that a particle located at position J moves
to position I . M ∈ R

L·H×L·H is a sparse asymmetric matrix
of dimension L · H × L · H , see Fig. 3 as an example. Let

pI ∈ [0, 1] be the probability that a particle can be found at
position I ,M pwith p ∈ R

L·H is the probability distribution
after applying the transition rules given above.

Due to the definition of M the vector 1̄ ∈ R
L·H (all

entries are 1) is a left eigenvector of M with the eigenvalue
1. Because the 1-norm ||M||1 is 1, the number 1 is also the
largest eigenvalue ofM, see e.g. [16].Having a left eigenvalue
with eigenvalue 1 there must also exist a right eigenvector
associated to this eigenvalue. This means there is a vector
∗
p with M

∗
p = ∗

p, the so called stationary state, which can
be computed by forward iteration starting with an arbitrary
probability distribution p0 and iterating pn+1 = M pn . The
initial probability distribution p0 at position I is in corre-
spondance to the Monte Carlo approach given by:

p0 I =
{
m−1, if I = (i, 1) ∈ S
0, else

}
(5)

Fig. 3 Example of the definition of the transition matrix M. The prob-
abilities that a particle at position J = (2, 1) moves to a position
I = (i, j) are for I = (1, 1) and I = (2, 1) 1

4 + 1
4
1
2 , for I = (2, 2): 14

and 0 for the remaining positions (left), the corresponding complete
transition matrix M with highlighted column J = (2, 1) (right)

123

Computational Mechanics (2023) 71:563–581 567

Fig. 4 Spatial stochastic distribution pn after n=20.000 steps (left), 50.000 steps (mid) and the stationary state of the stochastic matrix M (right)

where m is the number of admissible positions at the left
boundary. The computational complexity is nearly the same
as in the Monte Carlo approach but due to the usage of fast
sparse matrix–vector operations faster by a factor of three:
to get a nearly converged stationary state on a grid with
L = H = 1000, see Fig. 4, both methods get with 100.000
iteration comparable results. The matrix based implementa-
tion needed about 3min on a standard laptop.

2.4 Extraction of flux and effective permeability
from the stochastic model

We can identify the pressure as the density which is just
the spatial probability distribution p. The probability that a
single particle moves from position J = (i, j) to I = (i, j+
1) is given by the number MI J . The horizontal component of
the macroscopic flux qI at position I is the effective amount
of particles moving from J to I given by

qI = MI J pJ − MJ I pI . (6)

Setting the dynamic viscosity to 1, we have by Darcy’s
law:

k̄xx = − q̄x
∇ p̄x

= −
∑

I=(i,L) qI /H

(pright − ple f t)/L
, (7)

where q̄x is the x-component of the averaged flux, q̄x H is the
total flow through the domain measured by the flow through
the outflow boundary,

pright−ple f t
L is the x-component of the

averaged gradient of p and ple f t , pright are the averages of p
at the left and right edges respectivly. The k̄yy is extracted in
the analogue manner. For the diagonal configuration we have
the length:height ratio: L√

2
: √

2H = L
2H . Figure5 shows the

stationary states of these configurations.

3 Deep convolutional neural network
framework

Generated dataset

The generated data, consisting of 1000 cross-sectional
images of porous media with an image size of 64×64 pixels
and the corresponding flux field, are divided into a train-
ing dataset and test dataset. The training dataset is used to
optimize the parameters using stochastic gradient descent
with momentum and an adaptive learning rate optimization
to minimize the prediction error. Use of the test data set aims
to detect overfitting during the training process and to eval-
uate the predictive performance of the trained model.

Fig. 5 Stationary states of the configurations used to compute kxx (left), kyy(mid) and kxy(right)

123

568 Computational Mechanics (2023) 71:563–581

Fig. 6 Convolutional neural network architecture set up

Table 1 Detailed structure for
downsampling encoding block
“Enc′′

2

Operation layer Number of filters Input size Output size

Pooling layer 8 64 × 64 × 8 32 × 32 × 8

Convolutional layer 8 32 × 32 × 8 32 × 32 × 8

Batch normalization layer 8 32 × 32 × 8 32 × 32 × 8

Rectified linear unit (RELU) 8 32 × 32 × 8 32 × 32 × 8

Convolutional layer 16 32 × 32 × 8 32 × 32 × 16

Batch normalization layer 16 32 × 32 × 16 32 × 32 × 16

Rectified linear unit (RELU) 16 32 × 32 × 16 32 × 32 × 16

Dropout layer 16 32 × 32 × 16 32 × 32 × 16

3.1 Deep convolutional neural network architecture

A modified version of the U-shaped residual neural network
model based on [36] is established for predicting the effec-
tive permeability and the horizontal (qx) and vertical (qy)
flux components per pixel. The detailed architecture set up is
shown in Fig. 6. The binary cross-sectional image, in which
a pixel with a value of 0 (1) corresponds to the solid phase
(pore space), is the input of the model. Hereby noting that
the desired pixel size of images in Deep Convolutional Neu-
ral Networks is mostly 2m , in this case 26, pixels. From the
UResNet model, we obtain a flux field as a 64 × 64 matrix
with the flux values per pixel, graphically shown below using
density and stream plots.

The encoding part of the network consists of 5 down-
sampling blocks, which are used to reduce the number of
variables and to compress the geometric information into a
reduced dimension image. Each block includes a pooling
layer, two convolutional layers each followed by a batch nor-
malization layer, a rectified linear unit (RELU) activation
function and a dropout layer. For the detailed structure of
the second coding block, see Table 1. The pooling, which is
located in the first layer of each block, leads to a reduction of
the image size by half and thus decreases the training time and
computational cost. There are different methods of pooling,

whereby themost commonmax-poolingmethodwas applied
in this model, in which only the maximum output value is
retained when reducing the dimensions for all further layers
and calculations. Each convolutional layer has a number of
output channels, which are also referred to as filters and a
kernel of size 3 × 3.The filters are used to extract important
key features from the corresponding input. During the con-
volution, the input data is multiplied by the 3 × 3 matrices
of the filter kernels, and the result is summed and combined
into one output pixel. This process is repeated for the entire
image while shifting the filter along the image by a stride of
one. The usage of dropout layers at the end of each block is
a frequently performed regularization method in deep neu-
ral networks to reduce the risk of over-fitting. This involves
inactivating 50% of the output neurons by randomly drop-
ping connected nodes. This value is taken from literature, see
e.g. [15], but has not been optimized here.

Located between the encoding and decoding blocks are 4
residual blocks,which can lead to an improvement in gradient
flow during training and may simplify the network by effec-
tively skipping connections. Unlike the traditional structure
of neural networks, residual neural networks not only have
all layers concatenated consecutively, but also have skip con-
nections, whereby blocks of equal size from downsampling
and upsampling are connected with one another. The blocks

123

Computational Mechanics (2023) 71:563–581 569

Table 2 Detailed structure for
upsampling decoding block
“Dec′′

2

Operation layer Number of filters Input size Output size

Convolutional layer 16 32 × 32 × 32 32 × 32 × 16

Batch normalization layer 16 32 × 32 × 16 32 × 32 × 16

Rectified linear unit (RELU) 16 32 × 32 × 16 32 × 32 × 16

Convolutional layer 8 32 × 32 × 16 32 × 32 × 8

Batch normalization layer 8 32 × 32 × 8 32 × 32 × 8

Rectified linear unit (RELU) 8 32 × 32 × 8 32 × 32 × 8

Dropout layer 8 32 × 32 × 8 32 × 32 × 8

Resize layer 8 32 × 32 × 8 64 × 64 × 8

have a mirrored layer structure due to a chosen U-shaped
design.

The 5 upsampling blocks for the decoding part of the net-
work are supposed to gradually scale the image up to the
pixel size of the original input. The first layer of each decod-
ing block is concatenated with the corresponding encoding
block. Convolutional neural networks employ several decon-
volution layers in the process of image resampling and
formation and iteratively resample a larger image from a
number of lower resolution images. However, instead of a
deconvolution layer, a resize layer is used to scale the image
up by a factor of two using the nearest neighbor interpola-
tion method to prevent checkerboard artifacts in the output
images. Hence, each decoding block has a similar structure
as the encoding block with two convolutional layers, each
being followed by a batch normalization layer and a recti-
fied linear unit activation function as shown in Table 2. The
rectified linear unit (RELU) activation function is defined as

f
(
x̂ (i)) = max

(
x̂ (i), 0

)

=
{
x̂ (i) if x̂ (i) > 0

0 otherwise
for i = 1, . . . , n

(8)

with x̂ (i) being the ith pixel in the volume data to be trained
and n being the total number of pixels.

In particular, each output neuron in the last layer is com-
puted by the scalar product between their weights and a
concatenated small domain of the input values, adding the
bias and applying an activation function AR of the form

q(i)
l = AR

(
x̂ (i)
l

)
with x̂ (i)

l

=
M∑
j=1

W (j)
l · x̂ (j)

l−1 + b(j)
l for i = 1, . . . , N (9)

with x̂ (i)
l denoting the neurons output calculatedby the synap-

tic weights W (j)
l , a bias b(j)

l and a total of M number of
elements in the domain of the previous layer. Then, the final

output values are calculated by the weighted inputs and a
parametric RELU activation function AR defined as

AR(x̂ (i)
l) =

{
x̂ (i) if x̂ (i) > 0

ai x̂ (i) otherwise
for i = 1, . . . , n

(10)

where ai being a coefficient regulating the slope on the
negative component. For the parametric RELU, ai is a hyper-
parameter learned from the data, which can be obtained from
the computation of the gradientwith respect toai . The param-
eter ai is updated simultaneously with other parameters of
the neural network during backpropagation.

3.2 Fourier convolutional neural network

The second approach is a Fourier Convolutional Neural Net-
work (FCNN), first introduced by [26,29], which provides a
alternative to traditional DCNNs by computing convolutions
in the Fourier domain instead of the spatial domain. Convo-
lution in the spatial domain corresponds to an element-wise
product in the Fourier domain,which can significantly reduce
the computational cost of training. Fourier neural operators
canmodel complex operators in partial differential equations,
which often exhibit highly non-linear behavior and high fre-
quencies, by the interaction of linear convolution, Fourier
transformations, and the non-linear activation function, see
[17].

Fourier Convolutional Neural Network Architecture

The Fourier Convolutional Neural Network consists of two
fully connected layers (FC) in the first and last layers respec-
tively, and four consecutive Fourier layers, see e.g. [17,24].
In this model the architecture setup of the Fourier neural
operator (FNO), introduced by [24], was adapted for the
application of the prediction of velocity fields inmicrohetero-
geneous media. The network architecture is illustrated in
Fig. 7.

123

570 Computational Mechanics (2023) 71:563–581

Fig. 7 Fourier convolutional neural network architecture, with integral transform F , its inverse F−1 and a low-pass filter R

For the application of the FNO numerical inputs are
required. Hence, the binary structures of all images in the
data set are encoded with a prior data preprocessing by trans-
forming the input into a 2-Dmatrix of pixel data for the image
input. Since the output of the velocity fields are stored in 2-D
matrices, no further decoding is required in this special case.

Based on the preprocessed pixel data of the binary image,
the network starts by transforming the input into higher
dimensions using a Fully Connected (FC) Layer with 32
channels. Here, the channels represent the width of the FNO
network, which can be interpreted as the number of features
to be learned in each layer.
In the top path of each FNO layer, the input is encoded by
applying the discrete Fourier transform (DFT) or a discrete
Fourier cosine Transform (DCT). A linear transformation
R is applied in the spectral domain to filter multiple high
frequencies, since high frequencies often contain noise and
imply abrupt changes in the image. Therefore, we define the
number of low Fourier modes (wave numbers) which are
used for the following analysis. Here, a number of 14 Fourier
modes is chosen. A further reduction of the Fourier Modes
leads to a lower resolution of the prediction. It should be
noted that the maximum allowed number of retained modes
depends on the size of the computer grid, see [17]. A well-

balanced hyperparameter setting (namely the chosen number
of channels, modes, training pairs, as well as the size and
resolution of the discretization) could lead to an adjustment
of the accuracy of the model.
While convolution is performed in frequency space in the top
path of the FNO, the bottom path is implemented solely in
the spatial domain. In the latter, the input is transformed by a
one-dimensional spatial convolution C, i.e. we have a kernel
of size 1 and a stride of 1. The two paths are recombined
after decoding the frequency domain values into the spatial
dimension using the associated inverse Fourier Transform.
Once the two paths are added, a non-linear activation func-
tion, the Rectified Linear Unit activation, is applied. Finally,
the received feature maps are resized to the desired dimen-
sions using a fully connected layer.

3.2.1 Discrete Fourier cosine transformations

The proposed scheme is a modified version of the Fourier
neural operator introduced in [24]. The architecture set up
of the Fourier Layer is illustrated in Fig. 7. Starting from
the binarized image f (i, j), in the upper path the input is
encoded by applying the Discrete Fourier Cosine Transform
(DCT-II). We substitute in Fig. 7 the operator F(u, v) by

123

Computational Mechanics (2023) 71:563–581 571

F̃(u, v), the latter is defined as

F̃(u, v) =
√

2

N

√
2

M
CuCv

N−1∑
i=0

M−1∑
j=0

f (i, j)

cos
(πu(2i + 1)

2N

)
cos

(πv(2 j + 1)

2M

)

with

{
Cu = Cv = 1√

2
when u, v = 0,

Cu = Cv = 1 otherwise.
(11)

The inverse transform F−1, which is the inverse of the
DCT-II, is here obtained through

f (i, j) =
√

2

N

√
2

M

N−1∑
u=0

M−1∑
v=0

CuCv F̃(u, v)

cos
(πu(2i + 1)

2N

)
cos

(πv(j + 1)

2M

)

with

{
Cu = Cv = 1√

2
when u, v = 0,

Cu = Cv = 1 otherwise.
(12)

3.2.2 Discrete Fourier transformations

The basic equation defining the complex valued discrete

Fourier transformation
∗
F(u, v) are:

∗
F(u, v) =

√
2

N

√
2

M

N−1∑
i=0

M−1∑
j=0

f (i, j) exp
(
−2πι (

u i

N
+ v j

M
)
)

(13)

and its inverse is defined by

f (i, j) =
√

2

N

√
2

M

N−1∑
u=0

M−1∑
v=0

∗
F(u, v) exp

(
2πι (

u i

N
+ v j

M
)
)

(14)

where ι with ι2 = −1 is the imaginary unit.

4 Two-scale formulation of Darcy flow
through porousmedia

4.1 Definition of effective quantities and boundary
conditions

At the macroscale an explicit constitutive model is not pre-
sumed. Instead of that we attach a representative volume
element (RVE) at each macroscopic point. Therefore, at
the macroscale the body of interest is denoted by B and
parametrized in x; all macroscopic quantities are character-
ized by an overline. In order to compute the macroscopic

(effective) permeability tensor k̄ for the macroscopic Darcy
flow

q = −k · ∇ p (15)

we start from themicroscopic boundary value problem.Mul-
tiplying the strong form (1)1, neglecting volume sources,
with the test function −δ p, inserting the constitutive rela-
tion (1)2 and integration over B yields the weak form on the
microscale G(p, δ p) = − ∫

B δ pdiv (k · ∇ p) dv = 0 . The
application of Gauss’ theorem leads to the weak form

G(p, δ p) =
∫
B

∇δ p · k · ∇ p dv

+
∫

∂Bq

δ p q0 da with q0 = q0 · n . (16)

In order to link the macroscopic quantities with their micro-
scopic counterparts we define the macroscopic pressure
gradient ∇ p := ∇x p and the macroscopic flux q as

∇ p := 1

V

∫
∂B

p n da = 1

V

∫
B

∇ p dv

and q := 1

V

∫
∂B

q x da

= 1

V

∫
B
q dv, (17)

where q and n are the flux vector and outward unit normal
on the boundary ∂B of the RVE. Let us apply an additive
decomposition of themicroscopic pressure field in a constant
p and a fluctuation part p̃, i.e. p = p + p̃.

Substitution of the latter expression into (17)1 yields

∇ p = 1

V

∫
B
(∇ p + ∇ p̃) dv = ∇ p

+ 1

V

∫
B

∇ p̃ dv � 1

V

∫
B

∇ p̃ dv = 1

V

∫
∂B

p̃ n da = 0.

(18)

In addition, the additive decomposition of flux tensor q into
a constant q and a fluctuation part q̃, i.e. q = q + q̃, leads to

q = 1

V

∫
B

(q + q̃) dv = q + 1

V

∫
B
q̃ dv � 1

V

∫
B
q̃ dv

= 1

V

∫
∂B

q̃ x da = 0. (19)

where q̃ = q̃ ·n is the fluctuation part of the flux vector on the
boundary ∂B. Suitable boundary conditions can be derived
from a postulated macro-homogeneity condition. Form this
we obtain Dirichlet and Neumann boundary conditions

q = q · n ∀ x ∈ ∂B or p = ∇ p · x ∀ x ∈ ∂B , (20)

123

572 Computational Mechanics (2023) 71:563–581

Fig. 8 Microscopic mechanical
BVP: periodic boundary
conditions on RVE

and periodic boundary conditions

q+(x+) = −q−(x−), and p̃+(x+) = p̃−(x−). (21)

The symbols p± and p̃± denote opposing fluxes across the
boundary and equal fluctuations of pressure at the corre-
sponding points on the boundary, see Fig. 8. A derivation
of the boundary conditions is given in the Appendix. A
theroretical and numerical scheme for weak periodic bound-
ary conditions of Stokes flow has been proposed by [32].

4.2 The discrete scale transition procedure:
FE2-scheme

In the first stepwe apply at eachGauss point of amacroscopic
boundary value problem suitable boundary conditions on the
microscopic boundary value problem. This is then solved
with respect to the fluctuation of the pressure field p̃.

For the discrete version of the weak form we use a con-
forming interpolation with finite element spaces for p and
the triangulation of the B, i.e. p ∈ H1(Bh) with Bh =
∪numele
e=1 Be ≈ B where Bh denotes the discretization of B

with numele finite elements Be. For the approximation of the
pressure and the test function as well as their gradients

p̃ ≈ N d̃ , δ p̃ = N δ d̃ , ∇ p̃ ≈ B d̃ , ∇δ p̃ = B δ d̃ ,

(22)

we introduce the matrix of ansatzfunctions N and B con-
taining the derivatives of the ansatzfunctions. The dis-
crete counterpart of the weak form (16) is Gh(p̃, δ p̃) =∑numele

e=1 Ge(p̃, δ p̃) with Ge(p̃, δ p̃) = Ge,int (p̃, δ p̃) +
Ge,ext (δ p̃). The explicit expressions for Ge,int (p̃, δ p̃) and
Ge,ext (δ p̃) are

Ge,int (p̃, δ p̃) = δ d̃ T
∫
Be

BT k B dv d̃ =: δ d̃ T ke d̃ , (23)

where ke denotes the element stiffness matrix, and

Ge,ext (δ p̃) = δ d̃ T
∫

∂Be
q

NT q0 da =: δ d̃ T re . (24)

The final set of algebraic equations follows from

Gh(p̃, δ p̃) =
numele∑
e=1

δ d̃ T (
ke d̃ + re

) = 0 → K D̃ = R,

(25)

with the global vector of unknowns D̃ and the global stiffness
matrix K and global residual vector R respectively. A formal
linearization of Gh(p̃, δ p̃), i.e.

LinGh(p̃, δ p̃,� p̃) = Gh(p̃, δ p̃) + �Gh(p̃, δ p̃,� p̃)

(26)

at an equilibrium state on the microscale yields

LinGh(p̃, δ p̃, � p̃) = δ D̃ T (K� D̃p + L�∇ p) = 0 ∀ δ D̃,

(27)

where the stiffness matrix and generalized fluctuation influ-
ence matrix are

K =
numele

A
e = 1

∫
Be

BT k B dv and L =
numele

A
e = 1

∫
Be

BT k dv.

(28)

From (27) we compute the increments of the fluctuations of
the pressure field:

� D̃ = −K−1 L�∇ p (29)

The increment of the gradient of the pressure fluctuations are
now obtained by

�∇̃ p = B� D̃ = −B K−1 L�∇ p. (30)

123

Computational Mechanics (2023) 71:563–581 573

In order to derive the overall (algorithmic consistent) moduli
k, implicitly given in (15), we consider the linear increment
of themacroscopic flux vector (17) and insert the constitutive
relation (1)2:

�q = 1

V

∫
B

�q dv = − 1

V

∫
B
k · �∇ p dv

= − 1

V

∫
B
k · (�∇ p + �∇̃ p)dv. (31)

Substituting the algebraic expression for �∇̃ p, (30), yields

�q = −
(
1

V

∫
B
k dv − 1

V

∫
B
k B K−1 L dv

)
· �∇ p. (32)

In the last expression the terms and K and L are constant, thus
we write

∫
B k B K−1 L dv = ∫

B k B dv K−1 L = LT K−1 L and
identify

k = 〈k〉 − 1

V
LT K−1 L with 〈k〉 = 1

V

∫
B
k dv. (33)

For details on deriving the consistent macroscopic moduli
we refer to [27,35].

5 Numerical examples

5.1 Training process and regression loss metrics

For the training of the network, the ADAM optimization
method (Adaptive Moment Estimation) [21] is applied. This
is an extension to the stochastic gradient descent method
(SGD) by calculating individual adaptive learning rates for
the parameter θ . Let gt = ∇θ f (θt−1) denote the gradient of
the objective function f (θ). The objective functionmeasures
the deviation between the predicted q̂ and the given (training
set) q flow, i.e. for a given member τ of the training set we
have f τ (θ) = 1

n

∑n
i=1

1
2 (q̂i (θ) − qi)

2, where n denotes the
number of pixels and q̂, q ∈ IR2 the flow vector per pixel.
Furthermore we define f (θ) = 1

T

∑
τ∈T f τ (θ), where T is

the whole training set. A further improvement of ADAM of
the SGD is the use of the unbiased estimators m̂ and V̂ for the
expectation and variance. For given parameters θ , the update
formula for a typical training round reads

θt = θt−1 − α · m̂t(√
V̂t + ε

)

with m̂t = mt

(1 − β1)
, mt = β1 · mt−1 + (1 − β1) · gt

V̂t = Vt
(1 − β2)

with Vt = β2 · Vt−1 + (1 − β2) · g2t

(34)

where t indexes the current training epoch and the initializia-
tion V0 = m0 = 0. The setting of the parameter β1 = 0.9,
β2 = 0.999 and ε = 10−8, to prevent division by 0, is well
established, whereby α is a learning rate to be chosen.

In order to evaluate the quality of the trained system
we define several error measures. The Mean Squared Error
(MSE) is the sum of the squared distances between the
predicted velocities by the DCNN and the measured flux
components, while the Mean Absolute Error (MAE) is the
absolute deviation and thenormalized rootedMSE(NRMSE)
is the normalized rooted MSE. Now considering and com-
paring several regression metrics for loss evaluation for each
individual training pair τ

Mean Squared Error: f τ := MSEτ = 1

n

n∑
i=1

1

m

m∑
j=1

(q̂i j − qi j)
2

Normalized MSE: NMSEτ = MSEτ

/
q2

Mean Absolute Error: MAEτ = 1

n

n∑
i=1

1

m

m∑
j=1

|q̂i j − qi j |

Rooted MSE: RMSEτ =
√√√√ 1

n

n∑
i=1

1

m

m∑
j=1

(q̂i j − qi j)2

Normalized RMSE: NRMSEτ = RMSEτ

/
q

with themean flux value q = 1
n

∑n
i=1 ||qi || �= 0.Whereas q̂i

is the predicted flux vector per pixel, qi the ground truth (flux
vector) per pixel. In the following the solution obtained by
the simulations of Brownianmotion are referred to as ground
truth.

5.1.1 Results UResNet and Fourier convolutional neural
network

The final training process of the implemented network runs
on a GPU (GeForce RTX 3090) with overall 100 epochs,
see (34) and a batch size of 8. The duration of the training
takes approximately 3min when using 900 training exam-
ples, whereas a prediction of the trained model takes 0.014s.
Figure 9 (right) shows the loss plot of NMSE over 100
epochs averaged over 900 training sets and 100 validation
sets. Obviously the loss decreases rapidly within the first 20
to 50 epochs. In the UResNet model, the two flux compo-
nents have been trained simultaneously, while in the FCNN
model, the x and y components have been trained individu-
ally. The computation has shown that an individual training
of the components in the UResNet model leads to no signifi-
cant improvement of the results. An exemplary binary image
that served as test input is shown in Fig. 9.

The training process for a lower (64 × 64) and higher
(128×128) resolution of the binary input images are plotted
in Fig. 10, whereby the errors after 100 epochs are at a com-
parable value for each of the two resolutions. For a number

123

574 Computational Mechanics (2023) 71:563–581

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

0.25

0.30

number of epochs: t

N
M
S
E

UResNet round loss inflow left xFCNN round loss inflow left

yFCNN round loss inflow left

Fig. 9 Examplary binary input image (left). Comparison of the loss plots for the UResNet model and FCNN model. Loss plot of the arithmetic
mean value of the NMSE during the training process for the whole training set (right)

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

number of epochs: t

N
M
S
E

round loss inflow left

round loss inflow lower

round loss inflow diagonal

validation loss inflow left

validation loss inflow lower

validation loss inflow diagonal

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

number of epochs: t

N
M
S
E

round loss inflow left

round loss inflow lower

round loss inflow diagonal

validation loss inflow left

validation loss inflow lower

validation loss inflow diagonal

Fig. 10 UResNet model: Loss plot (NMSE) during training process for image dimensions 64× 64 (left) and 128× 128 (right) for 900 training sets
(solid lines) and 100 validation sets (dotted lines)

of about 844000 optimized parameters, the training of the
higher resolution takes approximately 3 times longer than
the lower resolution. Beside the simulation of the inflow on
the left boundary (0◦ rotation of microstructure, blue curve),
the loss plots of the configurations for the inflow from the
bottom (90◦ rotation, red curve) and for the inflow for an 45◦
rotated structure (green curve) are depicted in Fig. 10. For
all three setups, a decrease in the error of the training set,
referred to as round loss, as well as a decrease in the error of
the validation set can be observed.

Since the validation set is only used to evaluate the perfor-
mance of themodel on new data, it is not used for the training
process. A significant gap between training and validation
errors would indicate an over-fitting phenomenon, in which
themodel solely learns the training data to the best extent pos-
sible. Obviously, the performed training of the model yields
reasonable error measures for the training and validation set,
see Table 3.

The size of the training sets was varied and gradually
reduced as illustrated in Fig. 11. While the predictive perfor-

mance of the trained model increases with a larger number
of training data, the accuracy of the model is reasonably reli-
able even with a rather small training set. The results indicate
that reducing the size of the training dataset down to approx-
imately 300 samples does not result in a significant decrease
in the quality of the results.

The performance of the trained model in predicting the
flow maps in the leading directions (flux in x-direction and
y-direction) is illustrated in Fig. 13. The density plots of
the flow fields for the developed and trained UResNet model
with dimensions 64×64 (Figs. 12a, 13a, d) and the calculated
flowmaps for the dimensions 128×128 (Fig. 12d) as well as
the Fourier Convolutional Neural Network (Fig. 14a) show
a similar behavior.

A qualitative comparison of the predicted fluxes shows a
high agreement with the reference data from the simulations
based on Brownian motion. The per pixel calculated error of
the fluxes, see Figs. 12, 13 and 14, is in the order ofmagnitude
of about 3.15% (NMSE). To assess the quality of the results
based on the prediction of the UResNet surrogate model, the

123

Computational Mechanics (2023) 71:563–581 575

Table 3 Values of different
regression loss metrics after 100
epochs using the UResNet
model with the coarse resolution

UResNet MSE NMSE MAE RMSE NRMSE

Round loss 0.0301686 0.0352274 0.215643 0.173691 0.18769

Validation loss 0.0286228 0.0334224 0.216099 0.169183 0.182818

Fig. 11 UResNet model: Loss
plot (NMSE) for a varying size
of training sets

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

0.25

0.30

number of epochs: t

N
M
S
E

round loss 100 training sets

round loss 300 training sets

round loss 500 training sets

round loss 700 training sets

round loss 900 training sets

validation loss 100 training sets

validation loss 300 training sets

validation loss 500 training sets

validation loss 700 training sets

validation loss 900 training sets

(a) (b) (c)

(d) (e) (f)

Fig. 12 Stream plots for UResNet model with input dimensions 64× 64 (top) and 128× 128 (bottom). The color plots depict the norm of the flux
quantities (Color figure online)

x− and y−components of the fluxes are shown in Fig. 13.
Since the main flow is in the horizontal direction, there are
larger relative deviations for the y-component of the fluxes
than for the x-components.

The UResNet model has generally been more accurate
in detecting the impermeable inclusions, while the FCNN
prediction remains closer to the extreme flux values.

5.2 Pearson correlation coefficient (PCC)

The correlation between the predicted flow maps and their
ground truths (BrownianMotion) is expressed with the Pear-
son Correlation Coefficient (PCC).

123

576 Computational Mechanics (2023) 71:563–581

(a) (b) (c)

(d) (e) (f)

Fig. 13 Flow components qx (top) and qy (bottom) for the UResNet surrogate model

(a) (b) (c)

(d) (e) (f)

Fig. 14 Stream plots for FCNN surrogate model using DCT (top) and DFT (bottom) with input dimensions 64 × 64

123

Computational Mechanics (2023) 71:563–581 577

Table 4 Values of different Pearson correlation coefficients of the
trained UResNet model (top), FCNN model with the DCT (middle)
and the DFT (bottom)

PCCdata PCCtrain PCCvalid PCCworst PCCbest

UResNet

qx 0.9720 0.9721 0.9715 0.8453 0.9926

qy 0.9393 0.9396 0.9371 0.7112 0.9721

q 0.9744 0.9745 0.9738 0.8138 0.9957

FCNN/DCT

qx 0.9587 0.9695 0.8563 0.7379 0.9922

qy 0.8475 0.8634 0.6973 0.5123 0.9275

q 0.9591 0.9663 0.8915 0.6805 0.9877

FCNN/DFT

qx 0.9984 0.9988 0.9944 0.9542 0.9995

qy 0.9965 0.9975 0.9873 0.9318 0.9990

q 0.9987 0.9990 0.9954 0.9628 0.9997

PCC = Cov(q̂, q)

σq̂ · σq

with σq̂ and σq being the standard deviations and Cov(q̂, q)

as the covariance of the predictedfluxvalues q̂ and the ground
truth values q. PCC values of−1 indicate total disagreement
and+1 total agreement. For completely random predictions,
the correlation coefficient is 0. In this context, a differenti-
ation is made between the correlation of the entire dataset
(900 training sets and 100 validation sets), the correlation
of the training data (900 training sets), the correlation of the
validation data (100 validation sets) and the worst and best
results as listed in Table 4.

From the correlation results, the FCNN/DFT model gives
the most accurate predictions for this example. Whereby the
computational time of the FCNN and UResNet are compa-
rable.

The cross plots of predicted flow values q for test images
vs. ground truth in Fig. 15 indicate that the surrogate model

has a high PCC of 0.983 for qx (left), a PCC of 0.938 for qy
(right).

5.3 Estimation of the effective permeabilities and
FE2 comparison

From the resulting neural network evaluations, the flux fields
are obtained. For each microstructure these can be used to
estimate the permeabilities, see Sect. 2.4. For the 2D case, the
permeabilities of a porous microstructure are described by a
permeability tensor k. Thus, the evaluation of themicrostruc-
ture for 3 orientations of the microstructure provide us with
the scalar components

k
0◦
xx , k

45◦
xx , k

90◦
xx = k

0◦
yy (35)

for the orientations α = 0◦, α = 45◦, α = 90◦, respectively.
To determine the whole tensor, we start from the transforma-
tion relation

kα = Qk(0◦) QT with Q =
[
cosα sin α

− sin α cosα

]
(36)

From this results, considering (35), the simple relation

k 45◦ =
⎡
⎣ 1

2k
0◦
xx + k

0◦
xy + 1

2k
0◦
yy

1
2

(
k
0◦
yy − k

0◦
xx

)
1
2

(
k
0◦
yy − k

0◦
xx

)
1
2k

0◦
xx − k

0◦
xy + 1

2k
0◦
yy

⎤
⎦

with

1

2
k
0◦
xx + k

0◦
xy + 1

2
k
0◦
yy = k

45◦
xx

→ k
0◦
xy = k

45◦
xx − 1

2

(
k
0◦
xx + k

0◦
yy

)
.

Fig. 15 Cross plot of the predicted fluxes for q̂x (left) and q̂y (right) for each pixel (64 × 64) versus the ground truth components qx and qy of the
system depicted in Fig. 13a, d

123

578 Computational Mechanics (2023) 71:563–581

Fig. 16 Discretization of microstructure (left), pressure distribution (middle), flux vectors and norm of the flux (right)

For the exemplarymicrostructure in Fig. 9 (left), we obtain
the scalar components

k
45◦
xx = 0.573, k

0◦
xx = 0.563 and k

90◦
xx = k

0◦
yy = 0.517

(37)

We thus derive the following permeability tensor for the
case α = 0◦

k
0◦ =

[
0.563 0.033
0.033 0.517

]
.

TheDarcyflowsimulationwithin theFE2-scheme is based
on the unit cell depicted in Fig. 16. The quadratic unit cell
of dimension 1 × 1 consists of a permeable matrix and 9
nearly impermeable inclusions. The system is discretized
with 24629 six-noded triangles.

For the simulation we apply a macroscopic pressure gra-
dient ∇ p = (−1, 0)T and periodic boundary conditions, see
(21). While the matrix material is defined by a permeabil-
ity of kmatrix = I , the inclusions are nearly impermeable
with a permeability of kinclusion = 10−6 I . These material
parameters yield to an effective permeability tensor

k =
[
0.568 0.001
0.001 0.518

]
.

Figure 16 shows the mesh and numerical results for the
RVE. An illustration of the vector field of flux q is displayed
on the right and is plotted over the magnitude |q| and the
pressure field p, respectively.

6 Conclusion

This work aims to propose an alternative approach to
the determination of microscopic and macroscopic moduli
of flow fields, using machine learning models to reduce

computational cost. Using the generated data from Brow-
nian molecular motion, we have proposed two data-driven
Machine Learning approaches where numerical flow simu-
lations are approximated by a spatial convolutional neural
network. The deep residual neural U-Net (UResNet) con-
sists of both encoding and decoding blocks, connected by
skip connections and residual blocks. As an input, a binary
image of any size can be used, whereas the output is con-
strained to a 64 × 64 or 128 × 128 grid through the formats
of the training data. By transforming the spatial frequency
space, the Fourier Convolutional Neural Network (FCNN)
filters high Fourier modes and convolves the spatial domain
to allow the prediction of flow simulations. In this context,
the obtained outputs of both proposed surrogate models pro-
vide high accurate predictions and very good correlation for
the obtained flow fields. The predicted permeability tensors
are of the same order ofmagnitude as the permeabilities from
the FE2 simulation, used to validate the surrogate models.
In the proposed algorithm scheme, we have restricted our-
selves to Darcy’s law, i.e., to linear response. The extension
to nonlinear rheologies is possible in principle, but would
require further modifications. The application of CNNs to
turbulent flows is directly possible (see e.g. [24]), but the
application of our proposed stochastic matrices (Brown-
ian motion) would require the evaluation of state-dependent
matrices. In doing so, we would experience a significant loss
of efficiency.
If we were only interested in estimating permeabilities, the
question arises: Isn’t directly linking microstructure to per-
mabilities (without training the NN with velocity fields)
sufficient? We had actually also tried the prediction of the
permeabilities alone, where no velocity distributions were
provided to the NN when training the network. Here we had
disappointing results compared to the proposed approach.
Although the training sets were reproduced very well, vali-
dation sets (test sets) could not be approximated, they fail.

Acknowledgements We gratefully acknowledge the finanicial sup-
port of the German Research Foundation (DFG) in the framework of

123

Computational Mechanics (2023) 71:563–581 579

CRC/TRR 270, projekt ZINF “Management of data obtained in exper-
imental and in silico investigations”, Project Number 405553726-TRR
270. Furthermore we would like to thank Simon Maike for his contri-
bution to the FE2 calculation and simulation.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix

A.1 Boundary conditions of themicroscopic
boundary value problem

To derive the appropriate boundary conditions of the bound-
ary value problem at microscale the macro-homogeneity
condition is considered. This macro-homogeneity condition
also known as Hill condition or Hill-Mandel condi tion.
Therein, they postulates that the macroscopic power is equal
to the volumetric average of the microscopic powers, i.e.

q · ∇ p − 1

V

∫
B0

q · ∇ p dv = 0

→ 1

V

∫
B

(q − q) · (∇ p − ∇ p
)
dv = 0 . (38)

Using the abbreviation 〈•〉V := 1

V

∫
V

(•) dv and starting

from (38)2 the equivalence of (38)1 and (38)2 can be proved
as follows

0 = 〈(q − q) · (∇ p − ∇ p
)〉V

= 〈(q · ∇ p − q · ∇ p − q · ∇ p + q · ∇ p
)〉V

= 〈q · ∇ p〉V − 〈q〉V · ∇ p − q · 〈∇ p〉V + q · ∇ p

= 〈q · ∇ p〉V − q · ∇ p − q · ∇ p + q · ∇ p

= 〈q · ∇ p〉V − q · ∇ p ≡ Eq.(38)1

Expression (38)2 is a priori fulfilled by the constraints con-
ditions q = q ∀ x ∈ B or ∇ p = ∇ p ∀ x ∈ B. Microscopic
boundary conditions can be derived, exploiting divq = 0,
from

q · ∇ p − 1

V

∫
B
q · ∇ p dv

= 1

V

∫
∂B

(q − q · n)
(
p − ∇ p · x)

da = 0. (39)

The latter condition is fulfilled by the microscopic boundary
conditions

q = q · n ∀ x ∈ ∂B or p = ∇ p · x ∀ x ∈ ∂B , (40)

which characterize the Neumann and Dirichlet boundary
conditions on the RVE, respectively. For the derivation of
periodic boundary conditions we decompose ∂B in two
associated boundaries ∂B+ and ∂B−, see Fig. 8, with the
associated points x+ ∈ ∂B+ and x− ∈ ∂B−. These points
characterise the points to which the periodic complements
of the unit cells are linked. Furthermore, we assume that at
this points the outward unit normals are anti-parallel, i.e.
n+ = −n−. Starting from the surface integral in (39) we
write
∫

∂B
(̃q · n) p̃ da =

∫
∂B+

(̃q · n+) p̃ da

+
∫

∂B−
(̃q · n−) p̃ da = 0. (41)

With p̃(x +) = p̃(x −), short p̃+ = p̃−, we get
∫

∂B+

(
(̃q + · n+) − (̃q − · n+)

)
p̃+ da =

∫
∂B+

[[̃q · n+]] p̃+

=
∫

∂B+
[[̃q]] p̃+ = 0. (42)

where q± denote opposing flux vectors at the associated
points. Thus the periodic boundary conditions are

q+(x+) = −q−(x−), and p̃+(x+) = p̃−(x−). (43)

The symbols q± and p̃± denote opposing fluxes across and
equal pressure fluctuations at the corresponding points on the
boundaries, respectively.

References

1. Agrawal A, Choudhary A (2019) Deep materials informatics:
applications of deep learning in materials science. MRS Commun
9(3):779–792. https://doi.org/10.1557/mrc.2019.73

2. Bignonnet F, Dormieux L (2014) FFT-based bounds on the per-
meability of complex microstructures. Int J Numer Anal Methods
Geomech 38:1707–1723. https://doi.org/10.1002/nag.2278

3. BrownR (1828) XXVII. A brief account of microscopical observa-
tions made in the months of June, July and, (1827) on the particles
contained in the pollen of plants; and on the general existence
of active molecules in organic and inorganic bodies. Philos Mag
4(21):161–173

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1557/mrc.2019.73
https://doi.org/10.1002/nag.2278

580 Computational Mechanics (2023) 71:563–581

4. Carrara P, De Lorenzis L, Stainier L et al (2020) Data-driven frac-
ture mechanics. Comput Methods Appl Mech Eng 372(113):390.
https://doi.org/10.1016/j.cma.2020.113390

5. Chen J, Viquerat J, Hachem E (2019) U-net architectures for
fast prediction of incompressible laminar flows. arXiv preprint
arXiv:1910.13532

6. DarcyH (1856)Les fontaines publiques de la ville deDijon: exposi-
tion et application des principes à suivre et des formules à employer
dans les questions de distribution d’eau: Ouvrage terminé par un
appendice relatif aux fournitures d’eau de plusieurs villes, au fil-
trage des eaux et à la fabrication des tuyaux de fonte, de plomb, de
tôle et de bitume. V. Dalmont, Libraire des Corps imperiaux des
ponts et chaussees et des mines

7. Dynkin EB (1989) Kolmogorov and the theory of Markov pro-
cesses. Ann Probab 17(3):822–832

8. Eggersmann R, Kirchdoerfer T, Reese S et al (2019) Model-free
data-driven inelasticity. ComputMethods ApplMech Eng 350:81–
99. https://doi.org/10.1016/j.cma.2019.02.016

9. Egli FS, Straube RC, Mielke A et al (2021) Surrogate modeling of
a nonlinear, biphasicmodel of articular cartilagewith artificial neu-
ral networks. PAMM 21(1):e202100188. https://doi.org/10.1002/
pamm.202100188

10. Eichinger M, Heinlein A, Klawonn A (2020) Surrogate convo-
lutional neural network models for steady computational fluid
dynamics simulations

11. Eidel B (2021) Deep convolutional neural networks predict elas-
ticity tensors and their bounds in homogenization. https://doi.org/
10.48550/arXiv.2109.03020

12. Einstein A (1905) Über die von der molekularkinetischen Theorie
der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten
suspendierten Teilchen. Ann Phys 322(8):549–560

13. Fernández M, Rezaei S, Mianroodi JR et al (2020) Application of
artificial neural networks for the prediction of interface mechanics:
a study on grain boundary constitutive behavior. AdvModel Simul
Eng Sci 7:1–27. https://doi.org/10.1186/s40323-019-0138-7

14. Fernández M, Fritzen F, Weeger O (2022) Material modeling
for parametric, anisotropic finite strain hyperelasticity based on
machine learning with application in optimization of metamateri-
als. Int J Numer Methods Eng 123(2):577–609. https://doi.org/10.
1002/nme.6869

15. Garbin C, Zhu X, Marques O (2020) Dropout vs. batch normaliza-
tion: an empirical study of their impact to deep learning. Multimed
Tools Appl 79:1–39. https://doi.org/10.1007/s11042-019-08453-
9

16. Golub G, Van Loan C (1996) Matrix computations. Johns Hop-
kins studies in the mathematical sciences, 3rd edn. Johns Hopkins
University Press

17. Guan S, Hsu K, Chitnis PV (2021) Fourier neural operator net-
works: a fast and general solver for the photoacoustic wave
equation. https://doi.org/10.48550/arXiv.2108.09374

18. Guo X, Li W, Iorio F (2016) Convolutional neural networks
for steady flow approximation. In: Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery
and data mining, pp 481–490. https://doi.org/10.1145/2939672.
2939738

19. HeinleinA,KlawonnA, LanserM et al (2021) Combiningmachine
learning and adaptive coarse spaces—a hybrid approach for robust
FETI-DP methods in three dimensions. In: Computer methods in
applied mechanics and engineering, pp 816–838. https://doi.org/
10.1137/20M1344913

20. Ibañez R, Abisset-Chavanne E, Aguado JV et al (2018) A mani-
fold learning approach to data-driven computational elasticity and
inelasticity. Arch Comput Methods Eng 25(1):47–57. https://doi.
org/10.1007/s11831-016-9197-9

21. Kingma D, Ba J (2014) Adam: a method for stochastic optimiza-
tion. https://doi.org/10.48550/arXiv.1412.6980

22. Kirchdoerfer T, Ortiz M (2016) Data-driven computational
mechanics. Comput Methods Appl Mech Eng 304:81–101. https://
doi.org/10.1016/j.cma.2016.02.001

23. Kollmannsberger S, d’Angella D, JokeitM et al (2021) Deep learn-
ing in computationalmechanics—an introductory course. Springer.
https://doi.org/10.1007/978-3-030-76587-3

24. Li Z, Kovachki N, Azizzadenesheli K, et al (2020) Fourier neural
operator for parametric partial differential equations. https://doi.
org/10.48550/arXiv.2010.08895. arXiv:2010.08895v3

25. Lino M, Cantwell C, Fotiadis S et al (2020) Simulating sur-
face wave dynamics with convolutional networks. arXiv preprint
arXiv:2012.00718

26. Mathieu M, Henaff M, LeCun Y (2014) Fast training of convolu-
tional networks through FFTs. Comput Res Repos. https://doi.org/
10.48550/ARXIV.1312.5851

27. Miehe C, Koch A (2002) Computational micro-to-macro tran-
sitions of discretized microstructures undergoing small strains.
Arch Appl Mech 72:300–317. https://doi.org/10.1007/s00419-
002-0212-2

28. Nemat-Nasser S, Lori M, Datta SK (1993) Micromechanics: over-
all properties of heterogeneous materials. North-Holland series
in applied mathematics and mechanics. https://doi.org/10.1115/1.
2788912

29. Pratt H, Williams B, Coenen F et al (2017) FCNN: Fourier con-
volutional neural networks. In: Machine learning and knowledge
discovery in databases, pp 786–798. https://doi.org/10.1007/978-
3-319-71249-9_47

30. Ribeiro M, Rehman A, Ahmed S et al (2020) DeepCFD: efficient
steady-state laminar flow approximation with deep convolutional
neural networks. https://doi.org/10.48550/arXiv.2004.08826

31. RonnebergerO, Fischer P, Brox T (2015)U-Net: convolutional net-
works for biomedical image segmentation. In: NavabN,Hornegger
J, Wells WM et al (eds) Medical Image Computing and Computer-
Assisted Intervention—MICCAI 2015. Springer, pp 234–241.
https://doi.org/10.1007/978-3-319-24574-4_28

32. Sandstöm C, Larsson F, Runesson K (2014) Weakly periodic
boundary conditions for the homogenization of flow in porous
media. AdvModel Simul Eng Sci 1(1):12. https://doi.org/10.1186/
s40323-014-0012-6

33. Sandström C, Larsson F (2013) Variationally consistent homoge-
nization of Stokes flow in porous media. J Multiscale Comput Eng
11(2):117–138. https://doi.org/10.1615/INTJMULTCOMPENG.
2012004069

34. Sandström C, Larsson F, Runesson K et al (2013) A two-scale
finite element formulation of Stokes flow in porous media. Com-
put Methods Appl Mech Eng 261–262:96–104. https://doi.org/10.
1016/j.cma.2013.03.025

35. Schröder J (2014) A numerical two-scale homogenization scheme:
the FE2-method. In: Schröder J, Hackl K (eds) Plasticity and
beyond, CISM courses and lectures, vol 550. Springer, pp 1–64.
https://doi.org/10.1007/978-3-7091-1625-8

36. Takbiri A, Kazemi H, Nasrabadi N (2020) A data-driven surrogate
to image-based flow simulations in porous media. Comput Fluids.
https://doi.org/10.1016/j.compfluid.2020.104475

37. Thakolkaran P, Joshi A, Zheng Y et al (2022) NN-EUCLID:
deep-learning hyperelasticity without stress data. https://doi.org/
10.48550/arXiv.2205.06664

38. Tolle KM, Tansley DSW, Hey AJG (2011) The fourth paradigm:
data-intensive scientific discovery. Proc IEEE 99(8):1334–1337.
https://doi.org/10.1109/JPROC.2011.2155130

39. Wang K, Chen Y, Mehana M et al (2021) A physics-informed and
hierarchically regularized data-driven model for predicting fluid
flow through porous media. J Comput Phys 443(110):526. https://
doi.org/10.1016/j.jcp.2021.110526

40. Wessels H, Weißenfels C, Wriggers P (2020) The neural particle
method—an updated Lagrangian physics informed neural network

123

https://doi.org/10.1016/j.cma.2020.113390
http://arxiv.org/abs/1910.13532
https://doi.org/10.1016/j.cma.2019.02.016
https://doi.org/10.1002/pamm.202100188
https://doi.org/10.1002/pamm.202100188
https://doi.org/10.48550/arXiv.2109.03020
https://doi.org/10.48550/arXiv.2109.03020
https://doi.org/10.1186/s40323-019-0138-7
https://doi.org/10.1002/nme.6869
https://doi.org/10.1002/nme.6869
https://doi.org/10.1007/s11042-019-08453-9
https://doi.org/10.1007/s11042-019-08453-9
https://doi.org/10.48550/arXiv.2108.09374
https://doi.org/10.1145/2939672.2939738
https://doi.org/10.1145/2939672.2939738
https://doi.org/10.1137/20M1344913
https://doi.org/10.1137/20M1344913
https://doi.org/10.1007/s11831-016-9197-9
https://doi.org/10.1007/s11831-016-9197-9
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1016/j.cma.2016.02.001
https://doi.org/10.1016/j.cma.2016.02.001
https://doi.org/10.1007/978-3-030-76587-3
https://doi.org/10.48550/arXiv.2010.08895
https://doi.org/10.48550/arXiv.2010.08895
http://arxiv.org/abs/2010.08895v3
http://arxiv.org/abs/2012.00718
https://doi.org/10.48550/ARXIV.1312.5851
https://doi.org/10.48550/ARXIV.1312.5851
https://doi.org/10.1007/s00419-002-0212-2
https://doi.org/10.1007/s00419-002-0212-2
https://doi.org/10.1115/1.2788912
https://doi.org/10.1115/1.2788912
https://doi.org/10.1007/978-3-319-71249-9_47
https://doi.org/10.1007/978-3-319-71249-9_47
https://doi.org/10.48550/arXiv.2004.08826
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1186/s40323-014-0012-6
https://doi.org/10.1186/s40323-014-0012-6
https://doi.org/10.1615/INTJMULTCOMPENG.2012004069
https://doi.org/10.1615/INTJMULTCOMPENG.2012004069
https://doi.org/10.1016/j.cma.2013.03.025
https://doi.org/10.1016/j.cma.2013.03.025
https://doi.org/10.1007/978-3-7091-1625-8
https://doi.org/10.1016/j.compfluid.2020.104475
https://doi.org/10.48550/arXiv.2205.06664
https://doi.org/10.48550/arXiv.2205.06664
https://doi.org/10.1109/JPROC.2011.2155130
https://doi.org/10.1016/j.jcp.2021.110526
https://doi.org/10.1016/j.jcp.2021.110526

Computational Mechanics (2023) 71:563–581 581

for computational fluid dynamics. Comput Methods Appl Mech
Eng 368:113–127. https://doi.org/10.1016/j.cma.2020.113127

41. Yan B, Harp DR, Chen B et al (2022) A gradient-based deep neural
network model for simulating multiphase flow in porous media.
J Comput Phys 463(111):277. https://doi.org/10.1016/j.jcp.2022.
111277

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/j.cma.2020.113127
https://doi.org/10.1016/j.jcp.2022.111277
https://doi.org/10.1016/j.jcp.2022.111277

	A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion
	Abstract
	1 Introduction
	2 Stochastic modeling of Darcy flow
	2.1 Strong form of Darcy's law
	2.2 Brownian motion based on a Monte Carlo approach
	2.3 Brownian motion based on stochastic matrix approach
	2.4 Extraction of flux and effective permeability from the stochastic model

	3 Deep convolutional neural network framework
	Generated dataset
	3.1 Deep convolutional neural network architecture
	3.2 Fourier convolutional neural network
	Fourier Convolutional Neural Network Architecture
	3.2.1 Discrete Fourier cosine transformations
	3.2.2 Discrete Fourier transformations

	4 Two-scale formulation of Darcy flow through porous media
	4.1 Definition of effective quantities and boundary conditions
	4.2 The discrete scale transition procedure: FE2-scheme

	5 Numerical examples
	5.1 Training process and regression loss metrics
	5.1.1 Results UResNet and Fourier convolutional neural network

	5.2 Pearson correlation coefficient (PCC)
	5.3 Estimation of the effective permeabilities and FE2 comparison

	6 Conclusion
	Acknowledgements
	Appendix
	A.1 Boundary conditions of the microscopic boundary value problem

	References

