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Abstract
Aluminum alloys are increasingly utilized as lightweightmaterials in the automobile industry due to their superior capability in
withstanding high mechanical loads. A significant challenge impeding the large-scale use of these alloys in high-performance
applications is the presence of manufacturing-induced, spatially varying porosity defects. In order to understand the impacts
of these defects on the macro-mechanical properties of cast alloys, multiscale simulations are often required. In this paper, we
introduce a computationally efficient reduced-order multiscale framework to simulate the behavior of metallic components
containing process-induced porosity under irreversible nonlinear deformations. In our approach, we start with a data com-
pression scheme that significantly reduces the number of unknown macroscale and microscale variables by agglomerating
close-by finite element nodes into a limited number of clusters. Then, we use deflation methods to project these variables into
a lower-dimensional space where the material’s elastoplastic behaviors are approximated. Finally, we solve for the unknown
variables and map them back to the original, high-dimensional space. We call our method deflated clustering analysis and
by comparing it to direct numerical simulations we demonstrate that it accurately captures macroscale deformations and
microscopic effective responses. To illustrate the effect of microscale pores on the macroscopic response of a cast compo-
nent, we conduct multi-scale simulations with spatially varying local heterogeneities that are modeled with a microstructure
characterization and reconstruction algorithm.

Keywords Alloys with manufacturing-induced porosity · Reduced-order multiscale modeling · Elastoplastic analysis ·
Porosity-oriented microstructure reconstruction · Spatially varying porosity

1 Introduction

Cast aluminum alloys are heavily used in industrial applica-
tions where they are typically subject to plastic deformation
to fully exploit their load-carrying capacity. These alloys
have a heterogeneous nature which is primarily due to
process-induced defects and variations. Pores are one of the
most critical defects in cast metals; they possess spatially
varyingmorphology and distribution (see Fig. 1) and are gen-
erally due to gas or shrinkage [1, 2]. Since pores considerably
impact the performance of cast alloys [3, 4], it is crucial to
quantify their effects on the mechanical performance of a
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macrostructure subject to path-dependent plastic deforma-
tions. This quantification is typically achieved via multiscale
simulations because pores are much smaller than cast com-
ponents. While classic multiscale simulations resolve all
the fine microstructural details, they are memory intensive
and computationally demanding. To address this issue, we
propose a computationally efficient reduce-order multiscale
model to simulate the elastoplastic behaviors of cast alloys
with process-induced, spatially varying porosity defects.
In our approach, we employ a clustering-based domain
decomposition that universally applies to macro- and micro-
domains to accelerate, respectively, high-fidelity calcula-
tion of macroscale deformations and effective microscopic
responses.

Traditional phenomenological material models [6, 7]
formulate the mean behavior of materials and fail to cap-
ture highly localized microstructure-dependent deforma-
tions. They are also problem- and material-dependent and
require calibration against experiments. These drawbacks
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Fig. 1 Spatial microstructure variations: An aluminumW-profile plate
manufactured via high pressure die casting [5]. The plate has more than
1300micro-pores whose spatial distribution andmorphology are recon-
structed from 3D X-ray tomography. This plate is used as a supportive

structure in automobiles and the existence of pores significantly impairs
its mechanical performance when subject to elastoplastic deformations.
To model the pore morphology, extremely fine mesh is needed in the
vicinity of pore boundaries

Fig. 2 Illustration of classic and proposed reduced-order multiscale
models: a First order computational homogenization via FE2 where
each macroscale material point is associated with a porous microstruc-
ture which spatially varies in realistic components. b The proposed
deflated clustering analyses (DCA)-basedmultiscalemodelwhere com-
putational efficiencies at both scales are significantly improvedvia a data

compression algorithm that agglomerates close-by nodes into clusters,
marked by different colors. In concurrent multiscale simulations, defor-
mation gradients (F) are passed down from macroscale to microscale,
and the homogenized stress (S) and tangent moduli (C) are passed back

can be overcome via computational homogenization which
is a well-established and popular method formultiscalemod-
eling that involves the solution of two (nested) boundary
value problems (BVPs) that characterize the macroscopic
and microscopic deformations. Assuming the characteris-
tic microstructural length-scale is much smaller than the
macrostructural size and load variability, each iteration of a
first-order homogenization scheme starts by calculating the
macroscopic deformation (gradient) tensor for everymaterial
point (aka integration or Gauss point) in the macrostructure.1

This tensor is then used to construct the BVP that formu-
lates the deformation of the unique microstructure assigned

1 Since only the first gradient of the macroscopic displacement field is
used, the method is called first order.

to the corresponding macroscale material point. Once the
microstructural BVPs are solved, the macroscopic stress ten-
sors are obtained by volume-averaging the corresponding
microstructural stress fields. This iterative process is con-
tinued until equilibrium is achieved at both scales. This
approach is also called FE2 if the finite element method
(FEM) is used to solve the BVPs at both scales, see Fig. 2a.

First-order homogenization scheme is a versatile strategy
to model the macroscopic mechanical response of non-
linear, multi-phase, multi-scale materials because it does not
place any constitutive assumption on the overall material
behavior at the microscale. However, it is computationally
expensive and hence not suitable for large macroscale sim-
ulations whose microstructures spatially vary and include
intricate details. In order to decrease computational costs
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while maintaining high accuracy and versatility, reduced-
order models (ROMs) are developed. ROMs typically strike
a balance between accuracy and cost by reducing the num-
ber of unknown variables and conducting offline simulations
that accelerate online calculations. Some notable ROMs are
based on the fast Fourier transformation (FFT) [8], spec-
tral methods [9], principle component analysis (PCA) [10],
proper generalized decomposition (PGD) [11], transforma-
tion field analysis (TFA) [12], nonuniform transformation
field analysis (NTFA) [13, 14], proper orthogonal decom-
position (POD) [15], and self-consistent clustering analysis
(SCA) [16–18].

The TFA method approximates the stress and strain field
as uniform in each phase of a heterogeneous microstructure.
The constituents are assumed as generalized standard mate-
rials [19] and the state of material points is defined by a
vector of internal state variables associated with dissipative
phenomena such as plasticity and damage. The evolution of
state variables is controlled by analytical functions which
involve thermodynamic forces and potentials [20]. TFA
reduces the number of state variables to achieve high effi-
ciency by expressing strain fields as a linear combination of
truncated uniform eigenstrains. The NTFA method extends
TFA by allowing each phase to possess spatially nonuniform
fields constructed from incompressible and orthonormal
eigenstrains. While the eigenstrains can be determined by
numerical simulations in an offline stage where character-
istic loads are applied on microstructures, a more efficient
approach is to select eigenstrains through the POD procedure
which considers the predetermined eigenstrains as a collec-
tion of samples. A small number of suitable eigenstrains can
be extracted by minimizing the difference between the pre-
recorded displacements and the ones constructed from the
samples.

The SCAmethod is a recent ROM that consists of two pri-
mary stages. In an offline stage, microstructures are loaded
with characteristic forces to determine the elastic responses
at each material point. Points with similar strain concen-
tration tensors are grouped into clusters where the stress
and strain fields are assumed uniform. Cluster-to-cluster
interactions are accounted for by the Green function in
the discretized Lippmann–Schwinger equation, which rep-
resents the influence of the stress in one cluster onto the
strain in another cluster. Since the online performance of the
discretized Lippmann–Schwinger equation depends on the
choice of reference materials, the isotropic linear elastic ref-
erence materials are corrected by a self-consistent scheme
in the online stage that incrementally updates the reference
material property to approximate the macroscopic modulus.

To reduce the computational costs related to the nested
multiscale computations, an alternative approach is to
develop decoupled methods [21]. In such methods, extensive
microscale simulations are computed beforehand via either

(single-scale) direct numerical simulation (DNS) or ROM,
and the computed effective stress and strain fields are related
by a surrogate model. The trained surrogate model works as
a data-driven microstructural constitutive law in the online
stage and provides homogenized responses to macroscale
inquiries [22]. The online computation does not need to trace
yield surfaces, nor does it require the nontrivial definition of
flow rules. Instead, it necessitates extensive numerical simu-
lations on variousmicrostructures with different deformation
paths to enable the surrogate model to learn the irreversible
and path-dependent plastic phenomena directly from simu-
lation data. In this approach, as most computational costs are
allocated at generating sample data in the offline stage, the
online computation is highly efficient since it only involves
simple inquiry on predefined mapping functions such as ker-
nel methods [23] and artificial neural networks (ANNs) [24,
25].

To quantitatively investigate the influence of porosity
defects on metal structure behaviors, pores have been incor-
porated into analysis models in many studies. Most analyses
are based on DNS or FE2 where pores are modeled with
either simplified shapes or actual morphologies obtained
from (non-destructive) inspections. For example, character-
istic pore geometries are reconstructed from high-resolution
tomography characterization in [26]. Their influence on
elastoplastic behaviors is estimated by DNS that directly
incorporates the reconstructed pore model in a microscale
unit cell. In [27], the morphology of cast pores is identi-
fied by light microscopy in a fatigue crack initiation study
where linear elastic studies via DNS are utilized to correlate
pore shapes with local stress concentrations. In [28], het-
erogeneously distributed cast pores are reconstructed from
a stack of microstructural serial images in a DNS-based
micromechanics model where local fields are significantly
influenced by pore geometrical features such as size, ori-
entation, and spatial arrangement. A significant challenge
of integrating actual pore morphology into analysis mod-
els is discretization or meshing: small and irregularly shaped
elements are generated in the vicinity of poreswhich substan-
tially increases element numbers, deteriorates mesh quality,
and slows solver convergence rate. An alternative strategy
is to simplify pore geometries to improve mesh quality and
reduce pore shape descriptors. For instance, spherical voids
are used in [29] to investigate the critical sizes of pores for
crack nucleation under dynamic loading conditions in an
additive manufactured nickel-based alloy where pores are
explicitly added to microstructural DNS models with vary-
ing size, location, and spatial proximity. Ellipsoid voids are
used in [30] where microstructural damage is propagated via
an adaptive multiscale model whose inter-scale coupling is
based on asymptotic homogenization in an FE2 framework.
In [31], an FE2-based sequential multiscale model is devel-
oped to consider the influence of cast porosity on the plastic
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behaviors of a nickel-based superalloy. In this study, pores
are approximated by intersecting three identical ellipsoids
at geometric centers to account for convex-concave geome-
tries, and the pore model is calibrated so that its volume and
sphericity are consistent with the actual pores observed by
X-ray.

Despite these advances to incorporate the influence of
micro-porosity defects on macro-structural performance, the
following research gaps exist:

• Previous studies are primarily based on single-scale DNS
or FE2. DNS with reconstructed pore morphologies often
has a slow convergence rate (due to fine meshes with ill-
shaped elements around the pores), and approaches based
on FE2 are generally memory intensive and computa-
tionally expensive. There is a need for a computationally
efficient porosity analysis model that efficiently quantifies
the effect of local heterogeneities on macroscale behavior.

• Most existing ROMs and surrogates require extensive
exploration of the deformation space to collect sufficient
samples in the offline stage when materials are subject
to irreversible plastic deformations (as in TFA, POD, and
ANN). Finding proper macro-constitutive equations and
calibrating them against experiments (as in NTFA) is quite
difficult. A new ROM which avoids these shortcomings is
needed.

• Most synthetic porosity models oversimplify pore mor-
phology. They are either two-dimensional (2D) or incorpo-
rate pore characteristics (especially its spatial distribution)
in a heuristic manner. A more realistic three-dimensional
(3D) porosity representation and analysis model is neces-
sary.

We propose a novel mechanistic multiscale ROM coined
as deflated clustering analysis (DCA) for simulating 3D
heterogeneous alloys subject to elastoplastic deformations.
The numerical advantages of DCA over classic multiscale
models are demonstrated in Fig. 2b, where simulations at
both macro- and micro- scales are accelerated by reduced
models by systematically agglomerating close-by nodes into
clusters. The proposed method projects solution variables
into a lower-dimensional space for nonlinear simulations. It
avoids extensive offline exploration and does not need empir-
ical constitutive equations. Our ROM reduces computational
costs bymore thanoneorder ofmagnitudewithout significant
accuracy loss. Additionally, we develop a porosity-oriented
microstructure characterization and reconstruction algorithm
to associate spatially varying microstructures with a macro-
component and, in turn, study the effects of porosity and its
spatial distribution on the component performance.

The remainder of the paper is organized as follows.
Section 2 reviews the first-order computational homogeniza-
tion theory which serves as the foundation of our accelerated

multiscale modeling approach. Section 3 describes the pro-
posed DCA framework which is augmented with a porosity-
oriented microstructure characterization and reconstruction
algorithm detailed in Sect. 4. In Sect. 5, the efficiency and
accuracy of our method are evaluated via a wide range of
numerical experiments. Conclusion and futureworks are pro-
vided in Sect. 6.

2 First-order computational homogenization

Computational homogenization aims to approximate the
effective response of a representative volume element (RVE)
of amicrostructure and assumes that different spatial scales in
a generic material can be identified and distinguished. More
specifically, this method presumes that each macroscopic
material point is associated with an RVE which satisfies the
scale separation principle. That is, the average size (lμ) of
material heterogeneities is much smaller than the character-
ize size of the RVE (lm) which is itself significantly smaller
than the characteristic length of the macrostructure (lM):

lμ << lm << lM (1)

where the subscripts ‘M’ and ‘m’ denote macroscale and
microscale. In this work, the scale separation assumption is
satisfied since the microscale pores are considerably smaller
than theRVEswhich aremuch smaller than cast components.

In what follows, vectors are written in bold lower case
while tensors are typed in bold uppercase.

2.1 Macroscale problem

In an infinitesimal deformation framework, if a macrostruc-
ture is in a quasi-static state, its equilibrium equation in the
weak form [32] reads as:

(2)

∫
�0M

[SM (X, t) : ∇0η − bMη]dV

−
∫

�0M

t̄Mηd A � 0 ∀η ∈ �

where SM(X, t) is the unknown macroscopic stress tensor at
a genericmacroscopicmaterial pointX and at any instance in
time t, bM and tM are, respectively, the given body force per
unit volume on the undeformed domain�0M and the external
traction force per unit area on the undeformed domain sur-
face �0M, η represents an admissible virtual displacement
field in the space of virtual displacement �, and ∇0 is the
gradient operator with respect to the reference configuration.
The symbol ‘:’ represents the double dot product in the tensor
notation, which denotes the contraction of a pair of repeated
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indices that appear in the same order of the two multiplying
tensors.

The equilibrium equation can bewritten in the strong form
as a BVP [32] as:

SM(X, t) · ∇0 + bM � 0 ∀X ∈ �0M (3)

uM(X, t) � uM ∀X ∈ �D
0M (4)

SM(X, t) · nM � tM ∀X ∈ �N
0M (5)

where uM indicates the unknown displacement variables, uM
is the prescribed displacement field on theDirichlet boundary
�D
0M, tM represents the surface traction over the Neumann

boundary�N
0M, and nM denotes the outward unit vector to the

boundary of the undeformed macrostructural domain �0M.

2.2 Microscale problem

The displacement field at the microscale is decomposed into
two parts [33]:

um(x, t) � [FM(X, t) − I](x − x0) + ũ(x, t) ∀x ∈ �0m

(6)

where um(x, t) indicates the unknown displacement at an
arbitrary point x in a microstructure at time t, FM(X, t) is
the macroscopic deformation gradient at the macroscopic
pointXwhich corresponds to themicrostructure�0m, I is the
identitymatrix, and x0 represents an arbitrary reference point
in the microstructure. The first term on the right-hand side
of Eq. (6) represents the homogeneous deformation given by
the macroscopic deformation gradient, and the second term

indicates a microscopic displacement fluctuation field
∼
u.

The weak form of the microscale equilibrium equation in
the absence of dynamics is [34]:

∫
�0m

Sm(x, t) : ∇0ηdV−
∫

�0m

tmηd A � 0 ∀η ∈ � (7)

where Sm(x, t) is themicroscale stress tensor, tm is the exter-
nal traction force on the reference microstructural domain
�0m and surface �0m. Similar to the macroscale problem,
the microscale equilibrium equation can be written in the
strong form:

Sm(x, t) · ∇0 � 0 ∀x ∈ �0m (8)

Sm(x, t) · nm � tm ∀x ∈ �N
0m (9)

where tm is the given surface traction per unit area on the
boundary �N

0m of reference microscale domain with the out-
ward unit normal vector nm.

2.3 Scale transition

In the context of computational homogenization, scale cou-
pling is established by volume averaging [21]. Specifically,
the macro-to-micro transition is formulated via kinematic
averaging where the deformation gradient of a generic
macroscopic point at a given time equals to the volume aver-
age of its microscopic counterpart:

FM(X, t) � 1

V0m

∫
�0m

Fm(x, t)dV ∀x ∈ �0m (10)

in which V0m represents the volume of the undeformed
micro-domain �0m.

With the definition of microscale displacement in Eq. (6)
and the kinematic scale transition in Eq. (10), one can define
the minimal kinematic admissibility constraint [35] as:

∫
�0m

ũ(x, t) ⊗ nmd A � 0 (11)

The boundary conditions on the microstructure should be
chosen such that the left-hand side (LHS) ofEq. (11) vanishes
due to the contribution from the microscopic displacement
fluctuation field. Boundary conditions in this category are
called admissible kinematic boundary conditions and some
of the most commonly used ones include: minimal kine-
matic boundary conditions, which only need the LHS of Eq.
(11) to vanish in an integrated manner, Taylor assumption
which does not allow any displacement fluctuations within
micro-domain as in Eq. (12), uniform displacement bound-
ary condition which explicitly prescribes displacements on
domain boundaries as in Eq. (13), and periodic boundary
conditions which require periodic micro-fluctuations on the
corresponding points at the opposite boundary surfaces as in
Eqs. (14) and (15).

ũm(x, t) � 0 ∀x ∈ �0m (12)

ũm(x, t) � 0 ∀x ∈ �0m (13)

ũm
(
x+, t

) � ũm
(
x−, t

)∀x+ ∈ �+
0m, ∀x− ∈ �−

0m (14)

tm
(
x+, t

) � −tm
(
x−, t

)∀x+ ∈ �+
0m, ∀x− ∈ �−

0m (15)

In Eqs. (14) and (15), the micro-domain boundary �0m is
divided into positive (�+

0m) and negative (�−
0m) parts where

for each point x+ residing on the positive part there is a cor-
responding point x− on the negative part. In this work, we
adopt the uniform displacement boundary condition.

Scale transition from microscale to macroscale is based
on the Hill-Mandel condition [36], which requires the
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macroscale stress power to equal the volume average of its
microscopic counterpart over the micro-domain. Formulated
in terms of a work conjugated set, the Hill-Mandel condition
reads:

1

V0m

∫
�0m

Sm(x, t) : δEm(x, t)dV � SM(X, t) : δEM(X, t)

(16)

whereEm(x, t) andEM(X, t) are microscale andmacroscale
strain tensors, respectively.

Based on the energy consistency the macroscale stress is
expressed as the volume average of itsmicroscale counterpart
by applying the admissible kinematic boundary conditions on
microstructural boundaries:

SM(X, t) � 1

V0m

∫
�0m

Sm(x, t)dV (17)

One can use Eq. (17) to numerically compute the homog-
enized stress tensor over the undeformed micro-domain.
Alternatively, the macroscopic stress can be more efficiently
computed:

SM(X, t) � 1

V0m

∫
�0m

tm ⊗ (x − x0)d A (18)

By expressing the microscale displacement in terms of
micro-fluctuations in Eq. (6), the Hill-Mandel condition is
simplified as:

∫
�0m

bmηdV � 0 ∀η ∈ � (19)

∫
�N
0m

tmηd A � 0 ∀η ∈ � (20)

where it is demonstrated in [34] that the microscopic body
force bm and surface traction tm are essentially the reaction
forces for the displacement fluctuations due to the imposed
kinematic constraint on microstructural boundaries.

2.4 Homogenizedmaterial moduli

Although no explicit constitutive information is available at
the macroscale, the macroscopic tangent stiffness is often
required in multiscale simulations. The tangent stiffness can
be numerically evaluated using the relation between the vari-
ations of the stress and deformation at eachmacroscale point.
Conventional strategies use direct numerical differentiation
of macroscopic stress–strain relation [37]. A more efficient
alternative is the condensation method [38] which starts by

partitioning the microscale system of equations as:

[
Kpp Kpf

Kfp Kff

][
δup
δuf

]
�

[
δfp
0

]
(21)

where δup and δuf are the displacement variations at the pre-
scribed and free nodes in the microstructure, and δfp is the
external force on the prescribed nodes. Kpp, Kpf , Kfp and
Kff represent the corresponding partitions of the microstruc-
tural stiffness matrix. Eliminating δuf from Eq. (21) leads
to a reduced system that directly relates the variations of the
prescribed displacements with nodal forces:

Krδup � δfp (22)

Kr � Kpp − Kpf (Kff )
−1Kfp (23)

By substituting the variation of the nodal force from Eq.
(22) into the variational macroscopic stress in Eq. (18), the
macroscopic fourth-order consistent tangent moduli C can
be derived as:

δSM(X, t) � C : δET
M(X, t) (24)

C � 1

V0m
[(x − x0) ⊗ Kr ⊗ (x − x0)]LT (25)

where the superscript ‘LT’ denotes the transposition between
the two left indices. Readers are referred to [38] for more
details.

3 Proposed framework of deflated clustering
analysis

Integration of local porosity characteristics with
homogenization-based multiscale models (e.g., FE2) is
challenging primarily because: (1) capturing detailed pore
morphologies requires a fine mesh and hence a large
number of degrees of freedom (DOF), and (2) nonlin-
ear microstructural computations that are embedded at
every macro-material point are expensive. Our proposed
DCA addresses these two challenges while maintaining
sufficiently high accuracy.

The proposed ROM includes an acceleration scheme
for each length-scale: (1) we adopt an incremental defla-
tion method to accelerate macroscale simulations while
the deformation gradients at each macro-integration point
are computed with no accuracy loss, and (2) we propose
a microscopic projection method to speed up the itera-
tive elastoplastic solution process in the microstructures
with high-fidelity homogenized responses. Both acceleration
schemes rely on the spatial domain decomposition technique
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Fig. 3 Spatial domain decomposition converts a fine finite element (FE)
mesh to a reduced cluster representation: aAnarbitrary structure.bThe
fine FE discretization. c The reduced representation is generated via the

k-means clustering by agglomerating neighboring nodes as clusters. In
this example, 100 clusters are generated where each cluster is a separate
sub-domain indicated by the same color

discussed in Sect. 3.1. The macroscale incremental deflation
method and the microscopic projection ROM are discussed
in Sects. 3.2 and 3.3, respectively.

3.1 Spatial domain decomposition

Spatial domain decomposition converts a specific micro- or
macro- structural domain into a set of interactive clusters
with irregular shapes and distinct sizes. It can be performed
in differentways. For instance, in [16, 18],material points are
grouped based on their mechanical behavior. To determine
the grouping metric, six orthogonal loadings are performed
within the elastic regime to compute the 36 independent com-
ponents of strain concentration tensor at each material point.
Then, the points with similar strain concentration tensors are
grouped into a distinct cluster. An alternative approach is to
group points by their spatial proximity [39] where, e.g., an
existing mesh is divided by multiple predefined bounding
boxes and then all nodes in the same box are lumped into
one cluster.

In this work, we implement domain decomposition based
on nodal spatial positions where we first record every node’s
coordinate and then agglomerate nodes with similar nodal
coordinates using a clustering algorithm.While there are dif-
ferent clustering methods such as k-means [40] and Voronoi
diagram [41], k-means clustering is adopted here due to its
robustness and ease of use. Specifically, we use the ‘kmeans’
function in MATLAB [42] to partition the mesh nodes into
k predefined clusters. A specific node is assigned to the
cluster whose centroid has the closest distance to its nodal
coordinates. During this assignment, the cluster shapes are
iteratively updated by including the nodes that minimize the
within-cluster variance in terms of squared Euclidean dis-
tance for the k sets S � {

S1, S2, . . . , Sk
}
as:

S � argmin
S′

k∑
I�1

∑
n∈SI

∥∥Xn − XI
∥∥2 (26)

in which Xn is the nodal coordinates of the nth node, and X I

is the averagednodal coordinates (centroid) of the I th cluster.
This is essentially a discrete optimization problemwithmany
possible local optimums whose final solution often depends
on the initial guess (note that when applying the ‘kmeans’
function in MATLAB, we can specify the initial centroid
values for each cluster to achieve the same clustering pattern
in different trials). This clustering method can be applied to
both macrostructures in Fig. 2 and microstructures in Fig. 3.

The number of clusters determines the data compression
ratio, i.e., the reduction in DOF of the system. For example,
the sufficiently fine mesh in Fig. 3 has much more ele-
ments than clusters and hence its associated DOF is higher.
Fewer clusters lead to a higher data compression level along
with lower accuracy and computational costs. Hence, as we
demonstrate in Sect. 5, one can start with a relatively small
number of clusters and then increase this number until the
predicted stresses converge (i.e., they don’t change by further
increasing the number of clusters).

We compare our clustering algorithm with the domain
decomposition approach employed in the SCA method [16].
First, SCA groups material points with similar mechan-
ical behaviors by applying orthogonal loading tests on
microstructures where the pure normal or shear responses are
computed. While such a decomposition works well for cubic
microstructures, it may incur errors in complex macrostruc-
tures whose shapes are irregular. Our approach does not need
a priori tests, i.e., it only relies on an existing mesh and is
therefore applicable to any micro- and macro- structures.
Second, the clustering algorithm inSCAallows topologically
disconnected material points to belong to the same cluster by
assuming points with similar elastic responses tend to behave
similarly in plastic regimes. In our method, a pre-computed
mechanical response is unnecessary, and we assume neigh-
boring points behave alike plastically. Third, our clustering
method is similar to SCA in that (1) material properties are
assumed identical in the same cluster, and (2) clustering is
performed separately for different material phases. In this
paper, we investigate two-phase materials where the pri-
mary and secondary phases are the metal alloy and pores,
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respectively. Since pores do not involve material, domain
decomposition is applied only to the metal alloy.

3.2 Acceleration scheme of macroscale simulation

Newton’s method [43] is one of the most popular numerical
techniques for iteratively solving the nonlinear problems in
Eqs. (2) and (7). It successively updates the variables to bet-
ter approximate the root(s) of nonlinear equations where a
system of linear equations is solved in each iteration. Specifi-
cally, for a solid medium under static equilibrium conditions,
the following linear system is solved:

Ku � f (27)

where K indicates the linear system’s tangential stiffness
matrix, f represents the unbalanced force between external
and internal forces, and u is the incremental displacement
solution. Since all quantities discussed in this section are
macroscopic, the scale subscript ‘M’ is dropped for conve-
nience. Since the linear system in Eq. (27) is solved in each
iteration of Newton’s method, accelerating the solution pro-
cess would significantly reduce the execution time of solving
the underlying nonlinear problem.

To expedite the linear solution process, we first iden-
tify its major computational bottlenecks. A time comparison
between different computational components is demon-
strated in Fig. 4 where the elastic response of the simple
macrostructure in Fig. 4a is simulated by classic FEM. It is
observed from Fig. 4b that the top three components that
account for a significant portion (95.1%) of the total compu-
tational time include: solving a system of linear equations,
computing elemental stiffness matrices, and assembling the
global stiffness matrix. It is noted that using the FEM on a
different geometry domain or using a distinct mesh size may
change the absolute computational time of each component.
However, it is found that the bottleneck of many simulations
lies in the three components mentioned above [39]. Based on
this observation, we improve the computational efficiency of
these three components by adopting a rigid body cluster-
based deflation method [44] combined with an incremental
assembly technique [45]. These two methods are described
in Sect. 3.2.1 and Sect. 3.2.2, respectively.

3.2.1 Clustering-based deflation method

Conjugate gradient (CG) is often used in FEM to solve the
algebraic system in Eq. (27), especially when the number
of DOF is large or the stiffness matrix dramatically changes
across iterations where expensive matrix factorization can-
not be reused. As CG is based on minimizing the energy
norm of the system residuals in an iterative approximation
over the Krylov space [46], its convergence rate depends on

two factors: (1) the condition number of the system’s stiff-
ness matrix, and (2) the spectrum of its small eigenvalues.
The two factors represent different natures of the studied
problem. Two matrices can have the same condition num-
ber but the one with more small eigenvalues generally needs
more CG iterations to converge. In a discretized solid contin-
uum, the condition number generally increases as either the
number of elements or the contrast between material proper-
ties increases. Hence, preconditioners are typically adopted
to reduce the condition number of stiffness matrices. The
diagonal of the stiffness matrix is a common choice for pre-
conditioners since the associated computational costs and
storage requirements are small.

While the eigenvectors associatedwith the smallest eigen-
values dominate the convergence rate to the global solution,
it often requires a significant number of iterations to approx-
imate them. In other words, the convergence of CG is
generally slow for the low-energy modes associated with
the small eigenvalues as they are insufficiently represented
in the system residuals. To address this issue, we integrate
our clustering technique with the rigid body-based deflation
method (RBD) which was originally developed to expe-
dite eigenvalue problems [47] and has also been used in
computational solid mechanics [39]. The main idea behind
the clustering-based RBD method is to construct a defla-
tion matrix whose column vectors span the space of small
(near-zero) eigenvectors that are approximated by the rigid
body modes of clusters. Under the rigid body assumption,
clusters are assumed to have zero strain energy and their dis-
placements are in the null space of the stiffness matrix. The
directions of rigid bodymodes are indicated by the basis vec-
tors of the null space and their number equals the zero-value
eigenvectors of the stiffness matrix. In essence, the deflation
method projects the system’s residual from the Krylov space
to the deflation space, where the FE mesh’s small eigen-
vectors are represented by the clusters’ rigid body modes.
3D eigenmodes consist of three translations and three rota-
tions. Since the small eigenvectors are readily available in
the deflation space, the number of required CG iterations for
convergence is significantly reduced.

To implement the RBD method, we first write the dis-
placements of the clustering nodes as the rigid body motions
of a cluster:

uji � Wj
iλi (28)

where uji is the displacement vector for the i th node in the
j th cluster, λi represents the unknown vector of rigid body
motions with six DOF in the j th cluster, andWj

i is the defla-
tion matrix defined for the i th node associated with the j th
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Fig. 4 Break down of the computational time of solving an incremental linear system by Newton’s method: a A simple macrostructure (units: mm)
is subject to a Dirichlet boundary condition (u � 1mm). b Different computational components correspond to different percentages of the total
computational time

cluster. Specifically, λi and Wj
i are given as:

λj � [
u jx , u jy , u jz , θ j x , θ j y , θ j z

]T (29)

Wj
i �

⎡
⎢⎣
1 0 0 0 z ji −y j

i

0 1 0 −z ji 0 x j
i

0 0 1 y j
i −x j

i 0

⎤
⎥⎦ (30)

where u jx and θ j x represent, respectively, the displacement
and rotation of j th cluster centroid along the x axis, and
(x j

i , y
j
i , z

j
i ) are the relative 3D coordinates of the i th node

with respect to the j th cluster’s centroid. The projection in
Eq. (28) works similarly to the restriction operation in the
context of multigrid methods which map variables from a
coarse mesh to a fine mesh.

It is noted the projection matrix Wj
i in the Eq. (28) is

defined for each node and assembly over all nodes is needed
to construct the global deflation matrixWwhich projects the
rigid body motions (λ) to nodal displacements (u) on the
entire FE mesh as:

u � Wλ (31)

If the number of nodes and clusters are nnd and ncl , the
dimensions of the vectors (u and λ) and the deflation matrix
(W) in Eq. (31) are (3nnd ×1), (6ncl ×1), and (3nnd ×6ncl ),
respectively. By exploiting the global deflation matrix W,
one can now implement the rigid body cluster-based deflated
CG (DCG) as follows. In each Newton iteration, the linear
system in Eq. (27) is solved by splitting the displacement
vector u into two parts [48]:

u �
(
I − AT

)
u + ATu (32)

where A is the projection matrix defined as [49]:

A � I − KWW−1
d WT � I − KW

(
WTKW

)−1
WT (33)

The first part of Eq. (32) can be extended using Eq. (33)
as:
(
I − AT

)
u � WW−1

d WTKu � WW−1
d WTf (34)

where Kd � WTKW is the deflated positive-definite stiff-
ness matrix with dimensionality (6ncl ×6ncl ). It is projected
from Krylov space onto deflation space, where the interac-
tion components between FE nodes are condensed to the
cluster-to-cluster interactions. In essence, since the number
of clusters is much smaller than the number of nodes, i.e.,
ncl < nnd , the dimension of the deflated stiffnessKd is much
smaller than its FE counterpartK. In such a scenario,matrix
factorization and Gaussian elimination are directly applied
at low costs to compute the inverse of the deflated matrixKd.

The second term of Eq. (32) is computed by pre-
multiplying both sides by KT:

KTATu � AKu � Af (35)

where the symmetric property is utilized:

KTAT � AK (36)

In Eq. (35), AK and Af are the projected stiffness matrix
and force vector in the deflated space associated with the
pre-defined rigid body modes. As discussed earlier, since
the small eigenvectors are readily available in the deflation
space, the number of CG iterations required to compute u
in Eq. (35) is considerably reduced. Once u is available, its
projected counterpart (ATu) can be easily computed and used

123



526 Computational Mechanics (2022) 70:517–548

Fig. 5 Stress and strain fields of
an elastoplastic analysis on a
simple L-shape beam model:
a The distribution of Von-Mises
stress where stress concentration
locates around the sharp corner
due to geometric singularity.
b The distribution of equivalent
plastic strain is highly correlated
with stress-concentrated regions.
In this model, only a fraction
(12.1%) of elements is plastically
yielded, so only their properties
(as opposed to all elements) need
to be updated in the global
stiffness matrix

as the second term in Eq. (32). Therefore, by applying the
RBD method, the displacement solution to the linear system
in Eq. (27) is readily available by combining the solutions
from Eqs. (34) and (35).

In elastoplastic simulations, a sharp contrast between
material properties in the presence of plastic yielding is a
significant source for new eigenmodes which correspond to
either large or small eigenvalues. While the small eigenval-
ues deteriorate the performances of other iterative solvers
(e.g., CG), they do not affect the high efficiency of the DCG
method we have adopted [50].

3.2.2 Incremental stiffness matrix assembly

Per Fig. 4b, computation of elemental stiffness matrices and
assembly of the global stiffness matrix accounts for about
53.8% of the entire computational time. In elastoplastic sim-
ulations, the yielding changes material properties, and hence
the material’s stiffness matrix must be updated accordingly.
Specifically, for 3D large-scale models, in each Newton iter-
ation repeated allocation and deallocation of large computer
memories are required for re-computing elemental stiffness
matrices and re-assembling the global stiffnessmatrix. These
intensive matrix operations increase memory footprints and
slow down program execution.

We adopt the incremental assembly technique [45] to
prevent the repeated matrix re-computing and re-assembly
by only updating matrix entries associated with plastically
yielded elements in each iteration of Newton’s method. Our
method is inspired by the observation that only a small por-
tion of the material yields in many macroscale simulations
involving plastic deformations. This behavior is because
plasticity is generally localized at points with high strain
concentrations which often result from geometric singular-

ities or concentrated loads. For example, consider the same
L-shape beam in Fig. 4a subject to an elastoplastic deforma-
tion in Fig. 5 (see Sect. 5 for material hardening behaviors).
It is observed that the high values of Von-Mises stress and
equivalent plastic strain aremainly located at the sharp corner
(geometric singularity). In this example, the yielded elements
only constitute 12.1% of the total number of elements.

Therefore, per Eq. (37) we only compute and update a
small number of entries in the global stiffness matrix instead
of re-constructing the entire stiffness matrix in each Newton
iteration:

Ki � Ki - 1 + �Ki (37)

where Ki and Ki−1 are the global stiffness matrix at the
i th and (i − 1)th Newton iteration, respectively, and �Ki

corresponds to the entries with updated material proper-
ties. As demonstrated in Sect. 5, our procedure significantly
reduces the memory footprints and improves computational
efficiency.

We combine the clustering-based deflation method with
the incremental assembly technique to build the incremen-
tal deflated CG method (IDCG) which is summarized in
Algorithm 1. It is noteworthy that applying clustering-based
domain decomposition does not sacrifice the macroscale
solution accuracy, as the same CG convergence criterion is
enforced, see lines 26 and 36 ofAlgorithm 1. In essence, even
though displacement fields are solved in deflation space for
higher efficiency, they are projected back to Krylov space in
each CG iteration for convergence check. In other words, the
IDCG method generates the exact displacement solutions as
the CG approach and as a result the deformation gradient
at any macroscale integration point has high-fidelity and no
solution accuracy loss.
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3.3 Acceleration scheme of microscale simulation

The incremental assembly technique discussed in Sect. 3.2.2
suits elastoplastic analyses ofmacrostructures well because a
small portion of the material yields. However, in microscale
simulations, a large number of elements may yield so we
extend ourRBDmethod tomicroscale as follows.We assume
the strain field is uniform in each cluster and that it is
computed based on the relative motions between interact-
ing clusters. The uniform strain field assumption is similarly

adopted by other ROMs. For example, TFA expresses the
strain field as a linear combination of uniform eigenstrains
in eachmaterial phase to reduce the number of state variables
[12]; SCA computes the uniform cluster strains by the dis-
crete Lippman-Schwinger equation which approximates the
evolution of a cluster’s strain field by considering its interac-
tions with other clusters [16].
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Our proposed method has three stages: building cluster-
based computational mesh (Sect. 3.3.1), projecting solution
variables between FE- and cluster-based mesh (Sect. 3.3.2),
and constructing a reduced stiffness matrix for the cluster-
based mesh (Sect. 3.3.3). Since all the quantities of interests
discussed in this section are microscopic, the scale subscript
‘m’ is dropped.

3.3.1 Construction of cluster-based mesh

We build the computational grid by first considering cluster
centroids as a set of scattering points and then connect-
ing neighboring points via Delaunay triangulation (DT). By
connecting four neighboring points we create tetrahedron
elements that are based on clusters that agglomerate neigh-
boring FE nodes. This way the topological features will be
consistent between the FE- and cluster-based meshes. If one
cluster is topologically connected to another, the motion of
the first one should have a direct impact on the second one. In
this scenario, we assume the two cluster centroids share the
same DT element to account for their interactions. However,
if two clusters are nearby but not topologically connected, the
motion of one cluster should not have an immediate influence
on the other one. In this case, we do not place the two cluster
centroids in the same DT element.

Figure 6 illustrates the steps to generate the cluster-
based mesh for the microstructure in Fig. 3. In Fig. 6a the
microstructure is decomposed into 100 clusters whose con-
nectivity is determined by checking if any of their nodes share
the sameFE. For example, it is observed in Fig. 6c that cluster
1 is connected to cluster 2 as the FE nodes associatedwith the
two clusters share the same FE on their boundary. On the con-
trary, it is evident that clusters 1 and 4 do not share any nodes
belonging to the same FE and hence are not connected (even
though the two clusters are close). This connectivity check
between a cluster and its neighbors is examined for every
cluster only once since the cluster-to-cluster connectivity
relations are not changed during the analysis. We demon-
strate cluster connectivity via a topological graph in Fig. 6d
where vertices and lines represent cluster centroids and topo-
logical connectivity, respectively. Based on the connectivity
feature, we construct a computational grid in Fig. 6e by con-
necting scattering cluster centroids in Fig. 6b and ensuring
all vertices (cluster centroids) in the same DT element are
topologically connected per the topological graph of Fig. 6d.

Unlike the SCA approach where cluster-to-cluster inter-
actions are calculated using the Green function, we measure
the interactions directly based on the clusters’ position and
topological connectivity. As we demonstrate in Sect. 5, by
increasing the number of clusters our computational mesh
converges to its FEcounterpart. Specifically, in the limitwhen
the number of clusters matches with the number of FE nodes,

the reduced mesh resembles the FE mesh where each cluster
only contains one node.

3.3.2 Variable projections between FEMmesh
and the cluster-based mesh

In this section, we develop the mathematical formulations
that project variables between the reduced mesh and its FE
counterpart. Specifically, we define a restriction operator to
map variables from FE mesh to the reduced mesh and a
prolongationoperator to project variables in the reverse direc-
tion.

As discussed previously, each cluster is a collection of
neighboring nodes whose overall displacements are repre-
sented by the motion of the cluster’s centroid. Therefore,
givennodal displacements in a cluster, the restrictionoperator
interpolates the nodal values onto its cluster centroid. While
there are different types of interpolation methods such as
polynomials [51] and Gaussian-based kernels [52], we adopt
the polynomial augmented radial point interpolation method
(PR-PIM) due to its simplicity, computational efficiency, and
high accuracy. PR-PIM originates from themeshfree method
[53] where its robustness is demonstrated by interpolating
field variables over irregular scattering points.

Using PR-PIM, we approximate the displacement of the
centroid of a cluster with its n associated nodes via:

u(x) �
n∑

i�1

Ri (x)ai +
m∑
j�1

Z j (x)b j (38)

where ai is the coefficient of the radial basis function Ri at
the i th node and b j is the coefficient of the polynomial basis
Z j . The number of bases,m, is selected based on the polyno-
mial reproduction requirement [53] which ensures Equation
(38) can reproduce the solution of polynomial interpolation
functions and hence helps to pass standard patch tests. For
example, to meet a linear polynomial reproduction criterion
in 3D, one only needs four polynomial bases, i.e., m � 4.
When the number of nodes within a cluster is far more than
the number of polynomial basis, i.e., n 	 m, the solution sta-
bility improves even if the nodes are irregularly distributed
in the cluster [53].

We determine ai and b j coefficients by enforcing the inter-
polating function in Eq. (38) to pass through all nodal values
within a cluster. That is:

u(xk) �
n∑

i�1

Ri (xk)ai +
m∑
j�1

Z j (xk)b j , k � 1, 2, ..., n

(39)
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Fig. 6 Generation of cluster-based reduced mesh: a Clusters are gen-
erated via domain decomposition. b The geometry centroids of the
clusters. c An illustration of connectivity relations between clusters.
d The connectivity relations are represented by a topological graph

where each vertex represents a cluster centroid and lines indicate if two
clusters are connected. e The reduced computational mesh is generated
via DT by connecting topologically connected cluster centroids

To ensure solution uniqueness [53], we force the polyno-
mial terms to satisfy:

n∑
i�1

Z j (x)ai � 0, j � 1, 2, ..., m (40)

By combining Eqs. (39) and (40), we have:

[
RQ Zm

ZT
m 0

][
a
b

]
�

[
ds
0

]
(41)

with

a � [a1, a2, ..., an]
T , b � [b1, b2, ..., bn]

T ,

ds � [u(x1), u(x2), ..., u(xn)]T (42)

where RQ is a symmetric moment matrix of the radial basis
function (RBF) defined as:

RQ �

⎡
⎢⎢⎢⎣
R1(r1) R2(r1) ... Rn(r1)
R1(r2) R2(r2) ... Rn(r2)

... ... ... ...

R1(rn) R2(rn) ... Rn(rn)

⎤
⎥⎥⎥⎦ (43)

where Ri (rk) quantifies the radial basis function with dis-
tance rk between nodes i and k. Additionally, Zm is the

polynomial-based moment matrix formulated as:

Zm �

⎡
⎢⎢⎢⎣
Z1(x1) Z2(x1) ... Zm(x1)
Z1(x2) Z2(x2) ... Zm(x2)

... ... ... ...

Z1(xn) Z2(xn) ... Zm(xn)

⎤
⎥⎥⎥⎦ (44)

The interpolation coefficients a and b in Eq. (42) are
solved as:

b � Sbds (45)

Sb �
[
ZT
mR

−1
Q Zm

]−1
ZT
mR

−1
Q (46)

and

a � Sads (47)

Sa � R−1
Q − R−1

Q ZmSb (48)

whereR−1
Q Zm in Eq. (48) is obtained by transposingZT

mR
−1
Q .

The interpolated displacement field of the cluster centroid is
finally calculated by plugging Eq. (45)–(48) back to the Eq.
(38):

u(x) �
(
R(x)TSa + Z(x)TSb

)
ds (49)

The primary advantages of PR-PIM include: (1) its coef-
ficient matrix in Eq. (41) is always non-singular which
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guarantees the existence of a unique solution even when a
cluster consists of a set of irregularly distributed nodes; (2) it
preserves polynomial reproduction property which ensures
its consistency with polynomial interpolation; and (3) its
solution accuracy is not affected by the specific values of
shape parameters in radial bases which removes the trial-
and-error step associated with the parameter estimation of
traditional RBF. Note that we perform the restriction opera-
tion only once at the beginning ofmicroscale computations to
map the nodal displacements onto cluster centroids. Detailed
steps are included in Algorithm 2.

The prolongation operation maps the displacement field
of a cluster’s centroid back to finite element nodes. Since we
represent nodal displacements with cluster centroid’s rigid
body motion, nodal displacement fields are computed by the
deflation matrix in Eq. (28). Similar to the restriction opera-
tion, the prolongation operation is executed only once after
the microscale computations. As will be demonstrated in
Sect. 5.2, the projected microstructural displacement fields
resemble those obtained via FE as the number of clusters
increases.

3.3.3 Reduced stiffness matrix on the cluster-based mesh

Once displacement variables are projected from the FEmesh
to the cluster-based mesh, we construct the reduced stiff-
ness matrix to account for the interactions between clusters.
As demonstrated in Fig. 6e, the reduced stiffness matrix of
the cluster-based mesh is constructed by creating reduced
elements whose vertices represent neighboring clusters’ cen-
troids. FEM-based equilibrium equation is then applied to
the reduced mesh to solve the displacements of the cluster
centroids. In thismanner similar to coarse-graining, the inter-
action components between FE nodes in different clusters are

condensed to the interaction between vertices of a reduced
element where mesh topologies are preserved between the
FEM and cluster-based reduced meshes, see Fig. 6.

On the reducedmesh,we assume there are sixDOF at each
element vertex, corresponding to the six 3D rigid bodymodes
(three translations and three rotations). To account for rota-
tions, we augment the stiffness matrix of classic tetrahedrons
with rotationalDOF. This augmentation can be achievedwith
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a number of strategies. In [54], nodal rotations are intro-
duced into four-node tetrahedrons by displacement-based
local functions in a partition-of-unity approximationmanner.
In [55], Allmans rotational DOF along with a stabilization
technique is introduced to control spurious element modes.
In [56], the rotational DOF at the vertices of a four-node
tetrahedron is approximated by transforming the mid-side
translational DOF from a ten-node tetrahedron. A recent
study [57] shows strain values in tetrahedrons can be signif-
icantly improved by adding virtual fiber rotations to regular
displacement fields via the so-called space fiber rotation
(SFR) concept. By comparing with classic solid elements,
this study shows that the advantages of augmented tetrahe-
dron elements are twofold: (1) their accuracy is globally close
to that of classic quadratic elements but with a much higher
computational efficiency; and (2) their accuracy is preserved
quite well in coarse and distorted meshes. Since our reduced
mesh is constructed from irregularly distributed points (clus-
ter centroids), SFR-tetrahedron elements are ideal for our
ROM.

As demonstrated in Fig. 7, the SFR concept assumes
each vertex of the four-node tetrahedron is associated with a
virtual space fiber. The fiber rotation (θ) generates an addi-
tional displacement vectorwhich enriches the classic element
displacement field for an arbitrary internal point (q). The
enriched displacement (uq) of the internal point (q) in a four-
node SFR-tetrahedron is:

(50)uq �
4∑

i�1

Ni (ui + θi ⊗ di)

where Ni is the classic tetrahedron shape function on the i th
node, ui and θi are, respectively, the displacement and rota-
tion vectors on the i th node, and di is the relative position
vector between the i th node and the internal point q. Fol-
lowing classic FE discretization [58], the stiffness matrix of
the four-node SFR-tetrahedron is constructed as detailed in
[57].

The steps of the proposed microscale ROM are sum-
marized in Algorithm 2 After the initial displacements are
projected on the reduced mesh and the reduced stiffness
matrix is constructed, we perform the microstructural elasto-
plastic analysis and compute stress and strain fields at each
cluster centroid in the postprocessing step. Similar to TFA
and SCA methods, where material points in one cluster have
uniform stress and strain values, we assume all agglomer-
ated nodes share the same stress and strain values as their
cluster centroid. In other words, instead of computing dis-
tinct stress and strain fields at different elements, material
points nearby (in one cluster) are assumed to share the same
states (stress and strain). Hence, compared to classic FEM,
the number of unknown variables in our ROM is significantly

smaller, which dramatically improves computational effi-
ciency while preserving effective accuracy. We point out that
there is a major difference between the microscale analyses
in Algorithm 2with themacroscale solution process in Algo-
rithm 1. To serve the purpose of multiscale simulations, the
macroscale clustering-based deflation method aims to com-
pute the exact local deformations at each macro-integration
point, while microscopic projection analysis targets to obtain
accurate homogenizations by coarse-graining microscale
local responses. With high-fidelity macroscopic deformation
gradients and effective responses, the accuracy of multiscale
modeling is guaranteed.

4 Microstructure characterization
and reconstruction

Porosity is a common process-induced defect that signifi-
cantly affects material behavior in cast metallic alloys. Since
local morphological details of pores often randomly vary
at the macroscale (see Fig. 1), we develop a stochastic
microstructure characterization and reconstruction (MCR)
technique to investigate the effect of microscopic pores and
their spatial distribution on the macroscopic response of
materials. In this context, microstructure characterization
involves building a statistical representation for the hetero-
geneous pore morphologies which is subsequently used in
the reconstruction process to generatemicrostructures whose
randomly distributed pores follow a desired distribution [59].
We adopt a descriptor-based MCR approach that character-
izesmorphological randomness via a carefully selected small
set of physical descriptors defined in the characterization
stage. Such an approach is very advantageous in building
process-structure–property links in many material systems
such as alloys [60].

Physical descriptors are either deterministic or statistical.
A deterministic descriptor often only requires a single value
to characterize the entire microstructure (such as pore vol-
ume fraction) while a statistical descriptor uses a distribution
to characterize the spatial randomness of a morphological
feature (e.g., the distribution of pore sizes). The values of
physical descriptors are either estimated from microstruc-
ture images or selected via the design of experiments (DOE).
In the first approach, image segmentation techniques are
first applied to detect a set of pre-determined morpholog-
ical features. The features are then analyzed to calculate
the specific values of deterministic descriptors or the dis-
tribution parameters of statistical descriptors. If the above
two steps result in too many descriptors, the most important
ones can be identified through dimension reduction tech-
niques [10]. The DOE-based approach is typically adopted
in computational studies and building generalized process-
structure–property maps [61, 62]. In this approach, a set of
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Fig. 7 Node and virtual space
fiber representations:
a Schematic representation of the
four-node SFRtetrahedron.
b Each SFRtetrahedron vertex
has three translational and three
rotational DOF. The position
vector (di) between the vertex (i)
and the internal point (q)
indicates the virtual space fiber

descriptors that sufficiently characterize the morphological
features are first selected based on domain knowledge and
application. Then, sample descriptor values are generated via
DOEwhile considering their feasibility and practicality (e.g.,
a microstructure with a solid cluster that is topologically dis-
connected from its surrounding is not physically feasible).
Finally, microstructures corresponding to each DOE point
are reconstructed and used in simulations.

Wemodel pore shapes as prolate ellipsoids with two iden-
tical minor axes and use four physical descriptors to describe
the shape and spatial distribution of the pores in an RVE:
pore volume fractions (V f ), number of pores (Np), aspect
ratio between major and minor axes (Ar ), and the average
spatial distance between two nearest pores (rd , units in μm).
In our studies, these descriptors sufficiently characterize the
effect ofmorphology on the homogenized response of porous
microstructures. We set the ranges of these descriptors for
DOE as:

V f � 6.5%, Np � [5, 100], Ar � [1, 5], rd � [10, 30]
(51)

We use the Sobol sequence [63] to sample from the ranges
in Eq. (51) because it very efficiently builds space-filling
designs whose projections on any hyperplane are guaranteed
not to overlap.We alsomake the following assumptionswhen
reconstructing the virtual microstructure corresponding to a
DOE point: (1) each microstructure is periodic and has a side
length of 100 μm; (2) pores can overlap and are assumed to
have similar sizes and shapes; (3) pores are assumed ran-
domly dispersed and oriented; and (4) the lengths of prolate
ellipsoid axes (major axis ra and minor axis rb, units in μm)
are smaller than the half of the microstructure size and large
enough to avoid excessive nonlinearities:

ra ≥ 1.1, rb ≤ 50 (52)

where half of the microstructure size is assumed as 50
μm. Once the descriptors are selected and their values

are determined via DOE, we reconstruct the microstructure
corresponding to each DOE point via an optimization pro-
cess that iteratively adjusts an initial microstructure until its
descriptors match with the DOE point. As demonstrated in
Fig. 8, our reconstruction method has a hierarchical nature
[64] and starts by assigning the deterministic high-level
descriptor, i.e., the number of pores. It then adjusts pore
locations to obtain the desired averaged distance between
the nearest neighbors (i.e., rd ). The adjustment of pore-to-
pore distance is often achieved via a heuristic optimization
algorithm such as simulated annealing. If a pore intersects
with a microstructure boundary, an identical pore is added
on the opposite side of the boundary to enforce periodic-
ity. In the next level of reconstruction, geometric features,
such as orientation and aspect ratio are assigned to each
pore. Finally, pore sizes are proportionally calibrated to com-
pensate for the overlaps and meet pore volume fraction
requirements. Compared to the previous work [64] which
focuses on 2D composites (polymer matrix with carbon
fibers), our work extends themethod to 3D and uses it to gen-
erate porousmicrostructure. This extension requires addition
of more descriptors (to characterize 3D topologies instead
of 2D) as well as detection and removal of isolated solid
regions (because a floating solid portion is not physically
meaningful). Six sample reconstructed microstructures are
demonstrated in Fig. 9 which indicates that ourMCRmethod
is capable of building microstructures with a wide range of
porosity distribution.

5 Numerical experiments

In this section, we use the proposedDCAmethod to study the
effect of porosity on the nonlinear elastoplastic behaviors of
manufactured metallic components made out of aluminum
alloy A360, which is a type of die casting alloy with excel-
lent pressure toughness and high strength even in elevated
temperatures. We consider A360 as the primary phase and
the porosity as the secondary phase which is assumed to

123



Computational Mechanics (2022) 70:517–548 533

Fig. 8 Our MCR flowchart:We develop a hierarchical microstructure reconstruction algorithm based on pore physical descriptors

Fig. 9 Sample microstructures: Six periodic microstructures are reconstructed per Fig. 8 where the ranges of descriptors are defined in Eq. (51). The
primary material phase is not shown for clarity and a vector of the physical descriptor values [V f , Np , Ar , rd ] are listed under each microstructure

be the only microstructural defect. Spatial domain decom-
position introduced in Sect. 3.1 is only performed on the
primary phase in all micro-, macro-, and multi-scale simu-
lations. Considering other metal polycrystalline microscopic
features such as grain boundaries are out of the scope of this
work.

The values of elastic modulus (E) and Poisson’s ratio (v)
are given as:

E � 6.89E4 MPa, v � 0.35 (53)

The elastoplastic behavior of A360 is assumed to follow
the Von-Mises yield surface as:

σ ≤ σY (ε) (54)

where σ is the Von-Mises equivalent stress and the yield
stress σY is governed by a predefined hardening law that
depends on the equivalent plastic strain ε. The material hard-
ening behavior of A360 integrated into our simulations is
demonstrated in Fig. 10.

As discussed in Sect. 3, our DCA framework com-
prises two major components that accelerate macroscale and
microscale simulations.Correspondingly, in Sect. 5.1,we use
a macroscopic 3D bracket model to demonstrate the ben-
efits of the clustering-based incremental deflation method
discussed in Sect. 3.2. Next, in Sect. 5.2, we use our MCR
algorithm in Sect. 4 to generate various 3D microstructures
that embody a wide range of porosity characteristics. We
then use our microscopic projection method introduced in
Sect. 3.3 to deform these reconstructed samples following
complex load paths. Finally, in Sect. 5.3, we combine the
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Fig. 10 Hardening behavior of A360: A piecewise linear hardening is
used in our simulations

above twoacceleration schemeswithin thefirst-order compu-
tational homogenization framework to quantify the effects of
spatially distributed micro-porosity on macroscopic compo-
nent behavior. The accuracy of the proposed ROM is verified
against direct numerical simulations (DNS).

The proposed method is implemented in MATLAB, and
all experiments are conducted on a 64-bit Windows worksta-
tion with the following hardware: Intel E5-2643 CPU with
12 cores running at 3.5 GHz with 128 GB installed physical
memory (RAM) and 128 GB virtual memory.

5.1 Macroscale experiments

We test the rigid body cluster-based incremental deflation
(IDCG) method on a macroscale 3D bracket shown in
Fig. 11a, where one of its ends is fixed and two Dirichlet
boundary conditions (u � 2mm) are applied on the tips of
the other end. We mesh the bracket with 180,000 finite ele-
ments to accurately find the distribution of Von-Mises stress
upon elastoplastic deformation, see Fig. 11b. In this simula-
tion, 5.1% of the elements yield, which are mainly located
around the hole.

To assess the effectiveness of our deflation method, the
bracket model is decomposed into three clustering models
with k � 50, 100, 200 clusters, respectively, see Fig. 12,
which are then subject to elastoplastic simulations.

We first demonstrate the efficiency of the deflationmethod
(DCG) in reducing CG iterations by analyzing one Newton
incremental solution process. The basic idea of using CG
to solve an algebraic system, e.g., in Eq. (27), is to itera-
tively minimize the vector difference between its left and
right sides, or the residual as:

rj + 1 � rj − α jKipj (55)

where rj+1 is the CG residual at the current ( j + 1)th CG iter-
ation, rj is the error at the last j th iteration,Ki is the tangent
stiffness at the i th Newton iteration, j and pj are, respec-
tively, the iterative size and vector at the j th CG iteration,

see Algorithm 1. By enforcing the same CG convergence
criterion (‖rj+1‖≤ ε � 10−6) in all calculations, we guaran-
tee the displacement solutions fromDNS (CG) are recovered
by the deflationmethods and so are the stress and strain fields
via postprocessing. With high-fidelity displacement results,
accurate local deformation gradients are computed at each
macroscale integration point which are subsequently passed
to microstructural analyses in Sect. 5.2.

The efficiencies of DNS and deflation methods are com-
pared in Fig. 13a. We observe that more than 2000 CG
iterations are required for convergence by DNS. By compar-
ison, our deflation method needs less than 100 CG iterations
to achieve the same convergence criterion (ε � 10−6), show-
ing a reduction of CG iterations by 20 folds. Specifically, as
k increases from 50 to 200, the required CG iterations drop
from 95 to 52, indicating that the CG residual is more effi-
ciently reduced in the deflation space constructed by 200
rigid bodies. It is also evident that DNS shows many stag-
nation stages in Fig. 13a, e.g., from iterations 500 to 1000,
which is due to the existence of multiple near-zero eigen-
values whose approximation is difficult, see Fig. 13b. These
stagnation stages are not observed in the deflation method
since it projects CG residuals into the deflation space where
the system’s small eigenvalues are readily represented by the
clusters’ rigid bodymotions. In addition,we observe the clus-
tering systems are better conditioned with smaller condition
numbers, measured as the ratio between the maximum and
minimum eigen values, than that of the DNS from Fig. 13b.
Smaller condition numbers, no near-zero eigenvalues, and
fewer degrees of freedom together explain the higher effi-
ciency of the clustering-based deflation approach.

We now assess the efficiency of the incremental assembly
technique by recording the total time for computing ele-
ment stiffness matrices and assembling the global stiffness
matrix in an elastoplastic simulation. To this end, we use the
bracket model in Fig. 11a and mesh it with different num-
bers of elements. Figure 14a compares the costs associated
with our approachwith the traditional full-size assembly. It is
observed that the classic stiffness computation and assembly
approach becomes rapidly expensive as the number of ele-
ments increases. However, with ourmethod, these costs scale
much slower sincewe only update stiffness entries associated
with the yielded elements, which only account for 5.1% of
the entire structure on the mesh with 180,000 finite elements.
We note that the time reported in Fig. 14a does not depend
on the number of clusters since stiffness matrix computation
and assembly are conducted before online solutions where
deploying clusters shows significant acceleration.

Our macroscale ROM (IDCG) benefits from both accel-
eration schemes discussed above. To quantify its overall
efficiency, we compare the total computational time of our
IDCGmethod against DNS in Fig. 14b for elastoplastic sim-
ulations. The comparison is performed on different mesh
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Fig. 11 Macroscale model: a Geometry, dimension (unit: mm), and boundary conditions of the 3D bracket. b The distribution of Von-Mises stress
(unit: Pa) after the elastoplastic simulation

Fig. 12 Domain decomposition on the bracket model: a 50 clusters. b 100 clusters. c 200 clusters

Fig. 13 Macroscale solver comparisons: a CG Convergence of DNS
is compared against the deflation method (DCG) with different cluster
numbers (k) in one Newton incremental solution process; b Distribu-
tions of eigen values of the underlying stiffness matrices by box plots

where red crosses demonstrate the extreme values of eigen valueswhere
the number of eigen values of DNS, k � 200, 100, and 50 are 12,942,
1200, 600, and 300, respectively. The near-zero eigen values in DNS
are removed in the clustering-based deflation methods

sizes while ensuring each simulation achieves the same CG
residual as in Fig. 13a. As demonstrated, our method is not
only faster than DNS on all mesh sizes but also scales more
favorably, i.e., as the number of elements increases, the com-
putational savings of our approach grow. We note that cost
savings in a macroscale simulation are not directly related to

the number of clusters used in the IDCGmethod. This behav-
ior is because increasing cluster numbers results in fewer CG
iterations, but a larger size of deflation system whose sparse
matrix–vector multiplication (SpMV) [39, 45] is computa-
tionally more expensive.
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Fig. 14 Efficiency comparisons:
a Time reduction on stiffness
matrix computation and
assembly via the incremental
assembly technique, and
b Computational time of classic
FEM (DNS) using pure CG
against the incremental assembly
deflated CG method (IDCG) with
different cluster numbers (k)

5.2 Microscale experiments

We test the performance of our ROMonmultiplemicrostruc-
tures subject to complex loading paths that include high
plastic deformations and cyclic loading. The first test case
is a microstructure that has a single-cylinder hole in the cen-
ter corresponding to a pore volume fraction of 19.6%, as
shown in Fig. 15. Because this microstructure has a simple
geometry, we utilize it as a benchmark to demonstrate the
property of the reduced mesh. We assume the microstructure
is subject to a multiaxial deformation as in Eq. (56). The
resultant equivalent plastic strain fields are compared with
the FEM results as in Fig. 15.

F �
⎡
⎢⎣
1.02 0 0
0 0.99 0
0 0 0.99

⎤
⎥⎦ (56)

As illustrated in Fig. 15, we decompose the microstruc-
tural domain into different numbers of clusters. The reduced
mesh gradually converges to its FE counterpart and closely
represents the microstructural geometry with the increase of
cluster numbers. This mesh consistency is because the clus-
ter connectivity relations are well preserved between the FE-
and reduced- meshes.

Along with the computational meshes, we also compare
the distributions of equivalent plastic strain fields computed
on the reduced meshes against their FE counterpart. It is
observed that as the number of clusters increases, the plastic
fields obtained by our reduced-order model converge to that
obtained via the FE method. This convergence is on aver-
age, i.e., the local values are slightly different as similarly
reported in [16]. In our case, the local differences can be
explained by the fact that we assign the same strain value
to each cluster while FEM is free to produce significant
strain gradients in the small regions that experience high con-
centrations. Averaging this local information is in essence a
lossy information compression that endows our method with
lower computational costs and memory footprint compared

to FEM. To improve local prediction accuracy, a straightfor-
ward approach is to increase the average number of clusters
as suggested in [16]. However, a better strategy is to only
increase clusters in the regions with high stress or strain con-
centrations. Such regions can be detected by elastic analysis
in a preprocessing stage or on the fly. We will pursue this
direction in our future works.

We now test the proposed ROM quantitatively on recon-
structed microstructures with complex pore morphologies,
see Fig. 16. The first experiment tests whether the proposed
model can accurately predict microstructural homogenized
nonlinear responses when the microstructure is subject to
the complex deformation state given in Eq. (57). The studied
microstructure is shown in Fig. 16a and has 74 pores that pos-
sess a volume fraction of 7.6%. For DNS, the microstructure
is discretized by 421,507 linear tetrahedrons with 232,692
DOF. With the microstructural domain decomposed into dif-
ferent numbers of clusters, we compare the reduced model’s
homogenized responses with DNS.

F �
⎡
⎢⎣

1.01 0.02 0.025
0.02 1.02 0.03
0.025 0.03 0.97

⎤
⎥⎦ (57)

The predicted homogenized stress components are com-
pared with DNS results in Fig. 17. It is observed that the
homogenized stress components from the proposed ROM
gradually converge to the DNS results as the number of clus-
ters increases. The displacement fields illustrated in Fig. 17
depict the same behavior where with few clusters there is a
large discrepancy between the nodal displacements close to
the cluster boundaries. As the number of clusters increases,
the discrepancy between the displacement fields across clus-
ter boundaries diminishes and the global domain resembles
the DNS results.

We compare the computational costs of our approach and
DNS for this example in Fig. 19. As it can be observed,
with 264 and 1418 clusters we accelerate the simulations
by more than 55 and 10 times, respectively. It is worth
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Fig. 15 Influence of cluster numbers on the accuracy of equivalent plas-
tic strain field: Column a shows the microstructure domain, its FEM
mesh (top view) with 40,482 elements, and its plastic strain fields in
sequence.Columnb sequentially shows the domain decompositionwith

100 clusters, the cluster-based reduced mesh (top view), and the dis-
tribution of equivalent plastic strain. Columns (c) and d correspond to
400 and 1600 clusters, respectively

Fig. 16 Reconstructed microstructures:Morphologically different samples whose specific descriptor values [V f , Np , Ar , rd ] are listed in a vector
below the image

noting that while the DNS is performed on a highly opti-
mized commercial software package (ABAQUS [65]), our
method is implemented in MATLAB scripts and can greatly
benefit from optimizing memory footprints or utilizing high-
performance computing techniques [21]. Also observed in

Fig. 19 is the strong dependence of the computational time on
the number of clusters which indicates that updating cluster-
wise state variables accounts for most of the costs in the
ROM.
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Fig. 17 Homogenized stress components for the microstructure in Fig. 16(a): a The normal stress component in the x-direction. b The normal stress
component in the y-direction. The stressed are obtained via DNS and our ROM with different cluster numbers

Fig. 18 Comparison of displacement fields (unit: μm): Displacement fields of the microstructure in Fig. 16a are compared between DNS and our
ROM with different numbers of clusters

Fig. 19 Effect of cluster number on costs: Comparison is between DNS
and our ROM with different clusters for the microstructure in Fig. 16a

In the second experiment, we test our model on a com-
plex loading path on the microstructure shown in Fig. 16b
which has seven pores and a pore volume fraction of 1.3%.
In DNS, the microstructure is discretized by 234,573 lin-
ear tetrahedrons that result in 129,291 DOF. We assume this
microstructure starts from a relaxing initial state and is then
subject to the two-step deformation gradient constructedwith
F1 and F2:

F1 �
⎡
⎢⎣

1.01 0.005 0.01
0.005 1.02 0.015
0.01 0.015 0.97

⎤
⎥⎦, F2 �

⎡
⎢⎣

0.97 0.015 0.02
0.015 1.01 0.005
0.02 0.005 1.02

⎤
⎥⎦

(58)
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Fig. 20 Comparison of the homogenized stress components: The comparison is between DNS and our ROM with different numbers of clusters on
a two-step loading path for the microstructure in Fig. 16b

The effective stress–strain relations are illustrated in
Fig. 20. Similar to the previous experiments, we observe that
as the number of clusters increases the error with respect to
DNS decreases. In particular, sufficiently accurate results are
obtained with 264 clusters.

In the third experiment, we test the accuracy of the pro-
posed method under cyclic loading. The studied microstruc-
ture is shown in Fig. 17c which has 40 pores and a pore
volume fraction of 8.9%. In DNS, its domain is discretized
by 283,596 linear tetrahedrons with 158,853DOF. Two hard-
ening laws are implemented for this experiment: isotropic
hardening and linear kinematic hardening. We assume the
microstructure starts from a relaxing initial state and is then

subject to three sequential pure shear deformations (0 →
F1 → F2 → F3) given in Eq. (59):

F1 �
⎡
⎢⎣

1.0 0.005 0
0.005 1.0 0
0 0 1.0

⎤
⎥⎦ , F2 �

⎡
⎢⎣

1.0 −0.01 0
−0.01 1.0 0

0 0 1.0

⎤
⎥⎦ ,

F3 �
⎡
⎢⎣

1.0 0.015 0
0.015 1.0 0
0 0 1.0

⎤
⎥⎦

(59)
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Fig. 21 Comparison of the homogenized stress components: The comparison for the microstructure in Fig. 16c is based on DNS and our ROM.
Different hardening laws are used for validation: a Isotropic hardening. b Linear kinematic hardening

Fig. 22 Porous microstructure and discretization: a Porosity morphol-
ogy with pore descriptor values listed as [V f , Np , Ar , rd ]. b A
sufficiently fine FE mesh with 68,675 elements is used as DNS in this

experiment. c The microstructure is also discretized by a coarse mesh
with 12,995 elements where the shapes of the pores are not well repre-
sented. For clarification, only meshes on the pore surfaces are shown

The stress–strain behavior of the microstructure under
loading–unloading-reloading is illustrated in Fig. 21. As it
can be observed, our predictions match with DNSwith either
linear or kinematic hardening laws.

Our ROM is designed for studying the influence of
manufacturing-induced porosity on the hardening behav-
iors of cast alloys which typically have small pore volume
fractions. However, to demonstrate our ROM’s capability to
simulate materials with high porosity, we use the deforma-
tion gradient in Eq. (60) to deform a microstructure with a
pore volume fraction of 15.9%.

F �
⎡
⎢⎣
1.04 0 0
0 0.98 0
0 0 0.98

⎤
⎥⎦ (60)

The morphology of the studied microstructure is shown
in Fig. 22a which has 25 pores. The aspect ratio and aver-
age nearest neighbor distance of pores are 1.4 and 24.3 μm,
respectively. We use this experiment to also demonstrate the

advantages of our micro-ROMover FEAwith a coarse mesh.
We discretize this microstructure with two meshes: a suffi-
ciently fine mesh with 68,675 tetrahedrons in Fig. 22b and
a coarse mesh containing 12,995 tetrahedrons in Fig. 22c.
We consider the FE solutions of the fine mesh as DNS and
provide Von-Mises stress distribution based on the fine and
coarse meshes in Fig. 23a and b, respectively. In the case of
ROM,we choose four clustering levels in the simulations, see
Fig. 23c–f. By comparing the results betweenDNS andROM
in Fig. 23, we can see that when cluster numbers are small,
stress is mainly concentrated in locations where pores are
closely packed and the contrast between low and high stress
values is not as sharp as DNS. This is due to the averaging
effects of clusters.Whenmore clusters are used inROM, both
the stress distribution and the stress contrast show significant
similarity to their counterparts in DNS. It is also noted that
even though the FE coarse mesh has far more elements than
our ROM (even when k � 3200), its accuracy is much lower.

To quantitatively assess the convergence of our approach
in the case of a microstructure with a high pore volume

123



Computational Mechanics (2022) 70:517–548 541

Fig. 23 Comparisonof theVon-Mises stress distributions inmicrostructures:aTheVon-Mises stress distribution is obtainedviaDNSwith sufficiently
fine mesh. b The stress distribution is computed on a coarse FE mesh. c–f The stress distributions are approximated by ROMwith different numbers
of clusters

Fig. 24 The homogenized stress–strain curves: The comparison is
between DNS and ROM (with the different number of clusters) on the
microstructure shown in Fig. 23

fraction, we compare the homogenized stress–strain curves
betweenDNSandROMinFig. 24 and their associated tough-
ness values in Table 1. Similar to the previous experiments,
ROM’s accuracy is improved when more clusters are uti-
lized. However, different from scenarios with relatively low
porosity volume fractions (e.g., in Fig. 16), more clusters are
required in this case to capture pore morphology and, in turn,

Table 1 Predicted toughness: Comparison of toughness values simu-
lated by DNS and ROM for microstructure analyses in Figs. 23 and
24

Method Toughness (MJ/mm3) Error (%)

DNS 5.28 –

ROM (k � 400) 5.71 7.53%

ROM (k � 800) 5.60 5.71%

ROM (k � 1600) 5.54 4.69%

ROM (k � 3200) 5.47 3.47%

match DNS. This observation is consistent with our model-
ing experience that prediction of the homogenized responses
becomesmore difficult as porosity volume fraction increases.

To demonstrate the acceleration effects of the proposed
ROM, we compare its computational costs at different stages
againstDNS, seeTable 2.As thenumber of clusters increases,
both offline (clustering) as well as online (solution) costs
increase and as a result the speedup factor decreases. In this
example, the ROM’s acceleration factor ranges from 4.2 to
72.7. In particular, with 3200 clusters our approach provides
a 4.2 times speedupwhile having an error of 3.47% in predict-
ing the toughness.Wenote thatwhen calculating the speedup,
the offline cost for cluster creations is not included as it is only
done once and its results can be re-used for any deformation
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Table 2 Computational time
(unit: sec): Comparison of
different stages between DNS
and ROM for microstructure
analyses in Figs. 23 and 24

Method Number of
eigenmodes

Offline
(clustering)

Online
(solution)

Total Speedup factor
(DNS/online)

DNS 41,349 – 7288.8 7288.8 –

ROM (k � 400) 2400 56.7 100.2 156.9 72.7

ROM (k � 800) 4800 167.6 278.2 445.8 26.2

ROM (k � 1600) 9600 317.7 633.3 951.0 11.5

ROM (k � 3200) 19,200 687.1 1738.2 2425.3 4.2

predictions. We note that our method does not require offline
elastic tests and its offline stage only involves the genera-
tion of clusters and initialization of the related variables. Our
cluster sizes are quite similar throughout the domains in this
work and, as a result, more clusters (compared to SCA-like
methods) are often required to capture local effects. We also
point out that with the increase of clusters, the underlying
algebraic system along with its numbers of eigenmodes also
grow. With higher numbers of eigenmodes, clusters are able
to approximate more sophisticated deformations with higher
accuracy at higher costs.

5.3 Multiscale experiments

In this section, we combine the two accelerating schemes as
a multiscale ROM and compare its efficiency with the classic
DNS (FE2) approach. We use the 3D bracket in Fig. 25 as
the macro-structure. To reduce memory requirements, we
assume pores only exist in the middle part of the bracket
and only model one-quarter of the porous part due to the
symmetric loading and boundary conditions, see Fig. 25a.

We study two multiscale models, as shown in Fig. 25b
and c. The purpose of the first model is to verify the accuracy
of our multiscale ROM by comparing it with DNS. Due to
its simple porosity morphology, we only need a relatively
coarse FE mesh which results in acceptable computational
costs for simulating elastoplastic responses. On the contrary,
we integratemore complex porositymorphologies in the sec-
ond model in Fig. 25c to mimic actual pore distributions on
a manufactured component to study the impact of spatially
varying micro-morphologies on the macrostructural behav-
iors. Since amuch finer FE discretization is needed to capture
the geometry details of local porosity morphology, computa-
tional expenses become prohibitively high for DNS.We thus
only use our multiscale ROM in this case.

As shown in Fig. 23b, in the first multiscale model
every macroscopic material point is associated with the
same microstructure instance. This microstructure has one
spherical pore in its center which accounts for a 6.5% pore
volume fraction. For DNS, the two-scalemodel is discretized
by 6.2 million finite elements in total, which includes 945

macroscale elements and 6574 elements in each microstruc-
ture. For our ROM, themacrostructure is decomposed into 10
clusters and 157 clusters approximate each microstructure.
Both DNS and ROM are implemented in MATLAB, which
is run in parallel by 12 cores during runtime.

The two-scale Von-Mises stress distributions are com-
pared between the DNS and ROM in Fig. 26.Microstructural
stress distributions are illustrated at two material points with
different stress magnitudes along with macroscale stress
distributions. We note that both the macroscopic and micro-
scopic stress fields share significant similarities between the
two methods. We also notice minor differences on local
micro-stress fields where our ROM’s local values appear
smoother thanDNS in a diffusivemanner.We have discussed
the same observation in Sect. 5.2.

To quantify solution differences between DNS and our
ROM, we plot relative differences of the micro-stress fields
at points A and B in Fig. 27. The relative difference is com-
puted by comparing pointwise Von-Mises stress values in the
correspondingmicrostructures. From the two histograms, we
find that the overall stress fields computedby the twomethods
agree well where most pointwise stresses from DNS overlap
with their counterparts of ROM. To further quantify the dif-
ference, an L2-norm of the difference (e) of the pointwise
Von-Mises stresses is computed:

e � 1

Nip
‖σ DNS − σ ROM‖2 (61)

where Nip is the number of integration points in the
microstructures,σ DNS andσ ROM are theVon-Mises stresses
computed via DNS and ROM, respectively. The L2-norms of
Fig. 27a and b are 0.044% and 0.084%, respectively, indicat-
ing very close stress distributions between the two methods.
The relations between macroscopic reaction forces and tip
displacements for the homogeneous porosity are demon-
strated in Fig. 28a. We observe a generally good agreement
between the two curves where their maximum difference is
smaller than 3%. In terms of computational cost, the DNS
took 528.1 h, while our ROM is finished in 27.3 h.

The second multiscale model aims to study the impacts
of spatially varying porosity on structural behaviors. This
model has the same macrostructure as the first one but it
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Fig. 25 Multiscale models: a Pores are assumed only to exist in
the middle section of the 3D bracket. Only a quarter of the mid-
dle part is modeled as the macrostructure in multiscale simulations.
Two multiscale models are studied: b The first multiscale model with
homogeneous porosity assigns each material point with an identical

porous microstructure with a single spherical pore. c The second mul-
tiscale model with heterogeneous porosity assigns material points with
microstructures of distinct porosity morphologies, as shown in Fig. 9.
In models (b) and (c), all microstructures have the same pore volume
fraction of 6.5%

Fig. 26 Multiscale simulation with homogeneous porosity distribution: Top row shows the DNS results of the Von-Mises stress distributions on the
macro-structure and two microstructures at the material points A and B, respectively; the bottom row demonstrates the results from the proposed
ROM

possesses spatially varying microstructures. Specifically, we
randomly assign one of the microstructures in Fig. 9 to each
macro-point. Although eachmicrostructure in Fig. 9 has very
different pore morphology and spatial distribution, its pore

volume fraction (6.5%) is the same as the firstmodel. In terms
of domain discretization, the macro-domain is discretized by
945 elements and themicrostructures in Fig. 9a–f aremeshed
by 103,344, 123,552, 141,917, 153,815, 60,356 and 78,339
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Fig. 27 Comparison of microscale stress fields between DNS (FE2) and our ROM: a Comparison of microscale Von-Mises stresses at point A, with
an L2-norm difference of 0.044%. b Comparison of microscale stresses at point B, with an L2-norm difference of 0.084%

Fig. 28 Multiscale simulation results: a Comparison of macroscale
reaction force and tip displacement. The maximum difference for the
homogeneous porosity simulations between DNS and ROM is smaller
than 3%, while the reaction forces of the heterogeneous model is 7.7%

higher than the homogeneous counterpart. b The Von-Mises stress
distributions on the macro-structure. c-d The Von-Mises stress distri-
butions in the microstructure associated with points A and B

elements, respectively. In total, thismultiscalemodel consists
of 104.2 million elements. Since its DOF is approximately
17 times larger than the first model, the projected compu-
tational time of the DNS approach is about 8,875 h, and
hence we only use our ROM for this example. In our ROM,

the macro-domain is decomposed by 10 clusters while each
microstructure is discretized by 592 clusters. The simulation
via our ROM is converged in 69.3 h.

The Von-Mises stress distributions on both scales are
illustrated in Fig. 28b–d. Even though the macrolevel stress
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distribution is similar to its counterparts in the first multiscale
model, the stress distributions of the two microstructures are
different from the ones in Fig. 26 due to complex local poros-
ity morphologies. We note the microscale stress values at the
two points in this multiscale model appear higher than their
counterparts in the first model with homogeneous porosity.

To quantify the effect of spatially varying pores on
structural performance, the macroscopic reaction force and
displacement of the heterogeneous porosity are compared
between the two multiscale models, as shown in Fig. 28a.
We notice two observations by comparing the two nonlinear
curves. First, their elastic responses are close, since the two
multiscale models share the same microstructural pore vol-
ume fraction (6.5%). The elastic behaviors seem to strongly
depend on the pore volume fraction value, consistent with the
observation reported in [66] where sensitivity analysis indi-
cates particle volume fraction is themost influential geometry
descriptor to determine the a composite’s elastic responses.
We also observe that the plastic reaction with heterogeneous
porosity is noticeably (7.7%) higher than that with homo-
geneous porosity. One of the plausible reasons is that the
heterogeneous porosity introduces higher stress concentra-
tions at complex local morphologies, e.g., at points A and B.
With higher microstructural stresses, the total macroscopic
reaction force is more considerable.

6 Conclusion

In this paper, we propose a new multiscale ROM, coined
as deflated clustering analysis, to simulate the elastoplastic
behaviors of heterogeneous alloyswith complexmicroscopic
pores. In particular, the proposed ROM consists of sev-
eral significant components. First, we implement a spatial
domain decomposition algorithm to significantly reduce the
system’s unknown variables from an FE mesh to a small
group of clusters. The clustering process universally applies
to both microscale and macroscale models by agglomerating
nodes in proximity. Second, we accelerate the macroscale
simulations by the incremental deflation method which is
particularly useful for macrostructures with low plastic-
ity percentages. While the macroscale acceleration scheme
enhances computational efficiency by improving the CG
solver’s convergence and preventing unnecessary stiffness
re-assembly during runtime, it ensures the solution accu-
racy of local deformations atmacro-integration points. Third,
we propose a microscopic projection method to model the
nonlinear microstructural behaviors in a lower-dimensional
space where reduced mesh and stiffness matrices are con-
structed to account for cluster interactions and strain evolu-
tions. Fourth, we integrate a porosity-orientedmicrostructure
characterization and reconstruction algorithm with the pro-
posed ROM tomimic the local material heterogeneity caused

by spatially varying porosity. In numerical experiments, we
demonstrate that the proposed multiscale reduced model is
highly accurate and computationally efficient.

Our ROM shares quite a few similarities with SCA but,
contrary to SCA which groups elements based on their
mechanical responses, our ROM agglomerates elements
based on their geometrical proximity. It is has been shown
[16–18, 67] that the SCA-like methods perform reason-
ably well with a few clusters on composites or polymers.
Although we have not done a one-on-one comparison, we
think our ROM would need a few more clusters to rep-
resent the domain’s topology and obtain solutions that are
close to DNS. We would also like to point out that we find
SCA to be commonly applied to composites with strong or
weak inclusions where the property ratio between material
phases (e.g., moduli) is reasonably small. Our ROM is used
to simulate alloys with pores where the moduli difference
between material and void is infinite. Compared to strong
or weak inclusions, it is much harder to simulate microstruc-
tureswith pores, especially for anFFT-based approachwhose
computational efficiency decreases as the phase contrast in
a microstructure increases. The existence of pores is another
reason that in this work we are reporting results based on
a few more clusters compared to SCA when it is applied
to composites. We note that porous materials are success-
fullymodeled in a recent study [68]which suggests SCA-like
methods may efficiently solve the porous models after mod-
ifications.

Our ROM has some major differences with a coarse-
meshed FEM. Finite elements typically have similar geom-
etry and shape (e.g., tetrahedral) and a coarse FE mesh may
lack sufficient DOF to accurately represent high eigenmodes.
Contrarily, clusters can be very different in shape. To model
an irregular region in a geometry, FEM may need several
elements while the ROMmay only need one cluster. In addi-
tion, our clustering approach depends on the deflated CG
which deflates theKrylov subspacewith pre-defined cluster’s
rigid bodymodes and removes the smallest eigenvalues from
the fine-meshed FEM. Since a CG’s convergence mainly
depends on the smallest eigenvalues, DCG can converge to
the (fine-meshed) FEM solution in much fewer iterations.
Therefore, compared to a coarse-meshed FEM, our clus-
tering approach can converge to the accurate (fine-meshed)
solutions more efficiently.

The proposed method can be improved in a few aspects.
First, the reduced mesh is based on tetrahedrons gener-
ated by Delaunay triangulation. While tetrahedron mesh is
advantageous in adapting to complex domain geometries, its
computational accuracy could be problematicwhen its geom-
etry is ill-shaped. A more robust tetrahedron-based meshing
algorithm will increase the flexibility of our approach. Sec-
ond, a node numbering algorithm needs to be introduced
to reduce the bandwidth of the reduced stiffness matrix for
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improving matrix operation efficiency [53]. Third, only one-
quarter of the porous part is simulated in themultiscalemodel
in Sect. 5.3 to lower computer memory requirements. A fea-
sible approach to reduce memory dependency is to utilize
the assembly-free technique [46] where no global stiffness
matrix is assembled. Fourth, in Sect. 5.3 we noted that pore
morphological descriptors can play an essential role in deter-
mining plastic behaviors. To quantify the impacts of each
descriptor on the plastic response of the material, a surrogate
model can be fitted whose training data can be generated via
our ROM. Finally, since our ROM is designed for metallic
components with manufacturing induced pores, its perfor-
mance on other material systems such as composites and
ceramics needs further study.
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