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Abstract
In this research work, the radial basis function finite difference method (RBF-FD) is further developed to solve one- and
two-dimensional boundary value problems in linear elasticity. The related differentiation weights are generated by using the
extended version of the RBF utilizing a polynomial basis. The type of the RBF is restricted to polyharmonic splines (PHS),
i.e., a combination of the odd m-order PHS φ(r) = rm with additional polynomials up to degree p will serve as the basis.
Furthermore, a new residual-based adaptive point-cloud refinement algorithmwill be presented and its numerical performance
will be demonstrated. The computational efficiency of the PHS RBF-FD approach is tested by means of the relative errors
measured in �2-norm on several representative benchmark problems with smooth and non-smooth solutions, using h-adaptive,
uniform, and quasi-uniform point-cloud refinement.
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1 Introduction

In the last two decades, the application of the RBF tech-
nique as a mesh-free scheme has become popular for the
numerical solution of partial differential equations (PDE).
The fundamental concept of RBF-based numerical approxi-
mation of differential operators originates from the research
works [41,42], and a large number of papers have since
contributed to the continuous development of the RBF-FD
method [8,17,19,34,36,37,43] and dealt with the approxima-
tive solution of numerous BVPs and initial-BVPs appearing
in science and engineering [6,25,27,38]. The main advan-
tage of the advanced FD methods based on the RBFs is that
they are well-suited for arbitrarily-scattered (non-structured)
point layouts. Furthermore the stencil topology can be cho-
sen in different ways, thereby avoiding the fixed rectangular
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grid-like point layout considered as a restriction of the stan-
dard numerical methods applied to the solution of PDEs [21].

During the application of the RBF-FD scheme, the so-
called differential weights are locally computed at a certain
evaluation pointwithin a stencil, using anRBF-based approx-
imation. In this case, the stencil is constructed by a fixed
number of points that are closest to the evaluation point
under consideration. Accordingly, we start off by comput-
ing the differential weights at each point of the point-cloud
generated on the considered computational domain, before
storing them for the global assembling procedure—which is
the next important step in solving the PDEs. Thus, the weight
computations are performed as the pre-processing step of the
solution algorithm. Since this computation can be carried out
independently for all evaluation points, this part of the RBF-
FD method is well parallelizable.

TheRBFs can be divided into twomain groups: piecewise-
and infinitely smooth RBFs. The latter ones—such as the
Gaussian-, the multiquadratic and inverse quadratic and
inverse multiquadratic RBFs—provide spectral convergence
behavior for smooth BVPs. However, they are not inde-
pendent of a so-called shape parameter, which controls the
gradient of the RBFs, thereby having significant effect on
the condition number of the RBF matrices and thus on the
solution accuracy. The optimal value of the shape parameter
has to be found for all evaluation points during the weight
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computation in order to achieve numerical stability and accu-
racy [5,7,10,12,22]. TheRBF coefficientmatrix conditioning
problem can be overcome by a stabilization algorithm using
small shape parameter values [20,26] or by applying RBFs
with a hybrid kernel [29].

The piecewise smooth RBFs (such as the PHS) have a
great advantage over the infinitely smooth RBFs, since they
are not dependent on a shape parameter and since their usage
can yield higher-order accuracy—though onlywith algebraic
h-convergence characteristics. Additionally, the piecewise
smooth RBFs perform well for the approximation of the dif-
ferential operators near to the boundaries where the stencil
geometry becomes half-sided, i.e., the deterioration of the
numerical approximation accuracy due to the Runge phe-
nomenon can be avoided, see [1–4].

In accordance with the above-mentioned beneficial prop-
erties of the piecewise smooth RBFs, in this paper, the PHS
RBFs supplemented with polynomial functions will be intro-
duced as the basis function space in order to develop an
advanced FD scheme for the numerical solution of 1D and
2D BVPs in linear elasticity. The robust convergence behav-
ior of the FD method based on this type of augmented basis
function spaces has been verified in [1,2,4,14]. Furthermore,
it has been experienced in numerical studies presented in
[4,14] that the highest polynomial degree specifies the con-
vergence rate, while the PHS RBF order has a significant
influence only on the achievable accuracy. One order in the
convergence rate is lost in the case of the numerical approx-
imation of the first (spatial) derivatives, while two orders are
lost for approximating the second derivative. Thus, the con-
vergence rate depends on the order of the differential operator
[4,5,13,14,30].

Interestingly, the increase in the stencil size does not
lead to better accuracy and faster convergence when a fixed
higher-degree polynomial basis is used. However, if lower-
degree polynomials are applied and their degree is kept fixed,
increasing the stencil size can yield improved accuracy while
the convergence order remains unchanged [2]. This type of
independence on the stencil size motivated the construction
of the p-adaptive PHS RBF-FD method. Here the desired
accuracy is achieved by locally increasing the polynomial
degree and adapting the required stencil size, see [30], for
which the non-uniform point-cloud is generated by the code
NodeLab [28].

Adaptive strategies such as h-, p- and hp-refinement are
popular for finite element methods (FEMs), see [11,35] for
example. The basic idea of the adaptive schemes is to intro-
duce an error indicator function that guides the non-uniform
h- and/or p-refinement until the prescribed stopping crite-
ria are met. Although the FEM-based adaptive strategies are
more prevalent than the FDmethod-based ones, the construc-
tion of the adaptive point refinement procedure ismuch easier
forRBF-FD schemes than the implementation of the adaptive

mesh refinement process in the case of FEMs. Residual error-
and Zienkiewicz-Zhu type indicator-based adaptive RBF-FD
algorithms are also developed using the Gaussian RBF, for
example in [23,24,31]. It is worth emphasizing here that, in
the case of h-adaptive point refinement, the DistMesh code
is one of the most suitable for fast generation of 2D point
distributions with variable density [15,31,33].

In accordance with the above findings, the aim of this
paper is to develop a residual-based h-adaptive point refine-
ment algorithm for 1D BVPs, which is based on the odd
m-order PHS supplemented with additional polynomials.
Firstly, the computational efficiency of the approach will be
investigated on smooth and non-smooth 1D BVPs, using the
uniform- and the adaptive point-cloud refinement schemes.
Secondly, the h-convergence behavior of the PHS RBF-
FD method complemented with polynomials will be tested
on smooth and non-smooth 2D BVPs in linear elasticity,
applying uniform, quasi-uniform and h-adaptive point dis-
tributions.

The paper is organized as follows. In Sect. 2, the basic
system of second-order differential equations and the related
Dirichlet- and Neumann-type boundary conditions are sum-
marized for 2D linear elasticity problems. Section 3 briefly
presents the procedure to evaluate the local RBF matrix and
to compute the related differentiation weights from the local
linear algebraic system of equations using PHS combined
with polynomials. In Sect. 4, a comprehensive overview of
the applied stencil geometry is given, discussing how to treat
the Neumann-type boundary conditions with the aid of ghost
points. Furthermore, a new adaptive point-cloud refinement
strategy is presented. In Sect. 5, the h-convergence behav-
ior of the PHS RBF-FD method is studied for 1D BVPs,
applying uniform as well as the proposed adaptive point-
cloud refinement. Afterwards, the PHS RBF-FD method is
also investigated for 2D BVPs of linear elasticity—applying
the uniform, the quasi-uniform, and the newly-developed
h-adaptive point-cloud refinements. Section 6 summarizes
the results and suggests possible extensions of the presented
approach.

2 Basic system of differential equations in
plane elasticity

The second-order partial differential equations for the 2D
elastostatic problem are expressed in a Cartesian coordinate
frame as

[
μL� + (μ + λ)Lxx (μ + λ) Lxy

(μ + λ) Lxy μL� + (μ + λ)Lyy

] [
ux
uy

]
+

[
fx
fy

]
=

[
0
0

]
, (1)

where ux , uy , and fx , fy are the coordinates of the
displacement- andbody force density vectors u = ux i+uy j
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and f = fx i + fy j . Further, μ and λ denote the Lamé
coefficients, while L� as well as Lxx , Lyy , and Lxy are,
respectively, the Laplacian as well as the pure and mixed 2D
second-order partial differential operators—defined as

Lxx := ∂2

∂x2
,

Lyy := ∂2

∂ y2
,

Lxy := ∂2

∂x ∂ y
,

L� := Lxx + Lyy . (2)

The coefficient matrix in Eq. (1) can be rearranged in the
form

[
μL� + (μ + λ)Lxx (μ + λ) Lxy

(μ + λ) Lxy μL� + (μ + λ)Lyy

]
=

μL�
[
1 0
0 1

]
+ (μ + λ)

[Lxx Lxy

Lxy Lyy

]
(3)

The Neumann-type boundary conditions prescribed on the
surface part Sp ⊂ ∂� are expressed in terms of the first-
order partial derivatives of the displacements ux and uy :

px = nx (2μ + λ)Lxux + ny μLxuy

+nx λLyuy + ny μLyux
py = ny (2μ + λ)Lyuy + nx μLyux

+ny λLxux + nx μLxuy

on Sp , (4)

using the operator-notations

Lx := ∂

∂x
, Ly := ∂

∂ y
. (5)

Here, ∂� = Sp ∪ Su is the boundary of the body for which
Sp ∩ Su = ∅ is valid, while nx and ny denote the coordinates
of the outward unit normal vector n = nx i + ny j to ∂�.
The Dirichlet-type boundary condition

u = ũ = ũx i + ũ y j on Su

is prescribed on the remaining boundary part of the solid
body Su ⊂ ∂�. The Lamé coefficient λ corresponds to

Eν

(1 + ν)(1 − 2ν)
if plane strain

Eν

(1 + ν)(1 − ν)
if plane stress

conditions are considered. Here, λ converges to∞, as ν tends
to 1

2 in the plain strain case, i.e., this model problem will be
prone to volumetric locking effects.

3 Computing the differentiation weights
using the augmented PHS

In this section, our aim is to approximate thefirst- and second-
order partial derivative operators L introduced in Eqs. (2)
and (5) at the evaluation point re. The derivative Lu at re is
approximated by a linear combination of the function values
ui = u(r i ) considered at the distinct points r i ∈ R

d along
with the evaluation point re, where i = 1, . . . , n and d is
the space dimension. These points are used to construct the
local stencil. Accordingly, we seek the weights wi as the
coefficients of ui in such a way that

[Lu(r)]r=re ≈
n∑

i=1

wi ui , (6)

in which n and wi are called the stencil size and the differ-
entiation weights, respectively. In order to determine wi , we
start with a linear combination

s(r) =
n∑
j=1

k j φ(‖r − r j‖) +
(p+d

p )∑
j=1

γ j Pj (r) (7)

along with the constraints

n∑
i=1

ki Pj (r i ) = 0 , j = 1, . . . ,

(
p + d

p

)
, (8)

where Pj (r i ) denotes multivariate polynomials up to degree
p and φ(‖r− r i‖) are the RBFs localized at the points r i , [1,
13,16,30]. Here, ‖r− r i‖ = ‖r− r i‖2 denotes the Euclidean
norm onRd . For the mathematical background of the related
quadratic constrained minimization problem, we refer to [2,
4].

To derive the equation for the differentiation weights we
apply the interpolant (7) to the function values ui = u(r i )
and consider the

(p+d
p

)
constraints (8). Next, we use again the

interpolant (7) but now for the approximation of the deriva-
tive [Lu(r)]r=re at the evaluation point re. Thenweeliminate
the function values ui with the assumption that ki and γi are
non-zero coefficients arriving at the following linear equation
system

[
K Q
QT O

] [
w
v

]
=

[
�

q

]
(9)

which can be solved for the weights wi and v j , for details
see [1,14]. In Eq. (9)

K =
⎡
⎢⎣

φ(‖r1 − r1‖2) · · · φ(‖r1 − rn‖2)
...

. . .
...

φ(‖rn − r1‖2) · · · φ(‖rn − rn‖2)

⎤
⎥⎦ and

123



436 Computational Mechanics (2023) 71:433–452

Q =

⎡
⎢⎢⎣
P1(r1) · · · P(p+d

p )(r1)

...
. . .

...

P1(rn) · · · P(p+d
p )(rn)

⎤
⎥⎥⎦

represent the symmetric RBF matrix K ∈ R
n×n and the

rectangular polynomial matrix Q ∈ R
n×(p+d

p ), respectively,
while

� = [
[Lφ(‖r − r1‖2)]re . . . [Lφ(‖r − rn‖2)]re

]T

and

q =
[
[LP1]re · · ·

[
LP(p+d

p )

]
re

]T

are the differentiation vectors � ∈ R
n and q ∈ R

(p+d
p ), as

well as

w = [
w1 · · · wn

]T
and v =

[
v1 · · · v(p+d

p )

]T

denote the weight vectors w ∈ R
n and v ∈ R

(p+d
p ). Please

note that the weights v are omitted, for details see [1,14,16].
The widely-used RBFs are classified into two main

groups: the infinitely and piecewise smooth RBFs, see the
tables in [1,13,16]. The infinitely smooth RBFs depend on
the shape parameter ε, influencing the gradient of the RBFs
and thereby controlling the condition number of the coeffi-
cient matrix in Eq. (9) and thus the accuracy of the result for
the differentiation weights. On the contrary, the piecewise
smooth PHS is independent of ε and provides higher con-
vergence rates under node refinement, without the use of a
stable algorithm to invert the RBF matrix, see [1–4,18]. This
is the main reason and motivation why the PHS is chosen
for the numerical computation of the weights, supplemented
with a polynomial basis for the sake of further stabilization
and faster convergence.

The RBF-FD methods are well-applicable if the coef-
ficient matrix appearing in Eq. (9) exhibits non-singular
behavior, i.e., the system (9) has a unique solution for the
choice of the odd m-order PHS

φ [r(x, y)] = rm =
√[

(x − xe)2 + (y − ye)2
]m

, (10)

in which re = xe i + ye j represents the Cartesian coor-
dinates of the evaluation point of the stencil, supplemented
with polynomials up to degree p where

m ≤ 2p + 1 . (11)

If, for instance, m = 3 is chosen, the degree of the poly-
nomial basis has to be at least 1—or degree p has to be at

least 2 for m = 5, see [1]. The stencil size n is chosen to
be approximately twice the number of the polynomial basis
functions

(p+d
p

)
, which is p+ 1 in 1D and (p+ 2)(p+ 1)/2

in the 2D case. The increase in stencil size n has only small
or no influence on the accuracy and convergence rate for a
fixed polynomial degree p, see [4].

4 Solution procedure

4.1 Point cloud and stencil geometry

In what follows, the applied point-cloud will be structured as
Cartesian or, in other words, as a rectangular point distribu-
tion for the convergence studies of the uniform h-refinement,
see Figs. 1 and 7. These Cartesian arrangements are similar
to the standard grid-like FD schemes, but the RBF inter-
polant defined in Eqs. (7)–(8) is of course quite different.
Next to the boundaries, the stencil becomes half-sided and
non-symmetric. Although the evaluation point comes closer
to the boundaries in this case the stencils retain the rectan-
gular shape. However, inside the domain, the stencils remain
symmetric and their evaluation point is localized at their cen-
ter, see Figs. 1 and 7.

Next, we consider Neumann-type boundary conditions
(BC). Let us assume that theNeumann-typeBC (4) and its 1D
version (15), respectively, are prescribed on the right bound-
ary x = 2 and on the top boundary y = 1 for the 2D case
(Fig. 7), as well as at the right boundary x = L for the 1D
case (Fig. 1).

In order to satisfy these BCs at a given boundary point,
a new point has to be added to the point-cloud outside the
domain as a neighbor of the boundary point under considera-
tion. These external points are calledghost points. They allow
for the addition of constraint equations to the global system
of equations arising from the numerical approximation of the
2D PDE (1) or its 1D version (13). The subsidiary equations
are required for the enforcement of the Neumann-type BC
(4) (or (15) for the 1D case) prescribed at the corresponding
boundary points, see [14].

As a result of the latter procedure, new unknown function
values have to be introduced at the external points for u in 1D
and for ux and uy in 2D. After the global assembly process,
the resulting linear algebraic system of equations is simulta-
neously solved for all of the unknown function values located
at the external, internal, and boundary points. The total num-
ber of the points N in the point-cloud is given as the sum
of the number of the external, internal, and boundary points,
NE , NI , and NB :

N = NE + NI + NB . (12)
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As described above, the number of the extra constraint equa-
tions associated with the enforcement of the Neumann-type
BC is equal to d · NE , where d denotes the space dimension,
see [14].

4.2 h-adaptive point-cloud refinement strategy

In this subsection, we propose a new adaptive point-cloud
refinement scheme for the PHS-RBF method to solve 1D
and 2D problems of linear elasticity. In what follows, the
h-adaptive algorithm will be demonstrated for 1D problems.
This type of BVP can be considered as the 1D version of
the problem presented in Sect. 2. The basic equation and the
boundary conditions can be stated as follows, see [11,39]:

−(AEu′(x))′ = f (x) in � = [x |x ∈ (0, L)] , (13)

u = ũ at x = 0 , (14)

AEu′ = F̃ at x = L . (15)

Here, f (x) represents as a distributed line load, A the cross-
sectional area, E the Young’s modulus, and L the length
of the bar—while ũ and F̃ are the prescribed values of the
axial displacement at x = 0 and the axial force at x = L ,
respectively.

The point refinement procedure is guided by an error indi-
cator based on the residual of the second-order differential
equation (13), see Algorithm 1. At the very beginning of the
numerical process, we set the initial number of points N0,
the number of the iteration steps, the order of the PHS m,
and the degree of the supplementary polynomials p, as well
as the material parameters and the loading values. Next, the
structured point-cloud x 0 is generated.

In each iteration step, the problem has to be solved. To
this end, the weights for the approximation of Lx and Lxx

at the internal and boundary points are computed by solv-
ing the local system (9) and assembling the global first- and
second-order differential operator matrices Dx , Dxx and the
global equation system AE Dxx u = f . Next, Dirichlet-type
boundary conditions (14) are applied in strong form, and
Neumann-type boundary conditions (15) as new constraint
equation are considered. Then, the resulting system is solved
in order to determineu ∈ R

N . Afterwards, the columnmatrix
of the axial forceF is computed as AE Dx u. Bymeans of the
first-order differential-operator matrix Dx , we compute the
numerical approximation of the right-hand side of Eq. (13)
as f̂ = Dx F. In this way, the residual is expressed in the form

η = f̂ − f . (16)

In a next step, the absolute value of the residual is checked
for two neighboring points within a ’for’ loop over all the
internal and boundary points.Anewpoint is inserted between

the two neighboring points in question if the refinement cri-
terion

|ηi | > β/N ηmax (17)

holds true for one of the two investigated points. Here, ηmax

is the maximum norm of the column matrix of the global
residual as

ηmax = max
1≤i≤N

|ηi | (18)

whereas N is the total number of points and β ∈ [0, 1]
denotes the threshold parameter. The choice of this tolerance
value controls how many points are added to the point-cloud
in each iteration step. The h-adaptive refinement terminates
if it meets the stopping criterion, which can be set for both
the number of the iterations or the maximum of the residual.
During our numerical tests, the value β will be set to 0.01 for
1D BVPs and to 0.1 for 2D BVP. Algorithm 1 summarizes
the h-adaptive point-cloud refinement scheme.

5 Numerical experiments

In this section, the performance of the PHS-based RBF-FD
method augmented with a polynomial basis will be analyzed
for both smooth and non-smooth BVPs of 1D and 2D linear
elasticity. During the computational tests, the convergence of
the relative error measured in �2-norm of the displacements
and stresses will be studied. The number of degrees of free-
dom (denoted as DOF in the figure captions) is defined as
the total number of points N of the point-cloud, ignoring the
constraints related to the Dirichlet BC.

Additionally, the influence of the polynomial degree p
on the rate of h-convergence will be investigated in each
problem. In order to avoid the singular behavior of PHSwhen
x = xe and y = ye for a second-order operator, the PHSorder
m has to be chosen high enough. In what follows we set m
to 3 for 1D and m = 5 for 2D BVPs. Therefore, the smallest
possible polynomial degree p, on account of inequality (11),
is 1 in 1D and 2 in 2D.

5.1 One-dimensional boundary value problems

In this subsection, the computational performance of the
PHS-based RBF-FD method will be analyzed for the 1D
problem presented above. For the sake of simplicity, the geo-
metric parameters A and L , as well as Young’s modulus E ,
will be assumed to be constant. In view of this, the values
AE = 1 N and L = 1 m will be assumed in all of the
considered 1D benchmark problems.

During the h-convergence study, the domain will be
refined equidistantly in 10 steps for smooth and non-smooth
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Algorithm 1 Adaptive point-cloud refinement strategy

1: procedure Input values:(m, p, N0, F̃, ũ, A, E)
2: Compute n = 2p + 5 
 stencil size
3: Generate x 0, using N0 
 initial uniform point-cloud
4: Set i terstep 
 maximum number of iterations
5: Set β 
 tolerance value for the error
6: Set i ter = 1 
 initial value of the iteration number
7: repeat
8: Compute theweights forLx andLxx at the internal and bound-

ary points
9: AE Dxx u = f 
 assemble the global equation system

Eq. (13)
10: Apply the BCs 
 ũ and F̃ according to Eqs. (14)–(15)
11: Solve the resulting linear algebraic equation system for the

column matrix u
12: F = AE Dx u 
 compute the column matrix of the internal

force F
13: f̂ = Dx F 
 compute the right-hand side column matrix f̂
14: η = f̂ − f 
 compute the column matrix of the residual
15: ηmax = max |ηi | 
 determine the maximum of the residual

according to Eq. (18)
16: Nnew = 0 
 set the initial number of the newly-inserted

points to zero
17: for i = 1 to N (loop over all the internal and boundary points)

do
18: Check whether a new point needs to be put between two

neighboring points
19: if (ηi+1/(ηmax/Nnew) > β or ηi/(ηmax/Nnew) > β) then
20: xnew = (xi+1 + xi )/2 
 put a point between the points

i + 1 and i
21: Nnew = Nnew + 1 
 increase the number of the points

by one
22: else
23: Do nothing.
24: end if
25: end for
26: N = N + Nnew 
 update the total number of the points
27: i ter = i ter + 1 
 increment the iteration number
28: until ( (ηmax/N < β) or (i ter > i terstep) )
29: end procedure

(such as singular- and shock) BVPs, while the degree of the
polynomial basis p is fixed in each step. In order to inves-
tigate the effect of the polynomial degree p on the rate of
the h-convergence, p will be varied from 1 to 7 and 2 to 5,
respectively, for smooth and non-smooth problems. There-
fore, the odd stencil size n has to be adjusted to the actual
p-value as n = 2p + 5.

The efficiency of the newly developed adaptive point
refinement strategy will also be investigated by comparing
its convergence behavior to the numerical results obtained
using equidistant point sets.

The symmetric stencil geometry applied within the
domain and the half-sided, non-symmetric stencil shapes
used near to the boundaries and at the boundaries are
illustrated for the lowest degree case in Fig. 1. Here, the poly-
nomial degree is set to p = 0—and the stencil size inside the
domain is n = 2p + 5 = 5 while the stencil bandwidth can

be determined as b = (n − 1)/2. The total number of points
of the uniformly structured point-cloud is set to N = 20.

5.1.1 Smooth problem

In the first example, let the distributed line load be chosen as
the smooth function f (x) = α(α − 1)xα−2, where α = 10.
Furthermore, the homogeneous BCs ũ = 0 m and F̃ = 0
N are given, respectively, at the ends x = 0 and x = L . In
this case, the exact solution is a smooth function, i.e. u EX =
−xα + α x .

The h-convergence curves obtained for the relative error in
�2-norm of the axial displacement u and force F are plotted
against the number of degrees of freedom on log-log scales in
Fig. 2. In addition, their rates are also indicated by the slopes.
Accordingly, algebraic convergence rates are observed for all
refinements. The order of the convergence O(hg) depends on
the polynomial degree p, closely correlated to the theoretical
estimate

g � p − k + 1 , (19)

see [4,14,28]. Herein, k denotes the differential order of the
considered BVP (k = 2).

As expected, higher convergence rates are exhibited for
higher-degree polynomial bases. For higher-degrees (p = 6
and p = 7) however, the stagnation—or, in other words, sat-
uration error—emerges at a certain (but very low) level of
the relative error, see [1]. For lower polynomial degrees, the
stagnation error is reached at a relatively high error level
only with the use of a much larger number of points on
the same domain, see [1]. In this example, however, the
stagnation error does not yet appear for lower-degree poly-
nomials because the number of points applied is relatively
low. Besides, it follows from Eq. (19) that the h-convergence
is lost for p = 1, as shown in Fig. 2 as well. The conver-
gence rates are very close to the estimation (19), see also
the results for the numerically approximated Laplacian of a
smooth function in [14].

5.1.2 Singular problem

In the second example, we consider again a line load f (x) =
α(α−1)xα−2—but now in such a way that the exact solution
u EX = −xα + α x is non-smooth. Here, the parameter α

controls the smoothness of the solution. If α is small, i.e.,
α < 1, then the first derivative of the exact solution will
become singular at x = 0, see [11]. Thus, we set α to 0.55 in
order to study the convergence for a problem with a singular
solution. The homogeneous Dirichlet- and Neumann-type
BCs, ũ = 0 m and F̃ = 0 N, are specified, respectively, at
the boundaries x = 0 and x = L .
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Fig. 1 Symmetric and
half-sided stencil shape
representations near to the
boundaries (below), at the
boundaries (above), and inside
the domain (above in red) for the
lowest polynomial degree p = 0

Fig. 2 Convergence curves for
the relative error in �2-norm of
the displacement u and the axial
force F—uniform point cloud
for smooth problem

Again, the h-convergence curves of the relative �2-error
are plotted as the function of the number of degrees of free-
dom on log-log scales for the displacement u and the axial
force F in Fig. 3. The convergence rates are indicated by the
corresponding slopes.

The results obtained for p = 1 are not shown since we
already observed (in the previous example) that the p-value
has to be equal to 2 or higher, as predicted by the theoretical
estimate.

In the case of uniform point-cloud refinement, the h-
convergence in the displacement error computations is of an
algebraic type with the same rate for all polynomial degrees.
Concerning the convergence of the axial force, we also
observe an algebraic type of convergence with the same rate
for different polynomial degrees. The convergence curves are
shifted down without changing their slopes as the degree p
is increased indicating a lower error constant.

Next, we compare the h-adaptive refinement to the uni-
form approach. To this end, different polynomial degrees
are compared, see Fig. 3. We start the refinement with a
uniformly distributed point-cloud with N0 = 25. It can be
observed that the h-adaptive algorithm helps a lot to improve
the convergence rates, thereby increasing the accuracy at any
considered p-level, not only in the displacement but also in
the axial force.Acomparisonof the numerical and exact solu-
tion is given for the 6th iteration step in Fig. 4 for the highest
considered polynomial degree p = 5. In this iteration step,
the relative �2-error of the numerical solution computed for
the displacement u by the h-adaptive algorithm is already

less than 3 %. This error level is much lower than what was
achieved by means of the uniform point-distribution.

5.1.3 Shock problem

In the third example, we consider a shock problem with the
exact solution

u EX = arctan[α(x − 1/π)] (20)

which has a high gradient within the domain at x = 1/π ,
controlled by the parameter α, see [11,32]. Here, α will
be set to 120, and f (x) will be defined accordingly. Non-
homogeneous Dirichlet-type BCs are prescribed at both ends
of the domain, i.e., at x = 0 and x = L , consistent with the
exact solution (20).

As in the previous examples, the relative error measured
in �2-norm is plotted in Fig. 5 for both the displacement and
the axial force computed with a uniform h-refinement.

In the pre-asymptotic range, it is possible to observe an
exponential type of convergence that slows down to an alge-
braic rate. The convergence rate indicated by the measured
slope is almost independent of the chosen polynomial degree.

Henceforward, the adaptive PHSRBF-FDmethod is stud-
ied in 5 refinement steps for p = 2, 3, 4, 5. The results of the
adaptive approach are compared to the uniform refinement
in Fig. 5. As expected, h-adaptivity significantly improves
the convergence rates. The desired accuracy is achieved with
much less degrees of freedom for any polynomial degree p,
both in the displacement and in the axial force.
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Fig. 3 Convergence curves for
the relative error in �2-norm of
the displacement u and the axial
force F—h-adaptive versus
uniform point-cloud refinement
for singular problem,
p = 2, p = 3, p = 4 and
p = 5, number of the iteration
steps: 10, β = 1%

Fig. 4 Displacement u and axial
force F along x—exact and
approximate solutions of the
singular problem, using adaptive
and uniform refinement in the
6th iteration step for p = 5

Fig. 5 Convergence curves for
the relative error in �2-norm of
the displacement u and the axial
force F—h-adaptive versus
uniform point-cloud refinement
for shock problem,
p = 2, p = 3, p = 4, and
p = 5, number of the adaptive
iteration steps: 5, β = 1%
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Fig. 6 Displacement u and axial
force F along x—exact and
approximate solutions of the
shock problem, using h-adaptive
and uniform refinement in the
4th iteration step for p = 5

To illustrate the numerical approach, the results of the
4th refinement step are once again compared to the uniform
approach for the highest investigated polynomial degree p =
5, see Fig. 6. In this adaptive refinement step, the relative �2-
error of the displacement u and the axial force F is already
less than 4 %. Again, the accuracy of the adaptive approach
is much higher than that of the uniform refinement.

5.2 Two-dimensional boundary value problems

In this section, the convergence behavior of the PHS-based
RBF-FD method will be investigated for several represen-
tative smooth and non-smooth 2D BVPs of linear elasticity.
During the convergence studies, the domain in question is
uniformly or quasi-uniformly refined in 6 steps, from 2601
up to 8281 points for all of the benchmark problems. In each
step, the degree of the polynomial basis p is kept fixed. In
order to observe the influence of the polynomial degree, p
will be varied from 2 to 5. Hence, the odd stencil size n has to
be adjusted to the actual p-level as n = [(p+1)(p+2)+5]2
within the domain. The 2D version of the h-adaptive strategy
presented in Algorithm 1 will also be tested on the “shock
problem” as non-smooth 2DBVP, and its computational per-
formance will be studied.

As an example for the definition of the stencil in the
case of uniform point-cloud refinement, a square domain
(x, y) ∈ [1, 2] × [1, 2] discretized with a uniformly dis-
tributed set of points is considered, see Fig. 7. Different
stencils are presented: the symmetric square stencil shape
used inside the domain and the half-sided non-symmetric
stencil applied next to the boundaries and at the boundaries.

In this example, for the sake of illustration, the stencil size
n is set to 5·5within the domain. The equidistantly structured
point set involves N = NI+NB+NE = 15·15+2·15 = 255

Fig. 7 Cartesian stencils near to the boundaries, at the boundaries, and
inside the domain—uniformly structured point-cloud

points on the basis of Eq. (12), where NI + NB = 225 and
NE = 30.

5.2.1 Approximation of the two-dimensional differential
operators

In the first 2D example, the partial derivatives introduced
in Eqs. (2) and (5) are approximated with the RBF-FD
method, based on the PHS supplemented with polynomi-
als applying the point-cloud defined on the square domain
(x, y) ∈ [1, 2] × [1, 2]. Having determined the differential
operator matricesDx ,Dy , andDxx ,Dyy , as well asDxy , they
are applied to the given smooth test function

u(x, y) = 1 + sin 4x + cos 3x + sin 2y , (21)
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Fig. 8 Convergence histories
for the relative error in �2-norm
of approximating the first-order
differential operators Lx and Ly
acting on the smooth function u

Fig. 9 Convergence histories
for the relative error in �2-norm
of approximating the
second-order differential
operators Lxx and Lyy acting on
the smooth function u

to compute the derivatives for all points of the structured
point-cloud. The �2-error of the approximation of the first-
and second-order partial differential operators, Lx , Ly , and
Lxx , Lyy , Lxy applied to the smooth function (21) is plotted
on a double logarithmic scale against the number of degrees
of freedom in Figs. 8, 9 and 10.

From this, it is evident that the rate of convergence depends
on the degree of the polynomial basis p. A higher degree
leads to a high algebraic rate of convergence when increasing
the number of points. Furthermore, it can be observed that the
first-order derivatives can be approximated more accurately
as compared to the second-order derivatives.

5.2.2 Smooth problem

Next, the convergence behavior of the PHS RBF-FDmethod
for a unit square plate under linear elastic plane stress con-
ditions is studied. Dirichlet-type BCs are imposed on all of
the four boundaries. The body force densities fx , fy and the
BCs correspond to the smooth “manufactured” solution:

Fig. 10 Convergence histories for the �2-error-norm of approximating
the second-order mixed differential operator Lxy acting on the smooth
function u

ux = − 1

10
cosπ (x − 1) sin π (y − 1) ,

uy = 1

10
sin

π (x − 1)

7
sin

π (y − 1)

3
.

123



Computational Mechanics (2023) 71:433–452 443

Fig. 11 Convergence curves for
the relative error in �2-norm of
the displacements ux and
uy—smooth problem

Fig. 12 Convergence curves for
the relative error in �2-norm of
the stress coordinates σx , σy ,
and τxy—smooth problem

In Figs. 11 and 12 the relative error in �2-norm of
the displacements ux and uy and the stresses σx , σy , and
τxy is plotted versus the number of degrees of freedom
in double logarithmic style. The stresses are computed by
post-processing the first-order partial derivatives of the dis-
placements:

σ x = (2μ + λ) Dx ux + λDy uy
σ y = (2μ + λ) Dy uy + λDx ux
τ xy = μ

(
Dy ux + Dx uy

) in � ,

where the differential operator matrices Dx and Dy include
the weights for the numerical approximation of the par-
tial derivatives Lx and Ly at the internal and boundary
points, while the column matrices ux and uy consist of the
previously-computed displacements ux and uy , respectively.
From the computational results, it can be seen that algebraic
convergence rates are obtained when increasing the number
of points. Again, raising the degree of the additional polyno-
mials improves the convergence rate.

A contour plot of the numerical approximation is com-
pared to the exact solution for the displacements and stresses
in Figs. 13 and 14. The numerical solution involves N =

59 · 59 points, a stencil size of n = 17 · 17, and a polynomial
degree of p = 2. This comparison demonstrates the good
agreement of the numerical approximation with the exact
solution.

5.2.3 Shock problem

In our next example, the PHS RBF-FDmethod will be inves-
tigated for the 2D version of the “shock problem” introduced
in Sect. 5.1.3. Again, the linear elasticity equation system
(2) is numerically solved on a unit square domain, impos-
ing non-homogeneous Dirichlet-type BCs on all parts of the
boundary. The body force densities fx , fy and the BCs cor-
respond to the manufactured solution

ux = arctan α

(√
(x − 3c)2 + (y − c)2 − r0

)
,

uy = arctan α

(√
(x − c)2 + (y − c)2 − r0

)
,

where c = 0.75 m, r0 = 1 m and α = 60 [11,32].
Since—from an engineering point of view—a sufficiently

accurate numerical approximation of the stresses is more of
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Fig. 13 Numerical and exact
solutions for the displacements
ux and uy on the undeformed
domain—smooth problem,
p = 2, n = 17 · 17, and
N = 59 · 59

Fig. 14 Numerical and exact solutions for stress coordinates σx , σy , and τxy on the undeformed domain—smooth problem, p = 2, n = 17 · 17,
and N = 59 · 59

interest than that of the displacements, our numerical inves-
tigations are focused on the h-convergence behavior of the
stresses. Firstly, in Fig. 15 the relative errors of the uniform h-
refinement, measured in �2-norm, are plotted for the stresses
σx , σy and τxy against the number of degrees of freedom in
a double logarithmic scale. The relative �2-error achieved in
the 6th refinement step is already below an acceptable level
(3 %).

Contour plots of the displacements and stresses are com-
pared to the exact solution in Figs. 16 and 17. The numerical
results were obtained with a uniform point-cloud consisting
of N = 59 · 59 points, applying a stencil size of n = 17 · 17
and a polynomial degree of p = 2.

Next, the h-adaptive refinement strategy is compared to
the uniform approach by extending and applying Algorithm
1 to the numerical solution of 2D BVPs. In the uniform as
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Fig. 15 Convergence curves for
the relative error in �2-norm of
the stress coordinates σx , σy and
τxy—shock problem

Fig. 16 Numerical and exact
solutions for the displacements
ux and uy on the undeformed
domain—shock problem,
p = 2, n = 17 · 17, and
N = 59 · 59

well as adaptive approach, the refinement procedure is started
with a quite coarse resolution, i.e., a uniformly distributed
point-cloud containing 7 · 7 = 49 points, keeping the poly-
nomial degree p = 2 and the stencil size n = 17 fixed at each
refinement step. However, during the h-adaptive refinement,
the stencils become arbitrary-shaped because the knnsearch
algorithm is used to find the n-nearest neighbors to the eval-
uation point of the stencils. Similarly to the 1D BVPs (see
Algorithm 1), the h-adaptivity is driven by the following pro-
cess: The absolute value of the residual is checked for three
neighboring points and—when considering the boundary—
for just two neighboring points. A new point is inserted in the
center of the neighboring points in question if the refinement
criterion (17) along with the definition (18) holds true for
one the investigated points.

For quasi-uniform and uniform point-clouds, the conver-
gence behavior of the PHS-RBFmethods can be investigated
by plotting the relative error curves against either the dis-
tance h = 1/

√
N or against N . The convergence rate can be

estimated for smooth BVPs by (19). However, for strongly
non-uniform point-clouds, the relation between h and N
is problem-dependent and the convergence rate can not be
determined straightforwardly in each case. Therefore, for the
h-adaptive point-cloud refinement strategy and thus also for
this 2D comparative study, it is worth measuring the global
convergence of relative errors as the function of the so-called
effective fill-distance heff = h�/N , where the fill distance

h� = sup
r∈Y

min
r i∈�

‖r − r i‖2 ,

123



446 Computational Mechanics (2023) 71:433–452

Fig. 17 Numerical and exact solutions for stress coordinates σx , σy , and τxy on the undeformed domain—shock problem, p = 2, n = 17 · 17, and
N = 59 · 59
Fig. 18 Convergence curves for
the relative error in �2-norm of
the stress coordinates σx , σy and
τxy—h-adaptive versus uniform
refinement, p = 2, n = 17,
number of the iteration steps: 6,
β = 10%

Fig. 19 Numerical solutions for
the displacements ux and uy on
the adaptive point-cloud, using
h-adaptive refinement in the 6th
iteration step—shock problem,
p = 2 and n = 17
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Fig. 20 Numerical solutions for stress coordinates σx , σy , and τxy on the adaptive point-cloud, using h-adaptive refinement in the 6th iteration
step—shock problem, p = 2 and n = 17

Fig. 21 Computational domain
(a) and initial point-cloud (b) of
the model problem—unstressed
circular hole in an infinite solid
subjected to the uniaxial tension
σ∞ in direction x

Fig. 22 Convergence curves for
the relative error in �2-norm of
the displacements ux and
uy—circular hole in an infinite
solid

defined as a “mesh size”, indicates how well the points in the
point-cloud of � cover the domain Y ⊆ � and represent the
radius of the largest empty circle that can be placed among the
point locations insideY [30]. For this reason, the convergence
series obtained for the stresses are plotted against the more
representative heff in Fig. 18.

It can also be observed that the 2D version of the h-
adaptive scheme presented in Algorithm 1 helps a lot to
increase both the convergence rates and the accuracy.

To illustrate the h-adaptive refinement approach, the
numerical results of the 6th iteration step for the displace-
ments and stresses are plotted on the adaptive point-cloud in
Figs. 19 and 20. In this iteration step, the relative �2-error of
the numerical solution computed by the h-adaptive algorithm
is already less than 5 %. This error level is lower than what
was achieved using the equivalent uniformpoint-distribution.
As a consequence of these results, the extension and the appli-
cation of this h-adaptive algorithm to the numerical solution
of 3D BVPs is the aim of our future research work.
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Fig. 23 Convergence curves for
the relative error in �2-norm of
the stress coordinates σx , σy ,
and τxy—circular hole in an
infinite solid

Fig. 24 Convergence of the stress coordinates σx , σy , and τxy at the corners C , D, and E—unstressed circular hole in an infinite solid
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Fig. 25 Convergence of the
stress coordinates σx , σy , and
τxy at the corners A and
B—circular hole in an infinite
solid

5.2.4 Unstressed circular hole in an infinite plate

Finally, the classical 2D linear elasticity problem of the
unstressed circular hole in an infinite plate exposed to unidi-
rectional tension in the xy plane will be studied as a smooth
benchmark problem [9,39,40]. Due to symmetry, only one
quarter of the plate is investigated. The resulting computa-
tional domain is depicted in Fig. 21a.

The exact solution reads

ux = aσ∞
8μ

[ r
a

(κ + 1) cos θ + 2
a

r
((1 + κ) cos θ + cos 3θ)

−2
a3

r3
cos 3θ

]
, (22)

uy = aσ∞
8μ

[ r
a

(κ − 3) sin θ + 2
a

r
((1 − κ) sin θ + sin 3θ)

−2
a3

r3
sin 3θ

]
(23)

for the displacements and

σx = σ∞[
1 − a2

r2

(
3

2
cos 2θ + cos 4θ

)
+ 3a4

2r4
cos 4θ

]
, (24)

σy = σ∞[
−a2

r2

(
1

2
cos 2θ − cos 4θ

)
− 3a4

2r4
cos 4θ

]
, (25)

σz = ν
(
σx + σy

)
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Fig. 26 Numerical and exact
solutions for the displacements
ux and uy on the undeformed
domain—circular hole in an
infinite solid, p = 2, n = 17 · 17
and N = 59 · 59

Fig. 27 Numerical and exact solutions for stress coordinates σx , σy , and τxy on the undeformed domain—circular hole in an infinite solid,
p = 2, n = 17 · 17 and N = 59 · 59

= νσ∞
(
1 − 2a2

r2
cos 2θ

)
,

τxy = σ∞[
−a2

r2

(
1

2
sin 2θ + sin 4θ

)
+ 3a4

2r4
sin 4θ

]
(26)

for the stresses, where σ∞ denotes the applied uniaxial stress,
a is the radius of the unstressed circular hole, and

r =
√

(x − 1)2 + (y − 1)2 and θ = arctan
y − 1

x − 1
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are the polar coordinates. Plain strain conditions are assumed
with an isotropic linear elastic behavior, based on Young’s
modulus E = 10 Pa and Poisson’s ratio ν = 0.3, resulting
in κ = 3 − 4ν. The width and height of the plate are set to
b = h = 4a with a = 1 m. Symmetry boundary conditions
are imposed on the edges AB and DE . Dirichlet BCs are
prescribed along the edges BC , CD, and AE , according to
the exact solution.

Not only the global but also the local convergencebehavior
of the RBF-FDmethod based on the PHS supplemented with
a polynomial basis will be tested on this benchmark problem.
As a first result, the relative error measured in �2-norm is
plotted for the displacements ux , uy and for the stresses σx ,
σy , τxy in Figs. 22 and 23. The uniform refinement starts with
the point-cloud shown in Fig. 21b. Again, different values for
the polynomial degree p are taken into account.

As it is evident from the figures, this setting leads to
an algebraic type of convergence that is independent of the
degree p.

As a second result, the PHS-based RBF-FD solutions
obtained for the stresses σx , σy and τxy at the corners A,
B, C , D, and E are depicted together with their exact values
are plotted in Figs. 24 and 25. From these figures, quite a fast
convergence of pointwise quantities can be observed.

Finally, we present contour plots of the displacements and
stresses together with their exact distribution in Figs. 26 and
27. The computations are based on the quasi-uniform point
set involving N = 59 · 59 points, applying a stencil size of
n = 17 ·17 points together with a polynomial basis of degree
p = 2.

6 Conclusions

A new error-controlled h-adaptive RBF-FD method was
developed for the solution of BVPs in linear elasticity. The
PHS supplemented with polynomials was chosen as basis.

Firstly, the computational performance of the method was
tested through convergence studies of several representative
1D and 2D smooth and non-smoothBVPs. The relative errors
were determined in the �2-norm. It was demonstrated that
fast convergence can be obtained by refining the point-cloud,
provided that the polynomial degree of the additional poly-
nomials is high enough.

Secondly, the convergencebehavior of the newly-developed
adaptive point-cloud refinement algorithm was verified in
1D for both the singular and the shock problem, as well
as in 2D for the shock problem. The presented h-adaptive
scheme leads to a significant improvement both of the conver-
gence rates and the accuracy—not only for the displacement
but also for the stress computations. Besides, the advanta-
geous property of the PHS RBF-FD method supplemented
with polynomials is that the differentiation weights can be

generated in either structured or unstructured (randomized)
point-sets.

In the light of the promising numerical results and ben-
eficial properties, the presented h-adaptive point-refinement
strategy will be extended to the task of solving 3D BVPs.
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