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Abstract
This is the first part of a two-part article on a hyperelastic extended Kirchhoff–Love shell model with out-of-plane normal
stress. We present the derivation of the new model, with focus on the mechanics of the out-of-plane deformation. Accounting
for the out-of-plane normal stress distribution in the out-of-plane direction affects the accuracy in calculating the deformed-
configuration out-of-plane position, and consequently the nonlinear response of the shell. The improvement is beyond what
we get from accounting for the out-of-plane deformation mapping. By accounting for the out-of-plane normal stress, the
traction acting on the shell can be specified on the upper and lower surfaces separately. With that, the new model is free from
the “midsurface” location in terms of specifying the traction. We also present derivations related to the variation of the kinetic
energy and the form of specifying the traction and moment acting on the upper and lower surfaces and along the edges. We
present test computations for unidirectional plate bending, plate saddle deformation, and pressurized cylindrical and spherical
shells. We use the neo-Hookean and Fung’s material models, for the compressible- and incompressible-material cases, and
with the out-of-plane normal stress and without, which is the plane-stress case.

Keywords Kirchhoff–Love shell model · Hyperelastic material · Out-of-plane normal stress · Out-of-plane deformation
mapping · Neo-Hookean material model · Fung’s material model

1 Introduction

A shell formulation based on the Kirchhoff–Love shell the-
ory and isogeometric discretization was introduced in [1–3].
It has the advantage of not requiring rotational degrees
of freedom. Extension to general hyperelastic material can
be found in [4,5]. The formulation has been successfully
used in computation of a good number of challenging

B Kenji Takizawa
Kenji.Takizawa@tafsm.org

Tayfun E. Tezduyar
tezduyar@tafsm.org

1 Department of Modern Mechanical Engineering, Waseda
University, 3-4-1 Ookubo, Shinjuku-ku, Tokyo 169-8555,
Japan

2 Department of Mechanical Engineering, Faculty of Science
and Technology, Tokyo University of Science, 2641
Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan

3 Mechanical Engineering, Rice University – MS 321, 6100
Main Street, Houston, TX 77005, USA

4 Faculty of Science and Engineering, Waseda University,
3-4-1 Ookubo, Shinjuku-ku, Tokyo 169-8555, Japan

problems, including wind-turbine fluid–structure interac-
tion (FSI) [3,6–10], bioinspired flapping-wing aerodynamics
[11], bioprosthetic heart valves [12–16], fatigue and damage
[17–22], and design [23,24].

We are introducing a hyperelastic extended Kirchhoff–
Love shell model with out-of-plane normal stress. In the
first part of a two-part article, we present the derivation of
the model, with focus on the mechanics of the out-of-plane
deformation. To determine the out-of-plane stress, we solve
the linear-momentum-balance equation in the out-of-plane
direction. Accounting for the out-of-plane normal stress dis-
tribution in the out-of-plane direction affects the accuracy
in calculating the deformed-configuration out-of-plane posi-
tion, and consequently the nonlinear response of the shell.
The improvement is beyond what was achieved with the
newmodel’s precursor [5] by accounting for the out-of-plane
deformation mapping.

A good number of shell models were presented earlier in
the finite element context (see, for example, [25–31]), with
significant effort in bending representation. The model in
[28] is based on a mixed formulation. The model in [31]
is based on a discontinuous-Galerkin type approximation
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to weakly enforce C1 continuity. The model in [30] is a
TUBA family element, which has displacement derivatives
as unknowns to attain C1 continuity in the displacement.
The model we are introducing here is similar to the model
in [25], which uses only one parameter to represent the out-
of-plane deformation. Most of the other shell formulations,
including some based on the Reissner–Mindlin theory, use
the plane-stress assumption. The models in [26,27], based
on the Reissner–Mindlin theory, are, however, without the
plane-stress assumption, in the finite element context.

Continuing what was started with its precursor, the model
introduced here is extending the range of applicability of
the Kirchhoff–Love shell theory to the situations where the
Kirchhoff–Love shell kinematics is still valid yet the thick-
ness or the curvature change is significant enough to make a
difference in the response. Fung’s material model has differ-
ent versions. In the version used in [13], the first invariant of
the Cauchy–Green deformation tensor appears in a squared
form. In the version used in this article, as in [5], it appears
without being squared, and this version has been used in a
number of arterial FSI computations [32–39] with the con-
tinuum model.

By accounting for the out-of-plane normal stress, the trac-
tion actingon the shell canbe specifiedon theupper and lower
surfaces separately. This enables not only more accuracy in
the linear-momentum balance in the out-of-plane direction,
but also representation of the moment the shear tractions on
the upper and lower surfaces generate around themidsurface.
With separate out-of-plane tractions on the upper and lower
surfaces, for example, we can accurately model cases that
might have nonzero net force even when those out-of-plane
tractions have equal magnitudes and opposite directions. The
net force would be nonzero because the upper and lower sur-
faces would have different areas due to the curvature. To
accurately account for the moment generated by the separate
shear tractions on the upper and lower surfaces, we improve
the rotational kinematics in the model.

We note that accounting for the out-of-plane stress
improves the out-of-plane deformationmapping also in cases
with no traction on the upper or lower surfaces and no body
force. Those would be the cases when the shell deformation
is driven by the displacements and slopes specified along the
edges of the shell.

We also would like to note that the level of accuracy we
are striving for in representing the tractions on the upper
and lower surfaces would be meaningful in an FSI com-
putation only if the flow solution method can deliver those
tractions with a comparable level of accuracy. That level of
flow solution accuracy, especially in representing the shear
stress, requires moving-mesh methods [9], where the high
mesh resolution near solid surfaces follows the fluid–solid
interface as it moves. That is now possible even in flow com-
putations with actual contact between solid surfaces or some

other topology change. The Space–Time Topology Change
method [40] enabled that. We can both represent the actual
contact and have high-fidelity, moving-mesh flow solution
near the solid surfaces.

Our test computations are based on solving the linear-
momentum-balance equation in the out-of-plane direction
with finite element discretization. The computed problems
are unidirectional plate bending, plate saddle deforma-
tion, and pressurized cylindrical and spherical shells. We
use the neo-Hookean and Fung’s material models, for the
compressible- and incompressible-material cases, and with
the out-of-plane normal stress and without, which is the
plane-stress case.

In Sect. 2, we provide the definitions and concepts
used in the shell model, including the notations and main
assumptions. In Sect. 3, we derive the weak form from the
virtual-work principle and express the corresponding strong
form. In Sect. 4, we describe the solution technique for the
out-of-plane deformation, which is meant to be used only for
the test computations in Sect. 5. The concluding remarks are
given in Sect. 6. In the Appendix, we provide some supple-
mental derivations and the constitutive models.

2 Hyperelastic shell model

2.1 Kinematics

LetΩt ⊂ R
nsd be the spatial domainwith boundaryΓt at time

t ∈ (0, T ), where nsd is the number of space dimensions.
Here, we assume nsd = 3. The subscript t indicates the time-
dependence of the domain.

We split the domain asΩt = Γ t ×(hth)t , where Γ t repre-
sents themidsurface,which is parametrized by npd = nsd−1,
with npd being the number of parametric dimensions. The
remaining parametric direction is the out-of-plane direction,
which wewill explain a little later in this section. The symbol
(hth)t will represent both the shell thickness and the domain
in the out-of-plane direction, depending on the context. With
the position x ∈ Γ t , we define a natural coordinate system:

gα ≡ ∂x
∂ξα

(1)

= x,α, (2)

where α = 1, . . . , npd and ξα represents the parametric
space. Figure 1 shows a schematic shell domain. We note
that this parametric space is only for representing the neigh-
borhood around a point. With a range −1 ≤ ξα ≤ 1 and
without loss of generality, it can be seen as a parent finite
element domain. The out-of-plane direction is

n ≡ g3 (3)
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Ωt

g1
g2

n

Γt

Fig. 1 A schematic shell domain Ωt at current configuration and the
midsurface Γ t . The black-framed region is for showing the parametric
space used in representing the neighborhood around a point. With a
range −1 ≤ ξα ≤ 1, the parametric space can be seen as a parent finite
element domain. The basis vectors of the natural coordinate system are
also shown in the figure

= g1 × g2
∥
∥g1 × g2

∥
∥
. (4)

The components of the metric tensor are

gαβ = gα · gβ, (5)

and this is known as the first fundamental form.We alsowork
with the contravariant components of the metric tensor gαβ

and the contravariant basis vectors gα (see Appendix A for
their relationship to gαβ and gα).

A position x ∈ Ωt is represented as

x = x + nξ3, (6)

where ξ3 ∈ (hth)t = [(ξ3)−, (ξ3)+]. Along ξ3, the basis
vectors are represented as

gα ≡ x,α (7)

= gα + n,αξ3 (8)

= gα + καγ gγ ξ3, (9)

where

καγ ≡ 1

2

(

gα · n,γ + gγ · n,α

)

. (10)

See Appendix B.1 for the lines between Eqs. (8) and (9).
With that, the metric tensor components in 3D space are

gαβ = gα · gβ (11)

= gαβ + 2καβξ3 + ωαβ

(

ξ3
)2

, (12)

where

ωαβ ≡ n,α · n,β (13)

= καγ g
γ δκδβ . (14)

Remark 1 The symbols καβ and ωαβ are for notational con-
venience.

We note that the curvature tensor is defined by

κκκ = καβgαgβ, (15)

and the square of the curvature tensor is the tensor version of
ωαβ :

κκκ · κκκ = ωαβgαgβ, (16)

We also use the dual basis system with gαβ and gα (see
Appendix A for their relationship to gαβ and gα).

We now provide similar definitions and derivations for the
undeformed configuration X ∈ Γ 0. We start with the basis
vectors

Gα = ∂X
∂ξα

0
(17)

= X,α, (18)

where ξα
0 = ξα , and

N ≡ G3 (19)

= G1 × G2
∥
∥G1 × G2

∥
∥
. (20)

We also again work with the contravariant components of

the metric tensor G
αβ

and the contravariant basis vectorsG
α

(see Appendix A for their relationship to Gαβ and Gα).
A position X ∈ Ω0 is expressed as

X = X + Nξ30 , (21)

where ξ30 ∈ (hth)0 = [(ξ30 )−, (ξ30 )+]. Similar to what we
had for the current configuration, along ξ30 , the basis vectors
are represented as

Gα ≡ X,α (22)

= Gα + N,αξ30 (23)

= Gα + K αγG
γ
ξ30 , (24)

where

K αγ ≡ 1

2

(

Gα · N,γ + Gγ · N,α

)

. (25)

The lines between Eqs. (23) and (24) are the deformed-
configuration counterpart of the lines between Eqs. (8)
and (9). The metric tensor components in 3D space are

Gαβ = Gα · Gβ (26)
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= Gαβ + 2K αβξ30 + Ωαβ

(

ξ30

)2
, (27)

where

Ωαβ ≡ N,α · N,β (28)

= K αγ G
γ δ
K δβ . (29)

We also again use the dual basis system with Gαβ and Gα

(see Appendix A for their relationship to Gαβ and Gα).

2.1.1 Deformation gradient tensor

The deformation gradient tensor F is defined from

dx = F · dX, (30)

which implies

gαdξ
α + ndξ3 = F ·

(

Gαdξ
α
0 + Ndξ30

)

. (31)

Using the relationship ξα = ξα
0 and introducing

λ3 = dξ3

dξ30
, (32)

we can write

F = gαGα + λ3nN. (33)

2.1.2 Cauchy–Green deformation tensor

The Cauchy–Green deformation tensor is defined as

C ≡ Fᵀ · F, (34)

which is

C = (

Gαgα + λ3Nn
) · (

gβGβ + λ3nN
)

(35)

= gαβGαGβ + λ23NN, (36)

and the determinant of C gives the square of J = det F:

J 2 = detC (37)

= A2

A2
0

λ23, (38)

A2 = det
[

gαβ

]

, (39)

A2
0 = det

[

Gαβ

]

. (40)

2.1.3 Green–Lagrange strain tensor

The Green–Lagrange strain tensor is defined as

E = 1

2
(C − I) , (41)

where I is the identity tensor, and one of the ways to express
it is

I = GαβGαGβ + NN. (42)

We can then write E as

E = 1

2

(

C − (

GαβGαGβ + NN
))

(43)

= 1

2

(

gαβ − Gαβ

)

GαGβ + 1

2

(

λ23 − 1
)

NN. (44)

The covariant components of the in-plane strain tensor are

Eαβ = 1

2

(

gαβ − Gαβ

)

(45)

= 1

2

(

gαβ − Gαβ

)

︸ ︷︷ ︸

εαβ

+
(

καβξ3 − K αβξ30

)

+ 1

2

(

ωαβ

(

ξ3
)2 − Ωαβ

(

ξ30

)2
)

. (46)

The symbol εαβ here represents what is typically identified
as the membrane strain. That is only part of the membrane
strain in our model. The normal component associated with
the out-of-plane direction is

E33 = 1

2

(

λ23 − 1
)

. (47)

Remark 2 The term of Eq. (46) that is quadratic in ξ3 and
ξ30 was omitted in [5] as a higher-order term. We retain that
here.

2.2 The strain-energy density function

We express the strain-energy density function as

ϕ = ϕ(E). (48)

The second Piola–Kirchhoff stress tensor,

S = SαβGαGβ + S33NN, (49)

is obtained from

S ≡ ∂ϕ

∂E
, (50)
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and from that and Eq. (41),

S = 2
∂ϕ

∂C
. (51)

The Cauchy stress tensor, defined in the current configura-
tion, can be obtained from

σσσ = J−1F · S · Fᵀ
. (52)

3 Variational formulation

The variations of the internal and kinetic energies are
expressed as

δU =
∫

Ω0

δE : SdΩ, (53)

δT = −
∫

Ω0

δx · ρ0ẍdΩ, (54)

where ρ0 is the density at the undeformed configuration. The
principle of virtual work can then be written as

δU − δT − δWext = 0, (55)

where δWext is the external-force virtual work, explained
more later.

Remark 3 We note that in [9] (Section 1.2.2),−δWint is used
in place of δU .

Remark 4 We also note that in [9] (Section 1.2.2), the
variation of the kinetic energy, expressed in terms of the
acceleration, is part of the external-force virtual work. Here
we keep that separate. With this separation, Eq. (55) can be
seen as d’Alembert’s principle.

Remark 5 With the displacement expressed as y = x − X,
we can do the substitutions ẋ = ẏ and ẍ = ÿ.

3.1 Admissible variations

The variation of x is obtained by taking the variation of Eq.
(6):

δx = δx + δnξ3 + nδξ3. (56)

The variation δx represents the virtual displacement of the
midsurface, δn represents the rotation of the midsurface (see
Appendix B.2), and δξ3 represents the virtual displacement
in the out-of-plane direction, relative to the midsurface.

From the variation of Eqs. (8) and (32), we obtain

δgα = δgα + δn,αξ3 + n,αδξ3, (57)

δλ3 = d(δξ3)

dξ30
. (58)

The variation of E can be obtained by taking the variation
of Eqs. (46) and (47):

δEαβ = δεαβ + δκαβξ3

+ 1

2
δωαβ(ξ3)2 + δξ3

(

καβ + ωαβξ3
)

, (59)

δE33 = λ3δλ3. (60)

Remark 6 In [5], only the first two terms of Eq. (59) were
present.

The expressions for the three variations in Eq. (59) can be
written, from Eqs. (46), (10) and (13), as

δεαβ = 1

2

(

gα · δgβ + gβ · δgα

)

, (61)

δκαβ = 1

2

(

n,α · δgβ + gα · δn,β

+n,β · δgα + gβ · δn,α

)

, (62)

δωαβ = n,α · δn,β + n,β · δn,α. (63)

Remark 7 As can be seen from the expressions in Eqs. (61),
(62) and (63), the three variations are not independent. The
variation δωαβ can be expressed in terms of δεαβ and δκαβ .
That can be done by first taking the variation of Eq. (14):

δωαβ = δκαγ g
γ δκδβ + καγ g

γ δδκδβ + καγ δgγ δκδβ . (64)

Next, δgγ δ is written as

δgγ δ = −gγ ηδgηκg
κδ, (65)

which can be derived by taking the variation of

gγ ηgηκ = δγ
κ . (66)

As the last steps, from Eqs. (65) and (46), we write

δgγ δ = −2gγ ηδεηκg
κδ, (67)

substitute that into Eq. (64), and obtain

δωαβ = δκαγ g
γ δκδβ + καγ g

γ δδκδβ

− 2καγ g
γ ηδεηκg

κδκδβ . (68)
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3.2 Variation of the strain energy

In one of theways to express the variation of the strain energy,
we start with

δE = 1

2

(

δFᵀ · F + Fᵀ · δF
)

(69)

= 1

2

((

Fᵀ · δF
)ᵀ + Fᵀ · δF

)

. (70)

Because S is a symmetric tensor, we simply write

δE : S = (

δFᵀ · F) : S. (71)

Substituting Eq. (33), its variation, and Eq. (49) into this, we
get

δE : S = δgα · gβ S
αβ + δλ3λ3S

33. (72)

Substituting Eq. (57) into that, we obtain

δE : S = δgα · Sαβgβ + δn,α · Sαβgβξ3

+ δξ3n,α · Sαβgβ + δλ3λ3S
33. (73)

We perform the integration in Eq. (53) with the integrand
given by Eq. (73):

δU =
∫

Γ 0

δgα ·
∫

(hth)0
gβ S

αβ A0

A0
dξ3dΓ

+
∫

Γ 0

δn,α ·
∫

(hth)0
ξ3gβ S

αβ A0

A0
dξ3dΓ

+
∫

Γ 0

n,α ·
∫

(hth)0
δξ3gβ S

αβ A0

A0
dξ3dΓ

+
∫

Γ 0

n ·
∫

(hth)0
δλ3λ3nS33

A0

A0
dξ3dΓ . (74)

We define pα as

pα = gβ S
αβ A0

A0
, (75)

its integration along (hth)0 as

p̂α
0 =

∫

(hth)0
pαdξ3, (76)

and its first moment as

p̂α
1 =

∫

(hth)0
ξ3pαdξ3. (77)

With these definitions, we write Eq. (74) in a simpler form:

δU =
∫

Γ 0

δgα · p̂α
0 dΓ

+
∫

Γ 0

δn,α · p̂α
1 dξ

3dΓ

+
∫

Γ 0

n,α ·
∫

(hth)0
δξ3pαdξ3dΓ

+
∫

Γ 0

n ·
∫

(hth)0
δλ3λ3nS33

A0

A0
dξ3dΓ . (78)

We also express δU in an alternative form by using Eqs.
(59), (60) and (49) in Eq. (53):

δU =
∫

Γ 0

δεαβ Ŝ
αβ
ε dΓ

+
∫

Γ 0

δκαβ Ŝ
αβ
κ dΓ

+
∫

Γ 0

1

2
δωαβ Ŝ

αβ
ω dΓ

+
∫

Γ 0

καβ

∫

(hth)0
δξ3Sαβ A0

A0
dξ3dΓ

+
∫

Γ 0

ωαβ

∫

(hth)0
δξ3ξ3Sαβ A0

A0
dξ3dΓ

+
∫

Γ 0

∫

(hth)0
δλ3λ3S

33 A0

A0
dξ3dΓ , (79)

where the zeroth, first, and secondmoments of the contravari-
ant components of S are given as

Ŝαβ
ε =

∫

(hth)0
Sαβ A0

A0
dξ3, (80)

Ŝαβ
κ =

∫

(hth)0
ξ3Sαβ A0

A0
dξ3, (81)

Ŝαβ
ω =

∫

(hth)0

(

ξ3
)2

Sαβ A0

A0
dξ3. (82)

Remark 8 In [5], the third integral in Eq. (79) was omitted.

Remark 9 The fourth, fifth, and sixth integrals in Eq. (79)
are the contributions to the virtual work in the out-of-plane
direction, which will be explained more in Sect. 3.5.

3.3 Variation of the kinetic energy

Performing the integration in Eq. (54), we get

δT = −
∫

Γ 0

∫

(hth)0
δx · ρ0ÿ

A0

A0
dξ3dΓ . (83)

Substituting Eq. (56) into this, we obtain

δT = −
∫

Γ 0

δx · m̂0dΓ −
∫

Γ 0

δn · m̂1dΓ

−
∫

Γ 0

∫

(hth)0
δξ3ρ0n · ÿ A0

A0
dξ3dΓ , (84)
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where

m̂0 =
∫

(hth)0
ρ0ÿ

A0

A0
dξ3, (85)

m̂1 =
∫

(hth)0
ξ3ρ0ÿ

A0

A0
dξ3. (86)

Remark 10 We note that

δn · m̂1 = δr · (

n × m̂1
)

, (87)

where

δr ≡ gβ × δgβ, (88)

and n × m̂1 represents the time derivative of the angular
momentum. The derivation of Eq. (87) is given in Appendix
B.3. This rearrangement may make it easier to see the fun-
damental mechanics in the term.

Remark 11 The second integral in Eq. (84) is related to the
time derivative of the angular momentum. It was included in
[41], but we did not see other papers that explicitly mention
the inclusion of the term.

The acceleration is written as

ÿ = d2
(

y + nξ3
)

dt2
(89)

= ÿ + n̈ξ3 + 2ṅ ξ̇3 + n ξ̈3. (90)

Remark 12 We omit the time derivatives of ξ3:

ÿ ≈ ÿ + n̈ξ3. (91)

Otherwise they need to be stored. We see this approximation
as a quasi-steady-state assumption.

With that, approximated forms of Eqs. (85) and (86) are writ-
ten as

m̂0 = ÿm̂0 + n̈m̂1, (92)

m̂1 = ÿm̂1 + n̈m̂2, (93)

where

m̂0 =
∫

(hth)0
ρ0

A0

A0
dξ3, (94)

m̂1 =
∫

(hth)0
ξ3ρ0

A0

A0
dξ3, (95)

m̂2 =
∫

(hth)0
(ξ3)2ρ0

A0

A0
dξ3. (96)

In the third term of Eq. (84), the integration along (hth)0 can
be written, with Eq. (91), as

∫

(hth)0
δξ3ρ0n · ÿ A0

A0
dξ3 = n · ÿδm̂1 + n · n̈1

2
δm̂2 (97)

= n · ÿδm̂1 − 1

2

∥
∥ṅ

∥
∥
2
δm̂2, (98)

where

δm̂1 =
∫

(hth)0
δξ3ρ0

A0

A0
dξ3, (99)

δm̂2 = 2
∫

(hth)0
δξ3ξ3ρ0

A0

A0
dξ3, (100)

which are the variation of Eqs. (95) and (96). From Eqs. (97)
to (98), we used

n · n̈ = − ∥
∥ṅ

∥
∥
2
, (101)

which can be obtained from n · ṅ = 0.

Remark 13 The second term in Eq. (98) represents the effect
of the centripetal acceleration.

Remark 14 Because we omitted ξ̇3 in obtaining Eq. (91), the
Coriolis effect is neglected in Eq. (98).

Substituting Eq. (98) into Eq. (84), we obtain

δT = −
∫

Γ 0

δx · m̂0dΓ −
∫

Γ 0

δn · m̂1dΓ

−
∫

Γ 0

(

n · ÿδm̂1 − 1

2

∥
∥ṅ

∥
∥
2
δm̂2

)

dΓ . (102)

3.4 The external virtual work

We separate δWext into three parts:

δWext = δWexbody + δWexsurf + δWexedge, (103)

where

δWexbody =
∫

Γ 0

∫

(hth)0
δx · ρ0f

A0

A0
dξ3dΓ , (104)

δWexsurf =
∫

Γ −
t

δx · hdΓ +
∫

Γ +
t

δx · hdΓ , (105)

δWexedge =
∫

(hth)t

∫

St
δx · hdSdξ3. (106)

Here St (see Fig. 2) is the edge line that traverses the edge
surface as ξ3 varies from (ξ3)− to (ξ3)+. The symbolh repre-
sents the traction, for all surfaces, including the edge surfaces.
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Γ0

S0

Γ0

Γ+
0

Γ−
0

S0

Γt

St

Γ+
t

Γ−
t

St

ξ3

Fig. 2 A schematic undeformed-shell midsurface Γ 0 with edge S0 and
how a piece is cut from the shell domain to show the edge surface details
(top). Enlarged view of the cut piece, showing also the upper and lower
surfaces Γ +

0 and Γ −
0 (middle). Deformed-configuration cut piece, with

Γ t , St , Γ
+
t , and Γ −

t denoting the deformed-configuration counterparts
of Γ 0, S0, Γ +

0 , and Γ −
0 , and the edge line St that traverses the edge

surface as ξ3 varies from (ξ3)− to (ξ3)+ (bottom)

Substituting Eq. (56) into Eq. (104) and using Eqs. (94),
(95) and (99), we obtain

δWexbody =
∫

Γ 0

δx · fm̂0dΓ +
∫

Γ 0

δn · fm̂1dΓ

+
∫

Γ 0

n · fδm̂1dΓ . (107)

Substituting Eq. (56) into Eq. (105), we obtain

δWexsurf =
∫

Γ 0

δx ·
(

ĥ−
0 + ĥ+

0

)

dΓ

+
∫

Γ 0

δn ·
(

ĥ−
1 + ĥ+

1

)

dΓ

+
∫

Γ 0

((

δξ3 p̂−)∣
∣
∣
(ξ30 )−

−
(

δξ3 p̂+)∣
∣
∣
(ξ30 )+

)

dΓ , (108)

ĥ−
0 =

(

h
A

A0

)∣
∣
∣
∣
(ξ30 )−

, (109)

ĥ+
0 =

(

h
A

A0

)∣
∣
∣
∣
(ξ30 )+

, (110)

ĥ−
1 =

(

ξ3h
A

A0

)∣
∣
∣
∣
(ξ30 )−

, (111)

ĥ+
1 =

(

ξ3h
A

A0

)∣
∣
∣
∣
(ξ30 )+

, (112)

and the normal tractions as

p̂− = ĥ−
0 · n, (113)

p̂+ = −ĥ+
0 · n. (114)

We note that we can see p̂ as the pressure brought to the
midsurface by using the area ratios.

Remark 15 In Eq. (108), there are three integrals. In [5], only
the first integral was considered, and even in that, the evalu-
ations were not based on the actual upper and lower surfaces
as how it was done with Eqs. (109) and (110). The tractions
acting on the upper and lower surfaces were treated as if
they were acting on the midsurface. Not being able to use
the correct surfaces was a consequence of the plane-stress
assumption.

Remark 16 The terms in the second line of Eq. (108) can be
written as δn · ĥ−

1 = δr ·(n× ĥ−
1 ) and δn · ĥ+

1 = δr ·(n× ĥ+
1 )

(seeAppendixB.3).We note thatn×ĥ−
1 andn×ĥ+

1 represent
the moment. Again these rearrangements may make it easier
to see the fundamental mechanics in the terms. In a typical
shell formulation, the distance between the upper and lower
surfaces is not taken into account. Therefore, the tractions on
those surfaces, even when they have shear components, do
not produce moment.

For the representation at the edges, we introduce a unit
vectorT along S0 (see Fig. 3). The contravariant components
are denoted as

T
α = T · Gα

. (115)

We map T from the midsurface to the ξ30 surface with edge
S0, and make a unit vector from that:

T ≡ T
α
Gα

∥
∥
∥T

α
Gα

∥
∥
∥

. (116)

Using Eqs. (24), (26) and (27), T can be expressed as

T = T + T
α
K αβG

β
ξ30

√

1 + (

2K γ δ + Ωγδξ
3
0

)

ξ30 T
γ
T

δ
, (117)
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N

T

T

Γ0

S0

S0

ξ30

Fig. 3 The cut piece in Fig. 2 (middle) with the unit vectors N, T, and
T

and its contravariant components are denoted as

T α = T · Gα (118)

= T
α

√

1 + (

2K γ δ + Ωγδξ
3
0

)

ξ30 T
γ
T

δ
. (119)

We note that the numerator of Eq. (119) is coming from the
numerator Eq. (116). For notational convenience, we define

L0 ≡ 1√
GαGα : TT

(120)

= 1
√

(

T 1
)2 + (

T 2
)2

(121)

=
√

1 + (

2K αβ + Ωαβξ30

)

ξ30 T
α
T

β

√
(

T
1
)2 +

(

T
2
)2

. (122)

From Eqs. (121) to (122), we used Eq. (119). We use the
symbol L0 to denote L0 at themidsurface, obtained by setting
ξ30 = 0:

L0 = 1
√

(

T
1
)2 +

(

T
2
)2

. (123)

This can be seen as the length counterpart of A0 given in Eq.
(40). Using Eqs. (119), (122) and (123), we get

T α = L0

L0
T

α
. (124)

Similarly, we introduce unit vectors t and t along St and
St (see Fig. 4). The stretch λT along S0 is obtained from

λTt = gαGα · T (125)

tn

t

Γt

St

St

ξ3

Fig. 4 The cut piece in Fig. 2 (bottom) with the unit vectors n, t, and t

= gαT
α. (126)

Taking the inner product of gα with both sides of Eq. (126),
we obtain

λTt
α = T α. (127)

Because t is a unit vector, gαβ tαtβ = 1 can be used to cal-
culate λT as

λT =
√

gαβT αT β. (128)

Similar to what we did for the undeformed configuration, we
define

L ≡ 1
√

(

t1
)2 + (

t2
)2

, (129)

which is the length counterpart of A given in Eq. (39). Using
Eqs. (129), (127) and (121), we get

L = λTL0, (130)

and at the midsurface,

L = λTL0. (131)

We now define a unit outward normal vector for S0:

B = T × N, (132)

and for S0:

B = T × N. (133)

Figure 5 shows the unit vectors B and B and the rest of the
unit vectors in the undeformed configuration.

Then, corresponding to B, we introduce a unit vector b in
the deformed configuration, and the stretch in the direction
of B is obtained from

λBb = gαGα · B. (134)
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B

TN

B

T

Γ0

S0

S0

ξ30

Fig. 5 The cut piece in Fig. 3 with the unit vectors B and B

With Eq. (134) and ‖b‖ = 1, the stretch can be written as

λB =
√

gαβGαGβ : BB. (135)

We use the symbols b and λB to denote b and λB at midsur-
face:

λBb = gαG
α · B, (136)

and similarly write the stretch λB as

λB =
√

gαβG
α
G

β : B B. (137)

Remark 17 We note that, unlike B, the unit vector b is not
necessarily normal to St , and therefore t·b does not have to be
zero. To overcome the difficulty with using non-orthogonal
basis vectors, we introduce the dual basis vectors:

t� = n × b
(

b × t
) · n , (138)

b
� = t × n

(

b × t
) · n . (139)

We refer to Appendix C.1 for more on these.

Figure 6 shows the vectors t� and b
�
, the unit vector b, and

some of earlier-defined unit vectors in the deformed config-
uration.

With the ratio of the lengths along St and St being L/L ,
we change the order of the integration in Eq. (106):

δWexedge =
∫

St

∫

(hth)t
δx · h L

L
dξ3dS. (140)

With the ratio of the lengths along St and S0 being L/L0 and
with Eq. (130), we transform the first integration from the

n

b

t
b

�

t�
Γt

St

Fig. 6 The cut piece in Fig. 4 with the unit vector b and the dual basis
vectors t� and b

�

current to undeformed configuration:

δWexedge =
∫

S0

∫

(hth)t
δx · hλT

L0

L0
dξ3dS. (141)

Using Eq. (32), we transform the second integration from the
current to undeformed configuration:

δWexedge =
∫

S0

∫

(hth)0
δx · hλTλ3

L0

L0
dξ3dS. (142)

Substituting Eq. (56) into this, we get

δWexedge =
∫

S0
δx ·

∫

(hth)0
hλTλ3

L0

L0
dξ3dS

+
∫

S0
δn ·

∫

(hth)0
ξ3hλTλ3

L0

L0
dξ3dS

+
∫

S0
n ·

∫

(hth)0
δξ3hλTλ3

L0

L0
dξ3dS. (143)

We define ĥe0 as

ĥe0 =
∫

(hth)0
hλTλ3

L0

L0
dξ3, (144)

and its first moment as

ĥe1 =
∫

(hth)0
ξ3hλTλ3

L0

L0
dξ3. (145)

With these definitions, we write Eq. (143) in a simpler form:

δWexedge =
∫

S0
δx · ĥe0dS +

∫

S0
δn · ĥe1dS

+
∫

S0
n ·

∫

(hth)0
δξ3hλTλ3dξ

3 L0

L0
dS. (146)

We omit the variation of ξ3:

δWexedge =
∫

S0
δx · ĥe0dS +

∫

S0
δn · ĥe1dS. (147)
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Remark 18 The reasons for omitting the variation of ξ3 in
Eq. (146) are, (i) the out-of-plane shear stress is not meant to
be represented in this model, and (ii) we already omitted the
time derivatives of ξ3 (see Remark 12).

Remark 19 The second integrand in Eq. (147) can be written

as δn · ĥe1 = δr ·
(

n × ĥe1
)

. We note that n × ĥe1 represents
the moment.

3.5 The virtual work in the out-of-plane direction
and the corresponding strong form

We substitute δU given by Eq. (79), δT given by Eq. (102),
and δWext given byEqs. (103), (107), (108) and (147) intoEq.
(55), exclude the variations associated with the midsurface,
and obtain

∫

Γ 0

(

n · (

ÿ − f
)

δm̂1 − 1

2

∥
∥ṅ

∥
∥
2
δm̂2

)

dΓ

+
∫

Γ 0

καβ

∫

(hth)0
δξ3Sαβ A0

A0
dξ3dΓ

+
∫

Γ 0

ωαβ

∫

(hth)0
δξ3ξ3Sαβ A0

A0
dξ3dΓ

+
∫

Γ 0

∫

(hth)0
δλ3λ3S

33 A0

A0
dξ3dΓ

=
∫

Γ 0

((

δξ3 p̂−)∣
∣
∣
(ξ30 )−

−
(

δξ3 p̂+)∣
∣
∣
(ξ30 )+

)

dΓ . (148)

We substitute Eq. (58) into this and consider only the out-of-
plane variations at a given midsurface point:

n · (

ÿ − f
)

δm̂1 − 1

2

∥
∥ṅ

∥
∥
2
δm̂2

+ καβ

∫

(hth)0
δξ3Sαβ A0

A0
dξ3

+ ωαβ

∫

(hth)0
δξ3ξ3Sαβ A0

A0
dξ3

+
∫

(hth)0

d(δξ3)

dξ30
λ3S

33 A0

A0
dξ3

=
(

δξ3 p̂−)∣
∣
∣
(ξ30 )−

−
(

δξ3 p̂+)∣
∣
∣
(ξ30 )+

. (149)

Applying integration by parts to the last integral on the left-
hand side, we obtain

n · (

ÿ − f
)

δm̂1 − 1

2

∥
∥ṅ

∥
∥
2
δm̂2

+ καβ

∫

(hth)0
δξ3Sαβ A0

A0
dξ3

+ ωαβ

∫

(hth)0
δξ3ξ3Sαβ A0

A0
dξ3

−
∫

(hth)0
δξ3

d

dξ30

(

λ3S
33 A0

A0

)

dξ3

=
(

δξ3
(

p̂− + λ3S
33 A0

A0

))∣
∣
∣
∣
(ξ30 )−

−
(

δξ3
(

p̂+ + λ3S
33 A0

A0

))∣
∣
∣
∣
(ξ30 )+

. (150)

We substitute Eqs. (99) and (100) into this, and the equation
holds for all admissible δξ3. From that, we obtain the strong
form:

d

dξ30

(

λ3S
33 A0

A0

)

=
(

καβ + ωαβξ3
)

Sαβ A0

A0

+
(

n · (

ÿ − f
) − ξ3

∥
∥ṅ

∥
∥
2
)

ρ0
A0

A0

in(hth)0, (151)

λ3S
33 A0

A0
= − p̂− on ξ30 = (ξ30 )−, (152)

and

λ3S
33 A0

A0
= − p̂+ on ξ30 = (ξ30 )+. (153)

Integrating Eq. (151) from (ξ30 )− to (ξ30 )+ and using Eqs.
(152) and (153), we obtain

− p̂+ + p̂− =
∫

(hth)0

(

καβ + ωαβξ3
)

Sαβ A0

A0
dξ3

+ n · (ÿ − f
)

m̂0 − ∥
∥ṅ

∥
∥
2
m̂1. (154)

We rearrange this equation by substituting for p̂− and p̂+
from Eqs. (113) and (114), using the expression for Ŝαβ

ε and
Ŝαβ
κ from Eqs. (80) and (81), and using Eqs. (92) and (101):

n ·
(

ĥ−
0 + ĥ+

0

)

= καβ Ŝ
αβ
ε + ωαβ Ŝ

αβ
κ + n · (

m̂0 − fm̂0
)

.

(155)

3.6 The virtual work for themidsurface deformation
and the corresponding strong form

We substitute δU given by Eq. (78), δT given by Eq. (102),
and δWext given by Eqs. (103), (107), (108) and (147) into
Eq. (55), exclude the out-of-plane variations, and obtain

∫

Γ 0

δgα · p̂α
0 dΓ −

∫

Γ 0

δx · f̂0dΓ

+
∫

Γ 0

δn,α · p̂α
1 dΓ −

∫

Γ 0

δn · f̂1dΓ

=
∫

S0
δx · ĥe0dS +

∫

S0
δn · ĥe1dS, (156)
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where

f̂0 = ĥ−
0 + ĥ+

0 + fm̂0 − m̂0, (157)

f̂1 = ĥ−
1 + ĥ+

1 + fm̂1 − m̂1. (158)

Equation (156) is our weak form for the midsurface rep-
resentation. To understand it better, we substitute

δgα = δx,γG
γ · Gα, (159)

δn,α = δn,γG
γ · Gα, (160)

into it, apply integration by parts to the first and third inte-
grals, and obtain

−
∫

Γ 0

δx ·
(

f̂0 + (

p̂α
0Gα

)

,γ
· Gγ

)

dΓ

−
∫

Γ 0

δn ·
(

f̂1 + (

p̂α
1Gα

)

,γ
· Gγ

)

dΓ

=
∫

S0
δx ·

(

ĥe0 − p̂α
0Gα · B

)

dS

+
∫

S0
δn ·

(

ĥe1 − p̂α
1Gα · B

)

dS. (161)

We note that, as shown in Fig. 5, the unit outward normal
vector for S0 is B. With δn involving derivatives, we next
apply integration by parts to the second and fourth lines of
Eq. (161). We do that by using two expressions derived in
Appendix C, given by Eqs. (306) and (316). After that, sep-
arating δx into its normal and tangential components, we
obtain

−
∫

Γ 0

δx · n n ·
(

f̂0 + (

p̂α
0Gα

)

,γ
· Gγ

)

dΓ

−
∫

Γ 0

δx · n
(

gβ·
(

f̂1 + (

p̂α
1Gα

)

,γ
· Gγ

)

Gβ

)

,δ
· Gδ

dΓ

−
∫

Γ 0

δx · gδg
δ ·

(

f̂0 + (

p̂α
0Gα

)

,γ
· Gγ

)

dΓ

−
∫

Γ 0

δx · κκκ ·
(

f̂1 + (

p̂α
1Gα

)

,γ
· Gγ

)

dΓ

=
∫

S0
δx · n n ·

(

ĥe0 − p̂α
0Gα · B

)

dS

−
∫

S0
δx · n 1

λB
b

� ·
(

f̂1 + (

p̂α
1Gα

)

,γ
· Gγ

)

dS

+
∫

S0
δx · n

(
1

λT
t� ·

(

ĥe1 − p̂α
1Gα · B

))

,γ

G
γ · TdS

+
∫

S0
δx ·

(

t t� + bb
�
)

·
(

ĥe0 − p̂α
0Gα · B

)

dS

+
∫

S0
δx · κκκ · t t� ·

(

ĥe1 − p̂α
1Gα · B

)

dS

+
∫

S0
δn · bb� ·

(

ĥe1 − p̂α
1Gα · B

)

dS. (162)

We note that p̂α
0 and p̂1 have only in-plane components; n ·

p̂α
0 = 0 and n · p̂α

1 = 0 (see Eqs. (75), (76) and (77)). With
that, we get

n · (

p̂α
0Gα

)

,γ
· Gγ = (

n · p̂α
0

︸ ︷︷ ︸

=0

Gα

)

,γ
· Gγ − n,γ · p̂α

0Gα · Gγ

(163)

= −n,α · p̂α
0 . (164)

Using Eq. (164), we rewrite Eq. (162) as

−
∫

Γ 0

δx · n
(

n · f̂0 − n,α · p̂α
0

)

dΓ

−
∫

Γ 0

δx · n
(

gβ·
(

f̂1 + (

p̂α
1Gα

)

,γ
· Gγ

)

Gβ

)

,δ
· Gδ

dΓ

−
∫

Γ 0

δx · gδg
δ ·

(

f̂0 + (

p̂α
0Gα

)

,γ
· Gγ

)

dΓ

−
∫

Γ 0

δx · κκκ ·
(

f̂1 + (

p̂α
1Gα

)

,γ
· Gγ

)

dΓ

=
∫

S0
δx · n n · ĥe0dS

−
∫

S0
δx · n 1

λB
b

� ·
(

f̂1 + (

p̂α
1Gα

)

,γ
· Gγ

)

dS

+
∫

S0
δx · n

(
1

λT
t� ·

(

ĥe1 − p̂α
1Gα · B

))

,γ

G
γ · TdS

+
∫

S0
δx ·

(

t t� + bb
�
)

·
(

ĥe0 − p̂α
0Gα · B

)

dS

+
∫

S0
δx · κκκ · t t� ·

(

ĥe1 − p̂α
1Gα · B

)

dS

+
∫

S0
δn · bb� ·

(

ĥe1 − p̂α
1Gα · B

)

dS. (165)

From that, the strong form in Γ 0 can be written as

− n · f̂0 + n,α · p̂α
0

−
(

gβ·
(

f̂1 + (

p̂α
1Gα

)

,γ
· Gγ

)

Gβ

)

,δ
· Gδ = 0, (166)

− gδg
δ ·

(

f̂0 + (

p̂α
0Gα

)

,γ
· Gγ

)

− κκκ ·
(

f̂1 + (

p̂α
1Gα

)

,γ
· Gγ

)

= 0. (167)

We note that we split the strong form into its parts associated
with the normal and in-plane directions. Along the boundary
S0, we have

n · ĥe0 − 1

λB
b

� ·
(

f̂1 + (

p̂α
1Gα

)

,γ
· Gγ

)
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+
(

1

λT
t� ·

(

ĥe1 − p̂α
1Gα · B

))

,γ

G
γ · T = 0, (168)

(

t t� + bb
�
)

·
(

ĥe0 − p̂α
0Gα · B

)

+ κκκ · t t� ·
(

ĥe1 − p̂α
1Gα · B

)

= 0, (169)

b
� ·

(

ĥe1 − p̂α
1Gα · B

)

= 0. (170)

Here Eqs. (168) and (169) are the parts associated with the
normal and in-plane directions.

Remark 20 We can show that the first two terms of Eq. (166)
constitute an alternative form of Eq. (155) and therefore give
zero. For that, we rewrite p̂α

0 by using Eqs. (76), (75) and (8):

p̂α
0 =

∫

(hth)0

(

gβ + n,βξ3
)

Sαβ A0

A0
dξ3, (171)

take the inner product of both sides of that with −n,α , and
obtain

−n,α · p̂α
0 = −n,α ·

∫

(hth)0

(

gβ + n,βξ3
)

Sαβ A0

A0
dξ3.

(172)

We rearrange that by using Eqs. (264) and (13):

−n,α · p̂α
0 = −καδgδ · gβ

∫

(hth)0
Sαβ A0

A0
dξ3

− ωαβ

∫

(hth)0
Sαβ A0

A0
ξ3dξ3. (173)

Recognizing the terms on the right-hand side from Eqs. (80)
and (81), we get

−n,α · p̂α
0 = −καβ Ŝ

αβ
ε − ωαβ Ŝ

αβ
κ . (174)

With that and Eq. (157), Eq. (155) can be rewritten as

−n · f̂0 + n,α · p̂α
0 = 0. (175)

Combining that with Eq. (166), we obtain

−
(

gβ·
(

f̂1 + (

p̂α
1Gα

)

,γ
· Gγ

)

Gβ

)

,δ
· Gδ = 0. (176)

The equation above represents the rotational balance around
the midsurface.

Remark 21 Equation (170) represents the rotation boundary
condition along S0. It is a single-component equation. To
determine which component that is, we start with taking the
cross product of both sides of Eq. (145) with n:

n × ĥe1 =
∫

(hth)0
nξ3 × hλTλ3

L0

L0
dξ3 (177)

and recognizing the right-hand side as the moment acting
along S0. Using Eq. (139), Eq. (170) can be written as

t × n
(

b × t
) · n ·

(

ĥe1 − p̂α
1Gα · B

)

= 0, (178)

which can be rearranged as

1
(

b × t
) · n

(

n ×
(

ĥe1 − p̂α
1Gα · B

))

· t = 0. (179)

This means that Eq. (170) represents the tangential compo-
nent of the rotation boundary condition along S0. We note
that we cannot have a component in the n direction because
(

n × ĥe1
)

· n = 0, and we cannot have a component in the

b
�
direction because of the Kirchhoff–Love assumption.

4 Stress and strain distributions in the
out-of-plane direction

We solve for the stress and strain distributions along the out-
of-plane direction at a given midsurface point. We use the
symbol y3 to denote the displacement in the out-of-plane
direction:

y3 = ξ3 − ξ30 , (180)

and write

λ3 = 1 + dy3

dξ30
. (181)

The point on the midsurface is like an integration point
in a typical finite element formulation. For simplicity, we
assume steady state and exclude the body force. In the test
computations, which will be reported in Sect. 5, we found
out that determining in advance the midsurface variables
needed in the equation associatedwith the out-of-plane direc-
tion is not a good path. Therefore, in this section, we treat
also εαβ and καβ as unknowns, with total six components.
Then, in addition to Eq. (148), we use the first three inte-
grals of δU given by Eq. (79), which are associated with
the midsurface deformation, with δεαβ and δκαβ generat-
ing six additional equations. We note that other virtual-work
terms in Eq. (55) play no role in the midsurface deforma-
tion. That is because δT = 0 from assuming steady state,
and in δWext, δWexbody = 0 from excluding the body force,
δWexsurf = 0 from being for the upper and lower surfaces,
and δWexedge = 0 from being for the edge surfaces. We also
note that δωαβ appearing in the third integral of Eq. (79)
can be represented in terms of δεαβ and δκαβ , as described
in Remark 7. Some of the six additional equations will be
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removed for consistency with the constraints coming from
the boundary conditions or geometry, depending on the prob-
lem setup.

Remark 22 In the actual computations, which will be pre-
sented in the second part of this two-part article, we plan to
use a different way of numerically solving the strong form of
the equations in the out-of-plane direction. That will involve
change of unknown variable. We expect that coupling that
solution process with solving for the midsurface deforma-
tion will not be computationally burdensome.

At this point, we will change the symbol we use for rep-
resenting the variation associated with the virtual work, and
call it “δa .” That is because in solving the nonlinear equa-
tions with the Newton–Raphson method, we will need to
take another variation for the linearization in the iterations,
and that variation will be denoted by the symbol δb. In other
words, the linearization for the Newton–Raphson iterations
will be in terms of δb. Using the test functions of δaξ3, δaεαβ ,
and δaκαβ , we form the equation system as

N (δaξ
3, δaεαβ, δaκαβ, y3, εγ δ, κγ δ) = F(δaξ

3), (182)

where

N (δaξ
3, δaεαβ, δaκαβ, y3, εγ δ, κγ δ)

= καβ

∫

(hth)0
δaξ

3Sαβ A0

A0
dξ3

+ ωαβ

∫

(hth)0
δaξ

3ξ3Sαβ A0

A0
dξ3

+
∫

(hth)0

d(δaξ3)

dξ30
λ3S

33 A0

A0
dξ3

+ δaεαβ Ŝ
αβ
ε + δaκαβ Ŝ

αβ
κ + 1

2
δaωαβ Ŝ

αβ
ω , (183)

F(δaξ
3) =

(

δaξ
3 p̂

)∣
∣
∣
(ξ30 )−

−
(

δaξ
3 p̂

)∣
∣
∣
(ξ30 )+

. (184)

We note that the undeformed shape is represented by Gαβ

and K αβ , and the current configuration by εαβ and καβ .

Remark 23 The idea of representing the undeformed shape
in terms of the metric tensor is from [42], and in that context
the configuration is called the integration-point based zero-
stress state (IPBZSS). In the shell model, full representation
of the IPBZSS requires also the curvature tensor.

Remark 24 The variables ωαβ and δaωαβ appear in Eq. (183)
for notational convenience. They are not independent vari-
ables. We can write ωαβ as given by Eq. (14), and write
1
2δaωαβ Ŝ

αβ
ω by multiplying δaωαβ given by Eq. (68) with

1
2 Ŝ

αβ
ω :

1

2
δaωαβ Ŝ

αβ
ω = −δaεαβ

(

gαγ κγ δ Ŝ
δζ
ω κζηg

ηβ
)

+ δaκαβ

1

2

(

Ŝαγ
ω κγ δg

δβ + gαγ κγ δ Ŝ
δβ
ω

)

.

(185)

We also note that

gαβ = 2εαβ + Gαβ, (186)

which follows from Eq. (45), and

[

gαβ
] = [

2εαβ + Gαβ

]−1
, (187)

which follows from Eq. (254) in Appendix A.

In describing the linearization for the Newton–Raphson
iterations, we will first derive the variations needed for that.
We start with the variations of Sαβ and S33:

δbS
αβ = ∂Sαβ

∂Eγ δ

δbEγ δ + ∂Sαβ

∂E33
δbE33, (188)

δbS
33 = ∂S33

∂Eγ δ

δbEγ δ + ∂S33

∂E33
δbE33, (189)

where

∂Sαβ

∂Eγ δ

= C
αβγ δ, (190)

∂Sαβ

∂E33
= C

αβ33, (191)

∂S33

∂Eγ δ

= C
33γ δ, (192)

∂S33

∂E33
= C

3333. (193)

The elastic moduli Cαβγ δ , Cαβ33, C33γ δ , and C
3333 can be

derived from ϕ. In Eqs. (59) and (60), using δb in place of
δ, recognizing that δξ3 and δy3 are in interchangeable, and
reordering the terms, we obtain

δbEγ δ =
(

κγ δ + ωγδξ
3
)

δb y
3

+ δbεγ δ + δbκγ δξ
3 + 1

2
δbωγδ

(

ξ3
)2

(194)

= κγ δδb y
3 + δbεγ δ

+
(

ωγδδb y
3 + δbκγ δ

)

ξ3 + 1

2
δbωγδ

(

ξ3
)2

(195)

and

δbE33 = λ3δbλ3. (196)

Taking the variation of Eq. (181), we obtain
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δbλ3 = d(δb y3)

dξ30
. (197)

From the variations of Eqs. (80), (81) and (82), we obtain

δb Ŝ
αβ
ε =

∫

(hth)0
δbS

αβ A0

A0
dξ3, (198)

δb Ŝ
αβ
κ =

∫

(hth)0

(

Sαβδb y
3 + ξ3δbS

αβ
) A0

A0
dξ3 (199)

=
∫

(hth)0
Sαβδb y

3 A0

A0
dξ3 +

∫

(hth)0
ξ3δbS

αβ A0

A0
dξ3,

(200)

δb Ŝ
αβ
ω =

∫

(hth)0

(

2Sαβξ3δb y
3 +

(

ξ3
)2

δbS
αβ

)
A0

A0
dξ3

(201)

= 2
∫

(hth)0
ξ3Sαβδb y

3 A0

A0
dξ3

+
∫

(hth)0

(

ξ3
)2

δbS
αβ A0

A0
dξ3. (202)

Now that we have all the variations we need, we write
δbN by taking the variation of Eq. (183). After taking the
variation, we substitute into it Eqs. (198), (200) and (202).
Then we substitute Eqs. (188), (189), (190), (191), (192),
(193) and (196) into that. Also, we recognize the right-hand
sides of Eqs. (195) and (197) and δa versions of those. At the
end, we get

δbN (δaξ
3, δaεαβ, δaκαβ, y3, εγ δ, κγ δ)

=
∫

(hth)0
δa EαβC

αβγ δδbEγ δ

A0

A0
dξ3

+
∫

(hth)0
δa Eαβλ3C

αβ33δbλ3
A0

A0
dξ3

+
∫

(hth)0
δaλ3λ3C

33γ δδbEγ δ

A0

A0
dξ3

+
∫

(hth)0
δaλ3

(

S33 + λ23C
3333

)

δbλ3
A0

A0
dξ3

+
∫

(hth)0
δaξ

3Sγ δ A0

A0
dξ3δbκγ δ

+ δaκαβ

∫

(hth)0
Sαβδb y

3 A0

A0
dξ3

+
∫

(hth)0
δaξ

3ξ3Sγ δ A0

A0
dξ3δbωγδ

+ δaωαβ

∫

(hth)0
ξ3Sαβδb y

3 A0

A0
dξ3

+ 1

2
δaδbωαβ Ŝ

αβ
ω . (203)

Remark 25 The choices made between using different com-
binations of variable in Eq. (203) were driven by having

visible symmetry in δa and δb and reducing the number of
terms.

Remark 26 The term δaδbωαβ is not zero, because, as
explained in Remark 23, δaωαβ is not an independent varia-
tion. We replace δ with δa in Eq. (68), take its δb variation,
multiply that with 1

2 Ŝ
αβ
ω , and obtain

1

2
δaδbωαβ Ŝ

αβ
ω

= δaκαβ

1

2

(

Ŝαγ
ω gβδ + gαγ Ŝβδ

ω

)

δbκγ δ

− δaεαβ

(

gαηκηκ Ŝ
κγ
ω gβδ + gαγ gβκκκη Ŝ

ηδ
ω

)

δbκγ δ

− δaκαβ

(

Ŝακ
ω κκηg

ηδgβγ + gαδ Ŝβη
ω κηκg

κγ
)

δbεγ δ.

(204)

Remark 27 When the traction conditions on the upper and
lower surfaces are coming from the pressure on those sur-
faces, with the conditions expressed as

h|(ξ30 )− = p−n, (205)

h|(ξ30 )+ = −p+n, (206)

p̂− and p̂+ appearing in Eq. (184) can vary because of the
midsurface deformation or the displacement in the out-of-
plane direction. We can derive an expression for that from
Eqs. (113) and (114) by using Eqs. (109), (110), (205) and
(206):

p̂− = p− A

A0

∣
∣
∣
∣
(ξ30 )−

, (207)

p̂+ = p+ A

A0

∣
∣
∣
∣
(ξ30 )+

. (208)

We note that A depends on both the midsurface deformation
and the displacement in the out-of-plane direction.We derive
the expression for δb A based on that dependence and use it
in the computations.

5 Test problems

With the method described in Sect. 4, for a set of test prob-
lems, we determine the displacement in the out-of-plane
direction. In all cases, we use a uniform finite element mesh
made of 200 elements with linear functions1. The lower or

1 As mentioned in Remark 22, in the actual computations, we will be
using a different way of numerically solving the equations in the out-
of-plane direction, and that process will involve an order of magnitude
less number of points.
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inner surface serves2 as the “midsurface.” Together with the
out-of-plane displacement, the midsurface variables εαβ and
καβ are solved for, with different boundary or geometry
conditions depending on the problem setup. For compari-
son, we include in the tests a plane-stress shell model from
[5]. The constitutive models, provided in Appendix D, are
neo-Hookean and Fung’s models with compressible and
incompressible materials.

The stress-related variables are scaled by the shear modu-
lusμ0 at the undeformed configuration. The Poisson’s ratio ν

is defined based on the bulk modulus at the undeformed con-
figuration,with ν = 0.50 indicating incompressiblematerial.
We use separatemodels for compressible and incompressible
materials, but the compressible-material model converges to
the incompressible-material model in the limit ν → 0.50
(see [5]). The scaled stress components we report will be
from the Cauchy stress, and the indices will correspond to
the coordinate frame defined separately in each problem, but
the index 3 will always imply the out-of-plane direction:

σ ∗
11 = J−1

(

S11g11 + S12g21
)

μ0
, (209)

σ ∗
22 = J−1

(

S21g12 + S22g22
)

μ0
, (210)

σ ∗
33 = J−1S33

μ0
. (211)

For the length scale, we use the undeformed shell thickness
(hth)0 = (ξ30 )+ − (ξ30 )−. We note that, with the shell model
and method sections behind us, nowwe are using the symbol
(hth)0 for the shell thickness, as we stated in Sect. 2.1 that we
would. We also note that the current thickness is expressed
as hth = (ξ3)+ − (ξ3)−.

We use the principal curvatures at the midsurface to
describe the individual problems. The principal curvatures κ1

and κ2 are obtained from the generalized eigenvalue problem

καβ t
β = κ gαβ t

β, (212)

where tβ represents the contravariant components of the prin-
cipal curvature direction. From Eq. (212), we can get the
principal curvatures as

κ1 = gαβκαβ +
√

(

gαβκαβ

)2 − 4 det
[

gαβ
]

det
[

καβ

]

2
,

(213)

2 We note that, as can be inferred from the overall formulation, in the
shell model proposed here, the location of the midsurface does not mat-
ter. However, it does in themodel proposed in [5].Wewill be comparing
our results to those obtained with that model. This is the reason why
the lower or inner surface serves as the midsurface.

MM

ξ3

ξ1

(hth)0
κ∗
1

hth

Fig. 7 Unidirectional plate bending. Problem setup. The lower surface
is serving as the midsurface. The bending moment M is applied along
the midsurface edges. The nondimensional curvature κ∗

1 is given by Eq.
(215)

κ2 = gαβκαβ −
√

(

gαβκαβ

)2 − 4 det
[

gαβ
]

det
[

καβ

]

2
.

(214)

Their nondimensional versions are

κ∗
1 = κ1 (hth)0 , (215)

κ∗
2 = κ2 (hth)0 . (216)

5.1 Unidirectional plate bending

The bending is only in ξ1 direction (see Fig. 7). No traction is
applied on the upper or lower surface. The bending moment
M is applied along the midsurface edges. We select Gα to
be unit orthogonal basis vectors, and consequently G11 =
G22 = 1, and G12 = 0. We note that, with this selection, we
no longer have −1 ≤ ξα ≤ 1. In this problem, because it is a
plate, K 11 = K 22 = K 12 = 0. We constrain the midsurface
deformation with ε22 = ε12 = 0 and κ22 = κ12 = 0. With
these conditions, from Eq. (213) we get

κ1 = g11κ11, (217)

and its nondimensional version is

κ∗
1 = g11κ11 (hth)0 . (218)

For any value of κ∗
1, we set κ11 based on that relationship,

noting that g11 is a function of ε11. We solve for ε11 together
with the displacement in the out-of-plane direction. After
that, we calculate the required moment around ξ3 = 0:

M =
∫

(hth)0
ξ3 J−1

(

S11g11 + S12g21
) L

L
dξ3, (219)
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Fig. 8 Unidirectional plate bending. Neo-Hookean material. κ∗
1 and

M∗

Fig. 9 Unidirectional plate bending. Fung’s material. κ∗
1 and M∗

and scale that as

M∗ = M

μ0 (hth)20
. (220)

In this problem, L
L

= 1 and g21 = 0, which follow from the
constraints listed earlier.

Figures 8 and 9 show, for the neo-Hookean and Fung’s
materials, M∗ as a function of κ∗

1. For both materials, the
model with the plane-stress assumption (σ33 = 0) is behav-
ing stiffer than the model with the out-of-plane normal stress
(σ33 �= 0). For the Fung’s material, the difference becomes
smaller at higher ν values.

We report, for κ∗
1 = 0.5 and 1, ξ30 profiles of different

variables. We report λ3, J , σ ∗
11, and σ ∗

33 in Figs. 10, 11, 12
and 13 for the neo-Hookean material, and in Figs. 14, 15, 16
and17 for theFung’smaterial. For the neo-Hookeanmaterial,
λ3 obtained with the σ33 = 0model is more than it is with the
σ33 �= 0 model. Assuming that the σ33 �= 0 model is giving
the true solution, σ33 ≤ 0. Thismeans that the σ33 = 0model

Fig. 10 Unidirectional plate bending. Neo-Hookean material. λ3 pro-
file. κ∗

1 = 0.5 and 1

Table 1 Unidirectional plate bending. Neo-Hookean material. Signifi-
cance of σ ∗

33
∣
∣σ ∗

11

∣
∣
max

∣
∣σ ∗

33

∣
∣
max

∣
∣σ ∗

33

∣
∣
max

/

σ ∗
MAX12 (%)

κ∗
1 = 0.5 0.816 0.0839 10.3

κ∗
1 = 1.0 1.43 0.257 18.0

is behaving in a fashion that inhibits the compressive stress
that should be there. The larger λ3 makes hth higher, and that
could be the source of the stiffer response mentioned when
Figs. 8 and 9 were discussed. Overall, the Fung’s material
behaves similar to how the neo-Hookean material behaves.
However, because of the strong nonlinearity, the λ3 profile is
more complex. For example, there is a local maximum close
to the inner surface. Also, at high values of ν, σ11 becomes
very high at both the lower and upper surfaces. That ismaking
σ33 higher.

To have a better understanding of the significance of σ ∗
33,

we scale it by using, in general,
∣
∣σ ∗

11

∣
∣
max and

∣
∣σ ∗

22

∣
∣
max, where

“max” denotes the maximum over both ξ30 and ν. To be on
the conservative side in not overrating that significance, we
scale σ ∗

33 with σ ∗
MAX12 = max

(∣
∣σ ∗

11

∣
∣
max ,

∣
∣σ ∗

22

∣
∣
max

)

. We note
that in this case

∣
∣σ ∗

22

∣
∣
max = 0. Tables 1 and 2 show, for the

neo-Hookean and Fung’s materials and for κ∗
1 = 0.5 and 1,

∣
∣σ ∗

11

∣
∣
max,

∣
∣σ ∗

33

∣
∣
max, and

∣
∣σ ∗

33

∣
∣
max

/

σ ∗
MAX12 . We see that the
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Fig. 11 Unidirectional plate bending.Neo-Hookeanmaterial. J profile.
κ∗
1 = 0.5 and 1

Fig. 12 Unidirectional plate bending. Neo-Hookean material. σ ∗
11 pro-

file. κ∗
1 = 0.5 and 1

Fig. 13 Unidirectional plate bending. Neo-Hookean material. σ ∗
33 pro-

file. κ∗
1 = 0.5 and 1

Fig. 14 Unidirectional plate bending. Fung’s material. λ3 profile. κ∗
1 =

0.5 and 1
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Fig. 15 Unidirectional plate bending. Fung’s material. J profile. κ∗
1 =

0.5 and 1

Fig. 16 Unidirectional plate bending. Fung’smaterial.σ ∗
11 profile.κ

∗
1 =

0.5 and 1

Fig. 17 Unidirectional plate bending. Fung’smaterial.σ ∗
33 profile.κ

∗
1 =

0.5 and 1

Table 2 Unidirectional plate bending. Fung’s material. Significance of
σ ∗
33

∣
∣σ ∗

11

∣
∣
max

∣
∣σ ∗

33

∣
∣
max

∣
∣σ ∗

33

∣
∣
max

/

σ ∗
MAX12 (%)

κ∗
1 = 0.5 3.11 0.184 5.92

κ∗
1 = 1.0 65.8 3.89 5.91

significance, asmeasuredby
∣
∣σ ∗

33

∣
∣
max

/

σ ∗
MAX12 , ismore than

10 % for the neo-Hookean material and more than 5.9 % for
the Fung’s material.

5.2 Plate saddle deformation

Bending moments are applied along the midsurface edges
both in ξ1 and ξ2 directions to create a saddle deformation.
No traction is applied on the upper or lower surface. Again,
we select G11 = G22 = 1, G12 = 0, and K 11 = K 22 =
K 12 = 0 to represent a plate. We constrain the midsurface
deformation with ε12 = 0 and κ12 = 0. With these condi-
tions, from Eqs. (213) and (214) we get

κ1 = κ11g
11, (221)

κ2 = κ22g
22, (222)

and their nondimensional versions are

κ∗
1 = κ11g

11 (hth)0 , (223)
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Table 3 Plate saddle
deformation. Cases tested

κ∗
1 κ∗

2

Case 1 0.5 –0.5

Case 2 1.0 –0.5

Fig. 18 Plate saddle deformation. Neo-Hookean material. λ3 profile.
Case 1 and Case 2

κ∗
2 = κ22g

22 (hth)0 . (224)

For any values of κ∗
1 and κ∗

2, we set κ11 and κ22 based on
these relationships, noting that g11 is a function of ε11 and
g22 is a function of ε22. We solve for ε11 and ε22 together
with the displacement in the out-of-plane direction.

The saddle deformation is obtained by specifying the two
principal curvatures to be κ∗

1 > 0 and κ∗
2 < 0. The curvature

at the upper surface can be written as

κ2|(ξ3)+ = 1
1
κ2

+ hth
(225)

= κ2

1 + κ2hth
, (226)

and this needs to befinite. That requirement brings the restric-
tion κ2hth = κ∗

2
hth

(hth)0
> −1. Considering that, we set

κ∗
2 = − 1

2 .
We report, for the two test cases given in Table 3, ξ30 pro-

files of λ3, J , σ ∗
11, σ

∗
22, and σ ∗

33. Figures 18, 19, 20, 21 and 22

Fig. 19 Plate saddle deformation. Neo-Hookean material. J profile.
Case 1 and Case 2

Fig. 20 Plate saddle deformation. Neo-Hookean material. σ ∗
11 profile.

Case 1 and Case 2
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Fig. 21 Plate saddle deformation. Neo-Hookean material. σ ∗
22 profile.

Case 1 and Case 2

Fig. 22 Plate saddle deformation. Neo-Hookean material. σ ∗
33 profile.

Case 1 and Case 2

Fig. 23 Plate saddle deformation. Fung’s material. λ3 profile. Case 1
and Case 2

Fig. 24 Plate saddle deformation. Fung’s material. J profile. Case 1
and Case 2
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Fig. 25 Plate saddle deformation. Fung’s material. σ ∗
11 profile. Case 1

and Case 2

Fig. 26 Plate saddle deformation. Fung’s material. σ ∗
22 profile. Case 1

and Case 2

Fig. 27 Plate saddle deformation. Fung’s material. σ ∗
33 profile. Case 1

and Case 2

Table 4 Unidirectional plate saddle. Neo-Hookean material. Signifi-
cance of σ ∗

33
∣
∣σ ∗

11

∣
∣
max

∣
∣σ ∗

22

∣
∣
max

∣
∣σ ∗

33

∣
∣
max

∣
∣σ ∗

33

∣
∣
max

/

σ ∗
MAX12 (%)

Case 1 0.166 1.07 0.180 16.8

Case 2 0.875 0.795 0.248 28.3

show those profiles for the neo-Hookean material, and Figs.
23, 24, 25, 26 and 27 for the Fung’s material.

Case 2 is closer to having κ∗
1 = −κ∗

2 at ξ30 / (hth)0 = 0.5.
This is the reason behind the near symmetry between the σ ∗

11
and σ ∗

22 profiles (see Case 2 of Figs. 20 and 21, and Case 2 of
Figs. 25 and 26). Looking at the λ3 profiles (see Figs. 18 and
23), there is more difference between what we get from the
σ33 �= 0 and σ33 = 0 models than between what we get from
different ν values. In other words, the shell models being dif-
ferent is more significant than the ν values being different.
Tables 4 and 5 show, for the neo-Hookean and Fung’s mate-
rials and for Case 1 and Case 2,

∣
∣σ ∗

11

∣
∣
max,

∣
∣σ ∗

22

∣
∣
max,

∣
∣σ ∗

33

∣
∣
max,

and
∣
∣σ ∗

33

∣
∣
max

/

σ ∗
MAX12 . This time

∣
∣σ ∗

33

∣
∣
max

/

σ ∗
MAX12 ismore

than 16% for the neo-Hookeanmaterial andmore than 6.2%
for the Fung’s material. These numbers are higher compared
to what we had in the unidirectional plate bending.

5.3 Pressurized cylindrical and spherical shells

The inner and outer pressures are pI and pO, and the inner and
outer radii are RI and RO in the undeformed configuration
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Table 5 Unidirectional plate saddle. Fung’s material. Significance of
σ ∗
33

∣
∣σ ∗

11

∣
∣
max

∣
∣σ ∗

22

∣
∣
max

∣
∣σ ∗

33

∣
∣
max

∣
∣σ ∗

33

∣
∣
max

/

σ ∗
MAX12 (%)

Case 1 4.44 14.3 0.899 6.29

Case 2 35.1 30.9 2.51 7.15

rI

rO

pIpO

Fig. 28 Pressurized cylindrical and spherical shells. The symbols pI
and pO represent the pressures acting on the inner and outer surfaces in
the actual problem. The symbols rI and rO represent the inner and outer
radii in the deformed configuration, and RI and RO in the undeformed
configuration

Table 6 Pressurized cylindrical and spherical shells. Three methods,
characterized by selecting between the σ33 �= 0 and σ33 = 0 models
and whether pO is applied at the outer or inner surface

pI pO σ33

Method 1 Inner Inner σ33 = 0

Method 2 Inner Outer σ33 = 0

Method 3 Inner Outer σ33 �= 0

and rI and rO in the deformed configuration (see Fig. 28).
We note that RO = RI + (hth)0 and rO = rI + hth. We
set (hth)0

2RI
= 0.1, the same value used for the undeformed

configurations in [5].
We compute with three different methods, characterized

by selecting between the σ33 �= 0 and σ33 = 0 models and
whether pO is applied at the outer or inner surface (see Table
6). In Method 1, by applying both pI and pO at the inner sur-
face, which serves as the midsurface, the difference between
the inner and outer surface areas is not taken into account
in calculating the net force acting on the shell. That is taken
into account inMethod 2 by applying pO at the outer surface.
Method 3 also takes that into account, but with the σ33 �= 0
model. We measure the deformation by λ1. For the cylindri-
cal shell, we set λ2 = 1. We set pI = 2p and pO = p, and
p is scaled as p∗ = p

μ0
.

5.3.1 Pressurized cylindrical shell

We select the undeformed configuration as

G11 = 1, (227)

G22 = 1, (228)

G12 = 0, (229)

K 11 = 1

RI
, (230)

K 22 = 0, (231)

K 12 = 0, (232)

and constrain the midsurface deformation with

ε11 = 1

2

((
rI
RI

)2

− 1

)

, (233)

ε22 = 0, (234)

ε12 = 0, (235)

κ11 = 1

rI

(
rI
RI

)2

, (236)

κ22 = 0, (237)

κ12 = 0. (238)

In representing the mutual dependence between κ11 and ε11
based on the constraints above, we select the form κ11 being
a function of ε11. We solve for ε11 together with the dis-
placement in the out-of-plane direction, with the conditions
p∗
O = p∗ and p∗

I = 2p∗ (see Remark 27 for the way the
pressure conditions are specified).

Figures 29 and 30 show, for both the neo-Hookean and
Fung’s materials, p∗ as a function of λ1. We first compare
Method 1 and Method 2. With Method 1, because pO acts
on the inner surface, the net force in the inflation direction
is more. Consequently, in all cases, for a given p∗, Method
1 has higher λ1. Next we compare Method 2 and Method
3. For the neo-Hookean material, in all cases, for a given
λ1, Method 2 has higher p∗, meaning that it is stiffer than
Method 3. For the Fung’s material, we do not see that in all
cases. When ν = 0.5, Method 2 is stiffer for all values of
λ1, but at lower ν values, beyond a high-enough λ1 value,
Method 2 switches to being less stiff. We will discuss that
more when we report the ξ30 profiles.

Remark 28 It is clear fromFigs. 29 and 30 thatwhen ν = 0.5,
for both the neo-Hookean and Fung’s materials, there is no
λ1 value that would makeMethod 2 less stiff. In other words,
if the behavior is incompressible, Method 2, i.e. the σ33 = 0
model, is stiffer.

We report, for λ1 = 1.3, ξ30 profiles of λ3, J , σ ∗
11, and σ ∗

33.
Figures 31, 32, 33 and 34 show those profiles for the neo-
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Fig. 29 Pressurized cylindrical shell. Neo-Hookean material. λ1 and
p∗. Comparison between Method 1 and Method 2, and Method 2 and
Method 3

Hookean material, and Figs. 35, 36, 37 and 38 for the Fung’s
material. Because the only difference betweenMethod 1 and
Method 2 is how the net force acting on the midsurface is
calculated, when we look at the ξ03 profiles coming from the
two methods at a given λ1, meaning at the same midsurface
deformation, we are already beyond how the net force acting
on the midsurface was calculated. The midsurface deforma-
tions are the same, and therefore the ξ03 profiles will be the
same. For that reason, the ξ30 profiles are reported under the
labels “σ33 = 0” and “σ33 �= 0.”

When ν = 0.5, the deformation patterns obtained with
the σ33 = 0 and σ33 �= 0 models are the same (see Figs. 31,
32, 35, 36). This is expected because when ν = 0.5, the con-
straint J = 1 determines the profile for a given midsurface
deformation.

For the Neo-Hookean material, as can be seen in Fig. 33,
the σ33 = 0model yields higher σ ∗

11 values at all ν values and
for the full range of ξ30 . Remembering that these profiles are
for a given value of λ1, higher σ ∗

11 means that σ33 = 0 model
stiffer. This is consistent with the observation we made when
we discussed Fig. 29.

Fig. 30 Pressurized cylindrical shell. Fung’s material. λ1 and p∗. Com-
parison between Method 1 and Method 2, and Method 2 and Method 3

Fig. 31 Pressurized cylindrical shell. Neo-Hookeanmaterial. λ3 profile
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Fig. 32 Pressurized cylindrical shell. Neo-Hookean material. J profile

Fig. 33 Pressurized cylindrical shell. Neo-Hookean material. σ ∗
11 pro-

file

Fig. 34 Pressurized cylindrical shell. Neo-Hookean material. σ ∗
33 pro-

file

Fig. 35 Pressurized cylindrical shell. Fung’s material. λ3 profile

Fig. 36 Pressurized cylindrical shell. Fung’s material. J profile

Fig. 37 Pressurized cylindrical shell. Fung’s material. σ ∗
11 profile
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Fig. 38 Pressurized cylindrical shell. Fung’s material. σ ∗
33 profile

For the Fung’s material, we do not see that in Fig. 37 at all
ν values. Consistent with the observation we made when we
discussed Fig. 30, when ν = 0.5, the σ33 = 0 model yields
higher σ ∗

11 values, and therefore is stiffer, for the full range of
range of ξ30 . For this specific value of λ1 we are reporting the
ξ30 profiles, the σ33 = 0 model is also stiffer when ν = 0.49
and for the full range of ξ30 . At lower ν values, however, the
σ33 = 0 model does not yield higher σ ∗

11 values for the full
range of ξ30 , and at even lower ν values, it yields lower σ ∗

11
values for the full range of ξ30 , and therefore is less stiff than
the σ33 �= 0 model. This can be explained by the shifting
balance between the bulk and shear moduli as λ1 varies. At
ν values not far from 0.5, when λ1 is not so high, the bulk
modulus is dominant, the material behavior is closer to being
incompressible, and therefore, from Remark 28, the σ33 = 0
model is stiffer. However, even at ν values not far from 0.5,
due to the exponential form of the constitutive model, when
λ1 is high enough, the shear modulus is dominant and not
the bulk modulus, the material behavior is not close enough
to being incompressible, and therefore the σ33 = 0 model is
less stiff.

5.3.2 Pressurized spherical shell

We select the undeformed configuration as

G11 = 1, (239)

G22 = 1, (240)

G12 = 0, (241)

K 11 = 1

RI
, (242)

K 22 = 1

RI
, (243)

K 12 = 0, (244)

and constrain the midsurface deformation with

ε11 = 1

2

((
rI
RI

)2

− 1

)

, (245)

ε22 = 1

2

((
rI
RI

)2

− 1

)

, (246)

ε12 = 0, (247)

κ11 = 1

rI

(
rI
RI

)2

, (248)

κ22 = 1

rI

(
rI
RI

)2

, (249)

κ12 = 0. (250)

In representing themutual dependence between κ11, κ22, ε22,
and ε11 based on the constraints above, we select the form
κ11, κ22, and ε22 being functions of ε11. We solve for ε11
together with the displacement in the out-of-plane direction,
with the conditions p∗

O = p∗ and p∗
I = 2p∗. Figures 39 and

40 show, for both the neo-Hookean and Fung’s materials,
p∗ as a function of λ1. Our observations are essentially the
same as those we made for the cylindrical shell, except the
differences are more pronounced, because, with the same
radius, the sphere has overall higher curvature effects.

We report, for λ1 = 1.3, ξ30 profiles of λ3, J , σ ∗
11, and

σ ∗
33. Figures 41, 42, 43 and 44 show those profiles for the

neo-Hookean material, Figs. 45, 46, 47 and 48 for the Fung’s
material. We again note that the ξ03 profiles coming from
Method 1 and Method 2 at a given λ1 will be the same and
therefore the ξ30 profiles are again reported under the labels
“σ33 = 0” and “σ33 �= 0.” We note in Fig. 47 that, although
it is not all discernible, except for the full range of ξ30 / (hth)0
when ν = 0.5 and for ξ30 / (hth)0 > 0.5 when ν = 0.49, the
σ33 = 0 model yields lower σ ∗

11 values and therefore is less
stiff than the σ33 �= 0 model. The substance of the observa-
tions we made for the cylindrical shell remains applicable.

6 Concluding remarks

This was the first part of a two-part article on a hyperelas-
tic extended Kirchhoff–Love shell model with out-of-plane
normal stress. We have presented the derivation of the new
model, with focus on the mechanics of the out-of-plane
deformation. To determine the out-of-plane stress, we solve
the linear-momentum-balance equation in the out-of-plane
direction. Accounting for the out-of-plane normal stress dis-
tribution in the out-of-plane direction affects the accuracy
in calculating the deformed-configuration out-of-plane posi-
tion, and consequently the nonlinear response of the shell.
The improvement is beyond what was achieved with the
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Fig. 39 Pressurized spherical shell. Neo-Hookean material. λ1 and
p∗. Comparison between Method 1 and Method 2, and Method 2 and
Method 3

newmodel’s precursor [5] by accounting for the out-of-plane
deformation mapping. Continuing what was started with the
precursor, the new model is extending the range of appli-
cability of the Kirchhoff–Love shell theory to the situations
where the Kirchhoff–Love shell kinematics is still valid yet
the thickness or the curvature change is significant enough
to make a difference in the response.

By accounting for the out-of-plane normal stress, the trac-
tion acting on the shell can be specified on the upper and
lower surfaces separately. This enables more accuracy in the
linear-momentum balance in the out-of-plane direction. For
example, we can accurately model cases that might have
nonzero net force even when those out-of-plane tractions
have equal magnitudes and opposite directions. Accounting
for the out-of-plane normal stress also enables more accu-
racy in representation of the moment the shear tractions on
the upper and lower surfaces generate around the midsur-
face. To accurately account for the moment generated by the
separate shear tractions on the upper and lower surfaces, we
have also improved the rotational kinematics in the model.
Accounting for the out-of-plane stress improves the out-of-
plane deformation mapping also in cases with no traction on

Fig. 40 Pressurized spherical shell. Fung’s material. λ1 and p∗. Com-
parison between Method 1 and Method 2, and Method 2 and Method 3

Fig. 41 Pressurized spherical shell. Neo-Hookean material. λ3 profile
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Fig. 42 Pressurized spherical shell. Neo-Hookean material. J profile

Fig. 43 Pressurized spherical shell. Neo-Hookean material. σ ∗
11 profile

Fig. 44 Pressurized spherical shell. Neo-Hookean material. σ ∗
33 profile

Fig. 45 Pressurized spherical shell. Fung’s material. λ3 profile

Fig. 46 Pressurized spherical shell. Fung’s material. J profile

Fig. 47 Pressurized spherical shell. Fung’s material. σ ∗
11 profile
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Fig. 48 Pressurized spherical shell. Fung’s material. σ ∗
33 profile

the upper or lower surfaces and no body force. Those would
be the cases when the shell deformation is driven by the dis-
placements and slopes specified along the shell edges.

We presented test computations for unidirectional plate
bending, plate saddle deformation, and pressurized cylin-
drical and spherical shells. We tested the neo-Hookean and
Fung’s material models, for the compressible and incom-
pressible materials, and with the out-of-plane normal stress
and without, which is the plane-stress case. The test com-
putations show that the differences between the shell models
with andwithout the out-of-plane normal stress aremore pro-
nounced i) for plate saddle deformation than unidirectional
plate bending, ii) when we have higher curvature effects, and
iii) for cylindrical of spherical shells at high ν values. We
leave it to the reader to judge how significant these differ-
ences are.

The level of accuracyweare striving for in representing the
tractions on the upper and lower surfaces would be meaning-
ful in anFSI computation only if the flow solutionmethod can
deliver those tractions with a comparable level of accuracy.
That level of flow solution accuracy, especially in represent-
ing the shear stress, requires moving-mesh methods, where
the highmesh resolution near solid surfaces follows thefluid–
solid interface as it moves. That is now possible even in flow
computations with actual contact between solid surfaces or
some other topology change. The space–time computational
methods introduced in the last decade enable that, as can be
seen, for example, in [43,44].
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ADual basis system

The description given here for the relationship between a
basis system and its dual is applicable to all the basis systems
we work with, where we use the symbols g, g, G, and G.

For the covariant basis vectors gα , the components of the
metric tensor are

gαβ = gα · gβ. (251)

We define the contravariant basis vectors as

gα · gβ = δα
β . (252)

This implies

gα = [

gαβ

]−1 gβ, (253)

where the brackets denote thematrix formed from its compo-
nents, and the contravariant components of the metric tensor
are given as

[

gαβ
] = [

gαβ

]−1
. (254)

We note that, with nsd = 3 and npd = 2, one of the ways
to express the unit tensor is

I = gαgα + nn, (255)

where

n = g1 × g2
‖g1 × g2‖ . (256)
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B Derivative and variation of the normal vec-
tor in the shell model

B.1 Derivative of the normal vector

Derivative of the normal vector with respect to ξα can be
obtained as follows:

n,α = ∂

∂ξα

(

g1 × g2
(

g1 × g2
) · n

)

(257)

= (I − n n) · g1,α × g2 + g1 × g2,α
(

g1 × g2
) · n (258)

= (I − n n) · g1,α × (

n × g1
) + g2,α × (

n × g2
)

(

g1 × g2
) · n(

g1 × g2
) · n

(259)

= (I − n n) · (

gβ,α × (

n × gβ
))

(260)

= (I − n n) · ((

gβ,α · gβ
)

n − (

gβ,α · n)

gβ
)

(261)

= − (

gβ,α · n)

gβ + n
(

n · gβ
)

︸ ︷︷ ︸

=0

(

gβ,α · n)

(262)

= −gβgβ,α · n (263)

= gβκαβ (264)

= κκκ · gα (265)

We note that καβ is equal to the second fundamental form
with a negative sign. In the derivation, we used the following
relationships, which generally hold:

g1 = g2 × g3
(

g1 × g2
) · g3 , (266)

g2 = g3 × g1
(

g1 × g2
) · g3 , (267)

(

g1 × g2
)

· g3 = ((g1 × g2) · g3)−1 . (268)

B.2 Variation of the normal vector

From the steps given by Eqs. (257)–(263), the variation of
the normal vector can be written as

δn = −gβδgβ · n. (269)

B.3 Rearrangement of the form ın · h
From Eq. (269), we write

δn · h = −gβ · hδgβ · n. (270)

We recall the Lagrange’s identity

(a × b) · (c × d) = a · cb · d − a · db · c. (271)

With that, we obtain

(

gβ × δgβ

) · (n × h) = gβ · n
︸ ︷︷ ︸

=0

δgβ · h − gβ · hδgβ · n

(272)

= −gβ · hδgβ · n. (273)

For notational convenience, we introduce

δr ≡ gβ × δgβ, (274)

and

δn · h = δr · (n × h) . (275)

C Integration with variation of the normal
vector

C.1 Dual basis system for themidsurface edges

We have a set of orthonormal basis vectors: B, T, and N.
After the deformation:

λBb = F · B, (276)

λTt = F · T, (277)

λ3n = F · N. (278)

Here the unit vectors b and t may not be orthogonal. To
overcome the difficulty of using a set of non-orthogonal basis
vectors, we introduced in Remark 17

t� = n × b
(

b × t
) · n , (279)

b
� = t × n

(

b × t
) · n . (280)

We repeat them here from Eqs. (138) and (139) for the
reader’s convenience. The denominator, a triple scalar prod-
uct, represents the volume of the parallelepiped based on the
three vectors. With that, the counterparts of Eq. (252) can be
written as

t� · t = 1, (281)

t� · b = 0, (282)

b
� · t = 0, (283)

b
� · b = 1. (284)

The counterpart of Eq. (255) is

I = bb
� + t t� + n n. (285)
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With the set of basis vectors and stretches, we can express the
deformation gradient tensor and its inverse. The deformation
gradient tensor can be expressed as

F = λBbB + λTt T + λ3nN. (286)

The inverse of F can be written as

F
−1 = 1

λB
Bb

� + 1

λT
T t� + 1

λ3
Nn, (287)

and we have two alternative ways of verifying that. We can
show that

F · F−1 = I (288)

by remembering that B, T, and N are orthonormal and using
Eq. (285), or show that

F
−1 · F = I (289)

by using Eqs. (281) ,(282), (283) and (284) and remembering
that I = B B + T T + N N. By excluding the normal-
direction terms in Eqs. (286) and (287), we obtain

gαG
α = λBbB + λTt T, (290)

Gαgα = 1

λB
Bb

� + 1

λT
T t�. (291)

Depending on the context, we use either the left- or right-
hand side of Eqs. (290) and (291).

We can write C at the midsurface as

C = (

λBBb + λTT t + λ3Nn
) · (

λBbB + λTt T + λ3nN
)

(292)

= λ
2
BBB + λ

2
TTT + λ

2
3NN + λBλT

(

t · b) (

BT + TB
)

,

(293)

and its determinant as

J
2 = λ

2
Bλ

2
Tλ3

2
(

1 − (

t · b)2
)

(294)

= λ
2
Bλ

2
Tλ3

2 ((

b × t
) · n)2

, (295)

where J = det F. Because
(

b × t
) · n > 0, we get

(

b × t
) · n = J

λBλTλ3
= A

λBλTA0
= A/L

A0/L0

1

λB
. (296)

We note that, in Eq. (296), the second and third equalities are
based on Eqs. (38) and (131), respectively. Thus, Eqs. (279)

and (280) can be expressed as

t� = n × b
λ3λBλT

J
, (297)

b
� = t × n

λ3λBλT

J
. (298)

C.2 Integration over themidsurface

Wefirst rearrange the variation of the normal vector from Eq.
(269):

δn = −δgγ · nδ
γ
β g

β (299)

= −δgγ · nGγ · Gβgβ. (300)

From that, for any vector q, we have

∫

Γ 0

δn · qdΓ = −
∫

Γ 0

G
γ · (

δgγ · nGβgβ · q)

dΓ (301)

= −
∫

Γ 0

G
γ · (

δx,γ · nGβgβ · q)

dΓ . (302)

We integrate the right-hand side of Eq. (302) by parts and
obtain

∫

Γ 0

δn · qdΓ = −
∫

S0
δx · nq · gβGβ · BdS

+
∫

Γ 0

δx · (

nGβgβ · q)

,γ
· Gγ

dΓ . (303)

The last integral of the above equation can further be arranged
by using the product rule as

∫

Γ 0

δx · (

nGβgβ · q)

,γ
· Gγ

dΓ =
∫

Γ 0

δx · n,γ gγ · qdΓ

+
∫

Γ 0

δx · n (

q · gβGβ

)

,γ
· Gγ

dΓ . (304)

Substituting Eq. (265) into this, we obtain

∫

Γ 0

δx · (

nGβgβ · q)

,γ
· Gγ

dΓ =
∫

Γ 0

δx · κκκ · qdΓ

+
∫

Γ 0

δx · n (

q · gβGβ

)

,γ
· Gγ

dΓ . (305)

Combining Eqs. (303) and (305) and recognizing the left-
hand side of Eq. (291) in the integral over S0, we obtain

∫

Γ 0

δn · qdΓ = −
∫

S0
δx · n 1

λB
b

� · qdS

+
∫

Γ 0

δx · κκκ · qdΓ
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+
∫

Γ 0

δx · n (

q · gβGβ

)

,γ
· Gγ

dΓ .

(306)

C.3 Integration over themidsurface edges

From Eq. (300), we get

δn = −δgγ · nGγ · (

NN + TT + BB
)

︸ ︷︷ ︸

=I

·Gβgβ. (307)

Because of the orthogonality of Gβ and N, we obtain

δn = −δgγ · nGγ · (

TT + BB
) · Gβgβ (308)

= −δgγ · nGγ · TT · Gβgβ − δgγ · nGγ · BB · Gβgβ.

(309)

Taking the inner product of gγ with Eq. (269):

δn · gγ = −δgγ · n, (310)

recognizing the right-hand side of that in two places in Eq.
(309) and replacing only the second one, we obtain

δn = −T · Gγ
δgγ · nT · Gβgβ + δn · gγG

γ · BB · Gβgβ.

(311)

With that, for any vector q, we have

∫

S0
δn · qdS = −

∫

S0
T · Gγ

δgγ · nT · Gβgβ · qdS

+
∫

S0
δn · gγG

γ · BB · Gβgβ · qdS.

(312)

We apply integration by parts to the first integral on the right-
hand side after recognizing from Eq. (2) that T · Gγ

δgγ =
T · Gγ

(δx),γ and realizing that T · Gγ
(δx),γ is the spatial

derivative along the line of integration. Keeping in mind that
S0 is a closed curve in the integration by parts, we obtain

∫

S0
δn · qdS =

∫

S0
δx · (

nT · Gβgβ · q)

,γ
G

γ · TdS

+
∫

S0
δn · gγG

γ · BB · Gβgβ · qdS.

(313)

Using the product rule in the first integral on the right, we
get

∫

S0
δx · (

nT · Gβgβ · q)

,γ
G

γ · TdS

=
∫

S0
δx · n,γT · Gβgβ · qGγ · TdS

+
∫

S0
δx · n (

T · Gβgβ · q)

,γ
G

γ · TdS, (314)

and by substituting for n,γ from Eq. (265), we obtain

∫

S0
δx · (

nT · Gβgβ · q)

,γ
G

γ · TdS

=
∫

S0
δx · κκκ · gγG

γ · TT · Gβgβ · qdS

+
∫

S0
δx · n (

T · Gβgβ · q)

,γ
G

γ · TdS. (315)

Combining Eqs. (313) and (315) and recognizing the left-
hand sides of Eqs. (290) and (291), we obtain

∫

S0
δn · qdS =

∫

S0
δx · n

(
1

λT
t� · q

)

,γ

G
γ · TdS

+
∫

S0
δx · κκκ · t t� · qdS

+
∫

S0
δn · bb� · qdS. (316)

D Constitutive models

We test two constitutive models: neo-Hookean and Fung’s
materials. The strain-energy density functions are

ϕNH (C) = 1

2
μ (trC − 3) , (317)

ϕF (C) = D1

(

e(D2(trC−3)) − 1
)

, (318)

where μ is the shear modulus, and D1 and D2 = 8.365
are the coefficients of the Fung’s material model. The shear
modulus at the undeformed configuration is μ0 = μ for
the neo-Hookean material and μ0 = 2D1D2 for the Fung’s
material. We determine the bulk modulus from ν and μ0 as

κB = 2μ0 (1 + ν)

3 (1 − 2ν)
. (319)

D.1 Incompressible material

For incompressible material, we use

ϕNHI (C) = ϕNH (C) + p (1 − J ) , (320)

ϕFI (C) = ϕF (C) + p (1 − J ) , (321)

and p can be calculated by using the constraint J = 1
in the equation associated with the out-of-plane direction.
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We use the label “ν = 0.5” in reporting the results for the
incompressible-material cases, but we use the forms above
in the tests.

D.2 Compressible material

For compressible material, we use

ϕNHR (C) = ϕNH

(

J− 2
3C

)

+ ϕvol (J ) , (322)

ϕFR (C) = ϕF

(

J− 2
3C

)

+ ϕvol (J ) , (323)

where

ϕvol (J ) = κBβ−2
B

(

βB ln J + J−βB − 1
)

, (324)

and we use βB = −2. This form with βB was introduced in
[45].
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