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Abstract
A new family of hybrid/mixed finite elements optimized for numerical stability is introduced. It comprises a linear hexahedral
and quadratic hexahedral and tetrahedral elements. The element formulation is derived from a consistent linearization of
a well-known three-field functional and related to Simo–Taylor–Pister (STP) elements. For the quadratic hexahedral and
tetrahedral elements we derive (static reduced) discontinuous hybrid elements, as well as continuous mixed finite elements
with additional primary unknowns for the hydrostatic pressure and the dilation, whereas the linear hexahedral element is of the
discontinuous type. The elements can readily be used in combination with any isotropic, invariant-based hyperelastic material
model and can be considered as being locking-free. In a representative numerical benchmark test the elements numerical
stability is assessed and compared to STP-elements and the family of discontinuous hybrid elements implemented in the
commercial finite element code Abaqus/Standard. The new elements show a significant advantage concerning the numerical
robustness.

Keywords Finite element · Hybrid finite element · Mixed finite element · Nonlinear · Finite deformation · Hyperelasticity ·
Rubber-like material · Quasi-incompressible material · Mixed formulation · Hu–Washitzu type · Three-field functional ·
Consistent linearization · Continuous finite element · Discontinuous finite element

1 Introduction

1.1 State of the art

A hypothetical solid that changes only its shape when loaded
whilemaintaining its original volume is called (fully or ideal)
incompressible. Real world rubber-like materials are quasi-
incompressible. The compressibility of a solid is in practice
often quantified by the use of Poisson’s ratio ν. While ideal
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incompressibility corresponds to ν = 0.5, a (fuzzy) classifi-
cation of quasi-incompressibilitymight be given by the range
0.47 ≤ ν < 0.5.

Standard finite elements (FEs) are displacement based,
meaning that only the displacements are assembled primary
unknowns, whereas strains and stresses are so-called sec-
ondary unknowns that are updated when a new displacement
increment is computed. Since an applied hydrostatic pressure
on an ideal incompressible solidwould not lead to any strains,
a small calculated displacement increment might cause
huge changes in the resulting hydrostatic part of the strain
and stress for a quasi-incompressible material. This ren-
ders the purely displacement-based formulation numerically
ill-conditioned. Furthermore, since the condition of ideal
incompressiblity represents a kinematic coupling between
the displacement degrees of freedom, artificial stresses arise
at integration points in the quasi-incompressible case, so that
standard finite elements tend to be overly stiff. This effect is
known as volumetric locking.

To overcome these deficiencies, several so-called mixed
and hybrid element formulations were developed. Start-
ing with modified displacement based finite elements, the
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simplest variant are uniform reduced-integration elements,
which use a lower order (typically one order lower) numer-
ical integration scheme. Since these elements suffer from
rank deficiency, numerical stabilization is required, cf., e.g.,
[3, p. 452] or [39, p. 402]. To overcome this problem,
selective reduced integration elements use a split of strains
and stresses into volumetric and dilational parts. In order
to prevent rank deficiency, the volumetric components are
integrated an order lower than the dilational parts, cf. [15,
p. 221]. Furthermore, the use of incompatible mode elements
is advantageous in view of volumetric locking compared to
standard displacement elements, but these comewith the dis-
advantage of possibly non-monotonic convergence and may
cause instabilities in geometrically nonlinear simulations that
are physically not present, cf. [2, p. 268]. Other elements,
like F-bar elements, de Souza Neto et al. [6], and B-Bar
elements, Hughes [14], either use a modified deformation
gradient or a modified matrix of form function derivatives
(in finite element literature usually denoted by F and B,
respectively) to obtain a formulation that evaluates the vol-
umetric part of the constitutive law in fewer points than
the isochoric part. Since all these low-order modified pure
displacement elements either suffer from bad convergence
behavior or even instabilities, they are not capable to deal
with quasi-incompressible materials in a satisfactory man-
ner. Computationally more expensive higher-order element
formulations based on integrated Legendre polynomials that
can circumvent these problems have been proposed by Szabó
and Babuška [38]; Heisserer et al. [12].

Furthermore, there are element formulations, based on
elastic potentials augmented by terms with additional vari-
ables like independent dilation or pressure fields. The sim-
plest formulation uses a Lagrange multiplier expression in
order to enforce ideal incompressibility, cf. e.g. [39, p. 164].
To improve numerical stability a perturbation term which
weakens this constraint can be added upon the aforemen-
tioned formulation. An appropriate choice thereof allows
simulating compressible materials with the volumetric stan-
dardmodel, cf. [4] and [13, p. 406 sq.]. Awell known element
formulation using an independent pressure field was pro-
posed by Sussman and Bathe [37]. However, the approach
depends on a material specific constraint equation that was
provided only for the volumetric standard model in the orig-
inal publication. The restriction to a constant compression
modulus holds also for the mixed-interpolation approaches,
proposed byPantuso andBathe [22,23]. Simo andTaylor [33]
and Simo et al. [34] proposed a formulation using a three-
field functional with independent dilation and pressure fields.
This element formulation does not introduce a material-
dependent constraint function. Hence, it can be combined
with all invariant-based hyperelastic materials with minor
effort.

To improve the convergence behavior there are numer-
ous variants of enhanced assumed strain elements, using the
same underlying functional, cf. [39, p. 421 sq.]. These use
an enhanced deformation gradient, which is added upon the
deformation gradient of the configuration in order to add
extra parameters to the element formulation. This formu-
lation has disadvantages regarding hourglassing, for what
reason either stabilization techniques or modified interpola-
tion terms have to be applied, cf. [7, p. 678 sq.]. Enhanced
assumed strain elements have a rich history and are treated
in e.g. [8–10,18,20,24–27], albeit some of those treatises are
more focused on the issue of shear locking.

Schröder et al. [31] proposed a further mixed-element for-
mulation, based on a three-field functional. The formulation
relies on a different approximation of the deformation gra-
dients cofactor (compared to other displacement variables).
Hence, the strain energy has to have a pronounced cofactor
term in order to benefit from the formulation, which in turn
restricts the class of material that may benefit from the usage
of the formulation.

At the beginning of the 21st century, the discontinu-
ous Galerkin method gained reasonable popularity in solid
mechanics, which also gave rise to multiple hybrid-element
formulations, cf. e.g. [5,16,40]. This method shows great
potential in simulating quasi-incompressible material, but
usually numerical stabilization is required as well.

To summarize, the three-field potential of [33,34] played
a key role in the history of hybrid-element formulations
and this research field is far from being settled. Recent
hybrid-element formulations often rely heavily on matching
numerical stabilization techniques.

1.2 Objective of this contribution

We start this article with a revisit of the well established
hybrid-element formulation of [33,34]. Afterwards, novel
contributions closely connected to the original formulation
are presented in a threefold way.

First of all, more as a side note, we present the consis-
tent linearization associated with the three-field potential
introduced in [33] for a general hyperelastic material where
the strain-energy density may be an arbitrary function of
the right Cauchy–Green tensor. For this general setting the
weak form was already given in [33], but the linearization
was only provided for a more specialized setting. We sim-
plify this new general linearization to the common special
case of an isotropic, invariant-based, quasi-incompressible
material. In this regard it is remarkable that the severe sim-
plifications of the linearization in comparison to the general
setting are mainly induced by key properties between the
first and second-order derivatives of the isochoric invariants
with respect to themodified right Cauchy–Green tensor. This
relations have not yet been mentioned in the literature to
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our best knowledge, although their role (in the light of the
general setting) is comparable to the decoupling of stress
into isochoric and volumetric parts, which is—in contrast—
extensively studied in the literature because the decoupling
is already relevant for the derivation of the weak form. From
our point of view this investigation completes the continuum
mechanical foundation for the derivation of hybrid elements
based on the three-field potential.

Secondly, as the main contribution, an implementation
scheme for discontinuous hybrid elements that differs from
the classical Simo–Taylor–Pister elements but is based upon
the same three-field potential is introduced. We show by
numerical benchmarks that the new elements retain the mesh
convergence behavior of the original Simo–Taylor–Pister
elements—especially they do not suffer from volumet-
ric locking—whereas the numerical robustness is greatly
improved. Their robustness allows these elements to be used
without numerical stabilization in contrast to most recent
hybrid-element formulations.

At last, we also implement and study continuous hybrid
elements associated with the discontinuous implementa-
tion scheme mentioned before. Although the possibility of
continuous mixed elements is frequently mentioned in the
literature, this type of element is rarely implemented due
to its limited applicability. In a matching setting we sys-
temically compare discontinuous versus continuous type
elements with the same displacement interpolation. Also, all
the elements are compared to the state-of-the-art commer-
cial, discontinuous hybrid-element family implemented in
Abaqus/Standard.

1.3 Notation basics

The standard notational conventions of nonlinear contin-
uum mechanics are used, especially Einstein’s summation
convention. We restrict ourselves to Cartesian coordinate
systems. In turn, the simplified tensor-index notation can
be used, where it is unnecessary to distinguish between co-
and contravariant indices. Material points in the undeformed
body � will be identified with their Cartesian coordinate
vectors X = (

X I

) ∈ �. Due to the body’s deformation, a
point X shifts by a displacement vector U (X) to its new
destination x = (

xi

)
in the so-called spatial (or deformed)

configuration. With the configuration map ϕ, the spatial
points are given by x = ϕ(X) = X + U (X). Hence, the
deformed body is the image of � under the configuration
map ϕ, i.e. ϕ(�). The deformed body’s surface is indicated
as ∂ϕ(�), whereas an infinitesimal volume element in the
spatial configuration is denoted by dv and the corresponding
infinitesimal area element of the deformed body’s surface is
denoted by da. The quantities for the undeformed body are
denoted analogously by ∂�, dV and dA.

2 A recap of the STP-hybrid-element
formulation

In this section, we recap the Simo–Taylor–Pister (STP)
hybrid-element formulation, originally provided in [33,34],
in some detail, in order to outline differences to the later
introduced new CL3F-formulation.

2.1 The three-field formulation

Ahyperelastic material is per definition amaterial that can be
characterized by a given strain energy density W . In a very
general setting we assume W to be given as a function of
the components of the right Cauchy–Green tensor C which
is itself a function of the deformation gradient F.

In particular W might depend on the Jacobian J , i.e. the
determinant of F. In the undeformed body �, the overall
potential � is then given by

�(ϕ):=
∫

�

W (C(F(ϕ(X))) dV + �ext(ϕ), (1)

where �ext is the potential of applied forces.
The standard overall potential (1) is modified into a three-

field potential by the introduction of amodified displacement
gradient F̊ and in turn amodifiedversionof the rightCauchy–
Green tensor C̊ , defined by

F̊:=
(

Θ

J

)1/3

F, C̊I J :=F̊k I F̊k J =
(

Θ

J

)2/3

CI J .

Here,Θ is a newly introduced primary unknown scalar-field,
we call the (volumetric) dilation. Since the determinant of F̊
is Θ , the usage of F̊ instead of F will effectively replace the
Jacobian J by the primary variable Θ . The modified strain
energy density W̊ is defined by replacing F by F̊ in the
argument, i.e. W̊ := W (C̊(F̊)). Due to this notational con-
vention, we may omit the argument. Note that W and W̊ ,
regarded as a function of the (modified) strain, refer to the
same mathematical function, but regarded as a continuum
mechanical quantity, we have W̊ = W , if, and only if, we
have J = Θ . Therefore, we have to enforce this equality
by a Lagrange-multiplier, in order to arrive at an equivalent
potential. We denote this Lagrange-multiplier by p, which
is another newly introduced, primary unknown scalar-field.
Like the purely displacement based counterpart of Θ is J ,
the purely displacement based counterpart of p turns out to
be the hydrostatic pressure. The final modified three-field
potential, with the primary variables ϕ, Θ and p reads
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�mod(ϕ,Θ, p):=
∫

�

W̊ (X,ϕ,Θ) dV

+
∫

�

p (J (ϕ) − Θ) dV + �ext(ϕ). (2)

Theweak form associatedwith the three-field potential (2)
is derived by computing the first variation of the three-field
potential �mod at a current state defined by:

• ϕ̂—the current configuration (vector-field),
• Θ̂—the current dilation (scalar-field),
• p̂—the current (independent) hydrostatic pressure

(scalar-field),

with respect to the associated virtual quantities denoted by:

• η—the virtual displacement (vector-field),
• ψ—the virtual dilation (scalar-field),
• q—the virtual (independent) hydrostatic pressure

(scalar-field),

leading to the following weak form for a total Lagrangian
formulation

G
((

ϕ̂, Θ̂, p̂
)

, (η, ψ, q)
)

:=
∫

�

2
∂W̊

(
ϕ̂, Θ̂

)

∂C̊I J

ˆ̊Fi I
ˆ̊Fj J dev

(
η
sym
i, j

)
dV (3a)

+
∫

�

2ψ

3Θ̂

∂W̊
(
ϕ̂, Θ̂

)

∂C̊I J

ˆ̊Fi I
ˆ̊Fj J δi j dV (3b)

+
∫

�

p̂ J
(
ϕ̂
)
ηi,i − p̂ψ + q

(
J
(
ϕ̂
)− Θ̂

)
dV (3c)

+ δ�ext(ϕ̂, η).

Despite notational differences equation (3) was already pro-
vided in Proposition 3.2 of [33]. (In addition there is an
obvious typographical error in equation (3.18) of [33].)

2.2 A semi-discretized variant of the weak form

In [33], Proposition 3.5, a linearization of the weak form is
provided for a more specialized setting (uncoupled case),
where the strain energy density is assumed to have the
structure W := W vol(
) + W iso(C iso). However, for the
proposed implementation of STP-elements this linearization
is not used. Instead an approach, here referred to as “semi-
discretization”, originally sketched in section 4.1 of [33] is
utilized, which is recapped below.

The same inter-element discontinuous interpolation for
the dilation and the pressure and their virtual counterparts is
utilized

Θe ≈
ne

Γ∑

l=1

Γe,l (ξ)̂Θe,l ,

pe ≈
ne

Γ∑

l=1

Γe,l (ξ)̂pe,l . (4)

Regarding just the additive term of the weak form (3) that
incorporates the virtual pressure q and only the contribution
of a single finite element �e , factoring out the coefficients
of the virtual pressure leads to an intra-element interpolation
for the dilation

Θe ≈
ne

Γ∑

k=1

ne
Γ∑

l=1

He −1
lk

∫

�e
Γe,k (ξ) Je (

ϕ̂
)
dV with

He
kl :=

∫

�e
Γe,k (ξ) Γe,l (ξ) dV , (5)

that is written in terms of the configuration ϕ̂. The same
procedure applied to the additive part of (3) that incorporates
the virtual dilation ψ leads to a corresponding intra-element
interpolation for the hydrostatic pressure

pe ≈
ne

Γ∑

k=1

ne
Γ∑

l=1

He −1
lk

∫

�e
Γe,k (ξ)

2

3Θ̂

∂W̊
(

ϕ̂
e

, Θ̂e
)

∂C̊I J

ˆ̊Fe
i I

ˆ̊Fe
j J δi j dV . (6)

The elimination of the independent pressure and dilation in
the remainder of (3) by insertion of (5) and (6) leads to the
semi-discretized variant of the weak formulation depending
solely on the configuration (or displacement). The spatial
representation reads

ge (ϕ, η)≈
∫

ϕ( �e )

{
σ̂e iso

i j + p̂e δi j

}
η
sym
i, j dv+ϕ∗

{
δ�ext(ϕ̂, η)

}
.

(7)

(It is crucial to note that here p̂e is not the independent
hydrostatic pressure, but instead a shorthand notation for the
insertion of (6), i.e., p̂e is a given function that only depends
on the configuration. This also applies for Θ̂e below.)

Since (7) only depends on the current configuration ϕ̂, it
can be linearized by calculation of the Gateaux derivative in
the direction of the displacement increment u only. The final
spatial representation of the linearization reads
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δ ge ((
ϕ̂, η

)
, u
) =

∫

ϕ( �e )

ui, j σ̂e
i jηi,l

+ ui, jηk,l

[
p̂e
(
δi j δkl − δil δ jk − δik δ jl

)
+ ĉe iso

i jkl

]

+
∂2W̊

(
ϕ̂

e
, Θ̂e

)

∂Θ2

Θ̂e 2

Ĵe
div η div u dv, (8)

where

div u = 1

Θ̂e
(
ϕ̂
)

ne
Γ∑

k=1

ne
Γ∑

l=1

He −1
lk

∫

�e
Γe,k (ξ) Je (

ϕ̂
)

ui,i dV

is the so-called “discrete divergence operator”, cf. [33]. (In
Simo and Taylor [33] there is an obvious typographical error
in the last term of the linearization, Θ̂ → Θ̂ 2).

Finally, the introduction of an inter-element continuous
interpolation for the not yet discretized displacement field
leads to STP-elements. The implementation is very simi-
lar to purely displacement-based elements because just the
remaining displacement degrees of freedom are assembled.
Due to the used inter-element discontinuous pressure and
dilation interpolation (4), STP-elements are classified as
“discontinuous-type” hybrid elements.

3 The continuum-level linearization
approach

Hybrid elements based directly on a consistent continuum-
level linearization of the three-field potential’s weak form
(3) with respect to all three primary unknowns—and hence
denoted CL3F-elements—will be derived in this contribu-
tion. The continuum mechanical foundation is provided in
this section,whereas the discretization schemes are discussed
in Sect. 4.

3.1 The isotropic, quasi-incompressible case

The weak form (3) is given for a very general setting where
the strain energy density is assumed to be a general function
of themodified right Cauchy–Green tensor W̊ := W (C̊(F̊)).
For the special case of an isotropic, quasi-incompressible
material, like rubber, one usually assumes for a purely
displacement-based setting thatW can be additively split into
a volumetric part, that only depends on the third invariant,
the determinant of C (or F, since det(C) = det(F)2) and an
isochoric remainder. This remainder is assumed to depend on
the first two invariants of the isochoric part of C . (One often
speaks of “modified invariants” in this case which we omit
here to avoid confusion with the already introduced modifi-
cation of F.) In our case we consequently assume that W̊ can
be additively split into a volumetric part that depends only
on the (volumetric) dilation Θ and an isochoric remainder

W̊ = W̊iso

( ¯̊I1, ¯̊I2
)

+ W̊vol (Θ) , (9)

where the (modified) isochoric invariants are

¯̊I1:=Θ−2/3 C̊K K and ¯̊I2:=Θ−4/3 1

2

[(
C̊K K

)2 − C̊K I C̊I K

]
,

i.e., the invariants of the isochoric part of the modified right
Cauchy–Green tensor C̊

F̊=Θ− 1
3 F̊︸ ︷︷ ︸

=:F̊iso

Θ
1
3 I︸︷︷︸

=:F̊vol

, C̊ iso = F̊
T
iso F̊iso = Θ− 2

3 F̊
T
F̊ = Θ− 2

3 C̊.

For an isotropic, quasi-incompressible material of type (9)
straight forward calculations yield

∂
¯̊I1

∂C̊I J

F̊i I F̊ j J = ∂ Ī1
∂CI J

Fi I Fj J ,

∂
¯̊I2

∂C̊I J

F̊i I F̊ j J = ∂ Ī2
∂CI J

Fi I Fj J ,

which implies

∂W̊iso

∂C̊I J

F̊i I F̊ j J = ∂Wiso

∂CI J
Fi I Fj J .

Hence, by the standard definition of the Cauchy stress

σi j = 2 J−1 ∂Wiso( Ī1, Ī2)

∂CI J
Fi I Fj J

︸ ︷︷ ︸
=: σ iso

i j

+ 2 J−1 ∂Wvol(J )

∂CI J
Fi I Fj J

︸ ︷︷ ︸
=: σ vol

i j

,

we can calculate the isochoric part of the stress by

σ iso
i j = 2 J−1 ∂W̊iso

∂C̊I J

F̊i I F̊ j J , (10)

whereas, we obtain for the volumetric part of the stress

σ vol
i j (Θ) = 2Θ−1 ∂W̊vol

∂C̊I J

F̊i I F̊ j J = ∂W̊vol

∂Θ
δi j . (11)

With the same argumentation one can also derive the two
parts of the stiffness tensors by

cisoi jkl = 4 J−1 ∂2W̊iso

∂C̊I J ∂C̊K L

F̊i I F̊ j J F̊kK F̊l L . (12)
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and

cvoli jkl(Θ) = 4Θ−1 ∂2W̊vol

∂C̊I J ∂C̊K L

F̊i I F̊ j J F̊kK F̊l L . (13)

With (10) and (11) we obtain the following spatial represen-
tation of the weak form (3):

g
((

ϕ̂, Θ̂, p̂
)

, (η, ψ, q)
)

=
∫

ϕ(�)

(
σ̂ iso

i j + p̂ δi j

)
η
sym
i, j dv

+
∫

ϕ(�)

ψ

Ĵ

(
1

3
σ̂ vol

i j

(
Θ̂
)

δi j − p̂

)
dv

+
∫

ϕ(�)

q

(

1 − Θ̂

Ĵ

)

dv + ϕ∗
{
δ�ext(ϕ̂, η)

}
. (14)

The associated linearization of the weak form (Gateaux dif-
ferential) on the deformed configuration is given by

δg

(((
ϕ̂, Θ̂, p̂

)
,
(
η, ψ, q

))
,
(
u, ω, γ

))

=
∫

ϕ(�)

{
ĉisoi jkl I sym,dev

i jab I sym,dev
klcd ηa,b uc,d

+ σ̂ iso
jl

(
2 I sym,dev

i jab I devilcd − I sym,dev
jlad δbc

)
ηa,b uc,d

+ p̂
(
δab δcd − δcbδad

)
ηa,b uc,d

+ ω ψ

Ĵ

∂2
ˆ̊Wvol

∂Θ2 + γ ηi,i − γ ψ

Ĵ
+ q

(
ui,i − ω

Ĵ

)}
dv

+ ϕ∗
{
δ
(
δ�ext(ϕ̂, η), u

)}
, (15)

where, we introduced the fourth-order tensors

I devi jab := δiaδ jb − 1

3
δi jδab

⇒ dev(ti j ) = I devi jab tab,

I sym,dev
i jab := 1

2
δiaδ jb + 1

2
δibδ ja − 1

3
δi jδab

⇒ dev(t symi j ) = I sym,dev
i jab tab

and the denotations of the incremental quantities are:

• u—the displacement increment (vector-field),
• ω—the (independent) dilation increment (scalar-field),
• γ—the (independent) hydrostatic pressure increment
(scalar-field).

(A detailed derivation of the linearization can be found in the
“Appendix”.) For the case of only dead loads, the contribu-
tion from the potential of applied loads �ext is simply zero.
However, we have a non-vanishing contribution for follower-
loads like pressure, cf. [32].

It is noteworthy that the summand of (15) that comprises
the current isochoric stress σ̂ iso

jl is symmetric in u and η,
although the two summands that we would get by expand-
ing the round bracket are not. In turn, the resulting tangent
stiffness matrix will be actually symmetric.

Furthermore, note that (15) represents in contrast to the
tangent stiffness used in [33], i.e. (8), a linearization with
respect to all three primary unknowns. In the here presented
CL3F-formulation consisting of the weak form (14) and its
linearization (15), p and 
 remained primary unknowns,
whereas the STP-approach consisting of the weak form (7)
and its linearization (8) is finally purely displacement-based:
the configuration ϕ is the only primary unknown and η the
only virtual quantity. p and 
 in (8) are just shorthands for
displacement terms and not independent unknowns anymore.

3.2 A remark on the linearization for the general
case

In the preceding section as well as in [33] the linearization
of the weak form is only given for the special case of an
isotropic material. To our best knowledge a linearization for
the general setting that was utilized to introduce the weak
form, i.e. a setting where the strain energy density can be a
general function of the modified right Cauchy–Green tensor
W̊ := W (C̊(F̊)), was never presented in the literature. This
general linearization is provided in the “Appendix” of this
contribution.

The general linearization is way more complex than the
linearization for the special case (15). In this regard it is
remarkable that the severe simplifications are induced by key
properties between the first and second-order derivatives of
the isochoric invariants with respect to the modified right
Cauchy–Green tensor:

∂2Θ

∂C̊I J ∂C̊K L

F̊i I F̊ j J F̊kK F̊l Lδi j

= 1

4
Θ δkl = 1

2

∂Θ

∂C̊K L

F̊kK F̊l L , (16)

∂2
¯̊I1

∂C̊I J ∂C̊K L

F̊i I F̊ j J F̊kK F̊l L δi j

= −J−2/3 dev(bkl ) = − ∂
¯̊I1

∂C̊K L

F̊kK F̊l L , (17)

∂2
¯̊I2

∂C̊I J ∂C̊K L

F̊i I F̊ j J F̊kK F̊l L δi j = − ∂
¯̊I2

∂C̊K L

F̊kK F̊l L .

(18)

The properties (17) and (18) provide a possibility for stress
and stiffness terms to cancel out each other that is not given
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for the general case. A detailed derivation of the linearization
for the general and special case is provided in the “Appendix”.

4 Discretization for the CL3F-hybrid
elements

At a given current state (ϕ̂, Θ̂, p̂) the linearized problem of
finding critical points reads

0
!= g
((

ϕ̂ + u, Θ̂ + ω, p̂ + γ
)

, (η, ψ, q)
)

≈ g
((

ϕ̂, Θ̂, p̂
)

, (η, ψ, q)
)

+ δg

(((
ϕ̂, Θ̂, p̂

)
,
(
η, ψ, q

))
,
(
u, ω, γ

))
, (19)

where g and δg are given by (14) and (15). This equation is
iterated for a given load level after the here introduced dis-
cretization and assembling,which is thewell-knownclassical
Newton–Raphson scheme. While it is common and benefi-
cial to use the configuration ϕ as the first primary unknown
for theoretical derivation, usually the displacementU is cho-
sen as the first primary unknown for implementations, cf.
Sect. 1.3.

The key to locking-free hybrid elements are a well-chosen
combinations of form functions for the displacement degrees
of freedom on the one hand and the dilation and pressure
degrees of freedom on the other hand, which is extensively
discussed in the literature. For an introduction one may refer
to e.g. [2, pp. 292 sqq.].

In this contribution well established combinations of form
functions are chosen. Also, quadrature schemes are selected
in a way so that the later derived discontinuous-type CL3F-
elements will be one-on-one comparable to the Abaqus
hybrid elements C3D8H, C3D10H and C3D20H, since the
same interpolation and quadrature schemes are used. (How-
ever, it should be mentioned that the Abaqus elements are
based on a two-field formulation rather than a three-field for-
mulation.)

For the displacement degrees of freedom inter-element
continuous interpolationswith standard Lagrange form func-
tions are used, that are explained in detail in basic text books
on finite elements (cf. e.g [2,39,41])

Ue
i ≈

ne
k∑

k=1

Ne,k i (ξ) ê,k,iU .

Like it is common practice, we selected the same form func-
tions for every coordinate direction i . For dilation and pres-
sure, either Lagrange-type interpolation schemes (of lower
order) are selected for continuous-type CL3F-elements,
or inter-element discontinuous polynomial interpolation

schemes are selected in order to derive discontinuous-
type CL3F-elements that are directly comparable to STP-
elements or the aforementioned Abaqus elements. In general
the same scheme is selected for dilation and pressure, cf. (4).
For the associated virtual quantities η,ψ and q the same form
functions Ne,k i (ξ) and Γe,l (ξ) are used.

Problem (19) leads to a discrete linear system with the
structure

⎡

⎢
⎣

u↓ ω↓
γ

↓
η→ Ke

uu 0 Ke
up

ψ→ 0 Ke
ΘΘ Ke

Θ p
q→ Ke

pu Ke
pΘ 0

⎤

⎥
⎦ ·
⎛

⎝
ue

ωe

γe

⎞

⎠+
⎛

⎝
Re

u − Pe
u

Re
Θ

Re
p

⎞

⎠=0.

(20)

Note that the submatrix Ke
uu might, in addition to the first

three summands on the right-hand side of Eq. (15), also
contain load terms stemming from ϕ∗{δ(δ�ext(ϕ̂, η), u)}
in Eq. (15), if follower loads are considered. The overall
element-tangent-stiffness matrix is symmetric, e.g., we have
Ke

pu = Ke
up

T .

4.1 Continuous elements

The possibility of continuous hybrid elements is frequently
noted in the literature. However, these types of elements are
rarely implemented, since one has to be careful regarding
multi-material interfaces especially if different types of finite
elements are to be combined. Due to the fact that inhomoge-
neous solids have generally spoken a discontinuous pressure
field, the discontinuous type elements have a wider rage
of applicability. We are not aware of systematic continuous
versus discontinuous type hybrid element comparisons like
provided in this contribution, where matching elements—
especially utilizing the same displacement interpolation—of
different types (continuous/discontinuous) are directly com-
pared. However, a noteworthy comparison of a continuous
second-order L2/P1 tetrahedral with a discontinuous linear
L1/P0 hexahedral element can be found in [30].

In this contribution we combine quadratic displacement
elements with a linear Lagrange interpolation for the dila-
tion and the pressure. For quadratic hexahedral elements a
serendipidy-type Lagrange interpolation is utilized since this
is the interpolation used by Abaqus CAE (although the usage
of an incomplete second-order polynomial has a negative
influence on the rate of convergence from a theoretical point
of view). Since the additional dilation and pressure degrees of
freedom (DOFs) are assembled just like displacement DOFs,
the principle solution algorithmused for this kind of elements
does not differ from the one used for simple displacement-
based elements. However, besides the obvious difference that
not all degrees of freedom have the same physical meaning,
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the treatment of a different number of DOFs per node has to
be implemented.

For the continuous hybrid elements it is noteworthy that
although the element tangent stiffnessmatrix (20) is singular,
the assembled tangent stiffness matrix is not.

We implemented the following specific continuous mixed
finite elements. The suffix L1 is used to indicate the first-
order Lagrange-type interpolation for the dilation and the
pressure.

CL3F-H2sG27-L1

• hexahedral element
• 20 node, quadratic, serendipity-type Lagrange interpola-
tion for the displacements

• 27 point Gauß quadrature (1D product rule)
• linear Lagrange interpolation for dilation and pressure
(assembled)

• 76 degrees of freedom

CL3F-T2G4-L1

• tetrahedral element
• 10 node, quadratic, Lagrange interpolation for the dis-
placements

• 4 point, second-order, T∗
n : 2-1 quadrature, cf. [36,

p. 307]
• linear Lagrange interpolation for dilation and pressure
(assembled)

• 38 degrees of freedom

4.2 Discontinuous elements

For the discontinuous type elements we either use zeroth-
order or a linear (first-order) polynomial ansatz

f (ξ1, ξ2, ξ3) = a0 + a1 ξ1 + a2 ξ2 + a3 ξ3.

for the dilation and pressure interpolation, which is indicated
by the suffix P0 or P1 in the element name. While this leads
to a smooth interpolation of the dilation and pressure inside
every element, their valueswill in general jumpbetween adja-
cent elements, i.e., the overall interpolation is (inter-element)
discontinuous (but intra-element continuous). For this type
of element, the dilation and pressure degrees of freedom can
be removed from the tangent stiffness matrix by static con-
densation and only the displacement degrees of freedomwill
be assembled.

Due to the fact that we selected the same ansatz for the
dilation and the pressure, the submatrix Ke

pΘ = Ke T
Θ p is

quadratic and can be inverted. The original system (20) is
equivalent to the system

(
Ke

uu + Ke
up

[
Ke

Θ p

]−1
Ke

ΘΘ

[
Ke

pΘ

]−1
Ke

pu

)
ue

+ Re
u − Pe

u + Ke
up

[
Ke

Θ p

]−1
Ke

ΘΘ

[
Ke

pΘ

]−1
Re

p

− Ke
up

[
Ke

Θ p

]−1
Re

Θ = 0, (21)

ωe = −
[

Ke
pΘ

]−1 (
Ke

pu ue + Re
p

)
(22)

γe = −
[

Ke
Θ p

]−1 (
Ke

ΘΘ ωe + Re
Θ

)
. (23)

The displacement degrees of freedom are assembled accord-
ing to (21) for the implementation of discontinuous type
CL3F-elements. However, since in contrast to the STP-
approach, the current states values of the independent dilation
and the pressure are needed in order to compute the replace-
ment element stiffness and residual vector from (21),we need
to keep track of these quantities. It is mandatory that every
instance of a finite element has internal state variables for the
dilation and pressure that are updated via (22) and (23) once
the global tangent stiffness equation system, assembled from
(21), is solved.

We implemented and tested the following specific discon-
tinuous hybrid finite elements. Here the gray dots refer to
the not assembled internal dilation and pressure degrees of
freedom.
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CL3F-H1G8-P0

• hexahedral element
• 8 node, linear Lagrange interpolation for the displace-
ments

• 8 point Gauß quadrature (1D product rule)
• 1 node, constant dilation and pressure ansatz (not assem-
bled)

• 24 (assembled) degrees of freedom

CL3F-H2sG27-P1

• hexahedral element
• 20 node, quadratic, serendipity-type Lagrange interpola-
tion for the displacements

• 27 point Gauß quadrature (1D product rule)
• 4 node, linear polynomial dilation and pressure ansatz
(not assembled)

• 60 (assembled) degrees of freedom

CL3F-T2G4-P0

• tetrahedral element
• 10 node, quadratic, Lagrange interpolation for the dis-
placements

• 4 point, second-order, T∗
n : 2-1 quadrature, cf. [36,

p. 307]
• 1 node, constant dilation and pressure ansatz (not assem-
bled)

• 30 (assembled) degrees of freedom

4.3 The difference between the discontinuous type
CL3F and STP hybrid elements

The major difference between continuous type CL3F-
elements and the discontinuous CL3F-elements relies on the
fact that the dilation and pressure degrees of freedom are
only assembled for the continuous elements. This method-
ological difference also causes the interpolation schemes to
differ, since we require a continuous dilation and pressure
interpolation for the continuous elements and a discontinu-
ous one for the discontinuous elements.

In contrast, to finally achieve a fair comparison, the
exact same interpolation and discretization schemes are used
for the discontinuous type STP-elements like introduced in
the last section for the discontinuous type CL3F-elements.
Like already outlined the schemes were selected in the first
place to match the Abaqus hybrid elements. Therefore, all
considered discontinuous type CL3F-elements are always
one-on-one comparable to an STP and an Abaqus element.
CL3F and STP-prefixes are used to distinguish the elements
on a notational level. For example, the CL3F-H1G8-P0 and
STP-H1G8-P0 are both of the discontinuous H1/P0 type,
but nevertheless, the specific implementations are different,
like we will shortly discuss in this section.

From a mathematical point of view the STP-elements are
based on (7) and (8), whereas the discontinuous type CL3F-
elements are based on the static condensation (21) of (14)
and (15). The resulting systems are not equivalent and in
turn the resulting finite elements are different as well.

Let us recall in this regard that we did not use any
approximations in order to derive the (therefore consistent)
continuum level linearization (15) of the original three-
field potentials weak from (3). While only the continuous
type CL3F-elements can utilize the resulting discretization
(20) directly, the discontinuous type CL3F-elements utilize
the system (21), (22), (23), which is however equivalent
to (20). In contrast, the original STP-approach utilizes the
pure displacement-based linearization (8) which is neither
equivalent to the three-field linearization (15), nor its dis-
placement part (21) (after discretization). At this point it
should be pointed out that this is not due to a mistake in
the STP-approach: Equation (8) is of course also a valid
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consistent linearization, but the weak form that is linearized
is not (3) but instead the semi-discretized variant (7) where
dilation and pressure are already eliminated. This elimina-
tion was performed with the help of the dilation/pressure
interpolation which is already an approximation. So roughly
spoken, the discontinuous CL3F-elements differ from the
STP-elements because we followed the design paradigm of
staying as long as possible in the realm of exact continuum
mechanics—although it is of course inevitable to finally uti-
lize the dilation/pressure interpolation.

Since finally the exact same dilation/pressure interpola-
tions are utilized for the discontinuous CL3F-elements and
the STP-elements and the weak form (7) is derived from (3)
by the use of the dilation/pressure interpolation, we do not
expect differences beside small round off errors in the result-
ing displacement field solutions (i.e., after the equilibrium
iterations are converged) for comparable elements, even in
the still mesh depended regime. However, since the elements
differ from each other especially in the utilized tangent stiff-
ness there can be (pronounced) differences concerning the
numerical stability. In this regard, the authors found it plau-
sible that the utilization of the (unexact) discretization as the
very last step should influence the numerical stability in a
positive way (if there is an influence). In the later introduced
benchmark test, cf. Sect. 5.3, this influence turns out to be
actually substantial.

On an implementation level, a major difference between
the elements lies in the fact that 
 and p were independent
variables during the linearization for the CL3F-approach
and are in turn secondary variables for the discontinuous
type CL3F-elements. Thus every finite element instance
stores internal state variables for the dilation and pressure
degrees of freedom, which are updated via (22) and (23)
in every increment. There is no need for such a secondary
variable update-scheme for the purely displacement-based
STP-elements. Here, in contrast to the incremental relations
(22) and (23), the Eqs. (5) and (6) directly provide the cur-
rent states 
 and p in terms of displacement quantities and
incremental quantities likeω and γ do not appear in the STP-
approach at all, since
 and p were eliminated from theweak
form before the linearization. The differences in the update
schemes are illustrated by the Algorithms 1 and 2.

Ignoring the fact that—due to the secondary variable
update scheme—the pressures p in both approaches are
not directly comparable, the element residual of the STP-
approach equals the term Re

u− Pe
u in theCL3F-approach—

compare (7) and the first line of (14). Thus, the additional
summands of the vector residual of (21) stemming from
Re

Θ and Re
p are simply missing in the STP-approach and

are therefore implicitly assumed to vanish, which may be
regarded as another difference between both approaches, cf.
Algorithms 1 and 2.

repeat

assemble K T from Ke
T

(
Û

e
, 
̂e , p̂e

)
, cf. (15), (21)

solve K T u = λPu − R
(
Ru , R
, R p

)
for u, cf. (21)

foreach element e do
compute ωe

(
ue
)
, γe

(
ue
)
, cf. (22), (23)

update 
̂e := 
̂e + ωe , p̂e := p̂e + γe

end
update Û := Û + u
assemble R from
Re

u

(
Û

e
, p̂e

)
, Re




(
Û

e
, 
̂e , p̂e

)
, Re

p

(
Û

e
, 
̂e

)
, cf.

(14), (21)
until

∥∥λPu − R
∥∥ ≤ tol

Algorithm 1: CL3F equilibrium iterations at load level
λ ∈ [0, 1]

repeat

assemble K T from Ke
T

(
Û

e
)
, cf. (5), (6), (8)

solve K T u = λPu − Ru for u

update Û := Û + u

assemble Ru from Re
u

(
Û

e
)
, cf. (5), (6), (7)

until
∥∥λPu − Ru

∥∥ ≤ tol

Algorithm 2: STP equilibrium iterations at load level λ ∈
[0, 1]

5 Numerical benchmarks

5.1 Basic benchmark setting

Tobenchmark the influence of the strength of the nonlinearity
in the volumetric model, we combine the simple Neo-Hooke
model for the isochoric part of the strain energydensity (μ0 =
1.0316MPa) with three different compression models. All
compressionmodelswere (least-square) fitted byRicker et al.
[28] to the same experimental data obtained by confined axial
compression testing of an industrial NR/IR-blend (natural
rubber/isoprene rubber) with strongly nonlinear compres-
sion behavior used for damping applications. Sorted by the
strength of the uplift from weakest to strongest nonlinearity,
the compression models are:

• Ogdencompressionmodel, cf. [21], W̊vol = K0
β2 (β lnΘ+

Θ−β − 1
)
, K0 = 2781 MPa, β = −2

• Standard compression model, W̊vol = 1
2 K0 (Θ − 1)2,

K0 = 2816 MPa
• Hartmann–Neffmodel, cf. [11], W̊vol = K0

2β2

(
Θβ + Θ−β

−2), K0 = 2290 MPa, β = 41

For the popular Ogden model the nonlinear parameter β was
fixated to −2 to avoid contradictions. Therefore, the volu-
metric part of the strain energy for the Ogden model grows
asymptotically even slower than for the standard model.
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Fig. 1 Geometry and boundary conditions for the Cook membrane
benchmark

Fig. 2 Geometry and boundary conditions for the block benchmark

Since the measured rate of growth of the strain energy is not
supported by the theoretical foundation of the Ogden com-
pression model, this model has to be considered as being
inadequate for the material at hand. The standard model is
known to have awrong asymptotic limit for the stresses under
compression and is therefore also inadequate from a theoreti-
cal point of view, but is included in the investigation since the
material model is the only one readily available in Abaqus.
Only the “freely fitted” Hartmann–Neff model captures the
energetic growth adequately. Because of the resulting high
exponents (β = 41) this model is very challenging from a
numerical point of view.

As a first benchmark example, we selected thewell known
Cooks membrane, see Fig. 1. The membrane is loaded with
a constant force of 1N pointing into positive y direction,
distributed over the face at x = 48mm. The nodes belonging
to the face at x = 0mm are fixed in all directions.

For the second test, the geometry and boundary condi-
tions are adapted from a standard block locking test, cf. [39,
p. 458]: A cubic block, see Fig. 2, is loaded on a quarter of
its upper surface with a pressure p̃. All nodes on the upper
surface are fixed in x and y direction. The bottom side is fixed
in z direction. The faces x = 0 and y = 0 have symmetry
constraints normal to their surfaces.

All simulation involving STP and CL3F elements were
done using Sofeas, a Finite-Element code, mainly devel-
oped by P. Schneider (second author). A spatial formulation
was used for the numerical benchmarks in conjunction
with a full Newton–Raphson scheme. The L2-norm of the
(absolute) reaction-force error is used as the convergence
criterion. Tolerance was set to 10−5. Neither extrapola-
tion nor any stabilization techniques based on augmenta-
tion are used. Python’s standard floating point arithmetic
using 64-bit (double-precision) floats was used in general.
(Abaqus/Standard always uses double-precision as well.)

In order to compare the CL3F-elements performance
to standard industrial hybrid elements, Abaqus/Standard,
Versions 2017 and 2020, Simulia (Dassault Systèmes SE,
France) were used. The specifically used elements are
C3D8H, C3D20H and C3D10H, cf. [35, chapter 28]. Like
already outlined, the STP and discontinuous CL3F elements
were designed to match the Abaqus elements interpola-
tion and quadrature schemes. These elements are therefore
one-on-one comparable. However, the continuous CL3F-
elements have more DOFs than their Abaqus counterparts
and different dilation/pressure interpolations by design.
These elements are compared to elements with the same
displacement interpolation. For all simulations in Abaqus
default parameters were used including default convergence
criteria, standard double-precision floating point accuracy
and the Abaqus standard extrapolation. Abaqus only pro-
vides the standard volumetric extension for Neo-Hookean
hyperelastic material. Therefore, user material subroutines
(UMAT) have to be used in order to implement the Odgen
and the Hartmann–Neff compression model. The routines
were generatedwithAceGen [17] and provided to the authors
by A. Ricker, “Deutsches Institut für Kautschuktechnologie
e.V.” (German institute for rubber technology), Hannover,
Germany. For further comparison, we also use an AceGen
generated H1-P0 user element (UEL) in Abaqus, see [19,
p. 204 ff], that is based on the same functional as utilized
for the STP and CL3F elements, cf. (2). The hexahedral
AceGen H1-P0 element uses linear Lagrange interpola-
tion for displacements and an intra-element constant pressure
and dilation ansatz. The AceGen source code for the Neo-
Hooke standard model is provided in [19, Box 6.9] and
was modified in order to implement the used compression
models. The element was implemented by A. Ricker as an
Abaqus user element (UEL) utilizing the AceGen method
SMSSCondense to perform the static condensation. The
material law is directly integrated into the element formula-
tion and neither the built-in nor the user material subroutines
(UMATs) used for the standard Abaqus hybrid elements are
utilized.
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Fig. 3 Cook membrane mesh convergence study using the standard compression model with industrial NR/IR-blend parameters. First row: linear
and quadratic hexahedral elements. Second row: quadratic tetrahedral elements

5.2 Mesh convergence study

Hybrid/mixed elements are (within this context) only useful
when they do not suffer from volumetric locking. To assess
how stiff an element is, one has to performmesh convergence
studies, where the mesh is refined in several steps towards
the point were the solution does not change anymore within a
certain tolerance. To visualize this convergence the displace-
ment of the point that undergoes the greatest displacement,
which are in our case the points X = (48, 60, 0) for the Cook
membrane and X = (0, 0, 50) for the block test (lengths in
mm), are plotted versus the mesh size. (This is the standard
way to evaluate mesh convergence studies for these tests, cf.,
e.g., [29].) The membranes edges are divided into 2n equal
divisions in x and y direction and n equal divisions in z
direction, where n is varied in between n = 1 . . . 5, leading
to 4 . . . 5120 hexahedral sub-volumes. The block is divided
into 23, 43, 83 or 163 equal sized cubic sub-volumes. Each
sub-volume is either discretized by one hexahedral element,
or once more subdivided into 6 tetrahedral elements. The
load for the membrane was choosen as force of 1N and the
block is loaded with a pressure of p̃ = 1.5MPa.

The block convergence simulationswere done for all three
volumetric parts of the strain energy. Due to the fact that
all material models are fitted to the same data, the gener-
ated plots basically coincide and only the results for the
Ogden model are provided below. In order to review the
performance for various material stiffnesses, the Cook mem-
brane convergence test is additionally performed using the
block tests original material parameters provided by Wrig-
gers [39, p. 459], which specify a Neo-Hookean material
with standard compression model given by the parame-
ters λ = 499.92568 MPa (first Lamé constant) and μ0 =
1.61148 MPa. Note that this material is significantly softer
in compression (K0 = 501 MPa) than the NR/IR-blend, but
is stiffer in shear direction.

The interpretation of the conformity in the plots is that
the solution (displacement field) is not affected by the choice
of the material model which is a perquisite for fairness of
the later conducted stability investigation. The results are
provided in the Figs. 3, 4 and 5.

The (discontinuous)STP-elements use the semi-discretized
weak form where variables were eliminated from the weak
form used by the discontinuousCL3F-elements and the same
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Fig. 4 Cook membrane mesh convergence study using the standard compression model with parameters provided by Wriggers [39, p. 459]. First
row: linear and quadratic hexahedral elements. Second row: quadratic tetrahedral elements

discretization schemes are used. The methodological dif-
ferences should therefore only affect non-converged states.
In turn, the elements should deliver essentially the same
data points in the plot. This is also to be expected from
the AceGen H1-P0 elements, which share the same basis,
which is indeed observed, i.e. the STP-, the discontinuous
CL3F- and the AceGen H1-P0-elements have the same
mesh convergence behavior.

Regarding the shear dominated Cook membrane test,
Abaqus’ linear hexahedral C3D8H-elements show a slightly
slower convergence behavior,whereas the compression dom-
inated block test gives comparable results. For quadratic
elements,we observe that the discontinuousCL3F- andSTP-
elements show also a very good agreement in the results
with the corresponding Abaqus elements. The Abaqus ele-
ments theoretical foundation is not further investigated in
this paper, but its point of departure is also the three-field
functional (2). This applies to the H1-P0 user element, gen-
erated by AceGen, too. The result from the numerical test
is that the discontinuous CL3F-elements, STP-elements and
(discontinuous) AceGen H1-P0, as well as in large parts

the built-in Abaqus elements, basically have the same mesh
convergence behavior.

Regarding the continuous CL3F-elements, we observe
comparatively higher deviations for the coarsest discretiza-
tions, whichmight stem from the increased number of DOFs.
Furthermore, in the block test, we see an oscillating mode of
convergence. However, the convergence behavior is still very
favorable. Probably, these deviations will have only a minor
relevance in everyday use. The convergence characteristics of
elements that are known to have “locking issues” are very far
worst. To use a formulation which is very popular in the liter-
ature, we may therefore conclude that all the CL3F-elements
considered here are “locking-free”. (However, note that there
is no sharp definition of “being locking-free”.) In this regard
it is fair to note that the increased number of DOFs of the
continuous CL3F-elements and their slightly worse mesh
convergence behavior is to some extent counterbalanced by
a significantly lower number of equilibrium iterations.

As a side note, in contrast, we observed locking for
the discontinuous linear tetrahedral CL3F-element that was
therefore discarded, as well as for the also not further consid-
ered linear, tetrahedral hybrid element C3D4H fromAbaqus.
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Fig. 5 Block mesh convergence study using Ogden compression model with industrial NR/IR-blend parameters. First row: linear and quadratic
hexahedral elements. Second row: quadratic tetrahedral elements

5.3 Numerical stability benchmark

Now we will assess the numerical stability. Finite ele-
ment programs are essentially based on a Newton–Raphson
scheme, which is known to be locally converging. If the pre-
dictor step of a load step gets the algorithm close enough
to the true solution, the scheme will converge and otherwise
diverge. In order to finally obtain a solution for a desired load
it is, therefore, a prerequisite that the load steps are selected
small enough so that we stay within the stable range. So the
maximum step size in a fixed setting can essentially serve as
a measure for the numerical stability.

The basic setting for our stability tests is again the block
locking test using thematerial parameters of theNR/IRblend.
In order to quantify the influence of the element formulation
as well as the material model on the stability, we assess every
single combination of hybrid element and material model.

The aim is to find the maximum final load p̃, that is
always applied in 5 equidistant load steps, for which all
steps converge. The idea behind the choice to always apply 5
equidistant load steps is that the first load step is a very spe-
cial one since we start from the undeformed configuration.
Therefore, in the first step many quantities are still zero and

in turn not the whole element implementation is tested in the
first step. Also the first step is often not the most challenging
one. Hence, we wanted to apply more than one load step.
However, the number 5 is arbitrary.

In order to save computation time, the first simulation
for every specific element and material combination is per-
formed with p̃ = 5 MPa. In case all load steps converge,
the final load p̃ is gradually increased by 3 MPa until for
one of the 5 steps the equilibrium iterations diverge. Start-
ing from the maximum previously converged load, the final
load is increased by multiples of 1 MPa until for one step the
equilibrium iterations diverge. Then the procedure is once
more repeated with multiples of 0.1 MPa. If for the first sim-
ulation with p̃ = 5 MPa no convergence is obtained, first,
the maximum converging natural number pressure is sought
by decreasing p̃ in 1 MPa steps. Then the final load is once
more increased in multiples of 0.1 MPa until for one of the
5 steps the equilibrium iterations diverge. The so obtained
final maximum p̃ for which we obtained a result (i.e. all 5
steps converged) is listed in Fig. 6.

For the remainder of this section we discuss Fig. 6 in
detail. We start with a discussion of the Abaqus hybrid ele-
ments which are represented by the red bars. Note that these
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Fig. 6 Numerical stability benchmark

elements are used with standard parameters and provide
therefore a good baseline result for what a user of com-
mercial software has to expect who uses these elements “as
provided”.

In general the Abaqus elements react very sensitive to
the material model. For the standard volumetric model, we
have two red bars per element: Since Neo-Hooke material
with the standard volumetric part is the only material model
that is readily available in Abaqus, we were in this case
also able to use the internal material model (native) which is
benchmarked against the samematerialmodel (with the same
material parameters) implemented via the AceGen generated
UMAT. Interestingly enough, here, the use of the UMAT
already has a slightly negative effect on the stability of all
Abaqus elements. On the other hand, by switching to the
“well-behaving” nonlinear compression model of Ogden,
we get indeed partially higher results than for the internal
standard model. Hence, if there is a general negative effect
that is connected to the usage of UMATs, at least it does
not seem to be predominant over the general influence of
the material model. Nevertheless, it is noteworthy that the
native standard model of Abaqus is more stable than the
same model implemented via an UMAT. However, compar-
ing the standard model implemented via the UMAT with the
Ogden compression model, we see a general advantage of
the “well-behaving” Ogden model, like expected. (However,
keep in mind that the Ogden model is basically used outside
its applicability here.)

In contrast, the material model of Hartmann and Neff,
which is in practice needed to obtain realistic simulation
results once the “linear range” of the standard model is left,
is problematic with regard to the numerical stability in com-
bination with the Abaqus hybrid elements. For all types of

Abaqus hybrid elements, the stable step-width decreases for
the Hartmann–Neff model in comparison to the standard
model. For the quadratic elements this effect is so pronounced
that these elements are not an option for practical applica-
tions in combination with the Hartmann–Neff model. Only
the linear hexahedral element (C3D8H) still retains a usable
stable step-width and is hence the only choice for an Abaqus
user who uses the Hartmann–Neff model. Of course this is
especially a severe problem in combination with complex
geometries that cannot be meshed (exclusively) by hexahe-
dral elements.

The AceGen H1-P0 element (in green) shows a slightly
better numerical stability compared to its built-in Abaqus
counterpart C3D8H, with the greatest advantage observed
for the numerically challenging Hartmann and Neff material.
Since solely theAbaqusUEL implementationof theAceGen
H1-P0 element was tested, no final statement on the theo-
retical performance of these elements may be issued. (It is
conceivable, that the Abaqus Standard solver may influence
the elements stability as well.) However, from a theoreti-
cal point of view a disadvantage of the AceGen-element in
comparison to the CL3F-element is that the CL3F condensa-
tion explicitly accounts for the vanishing submatrices in (20).
(Note that there are zero diagonal entries in (20), therefore,
the block-diagonal-submatrix of variables to be condensed
is singular. The CL3F-element implementation circumvents
this problem by applying the scheme (21)–(23).)

The STP-elements (in gray) are implemented without any
numerical stabilization using the (not augmented) formula-
tions provided above. Also in contrast to Abaqus/Standard
no extrapolation is used, i.e. the first guess to the incremental
solution is simply zero. A production stage implementation
of an STP-element would use (most probably) both con-
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cepts to improve the numerical stability. The here given
STP-element results are hence not intended to provide a fair
comparison between production stage hybrid element formu-
lations. Instead, they document the baseline performance that
we can expect if we implement the underlying formulation
in its pure form.

In general, the stable step-width for these elements is—
with atmost 0.2MPa = 1.0/5MPa—very small, even for the
Ogden and the standard model. In particular, it is in general
way smaller than for the Abaqus elements, with the only
exception of the quadratic tetrahedral element in combination
with the Hartmann–Neff model. However, here themeasured
0.1 MPa difference in the maximum load, corresponding to
an 0.02 MPa advantage of the STP-element in terms of the
stable step-width, is hardly of interest, since on the one hand
the deviation equals the resolution of the benchmark and
on the other hand the performance of both elements is poor
anyway.

The new CL3F-elements (in blue) are also implemented
in a pure, not augmented way, without extrapolation, i.e.
with the exact same disadvantages of the STP-elements
(in comparison to the Abaqus elements). However, the for-
mulation generates a massive improvement of the stable
step-width in comparison to the STP-element formulation.
Since both formulations are implemented without any stabi-
lization or extrapolation, it is clear that this advantage stems
from the formulation itself (which is the reason the STP-
elements formulation was implemented without both in the
first place.) Indeed, this improvement is so significant that
while the STP-elements cannot compete with the Abaqus
hybrid elements, the CL3F-elements perform better than the
(production stage) Abaqus as well as the AceGen H1-P0
Abaqus user element in general, despite the unfair advantage
of the Abaqus elements. Already for the standard model, the
edge of the CL3F-elements over their Abaqus counterparts
is at least (i.e. in comparison to the better performing native
standard model) +52% for linear and +38% for quadratic
hexahedral elements and+51% for quadratic tetrahedral ele-
ments. Note that for the discontinuous CL3F-elements, this
edge could translate to an equal edge in terms of computation
speed in combination with an assumed/hypothetical optimal
working step-width control algorithm.

However, the greatest advantage of the CL3F-elements is
that for all three considered material models every CL3F-
element achieved the same maximum load, which means
that—within the margin of error of the benchmark—the sta-
ble step-width of the CL3F-elements is independent of the
choice of the material model. In turn, the edge of the CL3F-
elements over the Abaqus elements rises significantly if the
Hartmann–Neff model is used, reaching up to a maximum of
+2200% for quadratic tetrahedral elements. Especially the
availability of a robust tetrahedral CL3F-element should be
of great utility with respect to practical applications, since

complex geometries often cannot be meshed (exclusively)
by hexahedral elements.

Comparing the quadratic, continuous CL3F-elements
with their discontinuous CL3F-counterparts, we see unsys-
tematic deviations of at most 0.1 MPa in the maximum load,
which equals the resolution of the benchmark. Hence, we
might conclude that the continuous and discontinuousCL3F-
elements of the same type, i.e. using the same displacement
interpolation, perform equally good in regard of the stable
step-width. However, keep in mind that the usage of contin-
uous elements leads to a higher numerical effort per iteration,
since the number of assembled DOFs is increased.

5.4 Massive element distortion

The block-locking test used for our benchmarks is often used
in the literature to examine the elements’ capability to cope
with bad aspect ratios and acute angles, which is sometimes
also referred to as “numerical stability”. To this end, the orig-
inal material parameters provided by Wriggers [39, p. 459],
see Sect. 5.2, are used. Since this material is significantly
softer in compression than the NR/IR-blend, it generates a
more pronounced distortion of the elements.

We repeated the stability test with all CL3F-elements,
which lead to a comparable result, but with increased abso-
lute values for the maximum load that could be applied in
five steps. Given the softness of the material, all CL3F-
elements showed therefore their capability to handle the
arising extreme distortions of the finite elements. To illus-
trate this exemplarily, Fig. 7, shows the distortions that
emerged by the application of p̃ = 18 MPa (maximum
load) in five equidistant steps to the block meshed by 4096
C3LF-H1G8-P0 elements. The graphical representation of
the simulation results was accomplished with Paraview, [1].
Here, the maximum displacement in load direction (of the
upper-front-corner node) was 45.8 mm. (The initial height
of the block is 50 mm, cf. Fig. 2.) The colors refer to the
integration point Jacobians (for converged steps coinciding
with the dilations), extrapolated to the element nodes. Clearly
this exemplarily outlines the C3LF-elements superior abil-
ity to handle extreme element distortions as well as steep
intra-element gradients of the Jacobian.

6 Conclusions

From our point of view, the consistent linearization for the
general setting associated with the three-field potential intro-
duced in [33] and the simplification to the common setting
of a isotropic, quasi-incompressible material by the key
relations ((16), (17) and (18)) provided in the “Appendix”
represents an important step towards the completion of the
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Fig. 7 Exemplary distortion test using C3LF-H1G8-P0 elements. True to scale view

continuum mechanical foundations for the derivation of
hybrid elements.

The main contribution of this article is however the
derivation of the CL3F-hybrid element formulation. We fol-
lowed the design paradigm of staying as long as possible
in the realm of exact continuum mechanics and utilized the
dilation/pressure interpolation after the linearization of the
problemwith respect to all three primary unknowns, whereas
the STP-formulation utilizes the dilation/pressure interpola-
tion to eliminate variables from the weak form in order to
arrive at a pure displacement-based semi-discretized variant
of the weak form which is then consistently linearized by
deriving the Gateaux derivative with respect to the displace-
ments only. Whereas the CL3F approach naturally leads to
continuous type mixed elements, discontinuous type hybrid
elements can be derived by the utilization of static con-
densation and the implementation of a secondary variable
update scheme. These discontinuous type CL3F-elements
are one-on-one comparable to STP-elements utilizing the
same interpolation and quadrature schemes, however, the
resulting elements are different, especially the CL3F ele-
ments considers the dilation and pressure residuals Re

Θ and
Re

p that are missing by design following the STP-approach.
Since for the STP-elements the dilation and pressure

degrees of freedom are eliminated in the weak form, we
would not expect deviations in converged stages, i.e. criti-
cal points, between comparable STP and CL3F-elements.
Indeed, the discontinuous CL3F-elements had the same
mesh convergence behaviour like the STP-elements in the
block locking test. Especially the CL3F-elements inherit the
property of being free of volumetric locking from the STP-
elements. We would expect the CL3F-elements to mimic the

mesh convergenge behavior of comparable STP-elements in
other test-cases as well. (Due to the theoretical argument;
this was not tested.)

The benefit of the CL3F-elements is a greatly improved
numerical stability in comparison to the STP-elements. In
order to actually compare the formulations, both were imple-
mented without any stabilizing augmentation and without
extrapolation (i.e. a method to determine the first guess to
the incremental solution), although usual production stage
elements would utilize both concepts. To include a standard
production stage environment for perspective, the elements
fromAbaqus are also tested and used “as provided”, partially
in combination with AceGen generated UMATs. Especially
sinceAbaqus/Standard uses extrapolation by default, cf. [35,
pp. 6.1.2-6], the Abaqus elements have (intentionally) a
huge theoretical advantage in the stability benchmark. Nev-
ertheless, we observe a substantial advantage of the (pure)
CL3F-elements in the benchmark—not only in comparison
to the related STP-elements, but even over the production
stage Abaqus elements and the H1-P0Abaqus user element
generated by AceGen. Extrapolation is a concept that can
basically be freely combined with element formulations of
all kind and therefore should be used by production stage
implementations. Additional stabilization techniques (aug-
mentation) on the other hand do not seem to be necessary for
the CL3F-elements, especially since the benchmark results
are not negatively affected by an increasing material nonlin-
earity. This is in particular an interesting observation since
most recent hybrid element formulations in the literature
heavily rely on matching stabilization techniques. However,
additional testing is needed and planned by the authors for
future contributions.
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It is noteworthy in this regard that most standard tests for
finite elements are mesh convergence studies, cf. e.g. [29].
In contrast the here performed stability benchmark, cf. Sect.
5.3, is not all a standard test and hence there is basically no
comparable data in the literature, although the ability to apply
reasonably big load steps is undeniably of great importance
for finite element applications. Maybe this contribution also
inspires other authors to do similar investigations.

Continuous mixed elements are oftenmentioned in the lit-
erature as a hypothetical option, but this type of elements is
basically never implemented. Especially we are not aware of
competitive studies between comparable discontinuous and
continuous elements that utilize the same displacement inter-
polation. In this contribution we also assessed continuous
type quadratic hexahedral and tetrahedral CL3F-elements.
Concerning the mesh convergence behavior the continuous
elements show a slight disadvantage, although we do not
think that the difference will have a significant impact on the
practical usage. A meaningful disadvantage of the continu-
ous elements is the increased computation time per iteration,
which simply stems from the increased number of assem-
bled degrees of freedom. A counterbalancing advantage of
the continuous elements is however that the number of itera-
tions per step is significantly reduced. Although our stability
focused study was not really designed to quantify this advan-
tage, an assessment of the metadata of the mesh convergence
study suggests a massive gain.
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Appendix

The linearization for the general case

First we provide the linearization of the weak form (3) for the
general setting, i.e. the strain energy density is assumed to be
a general function of themodified right Cauchy–Green tensor
W̊ := W (C̊(F̊)). To our best knowledge the linearization in
this generality was never presented in the literature. In order
to increase the clearness of the presentation we will note
the specific variation that was computed on the right side of
every summand, delimited by a “←−”. Starting with the first
summand (3a), we obtain
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For the second summand of the weak form (3b), we derive
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and finally we obtain from the third summand of the weak
form (3c)
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Due to the length of the equations we skip to denote the full
linerization again, as well as we skip the transformation of
the enclosing integral to the deformed configuration.

The isotropic, quasi-incompressible case

Now, we will simplify the linearization of the general case to
the linearization for the special case of a hyperelasticmaterial
based on isotropic invariants with the usual additive split into
an isochoric and volumetric part, cf. Eq. (9). This will lead
to a much simpler tangent stiffness. Like mentioned here the
key properties (16), (17) and (18) play an important role.

Like shown in Sect. 3.1, the stress can be expressed by
the first-order derivatives of W̊ with respect to C̊ whereas
the stiffness tensor is given by the second-order derivatives.
Resolving this derivatives by the chain rule for a material of
type (9), we obtain for the first-order derivatives
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for the second-order derivatives. Only the derivatives of W̊
with respect to the isochoric invariants and the dilation Θ

remain material dependent. Therefore, in order to implement
a custommaterial, solely simple scalar derivatives have to be
implemented by the user.

The tensor-field valued quantities in (27) and (28) are cal-
culated by successive application of the multidimensional
chain rule. The pushed first-order derivatives are
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All the quantities are determinedby J ,Θ and thefinger tensor
bi j := Fi I Fj I and are proper second-order or fourth-order
tensors with all indices referring to the deformed config-
uration and hence suitable for the finally desired spatial
formulation. All the second-order and forth-order tensors
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given before are symmetric in the sense

ti j = t j i , ti jkl = t j ikl = ti jlk = tkli j .

In order to derive the linearization of the weak form for
the isotropic, quasi-incompressible setting (9) from the rep-
resentation for the general case, cf. (24), (25) and (26), we
have to use the defining equations for the stress and stiffness
tensor parts (10), (11), (12) and (13) in combinationwith their
chain rule expansions, cf. (27) and (28), with inserted tenso-
rial parts (29)–(31). We will be able to reduce the complexity
of the resulting formulation significantly by exploitation of
the properties of the deviator operator, as well as the key
relations (16), (17) and (18), which follow directly from the
equations above.

We start with the first summand of (24) that reads
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(
Θ̂
)]

dev
(
η
sym
i, j

)
dev
(

usym
k,l

)
,

by using of (10) and (11). Because of the two deviatoric ten-
sors in the inner product and (29) the ∂2W̊vol /∂Θ2 summand
in ĉvoli jkl(Θ̂), cf. (28), has no contribution. Since this is actually

the only occurrence of ĉvoli jkl(Θ̂) in the whole linearization, we

might (but do not have to) drop the ∂2W̊vol /∂Θ2 summand in
ĉvoli jkl(Θ̂), as well as the first tensor summand in (30), leading
to

ĉvoli jkl dev
(
η
sym
i, j

)
dev
(

usym
k,l

)

= −∂W̊vol

∂


(
δik δ jl + δil δ jk

)
dev
(
η
sym
i, j

)
dev
(

usym
k,l

)
.

(32)

In the second, fifth and sixth summand of (24) we can

replace ˆ̊W with ˆ̊Wiso because of (29), (16) and the devia-
toric tensors in the product. Also, the contributions from the
second-order derivatives with respect to the modified iso-
choric invariants, cf. (28), in the second summand of (24)
drop out because of the hydrostatic tensor δkl in the product.
Finally, the remaining terms in the second, fifth and sixth
summand of (24) sum up to zero because of the key proper-
ties (17) and (18).

The third and the forth summand of (24) can be added,
leading to

4
∂

ˆ̊W
∂C̊I J

ˆ̊Fk I
ˆ̊Fj J dev

(
ui,k

)
dev
(
η
sym
i, j

)

=
[

Ĵ σ̂ iso
k j + Θ̂ σ̂ vol

k j

(
Θ̂
)]

2 dev
(
ui,k

)
dev
(
η
sym
i, j

)
.

Turning our attention to the so far derived volumetric parts
of the stress and the stiffness appearing in (24), we find that
by employing (11) and (32)

σ̂ vol
k j

(
Θ̂
)
2 dev

(
ui,k

)
dev
(
η
sym
i, j

)

= −ĉvoli jkl dev
(
η
sym
i, j

)
dev
(

usym
k,l

)
,

follows, so that they sum up to zero.
In the last summand of (24) the volumetric stress drops

out because of the deviator in the product

− 2
∂W̊

(
ϕ̂, Θ̂

)

∂C̊I J

ˆ̊Fi I
ˆ̊Fj J dev

(
(ηi,B F̂−1

Bc uc, j )
sym
)

= − Ĵ σ̂ iso
k j dev

(
(ηi,B F̂−1

Bc uc, j )
sym
)

.

In the first and forth summand of (25), we can again

replace ˆ̊W with ˆ̊Wiso. Also, in the first summand the con-
tributions from the second-order derivatives with respect to
the modified isochoric invariants, cf. (28), drop out again
because of the hydrostatic tensor δi j in the product. Finally,
the remaining terms of the first and forth summand of (25)
add up to zero because of the key properties (17) and (18).

In all remaining summands of (25) we can replace ˆ̊W
with ˆ̊Wvol. Furthermore, the contributions from the first-order

derivative of ˆ̊W with respect toΘ in the remaining summands
of (25) sum up to zero. Finally, we obtain

δ

⎡

⎣ 2ψ

3Θ̂

∂W̊
(
ϕ̂, Θ̂

)

∂C̊I J

C̊I J

⎤

⎦
(((

ϕ̂, Θ̂, p̂
)
,
(
η, ψ, q

))
,
(
u, ω, γ

))

= ωψ
∂2

ˆ̊Wvol

∂Θ2 .

Nomajor simplifications are possible for (26). Summarizing
the argumentation, adding (24), (25) and (26) and transform-
ing the enclosing integral to the deformed configuration, we
obtain the already given linearization (15) for the special
case.
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