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Abstract

Crack initiation and propagation as well as abrupt occurrence of twinning are challenging fracture problems where the transient
phase-field approach is proven to be useful. Early-stage twinning growth and interactions are in focus herein for a magnesium
single crystal at the nanometer length-scale. We demonstrate a basic methodology in order to determine the mobility parameter
that steers the kinetics of phase-field propagation. The concept is to use already existing molecular dynamics simulations
and analytical solutions in order to set the mobility parameter correctly. In this way, we exercise the model for gaining new
insights into growth of twin morphologies, temporally-evolving spatial distribution of the shear stress field in the vicinity of the
nanotwin, multi-twin, and twin-defect interactions. Overall, this research addresses gaps in our fundamental understanding of
twin growth, while providing motivation for future discoveries in twin evolution and their effect on next-generation material

performance and design.

Keywords Phase-field model - Single crystal magnesium - Twinning interactions - Monolithic scheme

1 Introduction

Developing next-generation materials with controlled twin-
ning behaviors offers promising opportunities for improved
mechanical properties [1,2] and performance in engineering
applications (e.g., gas turbine engines [3] and lightweight
automotive structures [4]). Among materials that exhibit
twinning [5-8], magnesium [9-12] is an example of a light-
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weight metal where slip and twinning, as the two main
crystallographic mechanisms, play a decisive role in its
mechanical response; here, twinning is favorable on pyra-
midal {1012} (1011) systems at room temperature [13].
In magnesium, single twinning occurs through contraction
[14] and extension strains [15] along the c-axis [16]. Recent
twinning studies have focused on observations of asymmet-
ric twin growth due to heterogeneous grain deformation in
the vicinity of the twin [17,18]. We understand that inter-
action of twin boundaries with other defects (i.e., voids
and self-interstitials) increases the likelihood for void nucle-
ation, cracking, and premature failure, leading to degradation
of material performance and reduction of material lifetime
[19,20]. Recent efforts have also been made to model the
twin local stress accurately by means of neighboring grains to
accommodate the transformation [21]. In engineering appli-
cations, there is a broad interest in incorporating magnesium
in high strain-rate applications (e.g., aerospace [22]), where
twin growth and evolution limits the mechanical perfor-
mance [23]. However, knowledge gaps in understanding twin
growth [24], thickening [25], and interactions [26] need to
be addressed before the adoption of magnesium-based alloys
into these applications; these are studied herein for a single
crystal Mg material system.
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Ample experimental measurements exist on time-resolved
twin evolution in magnesium [27]. In situ data is limited
effected by the limitations in available diagnostics to cap-
ture growth and evolution behaviors at sufficient length and
time scales [28]. To this end, atomistic simulations have
been widely adopted to probe effects such as atomic shuf-
fling mechanisms for propagation of twins in magnesium
[29], disconnections and other defects associated with the
twin interface [30], and reaction of lattice dislocations with
twin boundaries [31]. While new understandings have been
gained to accurately model plastic deformation and frac-
ture in magnesium [32,33], atomistic simulations are limited
in their ability to simulate twinning behaviors at relevant
length and time scales needed for practical implementa-
tion in engineering applications. Challenges also exist in
molecular dynamic approaches in applying characteriza-
tion algorithms (e.g., centrosymmetry parameter [34] and
bond angle analysis [35]) to interpret post-deformation crys-
tal structure defect types (e.g., twinning) [36]. Continuum
mechanics modeling utilizing crystal plasticity theory is yet
another modeling approach for predicting the twinning and
de-twinning response in materials with hexagonal close-
packed crystal structures [37-39]. However, crystal plasticity
modeling has difficulties to capture the twinning process
correctly due to treating the twinning deformation as a uni-
directional shear deformation mode [40]. Additionally, the
conventional crystal plasticity model is unable to investigate
the effect of twin microstructure on the mechanical behavior
of magnesium at the nanometer scale [41]. Overcoming such
limitations, we model herein the twinning process by a phase-
field approach where the mobility parameter is determined
by an inverse analysis. Such a computational implementa-
tion allows us to unravel time-evolved twinning behavior in
magnesium.

For the morphological evolution of twins, the mesoscale
phase-field model [42—47] has been extensively used to study
the nucleation [48], growth [49], and propagation of twin-
ning [50]. Most recent computational approaches to phase
field equations for studying deformation twinning in mag-
nesium at the microscale were based on the Fourier spectral
method [50-52]. However, such an approach is only applica-
ble to cases involving periodic boundary conditions and for
morphologies and microstructures dominated by long-range
elastic interactions [53]. Also, spectral method is mostly used
for solving linear problems [54]. In [52,55,56], the proposed
phase-field simulations for deformation twinning and dislo-
cation induced plasticity in hexagonal closed-pack materials
were formulated on small strain theory; still, the twin evo-
lution is usually accompanied by large interface orientation
and large shear deformations [57] even under small strains
[58]. Thus, coupling between twin evolution and fracture
is of importance to achieve high accuracy in the numeri-
cal solution. In terms of validating the phase-field results
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of transmission mechanisms of deformation twins, atomistic
simulations (e.g., molecular dynamics simulations [50,55]
and density functional theory [52]) and experimental results
[51,59] are the most widely used. Some drawbacks to these
validations exist such as

e discrepancies of the peak stress value from the simulation
and experimental data [51],

e qualitative comparison of distribution of order parameter
using the isotropic gradient energy parameter [52,55,56],

e adopting empirically determined large non-physical val-
ues for the phase-field parameters (e.g., twin-twin inter-
facial energy, initial twin nucleus, and energy barrier
heights between the matrix and the twinning [50,51]),
and

e validating at the different length-scales [50,60].

Hence, the application of their model is somehow limited for
studying the deformation mechanisms of Mg. The develop-
ment of nanoscale phase-field models is therefore required
and all the mentioned shortcomings are addressed in this
work.

Building on these past works, this current article utilizes
a monolithically-solved finite element method for solving
an advanced physics-based phase-field approach to study
the nanoscale growth of existing twins in anisotropic single
crystal magnesium. We follow [61] for modeling the twin-
ning interface propagation kinetics, which is important for
the realistic description of twinning deformation. The model
sheds light on the growth and evolving of twinning embryo.

A finite size sample with a hole is considered for study-
ing the interactions of twin with defects, without the need
of periodic boundaries. We implement nonlinear elasticity
coupled to Ginzburg-Landau equations for order parame-
ters. By using a highly nonlinear phase-field approach, we
model anisotropic surface energy allowing to simulate large
deformation of defect-free volumes at the nanoscale. Moti-
vated by the literature [62—66], we use a mobility parameter
and devote the work for determining this value for a spe-
cific material, namely single crystal Mg. The time evolution
of the twin order parameter is directly proportional to the
resolved shear stress. This outcome is useful for modeling
deformation twinning since the propagation speed of twin
boundaries is difficult to measure experimentally, and could
even be supersonic if the driving stress is sufficiently large
[67].

We verify the proposed implementation of the time-
resolved continuum-based model for magnesium by the static
phase-field model [68] and molecular dynamics (MD) sim-
ulations [69] (Fig.1). By choosing the same length-scale
for the phase-field model and MD simulations, we assure
the compatibility of MD results with our implementation,
which is often left aside in the literature [51,56,60]. It is
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also worth stating that all MD simulations use extremely
high deformation rates, making it difficult to understand
whether a phenomenon results from the rate sensitivity of the
material or is a numerical artifact [70,71]. To remedy this,
various strategies can be used to bridge the gap between the
atomic scale and continuum frameworks, such as large-scale
MD calculations [72], coarse-graining [73], and ultra-high
strain-rate tests [74]. Twin propagation speed is explored
(Fig.2) and compared with MD results [69] and analytical
solutions [75]. In this way, we demonstrate a simple yet effec-
tive approach on how to determine the mobility parameter.
Moreover, insights in growth rates are of interest given the
limited available data [27] and studying these behaviors is
vital in high-rate applications of magnesium [76]. Our pre-
sented results are then validated in terms of twin area fraction
and global shear stress (Fig. 3), and the role of twin-twin and
twin-defect interactions is explored (Fig.4). Through these
approaches, the research offers broad potential in materials
design, and motivates promising directions in experimental
and computational materials science.

2 Governing equations

We use standard continuum mechanics notation, where Latin
indices refer to spatial coordinates. We use Einstein’s sum-
mation convention over repeated indices. All tensors are
expressed in Cartesian coordinates. The superscripts E and
IE stand for elastic (recoverable) and inelastic (irreversible)
deformations, respectively. For the description of the twin, an
order (phase-field) parameter, 7, is introduced, where n = 0
denotes the parent crystal and n = 1 means the twin. This
order parameter as well as displacement, u, are the primitive
variables in space and time that we are searching for. The
deformation gradient reads

Fij =u; j + 6, (1

where comma denotes a derivative in space. We use a mate-
rial frame, where the derivative is taken in the reference
configuration that is chosen to be the initial placement of
the continuum body. Kronecker delta, §, is the identity. The
deformation gradient, F, in a large-displacement formula-
tion, is decomposed into elastic and inelastic parts,

Fij = FiiFy, @
where for (inelastic) twinning [77], we use

IE _ .. o
F,'j —811 +¢(77)V051m]~ 3)

The interpolation function, ¢ () = n*(3—2n), causes a steep
change between the twin and parent crystal [78] as necessary

in phase-field approaches. yy is the magnitude of maximum
twinning shear, and s and m are the unit vectors along the
twinning direction and normal to the twinning plane, respec-
tively. By following [79], we decompose the Helmholtz free
energy per mass into mechanical and interfacial parts,

Y(F,n, V) =y™MEF, n)+vV (1, Vi), )

where the kinetics of interface is controlled by twin order
parameter and its first-gradient by the latter. As usual, for
the mechanical deformation energy density (per volume), we
may use the St. Venant model:

M1
Py = EEijCijklEkl , Q)
or the neo-Hookean model:
" A
oy == (Ic =3) = pInJ + 2 (nJ)* . (6)

For nonlinear isotropic elasticity, the neo-Hookean model
defined in Eq. (6) is used. We use right Cauchy—Green defor-
mation tensor, CE = F,S. F,S., and its invariants, I¢c = CF,.,
J = det(CF). The Green—Lagrange strain measure, E =
%(CE — §), accommodates geometric nonlinearity neces-
sary for some applications herein. Lamé parameters, A, u,
or the stiffness tensor of rank four, C; i, are given as mate-
rial coefficients. The elastic constants are the Voigt-averaged
shear and bulk modulus [80], which are listed in Table 1.
For anisotropic elasticity, the elastic coefficients are interpo-
lated between the untwinned Cir;. 1 and twinned Cl.TJ. ; domains
using the interpolation function,

Cijit = Cliy + (Cliyy — Clid () . @)

The same interpolation function is used as in the definition
of the inelastic part of the deformation gradient. For the twin
phase, n = 1, we have the stiffness tensor as a rotation of
crystal lattice from the parent phase, n = 0, as follows:

Clitt = QimQjn 0 QupConpop: ®)

where Q is the reorientation matrix associated with twinning.
For a centrosymmetric structure [81], it becomes

8;; type I twins,
ij typeltwins ©)

Q" _ Zmimj -
v type II twins.

2SiSj —3,']‘
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In the case of a steady-state deformation and neglecting iner-
tial terms, the governing equations for displacement read

Pji,j =0,
p.. ooV _ dpoy™ _ dpoy™ 0Ey
Yo dF;; dEw OF;; 10)
dpoy™M £ 1 1
=g FiFO

The Ginzburg-Landau equation is acquired by a thermo-
dynamically-consistent derivation, as follows:

. dpoy™M By dpoyr Y
77=—13< Py | dpo¥ _<,001/f ) ) (11
an an mi /),

where the mobility parameter, £, is generally not known and

challenging to obtain experimentally. The outcome of this

work is the methodology on how to set its numerical value.
The first term is formulated by using the product rule

E IE
dpoy™M _ dpoy™M 9 F;; _ “3Fikaj
an dF;; 9y 9
= P;iFi¢'(myosim; (12)

where ¢’ (17) = 61(1 — ). For the interfacial energy, ¥V, we
use a standard double-well potential as in [82,83] such that
the energy density reads

po¥rY () = An* (1 —m)* + kijnin j, (13)

where A = 12% characterizes the energy barrier between
two stable phases (minima), related to the twin boundary
surface energy, I', and the twin boundary thickness, [; k;; =
Kkod;; with ko being the gradient energy parameter, given as
[68], ko = %Fl. By inserting the energy definitions into the
Ginzburg-Landau, we obtain the governing equation for twin
order parameter,

§ o= _,c(P,»,- FE¢' myosem; +2An(1 =35+ 2n%)
~2u0m,1) (14)

By solving Egs. (10), (14), we obtain u and 7 fields.

3 Computational implementation

The presented numerical simulations employ a monolithic
strategy in order to solve Eqs.(10), (14). Because of their
inherent coupling, a monolithic solution method is prefer-
able for capturing all effects accurately, especially in extreme
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loading conditions. Mostly, a staggered scheme is imple-
mented partly to increase efficiency yet also effected by
numerical difficulties in implementing as a monolithic strat-
egy. Herein, we use the interface energy as described above,
which helps to circumvent any numerical convergence errors
in the implementation. In a monolithic scheme, for each time
step, displacements and order parameter are solved at once.
Therefore, for the space discretization, we use an adequate
mixed space formulation in the implementation. Specifically,
we use u and n as approximated functions spanned over a
triangulation with a compact support. This well-known finite
element method (FEM) ensures a monotonic convergence for
the implementation. We skip a notational distinction between
the analytical functions and their approximations since they
never show up together.

The computational domain, €2, is the continuum body’s
image in the physical space. The domain, €2, and its closure as
a Lipschitz boundary, €2, form a continuous domain without
singularities. Therefore, all form functions are continuous as
well. Triangulated domain in finite number of nodes is repre-
senting the approximated unknown functions, # and n, with
the interpolation between the nodes by the form functions,
as follows:

YV = {u, n} e [ (Q)]POF . {u, n} = givenVx € 9Qp ;.

15)

The Hilbertian-Sobolev space, 7", is of polynomial order,
n, hence, we use standard Lagrange elements in the FEM
[84]. On each node, we have 2 4+ 1 = 3 degrees of freedom
(DOFs) in two-dimensional and 3 + 1 = 4 (DOFs) in three-
dimensional spaces. As known as the Galerkin approach, the
test functions, du and 07, are approximated by the same
mixed space. They vanish on Dirichlet boundaries, d2p,
where the solution, # or 5, is given. For other boundaries,
we use Neumann boundary condition, for displacement, u, it
denotes the given traction vector, £, and for twin order param-
eter, n, we implement zero Neumann boundaries meaning
that the twin phase fails to leave the boundary across bound-
aries. The latter is justified easily since the twin or parent
phase is neither convective nor conductive. The twin growth
is inhibited by the displacement boundary conditions. The
twin order parameter gradient also vanishes at the bound-
aries due to the Neumann boundary condition.

For time discretization, we use constant time steps in order
to be able to determine an adequate time step by a conver-
gence analysis. Given the data at a time instant, t", we solve u
and 7 by a standard variational formulation leading to a weak
form. The time derivative of order parameter is discretized
using a so-called 6-scheme, for an arbitrary field, y* = y(t")
and y"~! = y("1), we use
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Y= =)y ey, (16)

This scheme requires the computed solution from the last
time step, y" !, by evaluating the functions within the time
step, leading to a higher accuracy in the discretization [85].
For & = 0, this method is the first-order accurate explicit
Euler method. For & = 1, it becomes the first-order accurate
implicit Euler method. For § = 0.5, we obtain the second-
order accurate Crank—Nicolson method. We use the time
discretization in Eq. (14) for one finite element Q°, as fol-
lows:

nn _ nn—l E p
/Q (T + ﬁ(PjiF,'kfl)/(ﬂn_ )VOSkM j

12400 (1 3t 4 2(n"‘9)2)

—2K0nj’ii9>>5n dv =0. (17)

The test function, 67, may have a lower continuity than the
trial function, 7, but we stress that we aim for the Galerkin
procedure such that they are chosen from the same mathe-
matical space. In order to weaken the continuity condition
on 1, we integrate by parts terms of second gradient,

nn _ nn—l
/ <T5ﬂ + LPj; Fid' (") yosem ;5n

FL2AE (1 P 2(17”‘9)2)617

2Lion" "n; dA = 0.

+2£K0n,"i_0617,i> dv — /
Q¢

(18)
By summing over each element, on each boundary of ele-
ments we sum twice with neighboring elements’ surface
normal directed oppositely. Therefore, we obtain a jump
condition, which we enforce to vanish by setting it zero. In
other words, the weak formulation searches for a continuous
n.in; across element boundaries resulting in a smooth phase
change within the finite element. In this way, a mesh depen-
dency is prevented as long as the element size is adequately
small such that the numerical result is converged. On the
boundaries of the whole domain, we assume zero Neumann
boundaries meaning that 7 is not leaving the domain across
the outer boundary. Hence, we obtain for Q = | J Q°, the
following weak form:

nn _ 7]nfl 3
Form,, :/ (A—tén—i—ﬁPj,'Fi%(ﬁ’(n" e)yoskmjén
Q

+£2Ann—9 (1 _ 317}1—9 + 2(’7”_9)2)6”

+2£K0nj§—95n,,~) dv. (19)

Analogously, from Eq.(10), we obtain the weak form for
displacement, where the traction #; = n; Pj; is enforced to
be continuous across the element. This so-called Newton’s
second lemma is a basic assumption for regular domains (no
singularities). On outer boundaries, for Dirichlet boundaries,
where displacement is given, the test function vanishes and
we allow for Neumann boundaries that traction vector, # in
Pa, is given. The weak form for displacements, u, reads

Form, = —/ Pjidu; dV+/ fidu; dA . (20)
Q 0QN

The objective is to solve both fields as unknowns, p = {u, n},
at once by satisfying

Form;, + Form, =0. 21

The weak form is nonlinear. We use a standard Newton—
Raphson linearization method, where the weak form is used
to get a Jacobian by a derivative with respect to unknowns,
p- High-level tools are exploited to generate computer code
automatically by performing a symbolic differentiation for
this linearization. In this manner, use of different stored
energy models is indeed possible without major changes
in the implementation. We use software packages from the
FEniCS Project [86,87]. The time stepping parameters are
chosen such that the momentum balance scheme is second-
order accurate and stable. Quadratic and linear Lagrange
functions are used for the finite element approximation of
the displacement and the twin order parameter, respectively.
The conjugate gradient method with a Jacobi preconditioner
from PETSc packages [88] has been employed for solving
the nonlinear equations. The simulation has been performed
by a computing node using Intel Xeon E7-4850, in total 64
cores each with the 40 MB cache, equipped with 256 GB
Memory in total, running Linux Kernel 5 Ubuntu 20.04.

4 Results and discussion

The material parameters are compiled from different sources
and given in Table 1. For anisotropic cases, we use the stiff-
ness tensor with the given components and isotropic cases
the Lamé constants, A, i. The computational domain is a 2-D
rectangular shape at nanometer (nm) length-scale. Accord-
ingly, units are chosen to be nanonewton (nN) and picosecond
(ps). A mesh of 423 500 triangular elements is adopted. Initial
conditions are prescribed as zero displacement and a given
twin/parent phase field, which is described in each example.
It is noted that 10 elements are considered at the interface to
resolve the sharp variation along the interface width.

@ Springer
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Table 1 Material properties and
model constants for single

crystal magnesium compiled
from [16,25,69,82,89]

Parameters Notation Value
Second order elastic constants Ci = 63.5 GPa
Cin= 25.9 GPa
Ci3z = 21.7 GPa
Csx3 = 66.5 GPa
Cyq = 18.4 GPa
Bulk modulus K = 36.9 GPa
Shear modulus n= 19.4 GPa
Poisson’s ratio V= 0.276
Twin boundary surface energy r= 0.117 J/m?
Twinning shear for (1011){1 0 12} Y = 0.1295
Regularization length = 1.0 nm
Transformation barrier = 1.404 GPa
Gradient energy parameter Ko = 0.0878 nJ/m
Ginzburg-Landau kinetic factor L= 4200(Pa s)~!

4.1 Validation of the phase-field model and twin
order parameter for single crystal magnesium

We validate our time-resolved phase-field model for single
crystal magnesium using previous static phase-field results
[68] and molecular dynamics simulations [69] (Fig. 1). The
presence of pronounced mechanical anisotropy, local stress
concentrations, and high pressure in nanoscale defect-free
magnesium implies employing ansiotropic mechanical prop-
erties, anisotropic surface energy, and a large displacement
formulation in our simulations. The nucleation and evolu-
tion of deformation twinning in a magnesium single crystal
is simulated using the same initial twin geometry as in
[68]. A circular twin embryo of initial radius » = 3 nm
(corresponding to the analytical sharp interface solution
[90]) is embedded into a rectangular domain of dimensions
40 nm x 40 nm in plane strain conditions. The (1011) plane
and {1012} directions are considered as the primary twinning
system [13]. Consequently, there is no need to assume the
dependency of the mobility parameter to the angle between
the direction normal to the interface and a specified direc-
tion in crystal as well as temperature, due to the fact that the
kinetic coefficients differ by only about 1% in different planes
and directions [91]. The validation simulations in Fig. 1 are
performed to investigate the twin parameter distribution sub-
ject to simple shear with Dirichlet boundary conditions on
the order parameter for different cases, including an isotropic
(Fig. 1(a, c, d, g, h)) and an anisotropic surface energy
(Fig. 1(b, e, f, i, j)) at three different time instants. Within
the simulation time of 500 ps, the twin embryo grows until it
is repelled by the rigid outer boundaries. For the anisotropic
case, the equilibrium shape of the twin embryo is wider in
the horizontal direction (parallel to the habit plane) and flatter
normal to the habit plane when compared with the isotropic
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case, which is in good qualitative agreement with the refer-
ence phase-field results [68] shown in Fig. 1(m). In addition,
the twin interface thickness has a lower value normal to the
habit plane for the anisotropic surface energy when com-
pared with the ideal isotropic one. This may be related to
the contribution of the core and elastic energies to the total
surface energy of the interface [92]. For large deformation
simulations (Fig. 1(b, d, f, h, j)), an orientation of the twin
evolution is realized due to the difference in the driving force
for twinning, which is a factor of (F m=L

Overall, the twin shape predicted by the current time-
dependent phase-field approach shows features in good
agreement with the molecular dynamics simulation [69]
(Fig. 1(k)) and steady-state continuum-based model [68]
(Fig. 1(1, m)). Finally, it is worth mentioning that the twin
tends to shrink and eventually disappear when the magnitude
of the shear loading was lower than yy = 0.07 or the size
of the initial nucleus were lower than 3 nm. This detwinning
mechanism has been observed previously in copper [93] and
gold nanowires [94], but this is not the focus of the present
contribution.

4.2 The determination of the kinetic coefficient, £,
for magnesium using twin tip and twin
boundary velocities

The kinetic coefficient or mobility parameter, £, plays an
important role in describing the twin propagation and its
dependence on other parameters (e.g., shear stress) during
the early stages of twin morphology [95,96]. Experimental
studies lack a quantification of the twin boundary mobility
in magnesium since the evolution is too fast for obtain-
ing an adequate measurement. In order to address this, we
propose to determine L for single crystal magnesium by
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Fig. 1 Distribution of the twin order parameter, 1, for an initially cir-
cular single twin with radius of 3 nm in a simple-sheared rectangular
domain in both small and large deformations considering both isotropic
and anisotropic surface energy and elasticity with zero orientation of the
habit plane. The initial conditions are chosen to match results published
in the literature using a static phase-field approach [68] and molecular
dynamics model [69], while the choice of times are selected to show the
evolution of the twin growth under noted conditions. (a,b) Twin order
parameter for small and large strains with an isotropic surface energy
att = 1 ps; (c,d) Twin order parameter for small and large strains and
isotropic surface energy at + = 50 ps; (e,f) Twin order parameter for
small and large strains and anisotropic surface energy at t = 50 ps;

using interface velocity profiles in both twin tip and twin
boundary directions by comparing the present time-resolved
phase-field results with molecular dynamics simulations [69]
(Fig.2). Here, we assume that the molecular dynamics solu-
tion represents a reliable experiment and we try to find the
kinetic coefficient such that we obtain matching results. Con-
sidering a single twinning plane and direction as the primary
deformation mechanism, an isotropic kinetic coefficient is

o4

(=3
I

UONRIUSLIO

——
e

Order parameter 5

-_—
o o

1.00
0.75
0.50
0.25
0.00

°
Order parameter 1,

(g,h) Twin order parameter for small and large strains and isotropic
surface energy at t = 500 ps; (i,j) Twin order parameter for small and
large strains and anisotropic surface energy at + = 500 ps; (k) Local
orientation of the twinned region obtained from molecular dynamics
simulations [69] and used to contrast with (g) and (h); (I,m) Order
parameter for both isotropic and anisotropic surface energy under sim-
ple shear loading using a phase-field model from the literature [68], to be
compared with (e) and (g). (k) and (1,m) are reproduced with permission
from [68] and [69], respectively. (For interpretation of the references
to color in this figure, the reader is referred to the web version of this
article.)

obtained for predicting the microstructure evolution in two-
dimensional single crystal magnesium at room temperature.
This assumption is consistent with the other atomistically
informed phase-field model [52,55]. Although, taking into
account an anisotropic kinetic coefficient which depends on
free energy functional parameters (e.g., temperature or inter-
face orientation) is required to accurately describe the other
phase transformation (e.g., liquid-liquid, liquid-vapor, and
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Fig.2 Evolution of twin growth in single-crystal pure magnesium. (a)
Numerical setup of the rectangular single crystal with an initial rectan-
gular twin with boundaries and tips in material configuration; (b) Time
evolution of the twin order parameter as a function of the position y nor-
mal to the habit plane. A horizontal line starting from point n = 0.5 is
chosen for measuring the twin boundary interface velocity to show the
interface displacement Ay. The inset demonstrates the interface profile
at six different time instants to show the time-dependent growth of the
twin; (c) Time evolution of the twin order parameter as a function of
the position x in the direction of the habit plane. Fewer time instants

solid-melt phase transformations) interface kinetics [97]. A
rectangular twin embryo with an initial length of 7 nm and
width of 4.3 nm inserted at the center of a 77 nm x 55 nm
rectangular domain as in Fig.2(a). The domain is under
simple-shear, the 6012) twinning planes (i.e., the horizon-
tal planes) are referred to as twin boundaries (TB), and the
(1012) twinning planes (i.e., the vertical planes) are referred
to as twin tips (TT). Applying the shear deformation in the
[1011] direction results in the twin interface profiles illus-
trated in Figs.2(b) and 2(c) for the twin boundary and twin
tip for times noted in the sub-figures, respectively. The twin
boundary and twin tip velocities are calculated by tracking
the horizontal, Ax, and vertical, Ay, interface displacement
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than shown in (b) are used to demonstrate the constant twin tip inter-
face velocity. Similarly, the point n = 0.5 is chosen for measuring the
tip interface velocity and to show the constant interface displacement
Ax. The analytical solution of the explicit Ginzburg—Landau equation,
which corresponds to = 0 ps, is shown as the dotted red color; (d)
Twin tip and twin boundary velocities as a function of time obtained
from (b) and (c), and compared with those from molecular dynamics
simulations [69]. (For interpretation of the references to color in this
figure, the reader is referred to the web version of this article.)

of the planes of the twin at n = 0.5 over time—along the
green line in Figs. 2(b) and 2(c). The results indicate that the
twin boundary (black color) and twin tip (blue color) veloci-
ties are decreasing and constant, respectively, with values of
velocity summarized in Fig. 2(d). The constant velocity trend
of twin tip mobility may be ascribed to the large back-stress
arising at the twin tip [95]. Mapped in red onto Fig.2(c) is
the explicit analytical solution for the stationary Ginzburg—
Landau equation given by [75]

K0

e (22)

-1
—X
Nanalytical = <1 +exp (7)) ;W=
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The comparison of numerical results with this analytical solu-
tion enables the twin interface width (i.e., difference between
twin interface position at n = 0.01 and n = 0.99) to be
calculated. The determination of the twin interface width
is important because its size can guide the selection of the
element size and spatial mesh refinement in finite element
simulations of twinning [83].

Altogether, Fig.2 provides a good validation for the
present time-dependent phase-field approach, and, more
importantly, enables the first ever determination of the kinetic
energy coefficient, £L = 4200 (Pa - s)~L, for single crystal
magnesium.

4.3 The time-evolved shear stress in the combined
matrix-twin embryo

For a better comprehension of the underlying mechanism,
we study the evolution of the twin area fraction and the
shear stress, 017, in the parent and twin phase (Fig.3). Local
stress distribution within a small region in the microstruc-
ture is understood as the driving force for the propagation
and growth of a twin. These insights may inform about the
sequence of events leading to the formation of the visible
twins at an early stage in magnesium.

In Fig. 3, the same boundary conditions and a constant 7%
shear strain are used in the same rectangular twin embryo
system depicted in Fig.2(a). Initially, the length and width
of a single rectangular twin embryo at different times are
calculated in Fig.3(a); this will be used to obtain the twin
area fraction in Fig. 3(b). In the figure, values are calculated
for n = 0.5 on the interface profile as shown in the insets at
t = 5 ps. Results indicate that the twin growth is larger in the
twin tip direction rather than in the twin boundary direction,
and this difference decreases at later time instants as the twin
approaches the outer boundaries.

Next, the change of the twin area fraction, defined as the
ratio of the twinned to the whole simulated area, is shown
in Fig.3(b) under shear loading, and this is compared with
molecular dynamics simulations [69]. The insets in Fig. 3(b)
show the morphology of the twin at two different times
for visualizing how the twins grow. Knowing the twin area
fraction evolution is important towards enhancing our under-
standing of the crystal grain reorientation associated with
deformation twinning, where limited data exists because of
the special experimental tools needed to access the length
and time scales needed to capture such measurements [27].
As seen in Fig.3(b), the present phase-field model reason-
ably predicts the evolution of the twin area fraction. Next, the
shear stress profile acting parallel to the x-direction is plotted
for various times in Fig.3(c), which is used to demonstrate
the redistribution of internal stresses resulting from twinning
[98]. The plateau and decreasing regions indicate the shear
stress variation in the parent and twin phases, respectively.

By progressing in time, the shear stress decreases as the x-
position approaches the center of the simulation geometry,
until it reaches its minimum. The magnitude of the shear
stress within the twin decreases as a function of time and,
eventually, becomes negative for the last time instants of the
simulation. This phenomenon is consistent with experimen-
tal results [17]. At the same time, the profile evolves spatially
and temporally.

Finally, the global shear stress field is shown in Fig.3(d),
where the field is taken as the average across the red line
spanning both the twin and the matrix depicted in the inset.
The measurements are important because they can provide
insights into the complex load sharing mechanisms that are
generated by the parent and the twin phase [99]. The results
are also compared with molecular dynamics simulations [69],
both qualitatively (the insets at # = 10 ps and ¢ = 25 ps) and
quantitatively. The phase-field results match the molecular
dynamics simulations well. The results show that the global
shear stress is decreasing as the twin size evolves. Altogether,
results from Fig. 3 are important for determining the activa-
tion force required for twin embryo growth that may serve
as an input into higher scale models [100].

4.4 Studying twin interactions toward
microstructure tailoring and materials design

Finally, simulations have been performed to study the effect
of twin-twin and twin-defect interactions (Fig.4). Under-
standing these interactions is an important step toward
developing better predictive models for designing materi-
als with tailored properties [101-104] and microstructures
[105-108]. Damage in materials is studied by phase-field
models [109-113], and we use phase-field approach herein
for twin interactions. These interactions [114] may result in
the formation of twin-twin junctions that may cause strain
hardening [115] and crack initiation [116,117], leading to a
strong influence on the overall material performance. First,
the change of area fraction of the middle twin as a func-
tion of time for a different number of embryos is illustrated
in Fig.4(a). Only the middle embryo is considered in the
analysis in order to better isolate the interactions and reduce
boundary effects. The location of the twins for the three
embryo cases is illustrated in the inset. In Fig. 4(a), it is shown
that increasing the number of twins leads to a decrease in the
twin area fraction of the middle embryo as a result of its
interaction with the other twins. The difference of the twin
area fraction for multi-embryo cases becomes larger at later
time instants. This finding is important as it highlights the
effects of twin interactions on twin evolution, where experi-
mental measurements are currently very limited [118]. Next,
the spatial variation of the order parameter and the corre-
sponding shear stress at + = 10 and + = 20 ps are depicted
in Fig. 4(b). This result reveals insights into the expansion of
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Fig. 3 The time-evolved shear stress acquired from the phase-field
model on deformation twinning of single-crystal pure magnesium. (a)
Time evolution of the length (blue squares) and width (red circles) of
a single rectangular twin embryo that grows at 7% shear strain. The
insets show the twin interface profiles at = 5 ps, parallel and orthog-
onal to the habit plane, by which the twin size is obtained; (b) Growth
of the twin area fraction (i.e., the ratio of twinned area to the total
area of the numerical geometry) predicted by the proposed phase-field
approach (blue squares) and compared with molecular dynamics sim-
ulations (black line) [69]. The same numerical geometry setup as [69]
was used. The insets show the distribution of the twin order parameter at

the twin domain through the accumulation of large plastic
shear strain at the nano-scale [119].

The homogeneous growth in the twin area is exemplified
in the top left inset in Fig.4(b), where the twins have not
changed in shape until # = 10 ps. The corresponding shear
stress distribution at + = 10 ps is shown in the bottom left
inset, where the shear stress inside the twins is negative while
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t = 10 ps and ¢ = 25 ps to illustrate areal growth; (c) Spatial variation
of initial shear stress along the x-axis in single-twinned magnesium at
various time instants; (d) Variation of the global shear stress as a func-
tion of time. The numerical results (blue squares) are compared with
molecular dynamics data (black line) [69]. The insets show the spatial
distribution of local shear stress at + = 10 ps and ¢ = 25 ps along the
red mid-line. The boundaries of the twin embryo are denoted by the
black dashed line. In the bottom of each insets, the atomic shear stress
from snapshots taken at similar times as [69] are given for comparison.
(For interpretation of the references to color in this figure, the reader is
referred to the web version of this article.)

it is positive in the matrix. The heterogeneous stress distri-
bution around the twins is due to a sudden change in the
stresses within the twin interfaces, associated with the need
to accommodate deformation in this region [40]. From the
spatial shear stress distribution, it is observed that the local
shear stress reaches a minimum in the center of each twin.
Outside the twins, the shear stress is lower at the bottom
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Fig.4 Exploration of twin-twin and twin-defect interactions to inform
fundamental growth mechanisms in single crystal magnesium. (a) Evo-
lution of twin area fraction for 1, 2, and 3 twin embryos. The inset
shows the location of each twin for the three-embryo simulation. The
area of the middle twin is measured using its length and width obtained
from the interface profile at n = 0.5, as was done for Fig.2; (b) Spatial
distribution of the twin order parameter and shear stress in the parent
and twin phases for the numerical setup shown in the inset of (a) at
t = 10 and r = 20 ps; (c) Evolution of the shear stress along a hori-

left and top right twins because of the constraining effect of
the adjacent twins to the middle one. In the right insets, the
deviatoric deformation in twin morphology at t = 20 ps is
identified due to the interaction of the twins with each other
and the disturbing of the stress field by them. The stress
distribution in the vicinity of the twin-matrix interfaces at
t = 20 ps is heterogeneous as a result of high stress con-
centrations in the matrix near the twin boundaries. It is also
shown that the middle twin experiences a maximum shear
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zontal line through the middle of the single crystal microstructure for
different numbers of embryos. The numerical setup is subjected to 7%
shear strain as was done in the other examples; (d) Study of twin-defect
interactions by considering the time-evolved twin tip interface towards
the boundary and the void. The related simulation dimensions are given
in the inset, which also shows that symmetric boundary conditions were
used (the symmetry line is shown by the dash red line). (For interpreta-
tion of the references to color in this figure, the reader is referred to the
web version of this article.)

stress resulting from the compressive forces generated by the
other twins. The local stress concentration is one main inter-
action of crack and twins where some nucleation site appears
in the interfaces inside and around the interface [120].
Next, the change of shear stress along a horizontal line
through a middle section of the simulation area as a func-
tion of a 1, 2, or 3 embryo system is shown in Fig.4(c).
It is observed that increasing the number of twins leads
to decreasing the shear stress values in the matrix phase,

@ Springer



814

Computational Mechanics (2022) 70:803-818

while the difference in shear stress values for the later time
instants are larger as a result of twin-twin interactions. In
the twinned regions at later times, the junctions of differ-
ent embryos result in a negative shear stress with steeper
slopes as compared with earlier times. In addition, it can
be observed that the stress concentration in the matrix, pre-
dominantly in the vicinity of the twin boundaries, increases
only marginally with increasing twin thickness (black lines
in Fig.4(c)). Finally, the interaction of a twin and a defect
is investigated in Fig.4(d) by comparing the change in the
twin tip velocity towards the boundary and the void along
the blue dashed horizontal line. The numerical setup is also
given in the inset, where symmetric boundary conditions are
used. The radius of 2 nm is chosen for the void. For all times,
the results indicate that the tip velocity is linearly decreas-
ing in time in a direction approaching the left boundary. For
the void, the velocity at the tip is constant until some point
after which a sudden decrease in the velocity occurs, result-
ing from the twin-defect interaction. In addition, the twin tip
velocity is larger toward the void because of the higher stress
concentration influenced by the void.

5 Conclusions

In this paper, the evolution of twinning in magnesium has
been studied using a validated and calibrated phase-field
model to gain better insights into the time-evolved twin mor-
phology, the spatial distribution of the internal shear stress,
and the twin interactions. An accurate monolithic iterative
procedure has been implemented for solving the coupled
balance and Ginzburg—Landau equations, and the govern-
ing equations have been solved in the open-source high-level
computing platform, FEniCS. For engineering examples with
FEniCS, we refer to [121].

The results presented in this work confirmed the impact
of the current model by capturing the behavior of the leading
deformation mechanism in single crystal magnesium, twin-
ning. By means of the proposed implementation, the state
variables (i.e., the displacement and the twin order parame-
ter) have been computed monolithically for various scenarios
in discrete time steps, including small and large deforma-
tions with both isotropic and anisotropic surface energies and
elasticity. The data have been compared with a continuum
mechanics model [68] and molecular dynamics simulations
[69]. The findings are qualitatively consistent with both lit-
erature approaches.

A notable result emerging from the proposed model is
the prediction of the critical strain and initial twin embryo
size required for growth and propagation under the chosen
numerical settings. This computational implementation is
particularly useful because identifying such features exper-
imentally is challenging given the length and time scales
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needed to reproduce these events [122]. Next, the interface
velocities for the twin tips and twin boundaries have been
explored in order to determine the kinetic coefficient using
the phase-field model and compared with recent molecu-
lar dynamics simulation [69]. Studying velocity growths is
important because they affect hardening, texture evolution,
and ductility in the material [123]. To the authors’ best knowl-
edge, the present work pioneers the analysis of the interface
mobility, showing different trends of twin evolution in the
direction parallel and orthogonal to the twin habit plane.

The interface velocity is considered to be an important
factor to determine the thermodynamic driving force for
interface propagation, because knowing the interface veloc-
ity for any value of the driving force potentially leads to the
determination of the kinetic coefficient for any range of mate-
rials [124]. The interface profile has been compared with the
analytical solution of the stationary Ginzburg-Landau equa-
tion, and the obtained numerical interface width of 1.58 nm
is close to the analytical value of 1.62 nm [75]. This infor-
mation guides mesh selection and refinement when modeling
twinning in this system [125, 126]. In addition, the current
phase-field modeling approach overcomes the challenges
existing in molecular dynamic simulations for calculating the
twin size, such as identifying the orientation of each atom in
the twinned region [36], and is able to capture new behavior
of twin growth for + < 5 ps, comparing well with previous
molecular dynamics data [69]. The strong point of the current
approach is to track multiple interfaces in order to measure
twins’ size with no additional efforts for samples larger or
smaller than in atomistic simulations.

A further considerable implication of the proposed model
is the possibility of investigating the local and global shear
stress field inside the parent and twinned phases. Analysis
of twin shear stress fields induced in these cases provides
further evidence for the effect of twins’ thickness and their
mutual position on further twin growth and/or further twin
nucleation [127-129]. Moreover, the importance of an appro-
priate strategy for partitioning the stress fields between the
twinned and untwinned domains have been demonstrated in
this paper. A final upshot of the current phase-field model
has been to explore new understandings in twin-twin and
twin-defect interactions. For the case where multiple twins
grow in one grain, a common occurrence observed in exper-
iments [130], it is highlighted that the stress concentration
around the void may significantly increase the twin interface
velocity, affecting subsequent expansion of the twins. Taken
together, our study provides a framework for a new way to
understand local deformation mechanisms in materials by
analyzing the evolution and interaction of twins.
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