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Abstract
This paper presents an algorithm for the efficient simulation of ductile crack propagation through heterogeneous structures,
as e.g. metallic microstructures, which are given as voxel data. These kinds of simulations are required for e.g., the numerical
investigation of wear mechanisms at small length scales, which is still a challenging task in engineering. The basic idea
of the proposed algorithm is to combine the advantages of the Finite Cell Method allowing for a convenient integration of
heterogeneous finite element problemswith the eigenerosion approach to still enable themesh-independent simulation of crack
propagation. The major component is to switch from finite subcells to finite elements wherever the crack progresses, thereby
automatically adaptively refining at the crack tip by managing the newly appearing nodes as hanging nodes. Technically
relevant problems of crack propagation at the microscale are mostly linked with sub-critical crack growth where the crack
moves fast and stepwise with subsequent load cycles. Therefore, inertia may become important which is why dynamics
are taken into account by spreading the mass of the eroded elements to the nodes to avoid a loss in mass resulting from the
erosion procedure. Furthermore, a certain treatment for the finite cell decomposition is considered in order to ensure efficiency
and accuracy. The numerical framework as well as the voxel decomposition techniques are analyzed in detail in different
three-dimensional numerical examples to show the performance of the proposed approach.

Keywords Ductile crack propagation · Eigenerosion · Finite cell method · Hanging nodes · Heterogeneities

1 Introduction

In many mechanical engineering applications, the analysis
of cracks propagating through heterogeneous structures is
subject to investigation. One prominent example is wear of
hardened tool materials, which undergo cyclic loading lead-
ing to crack propagation on themicroscopic level resulting in
wear in form of surface spalling and even structural failure.
For instance in the context of mechanized tunneling, mining
tools connected to the cuttingwheel penetrate the soil and are
thus subjected to high, cyclically applied forces. These min-
ing tools appear in formof cuttingdisks and chisels consisting
of ductile steel armored by wear-resistant weldings made out
of hard metals or metal matrix composites (MMC). In their
microstructures, the brittle inclusions, which supply a high
hardness of the composite, are surrounded by a ductile metal
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matrix, leading to a high crack resistance and thus a high
resistance regardingwear in different forms. Firstly, overload
breakage and abrasion appear on the macroscale. Secondly,
surface spalling governed by sub-critical crack propagation
on the microscale under cyclic loading occurs. In order to
investigate the latter case, an efficient, robust and mesh-
independent simulation framework for calculations including
brittle as well as ductile crack propagation at finite strains
is required. Additionally for microstructure morphologies
obtained from micro-CT scans, a special numerical treat-
ment directly taking advantage from the given voxel data is
helpful to decrease computational costs.
The simulationof ductile crackpropagationon themicroscale
of metallic structures requires computational methods capa-
ble of handlinggeometrical nonlinearities, finite strain elasto-
plasticity and crack propagation along arbitrary crack paths
through complex three-dimensional structures. Addition-
ally, computational efficiency is desired. Altogether, these
requirements still pose a challenging task in computational
engineering. In Shakoor et al. [44] multiple approaches for
simulating crack propagation on the microscale based on the
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Finite Element Method (FEM) for tackling these problems
are examined and compared. As a continuous approach, the
phase field introduced in Miehe et al. [22] assumes that the
sharp cracks are smoothed by a continuous damagefield. This
method is applied onmicrostructures, for instance in Nguyen
et al. [28] considering small deformations and brittlematerial
behavior, in Shahba and Ghosh [43] for elastic polycrystals
and in Cheng et al. [4] assuming crystal plasticity. However,
an additional degree of freedom, namely the damage vari-
able, occurs additionally to the displacements in the phase
field method, which increases the computational costs. As
another continuous approach, a gradient-enhanced damage
model as for instance introduced in Junker et al. [13] for small
strains and in Junker et al. [14] extended to finite strains, also
assumes a smooth damage field for the sharp crack. Further-
more, cohesive-zone models as introduced in Barenblatt [1]
for brittle and Dugdale [6] for ductile materials which were
also applied in an FE framework in e.g., Hillerborg et al. [10]
make use of interface elements underlying decohesion due
to cracking. Examples of this technique for the debonding of
the inclusion from the matrix is shown in Liang and Sofro-
nis [19], Meng and Wang [20]. These methods may suffer
from erroneous crack patterns as shown in Schellekens and
De Borst [37]. Additionally, if the crack path is unknown, the
interface elements have to be applied between all elements
as e.g. in Xu and Needleman [52] leading to an increased
number of elements and thus computational costs. On the
other hand, discontinuous approaches, allowing jumps in the
mechanical fields for example in the displacement fields, are
applied as well to simulate the crack propagation on micro-
scopic level. For example, the Extended FEM (XFEM) from
[3] handles those by application of enriched shape functions.
For instance Sukumar et al. [48] shows microscopic simu-
lations with brittle crack propagation and Beese et al. [2]
ductile crack propagation at finite strains. Other approaches,
for example early element erosion techniques applied at
microscale as e.g. in Wulf et al. [51], suffer from mesh-
dependency.
Therefore, a new efficient method for the simulation of
ductile crack propagation through heterogeneous, metallic
structures is presented in this work. To this end, the eigen-
erosion approach for ductile crack propagation as presented
in Wingender and Balzani [50] is combined with the Finite
Cell Method (FCM) introduced in Parvizian et al. [32]. The
considered eigenerosion approach is based on the origi-
nal framework presented in [30], which extended the idea
of eigenfracture [41]. It has been shown to enable robust,
efficient and mesh-independent simulations. The basic idea
behind the eigenerosion strategy is to erode finite elements
whenever a regularized Griffith-type criterion formulated in
terms of the energy release rate is fulfilled. In this case the
element is able to undergo eigendeformations for which no
additional external mechanical work is needed which moti-

vates the method’s name. [41] proved the �-convergence of
the associated regularized energy-dissipation functional to
the unregularized one as the neighborhood radius ε goes
to zero. This enables the desired mesh-independent crack
propagation. It was firstly implemented in [30] for brit-
tle crack propagation at small strains. Extensions of it, for
example for high impact loading and fragmentation, are pre-
sented in [18,26,31]. In Qinami et al. [34], the eigenerosion
has been firstly extended to ductile crack propagation for
calculations on concrete by the application of small strain
Drucker-Prager elasto-plasticity. In our work, the implemen-
tation ofWingender and Balzan [50] considering finite strain
J2-elasto-viscoplasticity is used, where mesh-independent
simulations have been numerically shown. It is combined
with the FCM, which extends the basic FEM. Similarly, this
combination with the phase-field instead of the eigenero-
sion have been exploited. For example, a framework deriving
crack initiation is given in Ranjbar et al. [36]. Furthermore,
Nagaraja et al. [25] applied hp-refinement within the FCM
for brittle crack propagation at small strains. In the FCM, the
elements are allowed to contain multiple subdomains with
different material properties. This enables the use of meshes
which do not conform with the material boundaries. Hence,
structures based on voxel data from micro-CT scans can be
discretized with a regular hexahedral mesh containing sum-
marized voxels as subdomains. This enables the automated
discretization of varying material inhomogeneities which
makes it quite advantageous in problems where numerous
different material realizations have to be evaluated, e.g., in
the context of uncertainty quantification, cf. [24]. As shown
in Yang et al. [53], it also circumvents the problem of dis-
cretizing complex structures obtained by interpolation and
smoothening of the voxel-data with e.g., tetrahedral ele-
ments, where the element faces are aligned with the material
interfaces. There, complicated and computationally costly
techniques as for example shown in Schneider et al. [42]
have to be applied which often precludes an automatized dis-
cretization. The algorithm proposed here, is mainly based on
switching the subcells to finite elements in those cells where
the crack evolves. This leads to an automaticmesh refinement
at the crack tip enabling a high accuracy and computational
efficiency at the same time. For the newly appearing hang-
ing nodes at the interfaces between the refined cells and the
neighboring elements, the concept of Lagrange multipliers
in Demkowicz et al. [5], Oden et al. [29], Rachowicz et al.
[35] is applied. Different algorithms for decomposing the
elements into subcells based on voxel data are proposed and
compared in Fangye et al. [8]. For the combination with the
eigenerosion, additional restrictions have to be considered
regarding the decomposition because of the change from
subcells to finite elements. Whereas the aspect ratio of the
individual subcell’s dimensions in different directions can be
rather arbitrary, it is bounded in case of finite elements.
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In this paper, a new algorithm for the voxel-based simulation
of crack propagation through metallic microstructures based
on a combination of the eigenerosion approach extended
to finite strain elasto-plasticity and the FCM is presented.
The paper is organized as follows. In Sect. 2, the basic
concept of the eigenerosion approach for ductile crack prop-
agation at finite strains is recapitulated as it represents a
key component. Afterwards, the new algorithm combining
the FCM with eigenerosion is presented in Sect. 3. Fur-
thermore, different subcell decomposition techniques for
voxel-based microstructure data and their implications to
the proposed algorithm are discussed. Section 4 presents
different, three-dimensional numerical examples based on
artificially generated voxel data and on real voxel data which
show the performance of the framework. A final conclusion
is given in Sect. 5.

2 Eigenerosion for ductile fracture at finite
strains

As the eigenerosion framework is considered here as major
component for the description of crack propagation, the con-
cept for ductile fracture at finite strains fromWingender and
Balzani [50] extending the original ideas of Schmidt et al.
[41], Pandolfi and Ortiz [30] is briefly recapitulated. Fur-
thermore, the specific material description considered in this
paper is explained.

The eigenerosion approach is implemented in connection
with the finite cell method, which is in turn based on the stan-
dard FE framework for solid mechanics. Because of that, the
basic equations of the FEM are recapitulated briefly to define
notation. Therein, the displacement u which minimizes the
total potential energy �(u) is saught under given boundary
constraints. To this end, standard terms of variational calcu-
lus require the 1st variation of� to vanish and thus, the weak
form reads

δ� =
∫

�

∇S
x δu : τ dV −

∫

∂�N

δu · t dA

+
∫

�

ρ0δu · ü dV = 0 (1)

including inertia and neglecting body forces is sought.
Herein, the Kirchhoff stress tensor τ is double-contracted
with the symmetric part of the spatial gradient of displace-
ment variations ∇S

x δu = 1
2 (grad(δu) + grad(δu)T) and

integrated over the volume � in the reference configura-
tion. The external traction forces acting on the Neumann
surface δ�N and the density in the reference configuration
are denoted by t and ρ0, respectively. Applying the FEM,
this nonlinear partial differential equation can be solved by

spatial decomposition of the body � into finite elements K
with their domains �K . In the individual elements a stan-
dard polynomial approximation for the displacements and
the displacement variations is introduced as u ≈ NdK
and δu ≈ NδdK , and following therefrom one obtains
∇S
x δu ≈ BδdK . Herein, the vectors dK and δdK contain

all nodal displacements and nodal displacement variations
per element K . Furthermore, matrix notation has been used
togetherwith standardmatrices N and B including the ansatz
functions and their spatial derivatives, respectively. Lineariz-
ing the resulting approximated version of the weak form
in terms of the Newton–Raphson scheme, and applying the
Newmark approach for the time integration of the inertia
term, results in the equation

∑
K

δdTK
[
(kK + mK ) 	dK − rK − rmK + qK

] = 0 (2)

with the linear increment of the displacements 	dK . Herein,
the element tangent stiffness matrix kK := ∫

�K
BT

CB dV
with thematerial tangentmodulusmatrixC inVoigt notation,
the internal element residual vector rK := − ∫

�K
BTτdV ,

and the element vector of external forces qK :=
− ∫

∂�N
K
NT t dA. The mass matrices mK and inertia resid-

ual vectors rmK are chosen as the consistent mass matrix and
residual vector resulting from theNewmark schemewhere no
erosion takes place, and otherwise, the lumped mass matrix
using the row sum method with the components mlumped

i j =∑
k mik if i = j andmlumped

i j = 0 otherwise (cf. [54, 17.2.4]),
and the corresponding residual vector are considered. Note
that in principle any other time integration scheme may be
used instead of the Newmark method. The equation (2) is
rewritten in terms of the classical global matrices, the vec-
tors of unified nodal displacement variations and increments
δD = ⋃

K
δdK and 	D = ⋃

K
	dK , the tangent stiffness

matrix K := A
K

[kK ], the mass matrix M := A
K

[mK ], the
internal residual vector R := A

K
[rK ], the inertia residual

vector Rm := A
K

[rmK ], and the vector of external forces at

the Neumann boundary Q := A
K

[qK ]. Together with the

incorporation of Dirichlet boundary conditions the Newton–
Raphson scheme yields the linearized system of equations
(K + M)	D = R + Rm − Q, which is solved repeatedly
for the incremental displacements 	D within the Newton–
Raphson iteration and updated as D ⇐ D+	D to compute
the global vector of nodal displacements D which fulfills
mechanical equilibrium.
The original eigenerosion approach is based on the theory of
brittle fracture, firstly published in Griffith [9]. Therein, the
existence of a Griffith-type energy release rate G := − ∂U (u)

∂|C|
is assumed. This rate relates the potential energyU stored by
imposing mechanical work depending on the displacement
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vector u to the area |C | of the crack set C . Additionally,
irreversibility of crack propagation and no healing of the
material are considered. Hence, the monotonicity constraint
C(t) ⊂ C(t +	t) results for the crack set C(t) at time t and
the crack setC(t+	t) at a later time step t+	t assumingdis-
crete time steps. In terms of FE discretizations, the crack set
C consists of elements that are assumed to be eroded, which
enables them to undergo eigendeformations, for which no
additional energy is required. It increases with the crack front
velocity v if the Griffith-type energy release rate G reaches
a critical material-dependent value Gc and thus, the criterion
G−Gc ≤ 0 has to hold. If not, the crack rests so that the crack
front velocity v becomes zero. Combining these conditions
yields the expression (G −Gc) v = 0 to hold. Together with
the concept presented in Mielke and Ortiz [23], the energy
dissipation functional F = U (u) + Gc|C | is formulated.
This functional has to be minimized at every time t with
respect to the crack setC and the displacement field u. In this
naive form, the eigenerosion would lead to mesh-dependent
results. Thus, in order to avoid this, the energy-dissipation
functional is regularized by Fε = U +Gc|Cε |/(2 ε). Herein,
the ε-neighborhood Cε of the crack set C within the influ-
ence radius ε > 0 is considered instead of only the crack
set C . Hence, the mesh independence of this algorithm can
be recovered. Schmidt et al. [41] has proven that the regu-
larized energy-dissipation functional Fε �-converges to the
unregularized energy-dissipation functional F as ε → 0.
Transferring this concept to element erosion in finite element
simulations, the net energy gain of each element K

− 	FK = −	UK − Gc 	AK (3)

is evaluated for each element K containing the effective crack
area 	AK in each time step tn after solving the mechanical
fields. Here, the difference in its potential energy −	UK

before and after erosion becomes the energy UK which is
stored in the element K . If−	FK becomes larger than zero,
crack propagation occurs, otherwise the crack rests. The reg-
ularized crack area

	AK = | (C ∪ K )ε \Cε |
2 ε

(4)

represents the volume of the ε-neighborhood |C ∪ K |ε of
the whole crack C including the one of element K without
the one of the previous crack Cε , cf. Fig. 1a, divided by the
influence radius ε. This represents the regularized crack area
that would additionally occur if element K was eroded.

In our case, this term is evaluated based on the points of the
Gauß point quadrature and their volumes that are also used
for deriving the element residual and tangent stiffness. If the
distance of any Gauß point to a Gauß point of element K is
lower than the influence radius ε, it is assumed to bepart of the
ε-neighborhood of element K and it is saved in a list. Gauß

points lying in the ε-neighborhood of eroded elements are
removed from this list. For the evaluation of 	AK , the vol-
umes of all Gaußpoints in the list of element K are summed
up and normalized by dividing by 2 ε. Furthermore, the dif-
ference in the potential energy −	UK is evaluated for each
element K for the net energy gain 	FK . Assuming small
strains and linear elasticity, it can be calculated in terms of
the element stiffnessmatrix kK and nodal degrees of freedom
dK of element K by 0.5 dTK kK dK , as proposed in Pandolfi
andOrtiz [30].However, herewe focus onmore general cases
of nonlinear material formulations at finite strains including
plasticity. Following [50], the total strain energy density ψ

integrated over the element’s domain �K can be considered,
i.e.

−	UK =
∫

�K

(
ψ +

∫
t
Dvis dt

)
dV with

ψ = ψe(εe) + ψp(α). (5)

Herein, the elastic part of the strain energy density ψe

depends on the elastic logarithmic strain tensor εe and the
plastic part ψp depends on a variable α associated with
microstructure changes due to hardening. In [50] it has been
shown that regions of localized plastic strains such as shear
bands induce issues with mesh-dependence already before a
crack evolves, and thus, a viscous part is additionally consid-
ered. The associated viscous dissipation

∫
t Dvisdt is therefore

added to the difference of the potential energy. This approach
coincides with the extension of Irwin [11] additionally con-
sidering the energy that dissipates in the crack tip due to
plasticity since it is part of the imposed energy as well. The
individual energetic terms ψe, ψp and Dvis depend on the
chosen material law which is specified in “Appendix A”.
The resulting eigenerosion algorithm is illustrated in Fig. 1b.
Therein, the mechanical equilibrium equations are firstly
solved for the displacements u in every time step while not
assuming any crack propagation. Thus, this step represents a
trial step. Afterwards, the net energy gain −	FK is eval-
uated. If the net energy gain of any element K becomes
larger than zero, the element with the largest net energy gain
is eroded, which means that its residual and static tangent
stiffness matrices are set to zero and the Gauß point list is
updated. The algorithm considers inertia effects by applying
the Newmark-scheme [27]. This recovers numerical stability
even if the body completely breaks in multiple parts. Fur-
thermore, the incorporation of inertia may allow for more
accurate simulations in case of fast crack evolution. In order
to not loose mass as a result from the erosion procedure and
still enable the detached nodes to move independently, the
lumped mass matrix only containing entries on the diagonal
is considered for the eroded elements. For all intact elements,
the consistent mass matrix is used. Then, all previous steps
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Fig. 1 a Mesh with eroded
elements C (dark grey), the
Gauß points in their
ε-neighborhood Cε (light grey)
and additional crack area
(C ∪ K )ε \Cε (light blue) for
element domain K . b Schematic
illustration of the considered
eigenerosion algorithm within a
finite element framework.
(Color figure online)

(a) (b)

are repeated in a staggered scheme until no element erodes
anymore in this time step. After that, the algorithm proceeds
with the next time step.

3 Proposed combined algorithm

Here, the focus is on the analysis of heterogeneous struc-
tures given as voxel data. In principle, conforming, irregular
finite element discretizations can be constructed to cap-
ture a smoothened interface morphology which has been
previously generated from the voxel data. However, these
discretizations are often difficult to construct for complex
morphologies and an automated meshing is quite difficult
if at all possible, cf. Schneider et al. [42]. Furthermore,
such discretizations usually require a large number of finite
elements even for coarse representations. Additionally, ill-
shaped elements might occur, which lead to inaccuracies
in the evaluation of the volume integral in the elements
and numerical instabilities. Therefore, in this paper we are
interested in numerical schemes which do not require such
complicated, conforming discretizations.
Crack propagation through heterogeneous structures which
are given as voxel data can then be directly described using
the eigenerosion approach by considering one finite ele-
ment for each voxel. An example is demonstrated in Fig. 2a
where a possible crack through a heterogeneous structure of
48× 48 voxels/elements is depicted. Of course this straight-
forward approach is not efficient since a large number of
finite elements is necessitated by the fact that for conform-
ing discretizations the element faces need to coincide with
the material interfaces. Thus, severe computational effort in
terms of computing time and memory is required.

An alternative is to directly summarize voxels to larger ele-
ments. Considering this, simulations with a semi-regular,
conforming mesh including hanging nodes reduce the com-
putational costs in the assembling process but still lead to
a high number of FE equations which have to be solved,
especially due tomany additional constraint equations which
appear everywhere at the material interfaces.
A more efficient alternative is the Finite Cell Method (FCM)
[32] which enables the consideration of material interfaces
inside the elements by exchanging the finite element by
a finite cell, where the integration is split into subcells.
Thereby, a significantly reduced number of finite cells is
achieved, especially if higher order polynomials are used for
the approximation of the displacements. However, the naive
application of eigenerosion in combination with the FCM
leads to unsuitably large finite cells which are to be eroded,
if the net energy gain is compared at the finite cell (not sub-
cell) level. Figure 2b demonstrates the scenario for a possible
crack through aheterogeneous structure discretizedwith 6×6
finite cells. As can be seen, especially close to the material
interfaces where a high resolution would be required, the
crack would only be captured with poor accuracy. Even if the
erosion procedure was transformed such that individual sub-
cells would be eroded instead of complete cells, the erosion
of single subcells would in fact result in large deformations
of the complete cell due to the loss of stiffness resulting from
the eroded subcells. This would in turn lead to subsequent
erosion of all subcells within the particular finite cell render-
ing the procedure inaccurate again.

Therefore, we propose to switch from finite subcells to
finite elements of relatively low polynomial order wherever
subcells would be eroded and then proceed with the regu-
lar (extended) eigenerosion approach. Thereby, an automatic
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Fig. 2 Schematic illustration of
a possible crack path (yellow)
through a heterogeneous
structure of 48 × 48 voxels
naively using the eigenerosion
scheme: a discretization of each
voxel with one finite element
and b decomposition of the
structure into 6 × 6 finite
subcells using the optimal
decomposition approach from
[8]. (Color figure online)

adaptive mesh refinement is realized at the crack tip when-
ever the finite cells are decomposed into subcells. This will
always be the case at the material interfaces, which reflects
the necessity of an increased resolution of the crack at the
material interfaces. We consider the subcells to be converted
to finite elements which use the same integration order as
the subcells and thus, all material history is already known at
the according Gauß points, which avoids expensive projec-
tion computations. Conceptually, the numerical procedure in
each time step is thus divided into the following steps

1. Solve mechanical equilibrium equations using the
Newton–Raphson scheme to obtain trial state

2. Compute net energy gain −	F trial for every subcell in
every finite cell

3. If −	F trial > 0 anywhere, identify the particular finite
cell K where the particular subcell S with the largest
value of −	F trial appears

4. Switch all finite subcells contained in finite cell K to
finite elements and erode the element which has been
transformed from subcell S

5. Repeat steps 1-4 until no finite cell contains a subcell
where −	F trial > 0

Further details regarding the FCM, the switch fromfinite sub-
cells to finite elements, and its algorithmic implementation
are given in the following subsections.

3.1 Finite cell method

Since the FCM as introduced in [32] is major component of
the proposed algorithm, it is briefly recapitulated in this sec-
tion and its adaption to its use within the proposed algorithm
is explained. In the FCM the finite elements are replaced by
finite cells which allow the decomposition of the cell domain
�fc into nsc subdomains�sc

1 ∪�sc
2 ∪· · ·∪�sc

nsc = �fc referred
to as subcells. The individual subcells are assumed to be
homogeneous, but each subcell is allowed to have different

material properties. The subcell decomposition is only con-
sidered whenever there are material inhomogeneities within
one finite cell. This permitsmeshing of the domain of interest
with larger domains of simple shape, for instance regular hex-
ahedrals, wherein material interfaces are allowed to appear,
see Fig. 3 for an illustration. This leads to the extension of the
tangent stiffness matrix of each finite cell K in Voigt notation
as

kfcK :=
nsc∑
S=1

kscS =
nsc∑
S=1

∫

�sc
S

BT
CSB dVS

=
nsc∑
S=1

lint∑
l=1

(BT
CSB)|ξ l det J scS, l wS, l det J fc (6)

representing the summation of the partial stiffness matrices
kscS of the subcell domains �sc

S . Herein, CS is the material
tangentmodulimatrix inVoigt notation of thematerial in sub-
cell S. In order to perform volume integration analogously
to the FE framework, the material response is evaluated in
lint Gauß points l of each subcell S (also in form of hex-
ahedrals) at the Gauß point with parametric coordinates ξ l
in the isoparametric space with the Gauß weight wS,l by
mapping the domain of the subcell to the domain of the
finite cell with the Jacobian J scS, l . The Jacobian J fc maps
the finite cell to the isoparametric space. Analogously, the
residual vector r fcK := −∑nsc

S=1

∫
�sc

S
BTτ dVS inVoigtmatrix

notation is integrated. These residual vectors r fcK and stiff-
ness matrices kfcK are assembled to the global residual vector
R := A

K
[r fcK ] and the global stiffness matrix K := A

K
[kfcK ].

Furthermore, the global mass matrix M := A
K

[mfc
K ] and

inertia residual vector Rm := A
K

[r fc,mK ] are derived by

assembling the mass matricesmfc
K and residual vectors r fc,mK .

Using these matrices and vectors instead of the ones of the
standard FE, the nodal displacements D are derived by the
Newton–Raphson scheme analogously to the FEM.
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Fig. 3 a Biphasic body B consisting of spherical inclusion (green) in cubic matrix (grey) given as voxel data, b structured, regular finite cell mesh
and c one amplified finite cell consisting of multiple subcells with different material properties. (Color figure online)

Here, we consider a discretization based on tri-quadratic
Legendre polynomials. As a standard for these, volume
integration is performed using 27 Gauß points. Since tri-
quadratic shape functions will also apply to the subcells,
27 Gauß points are considered for each subcell, too. Since
thisGauß integration can be considered sufficiently accurate,
only smaller numbers of integration points should influence
the results rendering them less accurate. The computational
advantage in the preprocessing step using voxel data is the
simple generation of the regular hexahedral mesh in the
domain of the scan and the decomposition of the finite cells
into subcells. For this decomposition, multiple algorithms
have been investigated in Fangye et al. [8]. In the FC cal-
culation, a system of equations with a reduced number of
degrees of freedom has to be solved, even for a complex het-
erogeneous structure, because the total number of degrees
of freedom only depends on the number of finite cells nfc

and not on the number of subcells nsc. On the other hand,
the assembling effort and required memory depend on the
number of subcells nsc. If hexahedral voxel data sets are
considered, as they are usually obtained for microstructure
measurements, the finite cell boundaries conform with the
structural boundaries. Then this circumvents the problem
of applying Dirichlet as well as Neumann boundary con-
ditions onto non-conforming FCM discretizations as shown
in Düster et al. [7], Schillinger et al. [40].

3.2 Switching finite elements to subcells at the crack
tip

Major component of the proposed algorithm is to switch
all subcells of those finite cells, where erosion is detected,
to finite elements and thus, to a separated approximation
where also individual subcells can be eroded as elements.
A schematic illustration of this process is given in Fig. 4
where the according crack through the exemplary heteroge-

neous structure from Fig. 2 is depicted. Note that based on
the switch, in principle, singularities may occur due to the
hexahedral-shaped material interface discretization includ-
ing corners. This is not a problem in the FCMwhere the shape
functions are defined on element/cell level smearing out the
mechanical fields at the subcell interfaces. However, even for
the switched cells, stress concentrations should hardly appear
provided that the subcells are significantly smaller than the
material heterogeneities. By insertion of new finite elements
replacing the subcells, hanging nodes occur as introduced in
Demkowicz et al. [5], Oden et al. [29], Rachowicz et al. [35].
These newnodes either hang at the side of a neighboringfinite
cell or at the side of afinite elementwhichhas previously been
a subcell. The associated degrees of freedom dH at the posi-
tion XH of hangingnode H are additionally incorporated into
the global vector of nodal displacements D. However, their
values will not automatically match with the ones obtained in
the neighboring cell, where these new degrees of freedom are
not part of the interpolation. In order to ensure continuity of
the displacement field across the hanging node, the values of
the nodal displacements uH in the neighboring element/cell
at XH can be computed using the standard interpolation

uH (XH ) =
∑
I

N I (XH ) d I (7)

with the nodal displacements dI in the neighboring ele-
ment/cell. Then, the constraint condition

dH − uH (XH ) = dH −
∑
I

N I (XH ) d I = 0 (8)

has to be fulfilled to ensure continuity in the hanging
nodes H . For the implementation into the FE framework,
these constraints are included using the concept of Lagrange
multipliers. To this end, the constraint terms �H = λH ·
(dH −∑

I N
I (XH ) d I ) for every hanging node H are added
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Fig. 4 aCrack (yellow) through biphasic, heterogeneous structure with
finite cell/element faces (black lines) and subcell faces (blue lines)
before crack propagates into the next finite cell, b crack enters next
finite cell, i.e., the subcells of this finite cell are switched to finite ele-

ments which are separately eroded, and c illustration of newly added
hanging nodes (red circles) resulting from switching to finite elements.
Note that in this simple example, linear shape functions are considered.
(Color figure online)

to the total potential energy �. Herein, the Lagrange multi-
pliers λH can be interpreted as the interaction force vector
between the hanging node and the corresponding point in
the neighboring element. After deriving the weak form of
equilibrium and consistent linearization with respect to the
nodal displacements andLagrangemultipliers, the global lin-
earized system of equations becomes

[
(K + M) CT

C 0

]

︸ ︷︷ ︸
K̄

[
	D
	λ

]

︸ ︷︷ ︸
	 D̄

=
[
R + Rm − Q − CTλ

−CD

]

︸ ︷︷ ︸
R̄

(9)

where the global vector of increments of the Lagrange mul-
tipliers is denoted by 	λ. The matrix C contains the coeffi-
cients resulting from the constraint equations and is obtained
by derivation of the constraint equations (8) with respect to
the nodal displacements d. It contains a row for each degree
of freedom of each hanging node H which consists of a “1”
in the column of the corresponding degree of freedom of the
hanging node H in the original system of equations of the FE
problem and the shape function −N I (XH ) in the columns
of the corresponding degrees of freedom of the constraining
nodes I . All other values in the matrix C are zero. Within
the Newton iteration, themodified linearized system of equa-
tions K̄	 D̄ = R̄ is solvedwith regard to	 D̄ and the degrees
of freedom are updated by D̄ ⇐ D̄ + 	 D̄, analogously to
the standard FEM. Note that the extended global matrix of
the new system of equations K̄ is not positive definite any-
more which restricts the choice of the linear equation solver.
However, the applied direct solver, namely Pardiso cf. [38], is
capable of handling this kind of systems of linear equations.
The Newton iteration is stopped if the stopping criterion

e := |R̄u| + cnorm |R̄λ| < tol (10)

is fulfilled.Herein, the vector norms |•| = √• · •of the upper
part of the extended global residual vector R̄u := R+ Rm −

Q − CTλ and of the lower part R̄λ = −CD are considered.
The numerical weighting constant cnorm has to be chosen in
such a way, that the norms of both parts of the residual lie in
the same order of magnitude in the converged state in order
to ensure that the Newton iteration is converged in both, the
displacements D as well as the Lagrange multipliers λ. The
complete algorithm is shown in Fig. 5 and technical remarks
are given in “Appendix B”.

3.3 Voxel-based discretization and subcell
decomposition

Generally, the number of subcells should be as small as pos-
sible while keeping a similar accuracy to not unnecessarily
increase computational effort. For the classical FCM, a low
number of subcells is desirable because the effort of volume
integration within the finite cells as major part of the assem-
bling process increases proportionally with the number of
subcells. For the strategy proposed here, where the FCM
is combined with eigenerosion, additional aspects have to
be considered for the choice of the decomposition. Then, a
small number of subcells is specifically desired. Therefore,
the way how the cells are decomposed is quite important for
the efficiency of the final strategy. Different decomposition
schemes and their advantages and disadvantages for the FCM
are proposed and discussed in Fangye et al. [8].
The classical method used for the decomposition is based on
octree structures, where each cell is decomposed into 8 sub-
cells of usually equal size. In order to simplify the notation for
different decomposition techniques we use the abbreviation
“T” in the name of the method, whenever octree structures
are considered. Usually a threshold value is introduced to
reasonably decide if the finite cell is split or not in order to
neglect very small inhomogeneities. Then a finite cell is not
split but completely assigned to the material properties of
the dominant phase if a cell contains a volume fraction of the
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Fig. 5 Algorithm of the proposed strategy for the simulation of crack propagation

other phases falling below the given threshold value. This
splitting procedure is continued on the subcell level until a
prescribed amount of possible octree levels is reached or no
cells are split anymore. As a drawback, a high number of
subcells might be generated increasing computational effort.
In order to arrive at a reduced number of subcells, individual
neighboring subcells with equal properties can be merged to
larger subcells. This approach will be abbreviated by “M” in
the associated name of the specific method.
A further approachwhich enables the reduction of subcells to
a minimum is referred to as optimal decomposition (abbre-
viated by “OD”), which has been introduced in [8]. This

approach works as follows: one direction in the voxel data
is chosen, in which neighboring voxels with the same mate-
rial properties in this direction are combined to connected
subcells. This step is now repeated in the second and third
perpendicular direction of the voxel data set. This whole pro-
cedure is executed in all possible permutations of directions
and the one with the lowest number of subcells is chosen. As
numerically shown in [8], the optimal decomposition can be
considered preferable in FCM simulations due its efficiency.
However, as a potential drawback, the aspect ratio of dimen-
sions of the individual subcells may become large, i.e. very
thin subcells may be obtained. This may not be problematic
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for the classical FCMwhere large aspect ratios do not matter
just for the purpose of integration. In the strategy proposed
here, however, subcells are switched to finite elements in the
crack and thus, large aspect ratios will become an issue as
associated finite elements will degenerate. Therefore, a mod-
ified scheme will then be required.
In addition to these three decomposition techniques (T, M,
OD), also combinations of two or more of these may lead
to decompositions combining the advantages of the consid-
ered algorithms. For example, the combination “T[•]-OD”
first decomposes the cells using the classical octree up to
the specified level [•] and then the optimal decomposition is
performed in the resulting subcells independently. Thereby,
a low number of subcells can be obtained which still have a
reasonable aspect ratio. As a specialized approach, the octree
method may be applied up to the level where each resulting
subcell only consists of 2 × 2 × 2 voxels. Application of
the optimal decomposition in these subcells will then corre-
spond to a pure merge of the voxels, provided that voxels of
equal phase are present. Therefore, we refer to this specific
approach as “MT”. Note that each combined decomposition
approachwill be as accurate as possible as long as the optimal
decomposition is performed as last step.

For the extended FCM combined with the eigenerosion
approach, additional criteria for the voxel decomposition
have to be considered due to the potential split of the
finite cells into multiple finite elements. The hanging node
constraints might lead to numerical instabilities as a conse-
quence of difficult constraint equations resulting from certain
geometric distributions. For instance, if a hanging node is
connected to a point in a neighboring element where the dis-
placements, in turn, are also interpolated based on hanging
nodes themselves, then numerical instabilities occur. This
happens if both touching faces between the two neighbor-
ing elements overlap each with at least one face of another
element. Even more complex cases, in which cyclic depen-
dencies occur, are possible. To avoid this case, the voxel data
has to be decomposed in such a way that the two faces match
completely or one of the two touching faces is a subset of the
other one. If the second case occurs, only the hanging nodes
of the smaller face are constrained by the nodes of the larger
one. If a mesh fulfills this requirement everywhere, we refer
to it as “consistent”.Another aspect of the discretization deals
with the crackwidth. The subcells have to be arranged in such
a way that the crack width may not become too large. There-
fore, the subcell sizes may not be too large near the interfaces
of materials and in areas where nomaterial boundaries occur.
Exemplarily, different strategies for the decomposition are
presented in Fig. 6.

In Fig. 2a, a microstructure with 48 × 48 voxels inherit-
ing a potential crack path is considered which is discretized
with 6 × 6 finite cells. In Fig. 6a, the decomposition result-
ing from using optimal decomposition is presented. Here, the

given voxel set is split into the least number of subcells. How-
ever, the microstructure is not incorporated properly in some
parts near the crack due to the lengthy subcells, which may
represent distorted finite elements when switching from sub-
cells to elements. Furthermore, the mesh is “inconsistent” in
terms of the above-mentioned mismatch regarding the hang-
ing nodes, which leads to numerical problems. To circumvent
these problems, the combination of octree with a merge on
the lowest level (T-MT) is concluded favorable. This also
decreases the aspect ratios ofmany elements as demonstrated
in Fig. 6b. Note, that here the octree level has been chosen in
such a way, that themerge is only applied in sets of 2×2 vox-
els so that themeshbecomes consistent. Therefore, the choice
of pixels per structural edge and number of finite subcells per
edge enables the octree decomposition and the combination
with the merge T − MT to be exact, because of the 8 = 23

voxels per subcell edge which can be accurately represented
by a level 3 octree. In the generated discretization, the crack
near the material interfaces is resolved sufficiently. Never-
theless, the crack thickness becomes large far away from the
material interfaces because some finite cells only consist of
one single subcell due to the absence of a second material
phase.Hence, aminimumoctree split of the finite cells is con-
sidered to decrease the maximum size of the subcells leading
to a voxel decomposition capable of representing the crack
properly in every part of the structure, cf. Fig. 6c. However,
this minimum split increases the computational effort in the
assembling procedure of the global systems of equations due
to its increased number of subcells. Additionally, the global
equations may be increased due to additional hanging nodes
if subcells are transformed into finite elements. Because of
that, the number of minimum splits is supposed to be chosen
as small as possible in order to keep computational efficiency.
This inefficiency can be reduced by an appropriate manage-
ment in the software implementation if only those finite cells
areminimally decomposed into subcellswhich contain newly
developing cracks.

4 Numerical examples

In order to show the performance of the proposed approach,
two different three-dimensional numerical examples are
analyzed. The examples are designed in the context of sim-
ulations of crack propagation through metallic microstruc-
tures. More specifically, two metal matrix composites are
considered which are commonly used as protective layers
against abrasive wear in e.g., drilling or mining tools. These
materials, however, undergo predominantly another wear
mechanism, namely surface-spalling, which is mainly gov-
erned by the propagation ofmicroscopic cracks. The analysis
of the microscopic crack propagation is considered promis-
ing for the development of optimized materials ensuring
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Fig. 6 Discretization of the binarized scan from Fig. 2 with possible
crack path (yellow) consisting of 48 × 48 voxels into 6 × 6 finite cells
considering a optimal decomposition OD, b two levels of octree with

optimal decomposition on the lowest level T2-OD = T2-MT, and c
additional minimum split T2min1-MT. (Color figure online)

Fig. 7 a Boundary conditions of
the simulation setup of the
benchmark experiment and b
the considered microstructure

higher protection properties and thus, longer lifespan and
reduced costs. This is particularly important in the context of
tunnel boring machines where an (unexpected) exchange of
mining tools leads to a halt of the complete tunneling process
representing significant costs and resources.
Since three-dimensional microstructure measurements are
usually available as voxel data, the algorithm proposed in
this paper is particularly beneficial. Whereas the first prob-
lem considers amore academic example of a simplifiedmetal
matrix compositemicrostructure serving as benchmark prob-
lem to enable a more generally meaningful analysis, the
second problem addresses a real metal-matrix microstruc-
ture obtained from micro-CT.

4.1 Benchmark problem

In order to proof the general feasibility of the proposed algo-
rithm, a benchmark experiment on an artificial metal matrix
composite microstructure as seen in Fig. 7 is investigated.
Although more realistic, simplified microstructures could in
principle be constructed by applying the concept of statisti-
cally similar representative volume elements as proposed in
Scheunemann et al. [39], themicrostructure heremay already

be considered sufficiently realistic for the purposes in this
section. The microstructure has an edge length of 70 µm and
consists of a spherical tungsten carbide inclusionwith a diam-
eter of 50µm surrounded by a ductile nickel matrix. A brittle
η-carbide layerwith a thickness of 5µmlies in-between these
phases. For comparative purposes, crackpropagation through
this microstructure is simulated based on eigenerosion and
the following different types of approaches:

(i) As a reference representing the rather classical
approach, an unstructured mesh using quadratic 10-
node tetrahedral elements is considered, where the
element faces conformwith the assumed sphericalmor-
phology of the inclusion.

(ii) As further reference, reflecting rather the voxel-based
setting, a structured, regular FE mesh is analyzed,
where every voxel is discretized with one 8-node hex-
ahedral element.

(iii) As amore efficient, classical alternative, a semi-regular
FEmesh is investigated,where 27-node hexahedral ele-
ments considering localmesh refinement at thematerial
interfaces using hanging nodes are taken into account.
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Fig. 8 Comparison of different decomposition schemes based on the
voxel data of the artificialmicrostructure shown in Fig. 7: a total number
of subcells and number of hanging node constraints, and b maximum
value of aspect ratios of the subcells’ edge lengths and ratio ofmaximum
edge length (over all subcells) per minimum edge length (over all sub-

cells). The transparency indicates that the corresponding discretization
contains inconsistencies if the discretization type iii or iv are applied. If
those discretizations are used, numerical problems may occur. T2min1-
MT = T2min1-OD is chosen for the numerical calculations

(iv) The results based on the proposed algorithm combining
the eigenerosion and FCM is compared with the other
calculations.

The latter three types are based on artificially generated voxel
data consisting of 56 × 56 × 56 voxels which represents
a virtual measurement of the morphology of the spherical
inclusion in terms of voxels. For the proposed approach (iv),
various voxel decomposition schemes are applied, all based
on the discretization using 7×7×7 finite cells such that each
finite cell contains 8 × 8 × 8 voxels. The resulting subcell
decompositions are used for approach type (iii) to define the
locally refined finite element discretization. The decompo-
sition schemes are chosen such that the material boundaries
are represented accurately in order to avoid an inaccurate
representation as source for potentially erroneous results.

The properties of the resulting discretizations considering
quadratic shape functions are shown in Fig. 8. As expected,
the discretizations generated with the decomposition meth-
ods OD, T2-OD-M and T3-M result in the least numbers
of subcells, while containing subcells with the highest pos-
sible aspect ratio. This may cause numerical instabilities in
the case when the proposed algorithm is used as soon as
the subcells are transformed to finite elements at the crack
tip, or in the case of using discretization type iii. Further-
more, these discretizations contain inconsistencies if the
subcells are transformed into finite elements. Thesemay lead
to numerical problems if discretization types iii or iv are
considered. Hence, these discretizations should not be con-
sidered. In contrast to that, the pure octree decompositions
T3, T3min1 and T3min2 lead to a high number of subcells
and thus, hanging nodes, but the element aspect ratio is kept
1. Thereby, the ratio of the maximum edge length over the
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Table 1 Material parameters of
metal matrix composite
microstructure of the benchmark
experiment

K(GPa) µ (GPa) y0 (GPa) y∞ (GPa) hexp hlin (GPa) Gc (N/mm2)

Tungsten carbide 308.12 288.71 1012 1012 0 0 0.0371

η-carbide 394.38 228.72 1012 1012 0 0 0.0065

Nickel 225.6 75.19 260 580 9 70 1.730

whole microstructure problem per minimum edge length of
all subcells remains low. Additionally, the equidistant octree
decomposition always leads to consistent discretizations.
The combination T2min1-MT enables a subcell decompo-
sition with a small number of subcells and hanging node
constraints on the one hand, while keeping the aspect ratios
moderate on the other hand. Furthermore, this approach sup-
plies a consistentmesh at every time in the simulationwith the
proposed algorithm. Therefore, this decomposition scheme
is considered for the subsequent mechanical simulations.

For the numerical calculation of the benchmark problem,
the material parameters of the constituents as shown in Table
1 are considered. These have been chosen in line with exper-
imental findings on the single components. Displacements at
the opposite surfaces with normal in x-direction, as shown
in Fig. 7a, are linearly increased over time with a veloc-
ity of ˙̄u = 350mm/s such that predefined strains measured
through the change of outer dimensions of the specimen
ε̄xx = ūxx/lxx are reached. To further analyze the choice
of polynomial degree in the finite cells, in addition to the tri-
quadratic shape functions used in T2min1-OD, also tri-linear
shape functions are considered. To this end, the benchmark
microstructure is additionally decomposed using 14×14×14
finite cells and approach T1-OD. Regarding discretization
type ii, where all voxels are represented as single hexahedral
finite elements, only elements with tri-linear shape func-
tions are considered due to the high amount of degrees of
freedom. Therefore, this calculation should not be misinter-
preted as reference solution since the approximation quality
is comparatively poor. For the eigenerosion regularization,
the influence radius is chosen to ε = 0.5 h in all simulations.
Note, that for the brittle components in the microstructure,
the initial yield stress y0 is set to a high value, which will not
be reached in the simulation, to prohibit plastic deformations.
For the analysis of the numerical results, the resultant reaction
force Q̄xx at the Dirichlet boundary versus imposed speci-
men strain ε̄xx is shown in Fig. 9a.With increasing strain, the
reaction force increases until the η-carbide layer cracks at the
strain ε̄xx = 0.2 × 10−3 and thus, the reaction forces drop
rapidly. Afterwards, the structural response increases again
until the nickel matrix breaks into two parts so that the reac-
tion force decreases to zero. As expected, the results show a
quite different response for the hexahedral FEM where each
voxel is represented by one element, which is due to the lack
in approximation accuracy of the tri-linear shape functions.

In contrast to that, the proposed approach converges well
with increasing number of finite cells to the hexahedral FE
calculation using local refinement everywhere. Whereas the
reaction force using 7 × 7 × 7 finite cells still differs signif-
icantly from the hexahedral FE calculation with local mesh
refinement in the region where the matrix breaks, it is almost
identical when using 14 × 14 × 14 finite cells. Hence, this
benchmark experiment shows the mesh independency of the
proposed approach.
In addition to these calculations, also the results of the con-
forming, unstructured tetrahedral FE calculation are depicted
and show a quite different quantitative response in the
reaction force. This is not surprising since the considered
microstructure morphology is different. Whereas here the
inclusion shape is almost perfectly spherical, the shape is
non-smooth for the FC calculation where voxel data is
directly considered. Note that this does not represent a short-
coming of the proposed approach, it rather illustrates a
general challenge when simulating heterogeneous structures
which are solely given as voxel data. By constructing a some-
what interpolated interface morphology serving as reference
for the generation of the conforming, unstructured FE mesh,
the resulting morphology may not necessarily correspond
to the “real” one. In fact, the FCM itself corresponds to a
somewhat interpolated interface morphology, however dif-
ferently interpolated, such that it can not be said which kind
of interpolation works better in general. Here, the interface
morphology is known because a spherical inclusion is con-
sidered and thus, no interpolation based on the voxel data
is required. Therefore, the difference in the response of all
voxel-based calculations compared to the conforming FE
calculation just reflects the limitation of using voxel data
of limited resolution. However, such limited resolutions are
standard in real three-dimensional measurements of hetero-
geneous structures, e.g., based on micro-CT.

Aside from the quantitative response, also qualitatively
the proposed approach corresponds quite well with all other
calculations. This can be seen by comparing the crack paths
as shown in Fig. 10. There, the eroded elements are depicted
at ε̄xx = 0.5×10−3 (after complete fracture of the η-carbide
layer) and at ε̄xx = 2.0× 10−3 (after complete failure of the
specimen) and show significant similarities, again reflecting
the mesh independence. Furthermore, it is shown that one
constant c for determining the influence radius ε suffices
even for different element and discretization types.
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Fig. 9 a Resultant reaction force Q̄xx at the Dirichlet boundary versus imposed specimen strain and b number of equations within the linearized
system of each Newton–Raphson step versus imposed specimen strain ε̄xx

The resulting equivalent plastic strain α and the vonMises
Kirchhoff stress τ vM resulting from the simulation using the
proposed approach are shown in Fig. 11. Even if small speci-
men strains ε̄xx are applied, plastic deformations occur due to
microscopic strains larger than the macroscopic ones caused
by the morphological heterogeneity.

The main advantage of the proposed approach is its effi-
ciency compared to the calculations with the hexahedral
meshes. This can be seen in the size of the resulting lin-
earized system of equations to be solved in each Newton
iteration, which is depicted in Fig. 9b. In the beginning of the
deformation process, when no crack evolves and only finite
cells and no elements including hanging nodes occur, the
equation system is lower by a factor of 2.5 compared to the
final state in which all finite cells at the material boundaries
are transformed into single elements. In the regular hexa-
hedral mesh 549, 081 equations occur. If quadratic shape
functions were considered, which would actually be needed
for accuracy reasons, there would be 4,303,153 equations
and thus an increase of factor 60.1. Furthermore, the num-
ber of elements for the assembling with 175, 616 elements
is larger by a factor of 7.5 compared to the 23, 360 sub-
cells/elements. Additionally, the number of eroded elements
increases the computational effort because for every eroded
element, the system of nonlinear equations associated with
mechanical equilibrium has to be solved again as part of the
eigenerosion algorithm. The final crack contains 4046 ele-
ments using the proposed approach and 18, 406 elements
in the regular hexahedral mesh of the discretization type ii.
Especially with respect to the number of 600 time steps,
the large numbers of eroded elements strongly influence the
number of solving steps and thus the computational effort.
This again demonstrates the gain in efficiency of the proposed
approach compared to the discretization type ii. Note that in
this example the benefits of the extended FCM compared to

the semi-regular hexahedralmeshwith hanging nodes is even
relatively small because almost all finite cells containing the
η-carbide layer become part of the crack and all included
subcells are thus transformed to finite elements. This will be
much different and to the advantage of the proposed approach
when consideringmore complexmicrostructures,where only
a small fraction of finite cells become part of the cracks.
Nevertheless, the benchmark experiment demonstrates the
efficiency of the proposed approach compared to the alterna-
tive methods while being competitively accurate.

4.2 Microstructure based onmicro-CT scan

In order to demonstrate the capability of the proposed
FCM/Eigenerosion approach to simulate real-world, hetero-
geneous structures, the real microstructure of Ferrotitanite
is investigated here. This metal-matrix composite consists
of brittle titanium carbide inclusions surrounded by a duc-
tile Nikro128 matrix. The microstructure data is obtained
from Micro-CT scanning and the considered data set con-
sists of 32× 32× 32 voxels, cf. Fig. 12a. This specimen has
a size of 64× 64× 64µm3 and it discretized with 8× 8× 8
finite cells applying the scheme T1min1-OD assuming tri-
quadratic shape functions cf. Fig. 12b. Simulations assuming
anunregularized elasto-plasticmaterial behavior haveproven
difficult. For this structure large changes in the deforma-
tion fields due to the erosion of elements occur which led
to a failing Newton–Raphson iteration. This is not surpris-
ing as in [50] it has been shown that simulations including
eigenerosion and an unregularized elasto-plasticmaterial law
suffered from localized plastic zones. To avoid these issues,
the elasto-viscoplasticmaterial lawgiven inSect.A is consid-
ered, where the evolution of the internal variables is delayed
and thereby localization effects are decreased. The material
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Fig. 10 Crack path through
artificial metal matrix composite
microstructures at a specimen
strain of ε̄xx = 0.5 × 10−3 (left)
and ε̄xx = 2.0 × 10−3 (right)
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Fig. 11 a Distribution of
equivalent plastic strain α and b
von Mises Kirchhoff stress τ vM

over the specimen resulting
from the simulation using the
proposed approach at
ε̄xx = ūxx/lxx = 0.18%
considering 7 × 7 × 7 finite
cells; the crack path is shown in
gold color. Here, the grey lines
indicate either the faces of the
active finite cells/subcells or
finite elements in the case when
the subcells are transformed to
elements in the crack path.
(Color figure online) (a) (b)

Fig. 12 a Binarized voxel data
set of the considered
metal-matrix composite
(Ferrotitanite) containing
32 × 32 × 32 voxels, each with
the dimensions
2µm × 2µm × 2µm; the
microstructure consists of brittle
titanium carbide inclusions
(green) and a ductile Nikro128
matrix (grey). b Discretization
of microstructure with 8× 8× 8
finite cells and the
decomposition strategy
T1min1-MT. (Color figure
online)

Table 2 Considered material parameters of Ferrotitanite microstructure

K (GPa) µ (GPa) y0 (GPa) y∞ (GPa) hexp (−) hlin (GPa) η (GPas) Gc (N/mm)

Titanium carbide 235.42 191.53 1012 1012 0 0 − 0.114

NiBSi 167.84 77.47 1.3 1.5 300 5.0 1.0 0.022

parameters of the two constituents are presented in Table 2. In
case of the titanium carbide, estimated values were given by
material science expert collaborators. In contrast to that, the
parameters of the matrix material were fitted to experimental
tensile tests in case of the ductile matrix. In both cases, the
Griffith-type energy release rate Gc has been fitted to tensile
tests. Here, the geometry of the tensile tests is decreased in
such a way, that its axial lengths is of 50µm because the
Griffith-type energy release rate Gc scales with the geome-
try size. This procedure ensures that this parameter lies in the
correct magnitude.
As boundary conditions, the displacements at two opposite
faces of the specimen are prescribed into the x-directions
normal to the faces as in the previously shown benchmark
experiment. Additionally, at one side in y-direction and one
side in z-direction, the displacements in normal directions
are restricted, which corresponds to symmetry conditions in

a uniaxial tension scenario. The velocity of the deforma-
tion is controlled by the given strain rate ˙̄εxx = 0.01/min
defined on specimen level. An initially fractured zone at the
edge of the specimen is imposed to control the position of
the crack to go rather through the center of the specimen in
order to avoid boundary effects. Simulations with two differ-
ent initial cracks as shown in Fig. 13a are carried out. Due to
the rather isotropically distributed inclusions, the considered
metal-matrix composite behaves isotropically at the larger
scale and thus, a quite similar response is to be expected
from the simulations with varying initial cracks. Figure 13b
demonstrate that the resultingvonMisesKirchhoff stress τ vM

in the first time step before cracking occurs gets higher at the
tip of the initial cracks and in the titanium carbide inclu-
sions compared to the ones in the ductile matrix. However,
the crack propagates primarily through the ductile matrix cf.
Fig. 13c because of its lower resistance against crack propa-
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Fig. 13 Simulated crack
through metal-matrix
microstructure at different
specimen strains ε̄xx = ūxx/lxx
for initial crack (1) and (2); a
shows the initial crack, b depicts
the von Mises Kirchhoff stress,
c, d show the microstructure and
crack, respectively, for the fully
fractured scenario

(a1) (a2)

(b1) (b2)

(c1) (c2)

(d1) (d2)
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Fig. 14 a Resultant reaction force Q̄xx in the Dirichlet boundary in x-direction and b number of equations in the linearized system within each
Newton iteration versus specimen strain ε̄xx

gation. Hence, the crack path goes around the hard phase
particles and propagates in all three dimensions until the
structure is split into two parts, cf. Fig. 13d. Additionally,
bifurcation of the crackpath occurs. For both initial crack sce-
narios, qualitatively similar crack paths develop. To analyze
the quantitative response, Fig. 14a depicts the resultant reac-
tion force at the Dirichlet boundary versus specimen strain.
At first, the reaction force increases almost linearly until
crack propagation starts at ε̄xx = 0.1%. Then, the reaction
force decreases in some time steps due to erosion of elements
and increases in some time steps due to the increased macro-
scopic strains until only a small connection between both
sides remains at ε̄xx = 1% until it breaks at ε̄xx = 2.2%.
As can be seen, also quantitatively the response of the two
initial crack scenarios is quite similar reflecting the overall
isotropy of the material.
For the assessment of the efficiency, Fig. 14b depicts the
number of linearized equations to be solved within each
Newton–Raphson step versus specimen strain. In the final
state, the number of equations neq is reduced by a factor of
3 for the proposed FCM/Eigenerosion strategy compared to
the hexahedral FEMwith hanging nodes. This is not surpris-
ing since in the final state, 1271 (initial crack scenario 1) and
1294 (initial crack scenario 2) subcells have been eroded,
resulting in approximately 1/6 of the total number of sub-
cells (6920). In the beginning of the crack propagation,where
only a few subcells are switched, the factor in the reduction
of linearized equations is even 12. Thus, by solely switching
those subcells to finite elements where the crack propagates
a significant efficiency gain is achieved. Note that this signif-
icant reduction of equations to be solved comes with an only
insignificant increase of cost for the assembling. This is due
to the fact that a separate, a priori discretization of subcells
as elements at all material interfaces would correspond to
the same amount of integration points. Therefore, the num-
ber of equations can be considered as suitable measure for

computational effort. Hence, the reduced number of equa-
tions should result in reduced computing times if using the
samecomputational resources. If eachvoxelwas simulated as
one single finite element, approximately 815,000 linearized
equations would occur which surpasses the one of the pro-
posed strategy by a factor of 8 in the final state and 24 in
the beginning. Additionally, the computational effort for the
assembling would be highly increased because of the num-
ber of elements 323 = 32, 768 is high compared to the 6920
subcells of the enhanced FCM. Summarizing, this numer-
ical example demonstrates the computational efficiency of
the proposed FC/Eigenerosion strategy and its capability to
simulate complex crack paths based on real voxel data.

5 Conclusion

The aim of this work was to develop a mesh-independent,
robust and efficient framework for the simulation of ductile
crack propagation through heterogeneous structures given as
voxel data. Therefore, the basic formulation of the eigenero-
sion for ductile crack propagation at finite strains has been
chosen as a basis. For an efficient simulation based on voxel
data, the Finite Cell Method (FCM) has been incorporated
additionally. In our combined approach, the mesh is refined
at the crack tip by transforming the subcells into single finite
elements. Thereby, although introducing an adaptive mesh-
refinement in terms of the FE approximation, the integration
scheme is kept and thus, additional projections of history
variables are avoided. For the application of this framework,
the decomposition of the finite cells representing the voxel
data as efficiently as possible has been a crucial ingredi-
ent. In a numerical example of an artificial metal matrix
composite, a microstructure consisting of a brittle sphere
surrounded by a ductile matrix, it was shown that the octree
decomposition with a merge on the lowest level led to the
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decomposition resulting in themost efficient simulation. Fur-
thermore, this exemplarymicrostructurewas discretizedwith
varying approaches. In a virtual tensile test, a quite similar
crack path occurred in all simulations. By comparing the
resultant forces, more pronounced quantitative differences
between the calculations have been observed, specifically in
the ductile softening phase of the simulation. However, the
results obtained fromour proposed approach converged (with
increasing numbers of finite cells) to the solution of a semi-
regular hexahedral mesh using hanging nodes. In this latter
discretization, all material interfaces were locally adaptively
meshed such that each of these elements was in line with the
subcells considered as part of the proposed approach. There-
fore, the proposed approach turned out to be qualitatively
and quantitatively as accurate as the semi-regular hexahedral
discretization, which was not surprising. However, as major
advantage, our approach only required the full locally refined
semi-regular mesh where the crack takes place. In this exam-
ple all material interphases, where the advantage of the FCM
could be exploited, were eroded, and thus, the gain in com-
putational costs could only be moderate. Therefore, a second
numerical example has been analyzed where a part of a real
metal matrix composite microstructure obtained frommicro-
CTwas considered. In this example, the number of equations
in the linearized systemwithin the Newton–Raphson scheme
could be reduced by a factor of approximately 3, compared
to the semi-regular hexahedral discretization. Comparing the
calculations for two differently located initial cracks, a simi-
lar structural response and crack path was obtained reflecting
the material’s macroscopic isotropy.
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A Material model for ductile fracture

For the simulation of ductile fracture, the finite J2-elasto-
plasticity material model with exponential isotropic hard-
ening as introduced in [45–47] is applied. The numerical
implementation is given in Miehe et al. [21] and Klinkel
[15] and its modification for the eigenerosion approach in
Wingender and Balzani [50]. As demonstrated in the latter
reference, the elasto-plastic material model leads to numer-
ical localization of the plastic fields and therefore to mesh
dependence of the framework of ductile fracture. To avoid
this, viscous regularization is applied. Furthermore, the vis-
cosity, here the Perzyna-type, cf. e.g., Perzyna [33], Junker
et al. [12], leads to numerically more stable calculations
especially if large plastic deformations occur, because its
internal variables are derived explicitly. The material mod-
els considered in the numerical analyses presented later are
briefly recapitulated in this section. Those are based on the
multiplicative decomposition of the deformation gradient
F = Fe · Fp into an elastic part Fe and a plastic part Fp as
e.g. shown in Kröner [16], Lee [17]. Based on this, the elas-
tic Cauchy-Green tensor be = Fe · FeT = ∑3

i=1(λ
e
i )

2 ni ⊗
ni allows the spectral decomposition into the eigenvalues
resulting into the principal elastic stretches λei and their cor-
responding eigenvectors ni in form of the principal stretch
directions. Following this, the principal logarithmic elastic
strains εei = log(λei ) and their corresponding eigenvectors ni
are composed to the elastic strain tensor

εe =
3∑

i=1

εei ni ⊗ ni (11)

enabling the additive split of the strain tensor ε = εe + εp

into an elastic and plastic part εe and εp, respectively. Based
thereon, a quadratic elastic part of the strain energy density
is considered as

ψe = κ

2
tr(εe)2 + μ dev(εe) : dev(εe) (12)

containing the compression modulus κ , the shear modulus µ
and the deviator operation dev(ε) := ε−1/3 tr(ε)I with the
identity tensor I . Furthermore, the convex plastic dissipation
is assumed as the superposition of linear hardening controlled
by its slope hlin and exponential hardening with the degree
of exponential hardening hexp, i.e.

ψp = y0 α + (y∞ − y0)

[
α + exp(−hexp α) − 1

hexp

]

+1

2
hlin α2 (13)

as used in Voce [49]. The parameter y0 describes the initial
yield stress and y∞ the stress where the exponential harden-
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ing approaches almost purely linear hardening. By derivation
of the two parts of the strain energy density function, the
Kirchhoff stress tensor

τ = ∂ψe(εe)

∂εe
= κ tr(εe) I + 2µ dev(εe). (14)

and the hardening function

β = ∂ ψp(α)

∂ α
= y0 + (y∞ − y0)

[
1 − exp(−hexp α)

]

+hlin α. (15)

follow. The vonMises type flow condition φ = τ vM−β ≤ 0
is applied with the von Mises stress τ vM = √

3/2||dev τ ||
assuming plastic incompressibility, which is typical formetal
plasticity. The equationφ = 0 is solved for the plastic param-
eter λp describing the plastic evolution of the norm of plastic
strains ||ε̇p|| = λp and with respect to the evolution of the

equivalent plastic strains α̇ =
√

2
3 λp using a local Newton

iteration. The plastic parameter is obtained by

λp = 1

η
〈φ〉+ (16)

with the Macaulay bracket 〈(•)〉± = ((•) ± |(•)|)/2 and the
viscosity η. Note that for the description of crack propagation
through brittle materials, simply the plastic part of the strain
energy density as well as the viscous dissipation are set to
zero and the elastic strains become the total strains.

B Algorithmic implementation

The full eigenerosion algorithm with adaptive refinement is
demonstrated in Fig. 5. We discretize the time with nt time
steps	t = tk+1− tk such that the time for the whole process
is tend = nt	t . In each time step, the algorithm is mainly
decomposed into two major parts. In the first part, the equi-
librium equations are solved. Therefore, the matrices and
vectors kfcK , r

fc
K , m

fc
K and r fc,mK of the finite cells are calculated

as the sumof the correspondingmatrices and vectors kscS , r
sc
S ,

msc
S and rsc,mS of the subcells. Only the vector qK of the exter-

nal forces is evaluated directly because it is independent of
the subcells. Furthermore, the element stiffness matrix kK ,
residual rK , mass matrix mK , residual of inertia rm and vec-
tor of external forces qK of each element K , which has been a
subcell previously, is evaluated. Furthermore, the constraint
equation matrix C is computed and, based on these matrices,
the global system of equations K̄ 	 D̄ = R̄ is assembled and
solved for the increment of displacements 	 D̄. Then, the
displacement vector D̄ ⇐ D̄ + 	 D̄ is updated. This pro-
cedure is repeated until the residual norm e falls below the
tolerance tol.

The second part of the algorithm in each time step deals
with the eigenerosion. Therein, the net energy gain −	FK

and −	FS is evaluated for each subcell S and element K ,
respectively. If the net energy gain becomes larger than zero
in at least one subcell or element, the one with the largest
net energy gain is eroded. Additionally, elements/subcells
whose net energy gain −	FK/S lie within a certain tol-
erance to the maximum max(−	FK/S) are also eroded to
allow for simultaneous development of crack branches. If a
subcell is eroded, the corresponding finite cell is split into
multiple finite elements, each representing a former sub-
cell. From now on, the former finite cell does not contribute
global matrices and vectors anymore. Instead, the matrices
and vectors of the new elements are taken into account. Note,
that for the eroded element, now the lumped mass matrix is
considered instead of the consistent one. The new elements
are connected to new nodes. Their displacements are ini-
tially interpolated by using the shape functions and nodal
displacements of the previous finite cell. Because some of
those nodes are hanging nodes, their constraint equations
are added to the matrix C. Thereby, the size of the global
system of equations is increased by the number of degrees
of freedom of the new nodes plus the number of additional
constraint equations. Furthermore, the constraint equations
of hanging nodes that are constrained by the eroded element
are removed. Because the Gauß points of the elements are
located at the same position as the Gauß points of the former
subcells, the history variables remain the same. Furthermore,
the list of Gaußpoints for the calculation of the incremental
crack area	AK is updated. Afterwards, mechanical equilib-
rium is iteratively solved using theNewton–Raphson scheme
and all intact elements and subcells are checked for erosion
again. This process is repeated until no erosion occurs any-
more. Then the whole procedure is applied on the next time
step tk+1 until the final time step tend is reached.
For imposing an initial crack, the crack propagation pro-
cedure and transformation procedure is applied on the
corresponding subcells before the simulation of the first time
step starts. Another aspect, that additionally has to be con-
sidered in the proposed algorithm, is the choice of the length
scale parameter ε which influences the crack propagation.
The relation ε = c h with constant c and characteristic ele-
ment size h as proposed in Pandolfi and Ortiz [30] leads to
mesh converging results. Empirically, it has been found that
this relation also holds for this approach by considering the
maximum edge length of the subcells instead of the element
size h. A validation is shown in the numerical examples.
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