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Abstract
For their simplicity and low computational cost, time-stepping schemes decoupling velocity and pressure are highly popular in
incompressible flow simulations. When multiple fluids are present, the additional hyperbolic transport equation in the system
makes it even more advantageous to compute different flow quantities separately. Most splitting methods, however, induce
spurious pressure boundary layers or compatibility restrictions on how to discretise pressure and velocity. Pressure Poisson
methods, on the other hand, overcome these issues by relying on a fully consistent problem to compute the pressure from
the velocity field. Additionally, such pressure Poisson equations can be tailored so as to indirectly enforce incompressibility,
without requiring solenoidal projections. Although these schemes have been extended to problems with variable viscosity,
constant density is still a fundamental assumption in existing formulations. In this context, the main contribution of this work
is to reformulate consistent splitting methods to allow for variable density, as arising in two-phase flows. We present a strong
formulation and a consistent weak form allowing standard finite element spaces. For the temporal discretisation, backward
differentiation formulas are used to decouple pressure, velocity and density, yielding iteration-free steps. The accuracy of our
framework is showcased through a wide variety of numerical examples, considering manufactured and benchmark solutions,
equal-order and mixed finite elements, first- and second-order stepping, as well as flows with one, two or three phases.

Keywords Two-phase flow · Split-step methods · Finite element methods · Fractional-step methods · Variable density

1 Introduction

In numerical methods for incompressible flows, the assump-
tion that both density and viscosity are constant is often
mentioned just in passing, if even mentioned at all. It is,
however, a rather “fragile” assumption that can be violated,
for example, in non-Newtonian, two-phase or non-isothermal
flows [1]. In fact, this violation can have severe implications
in both theory and numerical practice. A variable viscosity,
for instance, demands a complete reformulation of pro-
jection methods decoupling velocity and pressure in time
[2–4]. A non-constant density, on the other hand, requires
redefining even the projection operator used in such meth-
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ods [5]. In particular, for flows with more than one fluid
phase, density and viscosity fields are not only variable, but
discontinuous—which certainly brings additional challenges
to the discretisation. Nowadays, there are various numerical
techniques with different levels of sophistication to han-
dle such issues. Sharp two-phase flow simulations can be
achieved, for instance, with enriched [6], extended [7] or
unfitted [8] finite element methods. For the temporal dis-
cretisation, there are also different methods to cope with the
variable density, especially in split-step schemes [5,9–13].

Split-step, time-splitting or fractional-step methods are
interchangeable terms to designate time-stepping schemes
decoupling the computation of velocity and pressure. Their
idea is to transform an incompressible flow system into a
series of Poisson and convection-diffusion subproblems that
are simpler to solve. Especially for multi-phase flows, which
feature conservation laws of different nature, split-stepmeth-
ods are more popular [5,9–20] than monolithic schemes
[21–23]. Among the most common time-splitting schemes
are so-called projection or pressure correction methods, in
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which incompressibility is enforced by projecting the veloc-
ity onto a weakly divergence-free space. Such methods,
however, have some well-known shortcomings. The earli-
est non-incremental variant, for example, induces completely
non-physical pressure boundary conditions [24]. This can be
partially remedied by so-called rotational variants [2,4,11],
which in turn induce an inf-sup compatibility restriction
[25,26] on the finite element spaces (equal-order discreti-
sations of pressure and velocity become unstable). In fact,
these issues are not exclusive to multi-phase flows, arising
even in the Stokes problem.

For single-phase flows, Henshaw and Petersson [27],
Johnston and Liu [28] and Liu [29] proposed an alterna-
tive family of split-step schemes overcoming the limitations
of classical projection methods. In their version, explicit
incompressibility is replaced by a consistent pressure Pois-
son equation (PPE) obtained directly from the balance of
momentum. Their schemes do not only reduce the compu-
tational cost, but also break the finite element compatibility
restrictions without inducing any spurious pressure bound-
ary layers. The price to pay is a slightly more complicated
right-hand side, which can however be handled with hardly
any additional implementation effort. Nonetheless, constant
viscosity and constant density are two strong assumptions
in the classical derivations [28,29]. While we have recently
extended consistent splitting methods to the case of variable
viscosity [30], handling more than one phase requires also
allowing for density variations, which has a stronger impact
on the formulation. This is thus the main topic of the present
work.

Our main goal is to devise a fully consistent pressure
Poisson framework for incompressible flows with variable
density, with a focus on two-phase flows. We can derive an
elliptic equation for the pressure by first dividing the Navier–
Stokes momentum equation by the flow density, adding a
consistency term and then taking the divergence of the result.
Similarly, pressure boundary conditions canbeobtained from
the momentum equation and its boundary data. This gives
us an equation to compute the pressure from the veloc-
ity and density fields, and at the same time guarantees, on
the continuous level, a divergence-free velocity—without
requiring projections or corrections. This, combined with
semi-implicit temporal discretisations, converts the rather
complex mass-momentum system into a series of much
simpler subproblems: a Poisson equation with variable coef-
ficient, a scalar advection problem and a vector-valued
convection-diffusion equation that may be decomposed into
scalar components. Furthermore, when considering a finite
element spatial discretisation, our schemes allow the same
polynomial degree to be used for all quantities, simplifying
implementation.

The rest of this article is organised in the following
way. After the basic problem setup and notation are briefly

described in Sect. 2, Sect. 3 presents a PPE-based refor-
mulation that implies incompressibility without explicitly
enforcing the divergence-free constraint on the velocity.
When the goal is to use standard finite element elements
for the spatial discretisation, we need a C0-compatible
variational formulation, which is the topic of Sect. 4. Dis-
cretisation and stabilisation aspects are addressed in Sects. 5
and 6. Finally, several numerical examples are given inSect. 7
to test our approach in problems with increasing complexity.
Let us first remark that, differently from most works on two-
phase flow simulation, ours does not intend to address the
challenges related to interface conditions, jumps, forces, etc.
We focus instead on the time-splitting aspect of the problem,
that is, on showing how one can construct simple, mini-
mally invasive, finite-element-suitable schemes to decouple
all system unknowns in time, without sacrificing bound-
ary accuracy or inducing inf-sup compatibility restrictions.
For this reason, we focus on gravity-driven flow regimes
in which surface forces can be neglected. How one han-
dles interface-related matters, however, is immaterial to the
present discussion, as different techniques can be incorpo-
rated straightforwardly.

2 Problem setup and notation

Let us consider a spatial domain � ⊂ Rd , d = 2 or 3, with
a Lipschitz boundary � := ∂� decomposed into three non-
overlapping regions �D , �N and �S . On the first two we
prescribe velocities and normal tractions, respectively, while
the latter describes a free slip boundary. Imposing slip or free-
slip conditions is important in multi-phase flows to allow
“wetting”, since a standard no-slip condition would pre-
clude fluid-fluid interfaces from moving along walls. Under
these conditions, the standard setting for the incompressible
Navier–Stokes system with non-constant density reads

∂tρ + u · ∇ρ = 0 in � × (0, T ] , (1)

ρ
[
∂tu + (∇u)u − g

]− ∇ · S + ∇ p = 0 in � × (0, T ] ,

(2)

∇ · u = 0 in � × (0, T ] , (3)

equipped with initial and boundary conditions

ρ = ρ0 at t = 0 , (4)

u = u0 at t = 0, (5)

ρ = � on �in(t), t ∈ (0, T ] , (6)

u = v on �D × (0, T ] , (7)

Sn − pn = t on �N × (0, T ] , (8)

u · n = 0 on �S × (0, T ] , (9)

n × (Sn) = 0 on �S × (0, T ] , (10)
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where n is the outward unit normal vector on ∂�, (ρ0, u0, �,

v, t) are appropriate data, g denotes a gravitational field,
(u, p, ρ) are the flow velocity, pressure and density, respec-
tively, and S is the viscous stress tensor, which for Newtonian
fluids takes the form

S = 2μ∇su, ∇su := 1

2

[
∇u + (∇u)�

]
, (11)

withμ := ρν and ν denoting the dynamic and kinematic vis-
cosities, respectively. The free-slip condition can be replaced
by a slip condition if we appropriately modify the right-hand
side in (10), see for instance Refs. [31,32]. Also note that
(10) can be written in terms of tangent vectors [33]. Since
the mass equation (1) is hyperbolic, boundary conditions for
ρ are only prescribed on �in, which is the part of ∂� where
u · n < 0.

3 A consistent pressure Poisson
reformulation

Regardless of the spatial discretisation method used, effi-
ciently solving (1)–(10) in a fully coupled way is a challeng-
ing task. However, because of the saddle-point structure of
the velocity-pressure subsystem, decoupling the unknowns
is not straightforward here. Such structure also induces an
inf-sup or Ladyzhenskaya–Babuška–Brezzi (LBB) compat-
ibility restriction when discretising p and u with finite
elements [25,26]. To overcome both limitations, our idea is
to replace the incompressibility constraint (3) by a consistent
pressure Poisson problem:

− ∇ ·
[
ρ−1∇ p + (∇u)u − g − ρ−1∇ · S + χν∇(∇ · u)

]

+ β∇ · u = 0 in � × [0, T ] , (12)

p = ζ on �N × [0, T ] , (13)

∂ p

∂n
= λ on �D,S × [0, T ] , (14)

in which �D,S := �D ∪ �S ,
∂(·)
∂n := n · ∇(·), β is a non-

negative parameter to be defined later (see Sect. 5.2), and

ζ := S : (n ⊗ n) − 2μ∇ · u − t · n
= 2μ∇su : (n ⊗ n − I) − t · n , (15)

λ := [ρg − ρ∂tv − (ρ∇u)u + ∇ · S − χμ∇(∇ · u)
] · n ,

(16)

with v ·n = 0 on �S and I denoting the d×d identity tensor.
Parameterχ in Eqs. (12) and (16) is a positive constant which
we will later show that should be set as χ = 2.

It is still not evident why (12)–(16) would be a suitable
replacement for the usual condition ∇ · u = 0, but for now

let us take a closer look at the equations. Equation (12) can
be obtained by adding χμ∇(∇ · u) to the left-hand side of
Eq. (2), dividing both sides by ρ, takingminus the divergence
of the result and finally adding β∇ · u to the left-hand side.
Both added terms are consistent with the original system,
whose solution u is divergence-free. The absence of ∂tu in
Eq. (12) is also consistent, as

∇ · (∂tu) = ∂t (∇ · u) = 0 .

Moreover, the Neumann boundary condition (14,16) for the
pressure is, up to an additional χμ∇(∇ · u), simply the
momentum equation projected onto the normal direction n
and restricted to �D,S . The Dirichlet boundary condition
(13,15) for the pressure can be obtained by dotting the trac-
tion boundary condition (8) with n and subtracting 2μ∇ · u
from the left-hand side, which is again consistent. The reason
for the added terms will become clear soon, as we show the
equivalence between the standard Navier–Stokes system and
the PPE-modified one.

The first side of the equivalence, i.e., that (12)–(16) can be
derived from the momentum-incompressibility system, has
just been outlined. Slightly more involved will be proving
the other side of the equivalence: does the pressure Pois-
son problem, combined with the momentum equation, imply
incompressibility? To show that, we divide Eq. (2) by ρ,
apply the divergence and add the result to the PPE (12). This
leaves us with

β∇ · u − ∇ · [χν∇(∇ · u) − ∂tu] = 0 ,

or, by introducing ϕ := ∇ · u, with the convection-diffusion-
reaction equation

∂tϕ − ∇ · (χν∇ϕ) + βϕ = 0 . (17)

What is missing now are boundary and initial conditions for
this equation. Neumann data can be obtained by dotting (2)
with n, restricting the result to �D,S and then subtracting
(14), which gives χμn · ∇(∇ · u) = 0, that is,

∂ϕ

∂n
= 0 on �D,S , (18)

since χμ �= 0. Similarly, to get Dirichlet data for ϕ we mul-
tiply the traction boundary condition (8) by n and add the
result to (13), yielding 2μ∇ · u = 0, or simply

ϕ = 0 on �N . (19)

Thus,with zeroDirichlet andNeumann boundary conditions,
and provided that

ϕ0 := ∇ · u0 = 0 , (20)
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the partial differential equation (17) has ϕ ≡ 0 as its unique
solution, that is, ∇ · u = 0 in � × [0, T ], as we wanted to
show.

In summary, combining the momentum equation (2) with
the pressure Poisson problem (12)–(16) implies incompress-
ibility without the need to enforce ∇ · u = 0 explicitly or
to project u onto a divergence-free space. The main advan-
tage of this PPE-based reformulation is that we now have an
invertible operator for the pressure, as opposed to the original
saddle-point structure. From the spatial discretisation stand-
point, this eliminates the LBB compatibility restriction and
allows equal-order finite element spaces [30]. For the tem-
poral discretisation, the PPE gives us an invertible equation
to compute p from (ρ, u) without resorting to the artificial
boundary conditions typical of projection methods.

The pressure Poisson equation, as presented in (12), has
third-order derivatives on the velocity. Fortunately, we can
eliminate them by using certain identities. Notice that

∇ · [ρ−1∇ · S − χν∇(∇ · u)
]

= ∇ · [ν(u + ∇(∇ · u)) + 2ρ−1∇su∇μ − χν∇(∇ · u)
]
.

The vector Laplacian u obeys the identity u ≡ ∇(∇ ·
u) − ∇ × (∇ × u), so that

∇ · [ρ−1∇ · S − χν∇(∇ · u)
]

= ∇ ·
[
2

ρ
∇su∇μ − ν∇ × (∇ × u) + (2 − χ)ν∇(∇ · u)

]
.

Now, by choosing χ = 2, we can get rid of the third-order
derivatives:

∇ · [ρ−1∇ · S − 2ν∇(∇ · u)
]

= ∇ ·
[
2

ρ
∇su∇μ − ν∇ × (∇ × u)

]
(21)

= ∇ ·
(
2

ρ
∇su∇μ

)
− ∇ν · (∇ × ∇ × u) − ν∇ · (∇ × ∇ × u)

= ∇ ·
(
2

ρ
∇su∇μ

)
− ∇ν · (∇ × ∇ × u) , (22)

since ∇ · (∇ × v) = 0 for any vector v. We are then left with
only first- and second-order derivatives in (22). Now, the
purpose of the χν∇(∇ ·u) term artificially (but consistently)
added in Eq. (12) becomes clear, and it is in fact twofold: it
adds diffusion to the divergence equation (17) and allows us
to eliminate the third-order derivatives in the PPE by simply
setting χ = 2. Although both consistency and incompress-
ibility hold for any χ > 0, this is not intended here as a
tunable parameter. We could in principle choose χ �= 2,
but this would only leave us with unnecessary higher-order
derivatives. Sinceχ features only in the PPE, it adds no diffu-
sion to the momentum equation, but only to Eq. (17), whose
unique solution is ∇ · u = ϕ ≡ 0 for any positive χ .

4 Weak pressure Poisson formulation

The second-order velocity derivatives in (22) cannot be han-
dled by standard Lagrangian finite elements, so we need
a weak formulation containing only first-order derivatives.
This is not straightforward, and in fact Li et al. [13] used
finite differences to evaluate the higher-order derivatives at
the nodal points, then interpolated those values in a contin-
uous source term—which is hardly practical in unstructured
meshes. To allow a more general approach suitable for C0

finite elements in arbitrary meshes, we will next show how
to reduce the order of differentiation, starting from (21) and
using some vector calculus relations.

We first multiply the PPE (12) by a continuous test func-
tion q with zero value on �N . Then, we integrate by parts
all terms but β∇ · u, and enforce the Neumann boundary
condition (14) to get

∫

�

ρ−1∇ p · ∇q d�

= −
∫

�D

q∂t (n · v) d� −
∫

�

qβ∇ · u d�

+
∫

�

∇q ·
[
g − (∇u)u + 2ρ−1∇su∇μ

− ν∇ × (∇ × u)
]
d�,

where we can further use integration by parts to write

∫

�

∇q · [ν∇ × (∇ × u)] d�

=
∫

�

∇ × (ν∇q) · (∇ × u) d�

+
∫

�

(∇q × n) · (ν∇ × u) d�, (23)

but

∇ × (ν∇q) = ∇ν × ∇q + ν ∇ × (∇q)
︸ ︷︷ ︸

≡ 0

= ∇ν × ∇q (24)

and

− (∇ν × ∇q) · (∇ × u) ≡ −∇q · [(∇ × u) × ∇ν]

≡ ∇q ·
{[

(∇u)� − ∇u
]
∇ν
}

. (25)

Moreover,

2ρ−1∇su∇μ = 2ρ−1∇su(ρ∇ν + ν∇ρ)

= 2νρ−1∇su∇ρ +
[
(∇u)� + ∇u

]
∇ν .

(26)
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Therefore, collecting the results from (23)–(26), we arrive at
a weak formulation: find p satisfying the Dirichlet condition
p = ζ on �N (13), such that

∫

�

ρ−1∇ p · ∇q d�

=
∫

�

(n × ∇q) · (ν∇ × u) d� −
∫

�D

q∂t (n · v) d�

−
∫

�

qβ∇ · u d� +
∫

�

∇q

·
[
g − (∇u)u + 2νρ−1∇su∇ρ + 2(∇u)�∇ν

]
d�

(27)

for all test functions q being zero on �N . Now that we are
left with only first-order derivatives, C0 finite elements can
be used to discretise all unknowns and test functions.

5 Discretisation

This section will address discretisation aspects in both space
and time. Althoughwe focus on finite elements for the spatial
discretisation, the fractional-step schemes presented here are
also valid for other frameworks such as finite differences and
finite volumes.

5.1 Temporal discretisation

As usual in split-step methods, we employ backward dif-
ferentiation formulas (BDFs) to approximate the temporal
derivatives, combined with matching extrapolation rules for
linearisation. The idea is to have iteration-free schemes
completely decoupling velocity, pressure and density. For
concision, we shall limit the presentation to first- and
second-order temporal discretisations, but the schemes can
be straightforwardly extended to higher-order versions with
possibly adaptive stepping (see Ref. [30] for details).

Let t > 0 be a finite time-step size and υn denote a
certain quantity υ at time t = tn . For the first-order case, the
backward finite difference BDF1 and corresponding extrap-
olation read:

∂tυ|t=tn ≈ 1

t
(υn − υn−1), υn ≈ υ̂n = υn−1 , (28)

whereas to go one order higher we use BDF2:

∂tυ|t=tn ≈ 1

t

(
3

2
υn − 2υn−1 + 1

2
υn−2

)
,

υn ≈ υ̂n = 2υn−1 − υn−2 . (29)

For the mass equation, this results in

ρn+1 + tun · ∇ρn+1 = ρn (30)

for BDF1, or

3

2
ρn+1 + t(2un − un−1) · ∇ρn+1 = 2ρn − 1

2
ρn−1 (31)

for BDF2. Either way, we are left with a linear partial differ-
ential equation that still needs to be discretised in space.

5.2 Spatial discretisation

It iswell-known that theGalerkinfinite elementmethod, in its
standard form, is not ideal for problems with low or zero dif-
fusion, such as (30) or (31). Therefore,when solving themass
transport, it is common practice to employ residual-based
[32,34] or entropy [11] stabilisation techniques. However,
we can leverage the absence of second-order derivatives to
use a least-squares (instead of Galerkin) finite element for-
mulation, as done by Pyo and Shen [10]. For an equation of
the form

L(u) := αu + v · ∇u = f , (32)

it consists of seeking u ∈ X fulfilling inflow conditions, such
that
∫

�

L(u)L(v) d� =
∫

�

f L(v) d� for all v ∈ X , (33)

with X being an appropriate finite element space. The least-
squares finite element method is suitable for hyperbolic
problemswithout requiring stabilisation terms or tunable fac-
tors. The other two equations in our system—momentum
and pressure Poisson—on the other hand, can be tackled by
a standard Galerkin finite element discretisation. Yet, some
stabilisation may be required for high-Reynolds flows, as
addressed in Sect. 6.4.

For concision, we shall state the weak momentum equa-
tion considering �S = ∅; details on the implementation
of (free-)slip conditions can be found for instance in Refs.
[31,35]. The following sets are considered:

Wk
v :=

{
w ∈

[
Skh(�h)

]d : w = vh on �D

}
,

Ql
ζ :=

{
q ∈ Slh(�h) : q = ζh on �N

}
,

Rm
� := {r ∈ Smh (�h) : r = �h on �in

}
,

where subscript h denotes the finite element interpolation
of a certain quantity or geometry, and Skh(�h) denotes the
standard space of continuous, piecewise polynomial shape
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functions of degree k in the triangulation of �h . Notice that,
in general, we will formally have Rm

� (t), since the inflow
boundary depends instantly and locally on n · u(t).

Another discretisation-related matter to be discussed is
the choice of the weighting parameter β in the pressure Pois-
son equation (27). On the continuous level, all we need is
β ≥ 0 to guarantee incompressibility, otherwise a negative
β could spoil the unique solvability of (17) with non-zero
eigenmodes of ϕ = ∇ · u. On the discrete level, however,
β should be chosen appropriately if optimal convergence is
desired. First, notice that the term β∇ · u penalises large
violations of discrete incompressibility, so that β works as
a penalty-like parameter. While Li [36] proposed an expres-
sion based solely on the spatial resolution, Pacheco et al.
[37] showed that in fact β can be taken as the inverse of the
well-known PSPG parameter:

β = 1

τPSPG
=
√
(α1ν

h2

)2 +
(

α2|u|
h

)2

+
( α3

t

)2
, (34)

in which h denotes the element size and (α1, α2, α3) are tun-
able parameters. For stationary problems we take α3 = 0,
whereas α1 = α2 = 0 when using LBB-compatible spaces
(e.g. Taylor–Hood elements). To reduce the number of user-
defined parameters, we set

β = α

√√
√√δkl

[(
4ν

h2

)2

+
(
2|u|
h

)2
]

+
(

2

t

)2

, (35)

where α is a single tunable parameter, k and l are the orders
of the velocity and pressure discretisations, respectively, and
δkl refers to the Kronecker delta.

5.3 The Dirichlet boundary condition for the
pressure

We now briefly discuss a technical issue involving the pres-
sure Dirichlet boundary condition (13). For problems with
�N �= ∅, we have

p = ζ := 2μ∇su : (n ⊗ n − I) − t · n on �N ,

where t is some given normal traction. Since on the discrete
level the stress tensor S = 2μ∇su will be discontinuous, so
will ζ across elements. This is an issue when using continu-
ous finite elements for the pressure, but there are variousways
to circumvent that. The most common approach is to project
ζ (in the L2(�N ) sense) onto a continuous space [4,29,30].
Another possibility is to notice that, although n can be dis-
continuous on non-planar surfaces, outflow boundaries are
normally generated by truncating a larger physical domain,

so that each outlet portion of the computational domain is pla-
nar. That being the case, the tangential projector (n⊗ n− I)

will be constant—or piecewise constant, if there are multiple
outlets—so that we could simply perform an L2(�) projec-
tion of S onto a continuous finite element space. An L2(�)

projection is simpler than an L2(�N ) projection, but also
more expensive. Yet, we can pre-compute and store the LDL
decomposition of the mass matrix used in the projection, or
even lump it [30]. As we will soon see, projecting the stress
tensor may also be useful in other parts of the solver. It is
also possible to compute nodal values by simply averaging
ζ on the boundary patch surrounding each node, although
we have not tested this option. Regardless of the approach
used, we shall henceforth consider that a continuous value ζ̃

is used.

6 Fractional-step schemes

The main strength of split-step methods is decoupling pres-
sure from velocity. With PPE-based schemes, the idea is to
march in time by first computing the current velocity from
previous pressures, then using the updated velocity (and den-
sity) to compute the current pressure, and so on for the next
steps. To do that, the pressure term in the momentum equa-
tion is treated explicitly. On the other hand, when updating
the pressurewe can treat all terms implicitly in the PPE, since
both the current velocity and the current density will already
be known at that point.

6.1 Initialisation

In general, the incompressible Navier–Stokes system is not
equipped with initial conditions for the pressure. This can
be an issue depending on the temporal discretisation consid-
ered, as discussed for instance by Rang [38]. In the pressure
Poisson framework, on the other hand, we naturally compute
this initial value by seeking p0 ∈ Ql

ζ̃0
such that

∫

�

1

ρ0
∇ p0 · ∇q d�

=
∫

�

(n × ∇q) · (ν0∇ × u0) d�

−
∫

�D

q∂t (n · u0) d� −
∫

�

qβ0∇ · u0 d� +
∫

�

∇q

·
[
g0 − (∇u0)u0 + 2ν0

ρ0
∇su0∇ρ0 + 2(∇u0)�∇ν0

]
d�

(36)

for all q ∈ Ql
0. This is why it is crucial, in deriving the PPE,

to divide the momentum equation by ρ before taking the
divergence. If we were to apply∇· directly to the momentum
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equation, the transient term would result in

∇ · (ρ∂tu) = ρ∂t (∇ · u) + ∂tu · ∇ρ = ∂tu · ∇ρ �≡ 0 ,

instead of ∇ · (∂tu) = ∂t (∇ · u) ≡ 0. Consequently, the
integral on �D in Eq. (36) would be replaced by a volume
integral depending on the acceleration ∂tu. In that case, ini-
tialising the time-marching would not be straightforward,
since the initial acceleration is not given for flow equations.
That would require using a forward discretisation of ∂tu,
resulting in an implicit step. Our formulation, on the other
hand, requires only the time derivative of the normal data
v · n on �D , which may sound similar to the situation just
described, yet is fundamentally different. Since v is given,
its time derivative is either known exactly (e.g. when artifi-
cially ramping up inflow data), or can be approximated by a
forward finite difference—which does not lead to an implicit
coupling, since v·n is known a priori at all times. This discus-
sion is applicable also to the initial-boundary value problem
in strong form, hence it holds regardless of the spatial dis-
cretisation. Thus, using only given quantities, we are able to
compute p0 and start marching in time.

6.2 First-order stepping

As mentioned in Sect. 5.1, our first-order stepping combines
BDF1 with linear extrapolation (un+1 ≈ ûn+1 = un and
pn+1 ≈ p̂n+1 = pn). Given (ρn, un, pn), we march in time
by executing the following steps:

1. Convective step
Find ρn+1 ∈ Rm

�n+1
such that

∫

�

(r + tun · ∇r) (ρn+1 + tun · ∇ρn+1 − ρn) d� = 0

(37)

for all r ∈ Rm
0 .

2. Viscosity update
Compute νn+1 based on the updated phase distribution
described by ρn+1.

3. Velocity update
Find un+1 ∈ Wk

vn+1
such that

∫

�

ρn+1

{
w · [(∇un+1)un

]+ 1

t
w · un+1

+2νn+1∇sun+1 : ∇sw

}
d�

=
∫

�

pn∇ · w d� +
∫

�

ρn+1w ·
(

1

t
un + gn+1

)
d�

+
∫

�N

w · tn+1 d� (38)

for all w ∈ Wk
0 .

4. Pressure Poisson step
Find pn+1 ∈ Ql

ζ̃n+1
such that

∫

�

1

ρn+1
∇ pn+1 · ∇q d�

=
∫

�

(n × ∇q) · (νn+1∇ × un+1) d�

−
∫

�D

q∂t (n · vn+1) d� −
∫

�

qβn+1∇ · un+1 d�

+
∫

�

∇q ·
[
gn+1 − (∇un+1)un+1

+2νn+1

ρn+1
∇sun+1∇ρn+1 + 2(∇un+1)

�∇νn+1

]
d�

(39)

for all q ∈ Ql
0.

6.3 Second-order stepping

Our second-order scheme combines BDF2 with linear
extrapolation (un+1 ≈ ûn+1 = 2un − un−1 and pn+1 ≈
p̂n+1 = 2pn − pn−1). Therefore, initialisation requires, for
example, using a first-order step to compute (ρ1, u1, p1).
Then, we canmarch in time by executing the following steps:

1. Convective step
Find ρn+1 ∈ Rm

�n+1
such that

∫

�

(
3r + 2t ûn+1 · ∇r

) (
3ρn+1 + 2t ûn+1

· ∇ρn+1 − 4ρn + ρn−1
)
d� = 0 (40)

for all r ∈ Rm
0 .

2. Viscosity update
Compute νn+1 based on the updated phase distribution
described by ρn+1.

3. Velocity update
Find un+1 ∈ Wk

vn+1
such that

∫

�

ρn+1

{
w · [(∇un+1)ûn+1

]+ 3

2t
w · un+1

+2νn+1∇sun+1 : ∇w

}
d�

=
∫

�

p̂n+1∇ · w d� +
∫

�

ρn+1w

·
(

2

t
un − 1

2t
un−1 + gn+1

)
d� +

∫

�N

w · tn+1 d�

(41)

for all w ∈ Wk
0 .
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4. Pressure Poisson step
Find pn+1 ∈ Ql

ζ̃n+1
such that Eq. (39) holds for all q ∈

Ql
0.

In both schemes, the pressurePoisson step is fully implicit,
that is, the current pressure is computed directly from the
current velocity and density fields. Similarly, there is no need
to extrapolate the density when updating the velocity, since
we already know ρn+1 when computing un+1. If the order
of the steps is inverted, with u updated before ρ, we need to
replace ρn+1 by ρ̂n+1 in the velocity step, but on the other
hand ûn+1 could be replaced by un+1 in the convective step.

6.4 Convection-dominated flows

At high Reynolds numbers, the Galerkin finite element
approximation of the momentum balance suffers from con-
vective instabilities, unless a very finemesh is used. A simple
remedy for that is the streamline upwind/Petrov–Galerkin
(SUPG) stabilisation. On the other hand, dominant convec-
tion also means that we can treat the viscous term explicitly
(or semi-implicitly) without incurring a parabolic time-step
restriction [28]. In theweak form of themomentum equation,
the viscous term reads

∫

�

2μ∇su : ∇sw d� =
∫

�

μ∇u : ∇w d�

+
∫

�

μ∇u : (∇w)� d� .

The last term has a coupling effect over the velocity com-
ponents, so that treating it explicitly decouples the velocity
update step into d scalar convection-diffusion equations (see
Ref. [30] for details). This reduces computational costs and
allows us to apply SUPG individually to each of the scalar
equations [39]. Let us, for concision, write the i th component
of u at t = tn+1 as ui , and υ̂n+1 as υ̂ for any extrapo-
lated quantity υ. In that case, our semi-discretised balance of
momentum in the xi direction reads

α0ρu
i + ρ û · ∇ui − ∇ · (ρν∇ui )

= ∇ ·
(

ρν
∂ û
∂xi

)
+

:= fi︷ ︸︸ ︷

ρgi − ∂ p̂

∂xi
−

m∑

j=1

α jρu
i
n+ j−1 , (42)

with α j denoting the coefficients of the finite difference dis-
cretisation (α0 = −α1 = 1/t for BDF1 or α2 = −α1/4 =
α0/3 = 0.5/t for BDF2). For the SUPG method, we add
to the left-hand side of the weak momentum equation the

nonlinear form

Ne∑

e=1

∫

�e

{
τSUPGρ û · ∇w

} {
α0ρu

i + ρ û · ∇ui − ∇ ·
[
ρν

(
∇ui + ∂ û

∂xi

)]
− fi

}
d�, (43)

where τSUPG is amesh-dependent parameter andw is a scalar
test function. Notice that this stabilisation is in general con-
sistent, as the added term is proportional to the residual of
Eq. (42). However, this is not the case when using linear
elements, which are unable to approximate the second-order
derivatives in the viscous term. Although this is in principle
not an issue for stability, the missing terms may lead to inac-
curacyonflowregionswhere diffusiondominates. Therefore,
for first-order elements we propose replacing (43) by

Ne∑

e=1

∫

�e

(
τSUPGρ û · ∇w

)

⎛

⎝α0ρu
i + ρ û · ∇ui −

d∑

j=1

∂ Ŝi j
∂x j

− fi

⎞

⎠ d�, (44)

where Ŝi j denotes the components of the L2(�) projection
of the viscous stress tensor S onto a continuous finite element
space. In other words, we find Ŝi j ∈ Xh such that

∫

�

Ŝi jσ d� =
∫

�

(
∂ ûi

∂x j
+ ∂ û j

∂xi

)
ρνσ d�

for all σ ∈ Xh , in which Xh can be taken, for instance, as the
pressure finite element space (without boundary conditions).
Projecting the viscous stress tensor onto a continuous finite
element space is also usual in certain stabilisation [40,41]
and projection methods [3]. Since S is symmetric, the “cost”
of this projection are d(d + 1)/2 scalar mass-matrix sys-
tems, but there are two simple ways to basically eliminate
the overhead. One is to store the LDL decomposition of the
mass matrix during initialisation and re-use it for all time
steps; alternatively, the mass matrix can be lumped, which is
our approach herein. As for the stabilisation parameter, we
use

τSUPG =
(
2ρ|û|
h

+ ρα0 + 4ρν

h2

)−1

,

which is simply one among several possibilities [42].
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7 Numerical examples

In this section, we assess the accuracy of our fractional-step
framework through test cases with increasing complexity.
One of the main advantages of our approach with respect to
projection methods is allowing equal-order interpolation of
all unknowns. Regarding the velocity-pressure pairing, we
consider linear-linear (P1P1) and Taylor–Hood (P2P1) tri-
angular elements; for numerical exampleswith other element
classes, including three-dimensional ones, refer to our recent
work on split-step schemes for non-Newtonian flows [30]. In
all examples, a first-order discretisation (P1) is used for the
density.

7.1 Manufactured solution

We start with a simple problem having an analytical solution
and a pure Dirichlet boundary. In the square domain � =
(0, 1)2, we consider the flow described by

p = (2 − 2x) f (t), u =
(
u(y) f (t)

0

)
,

ρ = f (t)ex/u(y), g =
(−u(y) f 2(t)

0

)
,

in which f (t) = (1+ t)−1 and u(y) = 1+ y− y2. The accu-
racy of the first-order (P1P1P1, BDF1) and second-order
(P2P1P1, BDF2) schemes is assessed through the spatial
error at t = T = 1. Divergence penalty is not used in this
example, i.e., we set β = 0 in the PPE. The velocity error
is measured in the relative H1(�) semi-norm, whereas for
pressure and density we use the relative L2(�) norm. Start-
ing with a coarse orthogonal mesh of four triangles, seven
levels of uniform spatial refinement are applied, with the
time-step size also halved at each level via t = h/2. The
results of the convergence study are shown in Figure 1. As
expected, the first-order elements yield linear convergence,
whereas the Taylor–Hood elements converge quadratically
when combined with BDF2. Notice, however, that the exact
solution for this problem is smooth, so that optimal conver-
gence is attainablewith standarddiscretisations. Inflowswith
more than one phase, on the other hand, the spatial conver-
gencewill in general not be optimal unless velocity kinks and
possible pressure discontinuities are appropriately resolved
[7].

7.2 Rayleigh–Taylor instability

One of the most popular benchmarks for variable-density
flow solvers is the Rayleigh–Taylor instability with regu-
larised interface [5,43]. The standard setup considers two
fluids initially at rest in � = (0, a/2) × (−2a, 2a) and sub-

(a)

(b)

Fig. 1 Uniform refinement study considering triangular elements and
a problem with smooth exact solution

ject to g = (0,−g)�. Fluid 2 sits initially on top of fluid 1
and is denser (ρ2 > ρ1) but equally viscous (μ1 = μ2). The
initial transition is regularised via

ρ|t=0 = ρ2 + ρ1

2
+ ρ2 − ρ1

2
tanh

(
y − ι(x)

a/100

)
,

where ι(x) = −0.1a cos(2πx/a) describes the interface line
at t = 0. We nondimensionalise the problem through the
following referencequantities: ν1 for viscosity,ρ1 for density,
a for length and

√
ag for velocity, which gives us τ = √

a/g
as temporal scale. Then, the problem is fully parametrised
through the Reynolds and Atwood numbers:

Re = a
√
ag

ν1
and At =

∣∣∣∣
ρ2 − ρ1

ρ2 + ρ1

∣∣∣∣ ,
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Fig. 2 Rayleigh–Taylor
instability: density field at t/τ =
0, 1.40, 2.10, 2.45, 2.80, 3.15
and 3.50

Fig. 3 Rayleigh–Taylor instability: vertical position H of the rising
bubble, measured from the mid-height of the domain. The comparison
with previously reported numerical results [5,43] reveals very good
agreement

which are set as 1000 and 0.5, respectively. For the sim-
ulation, we use the first-order scheme with α = 0.01,
t = τ/1000 and a uniform mesh with 6.4× 105 elements.
No SUPG stabilisation is used, which is possible due to the
relatively fine mesh. The top and bottom walls are no-slip
boundaries, while symmetry is enforced on the sides.

Fig. 4 Dam break: height H of the water column on the left wall,
showing good agreement with other numerical [22] and experimental
[44] results

Figure 2 shows the density field for different time instants,
agreeing well with the results reported by Guermond and
Salgado [11] (mind that they use a different time scale τ̃ =
τ
√
At). For a quantitative comparison, Figure 3 shows how

the height H of the rising bubble evolves in time. Our results
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agree well with the simulations reported by Tryggvason [43]
and Guermond and Quartapelle [5].

7.3 Dam break

We now move to a more challenging setup involving air and
water. The dam break experiment by Martin and Moyce
[44] is a popular benchmark for two-phase [22,45] and
free-surface [46] flow simulations. This is a high-Reynolds,
gravity-driven flow and, as such, suits our application scope
very well. The setup considered by Landet et al. [22] con-
sists of a tank� = (0, 5a)×(0, 3a) containing a rectangular
water column (0, a) × (0, 2a) surrounded by air, initially at
rest, with free-slip walls and a = 57.15 mm. We set ρair =

3ρwater/2500 = 1.2 kg/m3 and νair = 15νwater = 1.5×10−5

m2/s as material properties, and g = (0,−9.81)� m/s2 for
gravity.

Due to the large density difference between air and water,
for this example we replace the explicit mass convection (1)
by the level-set equation

∂tφ + u · ∇φ = 0 ,

with φ being a signed distance function: φ > 0 corresponds
to air, φ < 0 to water, and φ = 0 to the interface. We can
therefore write

ρ = ρwater + ρair

2
+ ρair − ρwater

2
signφ ,

Fig. 5 Dam break: velocity
norm and density field at
t
√
g/a ≈ 0.5, 1.5, 2.5 and 3.2
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(a) Initial phase distribution with ρ3 > ρ2 > ρ1 and uniform ν.

(b) Grid used for both P 2P1P1 and P 1P1P1 discretisations.

Fig. 6 Three-phase channel flow: setup and grid

and analogously for the kinematic viscosity. Since both ∇ρ

and ∇ν appear in the PPE (27), it is useful to regularise
the discontinuity. A common approach is to replace the sign
function by a hyperbolic tangent [47], which is also done for
this example:

ρ = ρwater + ρair

2
+ ρair − ρwater

2
tanh kφ , k = 103 .

An excellent discussion on different variants of the level-set
method is provided by Olsson and Kreiss [48]. Most impor-
tantly, our formulation remains consistent regardless of how
the density is treated, as the PPE is derived solely from the
momentum equation.

To handle the dominant convection, especially in the
aerodynamic flow, we also use SUPG stabilisation. The

discretisation is again first-order, with 3×105 triangular ele-
ments and t = 10−4 s. The main benchmark quantity here
is the temporal evolution of the water column’s height, H .
We compare our solution to the measurements byMartin and
Moyce [44] and the numerical results by Touré et al. [45],
who used a modified level-set method with corrected mass
conservation. As shown in Figure 4, all three results are in
very good agreement.

To illustrate the complex flow emerging from this simple
example, we show in Figure 5 the Euclidian norm of the
velocity field for different instants in time. The downward
motion of the water column “propels” the air upwards and, as
the air goes past the column’s corner, a vortex is created as in a
backward-facing step flow. As the water column keeps going
down, two adjacent air vortices can be seen. We also observe
smaller vortices around the water surge front as it shoots
upwards after meeting the right wall. In the same figure, the
density plot reveals quite a sharp interface, in spite of the
regularisation.

7.4 Three-phase channel flow

As our last test case, we investigate a three-phase flow in
the straight channel � = (0, L) × (0, H). The three fluids
are initially at rest, stacked up as illustrated in Figure 6 (a).
They all have the same kinematic viscosity ν, but different
dynamic viscosities since ρ3 = 1.5ρ2 = 3ρ1 = 1.5. For
a constant pressure gradient ∂ p

∂x = k, we can calculate the
analytical solution for the stationary Poiseuille-like profile:

u(y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

kH2

2μ3

[( y
H

)2 − γ
4

( y
H

)]
, for 0 ≤ y ≤ H

4
(1−γ )kH2

32μ3
+ kH2

2μ2

·
[( y

H

)2 − γ
4

( y
H

)+ (γ−1)
16

]
, for H

4 ≤ y ≤ H
2

(1−γ )kH2

32μ3
+ (3−γ )kH2

32μ2
+ kH2

2μ1

·
[( y

H

)2 − γ
4

( y
H

)+ (γ−2)
8

]
, for H

2 ≤ y ≤ H

in which

γ = μ1μ2 + 3μ1μ3 + 12μ2μ3

μ1μ2 + μ1μ3 + 2μ2μ3
.

For concision, we omit the derivation, but it can be done in
the standard way: solving the stationarymomentum equation
and enforcing continuity of velocities and viscous stresses at
the interfaces.

The main idea with this example is to illustrate how the
penalty-like term β∇ · u (cf. Eq. (12)) can improve mass
conservation on the discrete level. For this, we consider a
test case with prescribed inflow, but an open outflow. When
reaching a stationary solution,wewould ideally like to see the
same profile on the open outlet (x = L) as the one prescribed
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on the inlet (x = 0). So, we enforce the inflow profile u =
(u(y) f (t), 0)�, with

f (t) = 1

2

[
1 − sign

(∣∣2t − t�
∣∣− t�

)]
sin2

(
π t

2t�

)

+ 1

2

[
1 + sign(t − t�)

]

ramping up smoothly from zero (for t ≤ 0) to unit value
(for t ≥ t�). For the density, the inlet boundary condition is
constant in time, obeying the initial phase distribution.

Since prescribing zero (or constant) normal traction t does
not allow reproducing a developed flow, we swap the traction
boundary condition (8) by a pseudo-traction condition on the
outflow boundary:

(μ∇u)n − pn = t̃ ,

with t̃ being some normal pseudo-traction data, usually taken
as zero inflowswith one single outlet. Tonaturally impose the
pseudo-traction, we switch from a stress-divergence formu-
lation of the momentum equation to a generalised Laplacian
approach [49]. In that case, the Dirichlet value (15) for the
pressure has to be slightly adapted:

p = μ∇us : (n ⊗ n − I) − t̃ · n on �N .

Details on outflow boundary conditions and the generalised
Laplacian formulation can be found in Refs. [30,49]. Then,
by setting t̃ = 0, g = 0, T = 2.5t� = 1, L = H = 1, ν = 1
and k = −1, we have the complete problem setup.

Fig. 7 Three-phase channel
flow: solutions obtained with
(α > 0) and without (α = 0)
divergence penalty. The density
field, on the right, shows no
remarkable differences between
all the schemes. On the left, the
(prescribed) inflow and
(computed) outflow profiles,
normalised by
ū := |0.5kH2/μ1|, showcase
the improved mass conservation
for α = 0.002 in the first-order
scheme
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Fig. 8 Three-phase channel flow: how the divergence error and the
density under- and overshoot are affected by the divergence penalty
parameter α, using P1P1P1 elements

For the temporal discretisation, this time we use BDF2
with t = 0.02. If the interfaces were to lie completely on
grid lines, the velocity kinks would be resolved by the spatial
discretisation; to avoid that and be more realistic, we use the
non-orthogonal mesh shown in Figure 6 (b). The first two test
cases employ P2P1P1 and P1P1P1 elements, respectively,
without any divergence penalty (α = 0, cf.Eq. (35)), whereas
the third one has α = 0.002 and also first-order elements.

Figure 7 depicts the density field and the velocity profiles
at t = 1, when the developed steady-state solution is already
established. The density distribution is similar in all cases,
exhibiting interface oscillations due to the relatively coarse
mesh for a multi-phase flow. In spite of that, the velocity
profile shows no apparent oscillations. The plots reveal how
even a smallα can virtually eliminate themass loss otherwise
seen for the P1P1P1 elements, whereas the second-order dis-
cretisation shows no relevant loss even without any penalty.
We must remark, however, that finding a good value for α

requires some tuning: setting α too large can lead to instabil-
ity, by giving excessive weight to the velocity divergence in
comparison to the pressure-stabilising term −∇ · (ρ−1∇ p).
Figure 8 shows how α affects the divergence error and the
density over- and undershoot at t = T . The density results
show hardly any difference, as previously indicated in Figure
7. The divergence error, on the other hand, reduces by 34%
when we change α from 0 to 1.4 × 10−3. While sensitivity
analysis is out of the present scope, a detailed study on how
this parameter influences the accuracy of different quantities
is found in our previous work for single-phase flows [37].

8 Concluding remarks

In this work, we have devised, implemented and thoroughly
tested a consistent split-step framework for flows with non-
constant density and viscosity. Most splitting schemes for
multi-phase flows are based on pressure correction meth-
ods enforcing incompressibility via solenoidal projections.
Those methods are very efficient but have well-known short-
comings, such as numerical boundary layers and/or spatial
stability restrictions when using finite elements. Ourmethod,
on the other hand, is based on a consistent pressure-Poisson
reformulation of the Navier–Stokes system, thereby avoid-
ing those issues without incurring computational overhead.
Moreover, the method is minimally invasive: it decomposes
the variable-density Navier–Stokes system into simpler con-
vection, diffusion and convection-diffusion problems, and
the pressure Poisson step is consistent regardless of the
technique—if any—applied to handle discontinuities. No
spurious pressure boundary layers or finite element compat-
ibility restrictions are induced.

As a matter of fact, consistent PPE-based schemes have
recently been used in designing accurate, competitive solvers
for challenging applications such as non-Newtonian flows,
fluid–structure interaction and free-surface flows [30,36,50–
52]. Of course, a consistent pressure Poisson equation has a
more complex right-hand side than a Leray projection does,
but our analytical efforts in Sects. 3 and 4 ensure that this
complexity does not translate into an implementation over-
head. Indeed, in the end we get a weak formulation with the
exact same left-hand side as in classical projection methods
[5], and a right-hand side allowing standard finite element
spaces—mixed or equal-order. Althoughwe have focused on
finite elementmethods, our PPE-based system can be tackled
within basically any other framework. It is also straightfor-
ward to consider generalised Newtonian fluids, since our
equations already account for variable viscosity.

What our formulation does not improve on,with respect to
projectionmethods, is the pressure operator. In both cases we
have −∇ · (ρ−1∇ p), which is not optimal in the presence of
pressure discontinuities, as seen e.g. in surface tension mod-
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els. In particular, piecewise constant finite element spaces
are not allowed for the pressure, which is a recurring limita-
tion in split-stepmethods. To overcome that, we are currently
working on an ultra-weak reformulation of the problem, with
promising results so far [53].
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