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Abstract
Computationalmodeling of the initiation and propagation of complex fracture is central to the discipline of engineering fracture
mechanics. This review focuses on two promising approaches: phase-field (PF) and peridynamic (PD) models applied to this
class of problems. The basic concepts consisting of constitutive models, failure criteria, discretization schemes, and numerical
analysis are briefly summarized for bothmodels.Validation against experimental data is essential for all computationalmethods
to demonstrate predictive accuracy. To that end, the Sandia Fracture Challenge and similar experimental data sets where both
models could be benchmarked against are showcased. Emphasis is made to converge on common metrics for the evaluation
of these two fracture modeling approaches. Both PD and PF models are assessed in terms of their computational effort and
predictive capabilities, with their relative advantages and challenges are summarized.
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List of symbols
Peridynamic

e ∈ R
n Direction vector between two points in the

deformed state
c ∈ R

+ Material dependent stiffness constant
S ∈ R

n Strain between two points in the deformed
configuration

sc ∈ R
+ Material dependent critical bond stretch
δ Length scale parameter (δ ∈ R

+) [m]
f Pair-wise force function ( f : Rn × R

n ×
[0, T ] → R

n)
x ∈ R

n Discrete PD material
X Material point (X ∈ R

n)
μ Damage functionμ : [0, T ]×R

n ×R
n →

R

T Force state T : Rn × R
n × [0, T ] → R

n

Bδ Neighborhood of a PD material point X
D Domain (D ⊂ R

n)
d Damage variable d : [0, T ] × R

n → R

Phase-field
Γ Crack set (Γ ⊂ R

n−1)
γ Crack surface density function
κ Regularization parameter (κ ∈ R

+)
b∗ Body force [N/m3]
t∗ Boundary traction [Pa/m]
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Ω Domain (Ω ⊂ R
n)

∂Ω Boundary (∂Ω ⊂ R
n−1)

∂Ωt Traction boundary (∂Ωt ⊂ R
n−1)

∂Ωu Displacement boundary (∂Ωu ⊂ R
n−1)

∂tϕ ≤ 0 Crack irreversibility constraint
ϕ Phase-field crack function (ϕ ∈ [0, 1])

ψc Surface energy
ψs Strain energy
E Energy [J]
F External energy potential [J]

g(ϕ) Degradation function
l0 Length scale parameter (l0 ∈ R

+) [m]
P Potential energy [J]

Other symbols
ü Acceleration (ü ∈ R

n) [m/s2]
u Displacement (u ∈ R

n) [m]
ε(u) Linearized strain tensor

� Material’s density [kg/m3]
Gc Critical energy release rate [Jm−2]
n Dimension n = {1, 2, 3}
T Final Time [s]
t Current time [s]

1 Introduction

Fracturing phenomena in natural and engineered systems is
studied extensively experimentally, theoretically, and com-
putationally. Here we focus on two promising approaches:
phase-field (PF) and peridynamics (PD) for the computa-
tional modeling of fractures in materials. Both approaches
are distinct from earlier ones as they seek to predict crack
path as functions of specimen loading and geometry. Ide-
ally, these approaches attempt the computational predictions
after an initial calibration using engineering constants such
as Young’s modulus and fracture toughness specific to the
material. These ambitious approaches are called free frac-
ture models. This review is intended as a snapshot capturing
in broad strokes the modeling details, assumptions, exper-
imental data sets, and numerical simulations necessary for
validation. These methods have the potential to address
fundamental issues in complex fracturingwithminimal intro-
duction of phenomenological modeling assumptions and
numerical tuning parameters. However, systematic compar-
ative analysis for these models, together with validation
studies on the set of experiments, are rare. In this review,
we attempt to initiate such a comparative analysis and, when
possible, invoke validation studies from the experimental
literature.

As an example of an engineering fracturemechanics appli-
cation, Hattori et al. (2017) [1] presented a comprehensive

comparison of various numerical approaches for the
hydraulic fracturing of shale and showed the advantages as
well as limitations of many numerical approaches includ-
ing peridynamics (PD) and phase-field (PF). However, this
comparative analysis for various models lacked validation
studies on the same set of hydraulic fracturing experiments in
order to evaluate predictive capabilities of numerical models.
Our review is motivated by the recent workshops on phase-
field, peridynamics, and experimental fracture mechanics
held at The Banff International Research Station: Hydraulic
Fracturing: Modeling, Simulation, and Experiment1, and
the Workshop on Experimental and Computational Fracture
Mechanics2 [2].

1.1 Other review papers

One of the first overview papers of peridynamic and non-
local modeling was written by Du and Lipton3 in the SIAM
news, volume47 (2014).However, this articlewas quite brief.
In 2019, Javili et al. [3] published a review emphasizing the
applications of PD. In the same year Diehl et al. [4] published
a review with the focus on benchmarking PD against experi-
mental data. In 2021, Isiet et al. [5] published a review on the
usage of PD for impact damage. In the same year, Hattori et
al. [6] published a review on the usage of PD in reinforced
concrete structures. Zhou and Wang [7] published a review
on the usage of PD in geomaterials in 2021. To summarize,
except for the first PD review in 2019, all reviews focused
on some specific topic. Hidayat et al. [8] published a review
on the connection of meshfree PD between other meshfree
methods in 2021. In addition, the following three books about
PD are available [9–11].

In what follows, we now list PF review papers and mono-
graphs. Thefirst summary onvariationalmodeling of fracture
was by the founding authors Bourdin, Francfort and Marigo
[12]. Although they explicitly state on page 7 that they are
not attempting to review and access existing literature, their
work describes on 148 pages the current state-of-the-art in
the year 2008. The first review papers (that have explic-
itly this purpose) with regard to computational/engineering
aspects of phase-field (variational) fracture were published
by Rabczuk [13] and Ambati, Gerasimov, and De Loren-
zis in 2015 [14]. In the latter study, despite review aspects,
a new formulation for stress splitting is proposed therein.
Due to the ongoing increasing popularity, shortly after, vari-
ous other reviews, monographs, and news articles appeared.
A short SIAM news article about the latest developments
and future perspectives was published by Bourdin and

1 https://www.birs.ca/events/2018/5-day-workshops/18w5085.
2 http://wfm2020.usacm.org/.
3 https://sinews.siam.org/Details-Page/peridynamics-fracture-and-
nonlocal-continuum-models.
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Francfort in 2019 [15]. An extensive review paper on theoret-
ical and computational aspects was done by Wu et al. in the
year 2020 [16]. The authors also discuss the success or fail-
ures of several benchmark problems for quasi-static, dynamic
brittle/cohesive fracture.Only considering phase-field (varia-
tional) fracture, this review paper certainly exceeds in topics,
modeling details and numerical aspects and examples of our
current work. In the same year, a monograph onmultiphysics
phase-field fracturewas published byWick [17]. Therein, the
focus is briefly on modeling of classical variational phase-
field fracture, error estimation and adaptivity, and including
other physics phenomena via volume or interface coupling
techniques.Most recently in 2021, oneof the original authors,
namely, Francfort, published an article entitled with ‘Varia-
tional fracture: Twenty years after’ [18].

1.2 Purpose and value of this review paper

In view of existing (recent) reviews on both approaches,
we shall explain the purpose and value of the current
review paper. First and most importantly, both PD and
PF are appearing to be the most prominent approaches
for free fracture modeling. Other notable approaches are
the displacement-discontinuity method [19], cohesive-zone
models [20], boundary elements [21], XFEM/GFEM [22–
24], and the eigen-erosion framework [25–28]. A compara-
tive reviewbetweenXFEM(extendedfinite elements),mixed
FEM, and phase-field models appeared in [29].

The present paper provides for the first time a comparison
between both approaches (PD and PF). For this reason, the
mathematical descriptions remain rather shortwhile focusing
on the key ingredients that allow for comparison of PD and
PF. It is through this lenswe reference the existingmodels and
numerical methods from the literature. The Sandia Fracture
Challenge is chosen for validation against experimental data.
The first part of the challenge is to calibrate a free fracture
model to simple prototypical problems, e. g. a tensile test,
and use this calibration to simulate the crack and fracture
phenomena. Thus, the model parameters can not be fitted
to the complex scenario and have been instead calibrated
using the simple scenario. This additional step of calibration
makes the Sandia Fracture Challenge an excellent problem
to benchmark phase-field models and peridynamic models
to assess their performance on different kinds of crack and
fracture phenomena. These numerical, computational, and
experimental side-by-side comparisons allow us to identify
similarities, common challenges, and specific aspects to each
method.

1.3 Outline

The paper is structured as follows: Sect. 2 introduces the
two models and provides a basis on which the models can

be compared and contrasted. This summary is an adapta-
tion and extension of the review papers and monograph
[3,4,16,17]. Section 3 addresses the fracture physics per-
spective from the macroscale view. Section 4 attempts to
compare the predictive accuracy of the two models for vali-
dation against the experimental data. To that end, the Sandia
Fracture Challenges data sets were analyzed and computed,
the R2 correlation of relative errors between the simulations
and the experiment are presented. Section 5 compares com-
putational aspects of the two models as well as pointing
out challenges and opportunities for development. Finally,
Sect. 6 summarizes the modeling capabilities of PD and PF.

2 Overview of models and numerical
methodology

This section briefly introduces the two methods, peridynam-
ics (PD) and phase field (PF), respectively. A brief overview
of the governing equations, material models, discretizations,
numerical analysis, and advanced visualization methods is
given. We introduce the ingredients for the comparison of
these two models and provide references to the extended lit-
erature for the interested reader.

2.1 The governing equation of peridynamics

Peridynamics (PD), is a non-local adaptation of classical
continuum mechanics (CCM). In PD, each material point
X interacts with its neighbors inside a finite interaction
zone Bδ(X) with the length δ, see Fig. 1. This type of
non-local interaction principle is also seen in molecular
dynamics (MD) [30] and smoothed particle hydrodynam-
ics (SPH) [31,32] simulations. The important feature of PD
fracture modeling is that the interaction between the intact

Fig. 1 Sketch for the principle of peridynamics where a material point
X interacts with its neighbors inside a finite interaction zone Bδ(X)

with the length δ
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material and fracturedmaterial ismodeled implicitly through
a non-local field equation that remains the same everywhere
in the computational domain. Material damage and fracture
phenomena are captured through a force versus strain consti-
tutivemodel. Because of this, PD is able to capture fracture as
an emergent phenomena arising from the non-local equation
of motion. This contrasts with classic fracture theory where,
off the crack, the elastic interaction is modeled by the equa-
tion of elastodynamics and the fracture set is a free boundary
with motion coupled to elastodynamics through a physi-
cally motivated kinetic relation. Other recently developed
non-local models exhibiting emergent behavior include the
Cucker Smail equation, where swarming behavior emerges
from leaderless flocks of birds [33–36].

The equation of motion for bond-based peridynamics pro-
posed by Silling [37,38] reads as

�(X)ü(t,X) =
∫

Bδ(X)

f(u(t,X′) − u(t,X),X′ − X)dX′ + b(t,X), (1)

where � ∈ R is the material density ü ∈ R
n is the accel-

eration at time t ∈ R of the material point X ∈ R
n ,

f : R
n × R

n × [0, T ] → R
n is the pair-wise force func-

tion, b ∈ R
n is an external force density, and u ∈ R

n is the
state of deformation at a point in space time, (t,X). The con-
stitutive model for the pair-wise force function f is material
dependent and defines how the internal forces react to the
displacement u. For the elastic regime the force interaction
between a pair of points X and X′ is a so-called bond and
contributes to the name of bond-based PD. The pair-wise
interaction leads to a constraint on the Poisson ratio [39,40].

To overcome the Poisson ratio constraint more gen-
eral non-local interactions are included in the “state-based”
peridynamic model. The generic state-based peridynamic
equation of motion introduced by Silling et al. [41] reads
as

�(X)ü(t,X) =
∫

Bδ(X)

(T [X, t]〈X′ − X〉 − T [X′, t]〈X − X′〉)dX′ + b(t,X),

(2)

where the pair-wise force function f is exchanged with the
so-called peridynamic force state T : Rn × R

n × [0, T ] →
R
n . The usage of PD states lead to the name state-based

PD. A peridynamic state relates to second order tensor and
they assign each point in a neighborhood a tensorial quantity.
However, in general, it is not a linear or continuous function
with respect to X − X′. For more details, we refer to [41,
Section 2].

In peridynamics, material damage is part of the constitu-
tive modeling and the material is viewed as damaged when
the force state at a point X no longer influences a material
point X′ and vice versa. Damage occurs when the difference

between deformation states at each point X and X′ surpass
a threshold. The specifics of how this occurs depends on the
material model used. For example, for pairwise force func-
tions f the force acting between two points is often referred
to as a bond. When the pairwise force is zero, it is said that
the bond is broken. Bonds can break irreversibly, or alterna-
tively they can heal under the right conditions, this depends
upon the material model used.

To fix ideas, we illustrate the constitutive law given by the
prototype brittle microelastic (PMB) model introduced in
[38]. The deformation of a pointX is u(t,X) and its position
in the deformed configuration is X + u(t,X). In this model,
the pair-wise force function depends on the strain between
two points in the deformed configuration given by

S(t,X,X′)

:= ‖(X′ + u(t,X′)) − (X + u(t,X))‖ − ‖X′ − X‖
‖X′ − X‖ . (3)

The direction vector between two points in the deformed
configuration is given by

e = (X′ + u(t,X′)) − (X + u(t,X))

‖(X′ + u(t,X′)) − (X + u(t,X))‖ . (4)

The force directed between the two points in the deformed
configuration is given by the constitutive law

f(u(t,X′) − u(t,X),X′ − X) := (5)

μ(t,X,X′)cS(t,X,X′)e, (6)

where c > 0 is the material dependent stiffness constant, and
the scalar damage function μ is given by

μ(t,X,X′) :=
{
1, S(t,X,X′) ≤ sc
0, otherwise

(7)

where sc > 0 is the material dependent critical bond stretch.
Once the force between the two points goes to zero it stays
zero. It is noted that there are several other definitions for
the damage function μ using strain-based criteria [38,42], as
well as stress-based [43], or energy-based damage criteria
[44,45], see Fig. 4.

In numerical implementations crack path evolution is
recovered as a post-processing step after simulation. To
identify the crack we introduce the damage field d : [0, T ]×
R
n → R given by the density d(t,X) defined by

d(t,X) = 1 −

∫
Bδ(X)

μ(t,X,X′)dX′

∫
Bδ(X)

dX′ (8)
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Fig. 2 The classification of the different peridynamic material mod-
els visualized as a tree. The material models are classified in two
major classes: bond-based and state-based material models, respec-
tively. State-based material models are distinguished as ordinary and
non-ordinary models. The following ordinary state-based models are

available: elastic-brittle, plasticity, composite, Eulerian fluid, and vis-
coleastic. For non-ordinary state-based models the Beam\Plate, the
correspondence model, and a model for cementitious composites are
available. Adapted from [3,4] and extended for this work

(a) (b) (c)

Fig. 3 Schematics of the a bond-based model, b the ordinary state-based model, and c the non-ordinary state-based model. Note that the blue text
in the Equations highlights the different assumptions for each model. This figure was adapted from [41]

where the scalar function μ : [0, T ] × R
n × R

n → R

indicates if the bond between X and X′ at time t is broken
(μ = 0) or active (μ = 1). Locations where d = 0 indicate
the crack set. The set where d = 0 is highly localized and
indicates the evolving crack path. This damage localization
has been demonstrated mathematically by Lipton [46,47] for
peridynamic fracture evolution corresponding to the small
deformation bond based models. The method uses Gron-
wall’s inequality together with methods from the non-local
image approximation of theMumford Shahmodel [48] intro-
duced by Gobbino [49]. For more theory of peridynamic
states, we refer to [41, Section 2]. For additional references,
we refer to [9,10]. For reviews about PD and the comparison
with experimental data, we refer to [3,4].

2.1.1 Material models for PD

Figure 2 shows the tree of different peridynamic material
models. The root are state-based material models, with the
two subclasses of ordinary state-based and non-ordinary
state-based material models. Note that bond-based mod-

els [38,47,50–62] are a special case of state-based models.
However, the bond-based PD was presented in 2000 and
state-based PD in 2007. For ordinary state-based PD, the fol-
lowing material models are available: Elastic brittle [41,63–
65], Plasticity [66–69], Composite [70], Eulerian fluid [71],
position-aware linear solid (PALS) [72], and Viscoelastic
[73–76]. For non-ordinary state-based PD the correspon-
dencemodel [41,77], the beam/platemodel [78], and amodel
for cementitious composites [79] are available. For more
details, we refer to [3].

Figure 3 shows the schematics of the three different mod-
els. All of these three models conserve linear momentum.
However, only the bond-based model and the ordinary-
state-based model conserve angular momentum. For more
mathematical details, we refer to [41, Definiton 8.4].

2.1.2 Discretization methods for PD

Continuous and discontinuous finite element methods [80–
82], Gauss quadrature [83], and spatial discretization [38,84,
85] were utilized to discretize the peridynamic equation of
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Fig. 4 The classification of different peridynamic damagemodels visu-
alized as a tree. The majority of the damage models are based on strain,
and only a few are based on energy or stress

motion. However, the most common discretization approach
is theEMUnodal discretization, a colocation approach, intro-
duced by Silling in [38]. In this approach, the domain D
is discretized with the discrete points X = {xi ∈ R

n|i =
1, . . . , N } with the surrounding volumes V = {vi ∈ R|i =
1, . . . , N }. The following assumptions are made: all the vol-
umes are non-overlapping vi ∩ v j �= ∅ for i �= j and the
sum of all surrounding volumes is equal to the volume of the
reference configuration

∑
vi ≈ VD . The discrete interaction

zone is defined as Bδ(xi ) := { j | ‖x j −xi‖ ≤ δ}. The discrete
bond-based equation of motion reads as

�(xi )ü(t, xi )

=
∑

j∈Bδ(xi )

f(u(t, x j ) − u(t, xi ), x j − xi )dVj + b(t, xi )

(9)

and the state-based equation of motion reads as

�(xi )ü(t, xi )

=
∑

j∈Bδ(xi )

(T [xi , t]〈x j − xi 〉 − T [x j , t]〈xi − x j 〉)dVj

+ b(t, xi ). (10)

The following implementations are available: Peridigm
[86,87] and PDLammps [84] based on the Message Passing
Interface (MPI), NonLocal models/PeriHPX [88,89] based
on the C++ standard library for parallelism and concur-
rency (HPX) [90,91], PeriPy [92] based on the Python
programming langugae, andGPU-based codes [93–95]. Four
open source implementations of peridynamic PDLammps4,
Peridigm5, PeriPy6, and PeriHPX7 are available. One com-
mercial code is available. LS-DYNA provides a bond-based
peridynamics implementation discretized with the discon-
tinuous Galerkin FEM [96]. Not to forget one of the first

4 https://lammps.sandia.gov/doc/pair_peri.html.
5 https://github.com/peridigm/peridigm.
6 https://pypi.org/project/peripy/.
7 https://perihpx.github.io/.

peridynamic implementations, EMUbyStewart Silling using
FORTRAN 90 [97].

2.1.3 Numerical analysis for PD fracture models

In this section, we summarize the issues that arise in the
numerical analysis of PD fracture models and list the numer-
ical results. The following basic questions for PD fracture
models are:

1. Are peridynamic fracture models well-posed, such that
unique solutions exist?

2. What is the relation between non-local continuum peri-
dynamic fracture models and their discretizations used in
the numerical implementation?

3. How do PD solutions to fracture mechanics problems
relate to local fracture models with sharp cracks? Par-
ticularly, how does PD relate to the more classical Linear
Elastic Fracture Mechanics of continuum mechanics?

These are natural questions to ask, and analogous ques-
tions have been investigated and answered for several non-
local and PD models in the absence of fracture, for this case
there is now a vast literature; see [98–116]. This work pro-
vides the foundation for the numerical analysis of the PD
fracture problem and this review concentrates exclusively on
the PD fracture problem.

For the case of fracture, the analysis for PD fracture mod-
els is still in the initial stages, but meaningful progress has
been made, and one can begin to address the three funda-
mental questions raised in the first paragraph:
First, the answer to question (1) is addressed. The existence
and uniqueness of solutions for peridynamic fracture models
have been studied for different classes of constitutive laws.
For a simple peridynamic model with nonlocal forces that
soften beyond a critical strain, the existence and uniqueness
of the solution over finite time intervals is demonstrated for
bond-based and state-based peridynamics in Lipton [46,47]
and Jha & Lipton [117]. Energy balance is shown to hold for
all times of the evolution. This is a simple constitutive model
designed for monotonically increasing loads.

Existence and uniqueness is established formore complex
material models with the force degradation law determined
by both the time and strain rate for strains above a critical
value in Emmrich and Puhst [118]. Therein, both existence
and uniqueness are established for bond-based peridynamic
fracture. The authors Du et al. [119] consider a continuous
version of the Prototypical Microelastic Bond (PMB) model
introduced by Silling [37]. In this work both existence and
uniqueness are shown and the total energy of the system is
decreasing with time, see [119]. Existence and uniqueness
is established for a state-based model with material degrada-
tion law, again determined by both the time and strain rate
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for strains above a critical load in Lipton et al. [120]. There,
the rate form of energy balance is established among energy
put into the system the kinetic energy, elastic energy, and
energy dissipated due to the damage. The energy dissipation
rate due to damage is seen to be positive. This model is suit-
able for cyclic loads, see [120]. The theme common to all
peridynamic models is that both the existence and unique-
ness of solutions follow from the Lipschitz continuity of the
peridynamic force and the theory of vector-valued ODE on
Banach spaces.

Second, the answer to question (2) is addressed. The con-
vergence of finite difference approximations to bond-based
and state-based peridynamic field theories with forces that
soften is established in Jha & Lipton [121] and [122]. The
finite element convergence for bond-based and state-based
peridynamic field theories with forces that soften are estab-
lished by those authors in [123] and [81]. A priori convergent
rates are linked to the regularity of continuum PD fracture
solutions. Existence and uniqueness of solutions in Hölder
spaces, and Sobolev spaces Hn , n = 1, 2, are proved for
both bond and state based force softeningmodels in [81,122].
The convergence rates for both bond- and state-based mod-
els are found to be linear in the mesh size and time step.
However the constants appearing in the convergence esti-
mates grow exponentially as the horizon size tends to zero.
Fortunately, dynamic fracture experiments last hundreds of
microseconds for brittle materials and linear a priori conver-
gence rates for horizons that are tens of times smaller than the
sample size are in force for tens of microseconds. Numerical
experiments exhibit much better convergence with respect to
mesh size and time step thus driving the need for the develop-
ment of a posteriori estimates for understanding convergence
rates.

Third, the answer to question (3) is addressed. For cer-
tain PD models one can theoretically recover a local sharp
fracturing evolution. A limiting local evolution is shown to
exist for the force softening peridynamic model; see [46,47].
The limiting local evolution has jump discontinuities in the
displacement confined to a set of finite surface areas (more
precisely, two-dimensional Hausdorff measure) for almost
every time; see [46,47]. The jump set corresponds to the
fracture set in the zero horizon model and the total energy
is bounded and given by the classic energy of linear elas-
tic fracture mechanics [46,47,124]. It is shown there that the
deformation in the limit model satisfies the local balance of
linear momentum equation in quiescent zones away from
the crack. Recent work explores the zero horizon limit for
straight cracks growing continuously with the goal of cap-
turing the explicit interaction between the growing crack and
the surrounding elastic material. For this case, it has been
found by Lipton et al. [125] that the local model obtained in
the zero horizon limit is given by a deformation field, that is,
the weak solution of the linear wave equation on the domain

with the growing crack satisfies the zero traction condition
of the sides of the crack. This is in agreement with Linear
Elastic Fracture Mechanics (LEFM). Here, the weak solu-
tion of the wave equation outside a time-dependent domain
defined by a crack was recently developed in DalMaso and
Toader [126]. The convergence of PD to the wave equation
in time-dependent domains [125] gives theoretical support
backing the recent development of new “asymptotically com-
patible” methods for fracture modeling given in Trask et al.
[127]. Lastly, starting with the PD equation multiplying by
the velocity and integrating by parts gives the time rate of
change of internal energy surrounding the crack front. Jha
& Lipton [128] use applied math arguments to show that
on passing to the zero horizon limit, the kinetic relation for
crack tip growth given by LEFM is recovered. Here the clas-
sic square root singularity in the elastic field at the crack tip
is obtained.

We conclude this section noting that the numerical anal-
ysis of PD in the absence of fracture provides compelling
heuristics for understanding PD fracture models. Figure 5
illustrates the interplay between horizon length scale and
discretization length scale for PD models when local mod-
els can be recovered by passing to the small horizon limit in
non-local models, see Du et al. [111,112]. When a numerical
scheme can be designed so that the diagonal arrow captures
the same limit as obtained by proceeding along the sides
of the square problem, a numerical scheme is said to be
asymptotically compatible. This is the motivation behind the
numerical approach of Trask et al. [127] to capture the cou-
pling between intact material surrounding a growing crack.
For example, if one considers elastic problems in the absence
of fracture, then for the diagonal transition where the hori-
zon δ and the nodal spacing h go to zero, it is known that:

Fig. 5 The consistency of non-localmodels and the limits of the horizon
δ and the nodal spacing h presented inDu et al. [111,112]. Adapted from
[129]
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using piece-wise constant finite elements, the correct local
solution is obtained, if the nodal spacing decays faster than
the horizon to zero [111]. This is seen for the EMUnodal dis-
cretization [97] which converges to the limit u0,0 along the
diagonal if the nodal spacing decays faster than the horizon
in Tian and Du [114].

2.1.4 On the connection betweenmeshfree peridynamics
and other meshfree methods

In the absence of fracture, the relation of PD to molecu-
lar dynamics (MD) has been shown by Seleson et al. [130].
Along another direction, the relation of PD to smooth-particle
hydrodynamics (SPH) is established in Ganzenmüller et al.
[110]. With these studies in mind, it is clear that up-scaling
MD fracture models to PD and establishing the relation
between SPH and PD for fracture would be desirable.

Bessa et al. [131] showed that approximated derivatives
of state-based PD are completely equivalent to the approx-
imation received by the reproducing kernel particle method
(RKPM) with synchronized derivatives and with a quadratic
polynomial basis. Bode et al. [132] introduced the peridy-
namic Petrov-Galerkin (PPG) method, which is developed
based on the PD equation of motion starting from the state-
based formulation in [10]. Hillman et al. [133] showed the
relation between reproducing kernel (RK) approximation
with implicit gradient and peridynamic. Madenci et al. [134]
introduced the peridynamic differential operator (PDDO).
Shojaei et al. [135] introduced a generalized finite difference
method (GDFM) based on PDDO. Table 1 lists all of these
connections. Fore more details, we refer to [8].

2.1.5 Visualization of PD results

Since most peridynamic simulations are done using a mesh-
less method, information, e.g. stress and strain, are only
available on the discrete nodes. Thus, every graphics soft-

Table 1 Connection between meshless discrete PD and other meshfree
methods. Adapted and extended from [8]

Method Equivalence Reference

Smooth-particle
hydrodynamics

Deformation gradient [110]

Reproducing kernel
particle method

Deformation gradient [131]

Petrov-Galerkin method Correspondence for
force state

[132]

Reproducing kernel
with implicit gradient

Deformation gradient [133]

Generalized finite
difference method

Peridynamic differential
Operator [134]

[135]

ware, e.g. Paraview [136] or VisIt [137], supporting particles
can be used to visualize meshless simulation results. How-
ever, to understand the simulation and compare against
experimental data, this information is needed on a larger
scale. First, peridynamic theory was used for physically-
based modeling and rendering. Here, the animation of brittle
fracture [138], the animation of fractures in elastoplastic
solids [139], and the animation of hyper elastic materials
[140] were studied. Second, the visualization of fragmenta-
tion [141,142] and visualization of fracture progression [143]
were investigated. For more details, we refer the readers to
[4].

2.2 Phase-field models governing equations

Variationalmodels to fracture anddamagemodelswere intro-
duced by Francfort &Marigo [144] and Aranson et al. [145].
A numerical approximation of variational fracture models
was first introduced by Bourdin et al. [146]. We also refer to
[12] and the recent review paper [15].

Theprincipal ideaof thevariational (phase-field) approach
to fracture (here explained for quasi-static fracture in brittle
materials) is based on energy minimization in which poten-
tial and fracture energies interact. To this end, let Ω ⊂ R

n

be the intact domain and Γ ⊂ R
n−1 the fracture set. Let

u : Ω → R
n be a displacement field and the total energy be

given by

E(u, Γ ) =
∫

Ω

ψ0(ε(u))dV − F(u)

︸ ︷︷ ︸
=:P(u)

+
∫

Γ

Gc d A

︸ ︷︷ ︸
=ψc(Γ )

,

with the potential energy

P(u) :=
∫

Ω

ψ0(ε(u))dV − F(u),

composed by the bulk energy (first term) with ψ0(ε(u)) :=
Cε(u) · ε(u) being the energy storage function with the stiff-
ness tensor C ∈ R

n×n×n×n , and the linearized strain tensor
ε(u) = 1

2 (∇u+∇uT ). The external potential of volume and
surface forces is given by

F(u) =
∫

Ω

b∗udV +
∫

∂Ωt

t∗ud A, (11)

where b∗ is the distributed body force and t∗ are traction
forces. The crack surface energy is given by

ψc(Γ ) =
∫

Γ

Gc d A, (12)
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where Gc > 0 is the critical energy release rate.
A corresponding configuration is sketched in Fig. 6a.

Therein, the domain Ω of the solid with a (sharp) crack set
Γ is considered. For the boundary ∂Ω of the domain Ω

two kinds of boundary conditions along the normal vector n
are considered such that ∂Ωu ∩ ∂Ωt = ∅. On the boundary
∂Ωu Dirichlet displacement conditions are applied, which
are built, as usually done, into the governing function spaces.
Tractions t∗ are applied to the ∂Ωt boundary. Discussions on
boundary conditions can be found for instance in the early
work [144,147,148].

From mathematical and numerical viewpoints, the sharp
fracture representation (12) is challenging because the crack
‘lives’ on a lower-dimensional manifold Γ . On the one hand,
this requires special function spaces (see e.g., [147,148]), and
on the other hand, numerical approximations require special-
ized discretizations (for instance generalized/extended finite
elements [22–24] among various other possible techniques).

To handle this challenge one can borrow techniques from
image processing. The single-well Modica-Mortola func-
tional is introduced by Ambrosio and Tortorelli [149,150]
in image processing to approximate the the surface area term
in the Mumford-Shah functional [48] and is given by

∫

Γ

d A ≈
∫

Ωc

γ (ϕ,∇ϕ)dV , (13)

with

γ (ϕ,∇ϕ) = 1

2

[
1

l0
(1 − ϕ)2 + l0|∇ϕ|2

]
. (14)

Bourdin et al. [146] proposed to use this energy in an
appealing approach to regularize the sharp crack defined on
Γ by a domain integral defined on Ωc. In this context it is

∂Ωu

∂Ωt

Ω

∂Ωt

Γ

(a)

∂Ωu

∂Ωt

Ω

∂Ωt

Ωc 0

1
ϕ

(b)

Fig. 6 The solid phase-field domain Ω with a a sharp crack interface
Γ and b the approximated crack using the phase-field crack function ϕ

resulting in a regularized crack representation Ωc

given by

∫

Γ

Gcd A ≈
∫

Ωc

Gcγ (ϕ,∇ϕ)dV , (15)

with γ (ϕ,∇ϕ) is now viewed physically as the crack surface
density function as in [151]. Here l0 > 0 is the so-called
length scale (i.e., regularization) parameter and l0 character-
izes the width of the regularized domain Ωc. Note that there
are other formulations for the crack surface density function
available [152,153].

The name ‘phase-field’ was first coined in the year 2008
in the PAMM8 proceedings from Kuhn and Müller [154]
and in their 2010 follow-up journal paper [155]. In the same
year,Miehe et al. [151] used this terminology,which includes
the above regularization, but additionally, they justified from
a mechanical perspective a thermodynamically consistent
framework for the potential and fracture energies. We notice
that simultaneous pioneering work in variational gradient
damage evolutions was performed by Pham and Marigo
[156,157] for which we also refer the reader to Section 2.2.3.

In other words, within phase-field models the crack is reg-
ularized by Ωc around the sharp crack Γ using the so-called
phase-field crack function ϕ : Ωc ∪Ω → [0, 1], see Fig. 6b.
The notation is that ϕ = 0 indicates damage and ϕ = 1
means intact material (some authors define it the other way
around). Between ϕ = 0 and ϕ = 1, the function varies
smoothly with values 0 < ϕ < 1, which is the so-called
transition zone.

Figure 6b sketches the situation in which the smoothed
region Ωc is shown.

By using the phase-field variable, the bulk strain energy is
extended to the entire domain (intact domain plus fractured
domain) and we obtain

ψs(u, ϕ) =
∫

Ω∪Ωc

g(ϕ)ψ0(ε(u))dV , (16)

where ψ0 is the so-called non-degraded bulk strain energy
and g(ϕ) the so-called degradation function. Usually, g(ϕ) =
ϕ2 + κ or g(ϕ) = (1− κ)ϕ2 + κ with a small κ > 0, which
is necessary to ensure regular system matrices within the
discretization for quasi-static fracture. Clearly, for ϕ = 0
(fracture), we have g(ϕ) = κ . In the non-fractured region,
we have ϕ = 1 and g(ϕ) = 1. For dynamic fracture (see
a discussion in [158]) κ = 0 is possible, which is obvious
because the mass matrix term arising from the discretiza-
tion of the acceleration term ensures well-posedness of the
discrete system. A family of degradation functions and their

8 PAMM = Proceedings in Applied Mathematics and Mechanics
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numerical justification was investigated in [159] and a mul-
tidimensional stability analysis with a general degradation
function was considered in [160]. The mathematical relation
between l0 and κ is linked toΓ convergence in which l0 → 0
and κ → 0 with the asymptotic behavior κ = o(l0); see e.g.,
[161] and again the approximation results in [149,150].

Summarizing the previous ingredients, the total energy
using the regularized crack representation in the entire
domain Ω ∪ Ωc is given by

E(u, ϕ) =
∫

Ω∪Ωc

g(ϕ)ψ0(ε(u))dV − F(u)

+
∫

Ω∪Ωc

Gc
1

2

[
1

l0
(1 − ϕ)2 + l0|∇ϕ|2

]
dV . (17)

Several general types of ψ0 functions have been proposed,
and it was shown that a suitable choice could avoid nonphys-
ical growth of cracks under compressive loading [162]. For
more details, we refer to [16,163].

Moreover, in most studies, as model assumption from a
physics perspective, the crack cannot heal, and therefore the
above energy functional is subject to a crack irreversibility
(an entropy condition), which is mathematically expressed
as an inequality constraint in time or quasi-static loading:

∂tϕ ≤ 0.

Due to this constraint, we deal with a quasi-static incre-
mental (or time-dependent) nonlinear, coupled variational
inequality system. The solution is obtained by minimizing
E(u, ϕ) with respect to u and ϕ by considering ∂tϕ ≤ 0.
Therein, the bulk and crack energies interact according to
the laws outlined in [144] and [151].

2.2.1 Properties of� and crack interface reconstruction

It can be rigorously proven with cut-off arguments that
ϕ ∈ [0, 1]; see for instance [164], which follows from the
definition of the Ambrosio-Tortorelli functional and the reg-
ularization of the total energy. When further terms (physics)
are added, the property ϕ ∈ [0, 1]may get lost, and one must
argue carefully. For instance, in pressurized fractures, the
pressure can have positive and negative values and, therefore,
further cut-off arguments are necessary in order to establish
the bounds for ϕ [165]. As the second topic in this short para-
graph, we want to mention the principal idea when the crack
interface must be known explicitly. Due to the regularization
using ϕ, there is some liberty as to when the exact crack inter-
face must be known. In these cases, the phase-field function
is interpreted as a level-set function ([166]) and the crack
interface is, for instance, chosen as ϕc := ϕ = cI with for
example cI = 0.2 [17,167,168].

2.2.2 Brief review of some theoretical findings

We briefly list some important well-posedness results. In
[169] first existence results for quasi-brittle fracture of the
original model by Francfort & Marigo [144] were shown
for the antiplane setting for scalar-valued displacements. In
[147] the existence and convergence of quasi-static evolu-
tions for the vector-valued case were established. Shortly
after, the existence of quasistatic crack growth in nonlinear
elasticity was proven [148]. For these settings, in general,
uniqueness cannot be established; see also below in Sect.
2.2.3 for discussions and references in the related gradient
damage theory. In fact, it is well-known that uniqueness is a
general issue in solid mechanics; see e.g. [170].

Regarding uniqueness in phase-field fracture,wedealwith
two variables, namely ϕ and u, obtained from solving a non-
linear coupled system, and the governing functional to be
minimized is not convex, yielding several localminima.Only
recently in [171], the issue of non-uniqueness was investi-
gated in detail by using a stochastic approach by computing
all solutions with their respective probability in which they
may occur.

The existence of solutions for dynamic fracture using
Ambrosio-Tortorelli [149,150] approximations was estab-
lished in [172]. Since crack initiation is an important topic
within phase-field based crack models, we mention theoreti-
cal work byChambolle et al. [173], Goethem/Novotny [174],
and recently Kumar et al. [175] and de Lorenzis/Maurini
[176]. Some theoretical findings on the crack path were
provided in [177]. For mode III dynamic fracture mod-
eled using [172], one can follow a sequence of solutions as
l0 → 0, to obtain existence of a limiting displacement with
bounded Linear Elastic FractureMechanics energy [47]. The
latest review of the original model, in terms of the sharp
crack approximation (without phase-field, but nonetheless
the ground basis of regularized models such as phase-field)
can be founded in recently published article by Francfort
[18]. Furthermore, we refer to the SIAM News article [15].

2.2.3 Fracture/damagemodels for PF

In this section, we first note that phase-field fracture mod-
els have a close relationship to damage models. Indeed,
due to the regularization in phase-field models yielding a
transition zone, and damage mechanics with gradients, sim-
ilar approaches are obtained. For seminal work in the year
2010, we refer to Pham and Marigo [156,157] (based on
earlier work of Mielke [178]). Therein, the authors propose
and investigate local [156] and nonlocal [157] brittle damage
laws from amechanical viewpoint. The evolution is based on
three fundamental physical principles: irreversibility of the
damage (i.e., fracture) parameter, stability, and an energy
balance. The actual relation of gradient damage models
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Table 2 Overview of various fracture and damage models available for
phase-field modeling. Adapted and extended from [16]

Fracture/damage models

Brittle fracture [12,146,151,154,155,186]

Ductile fracture [199,225,248–252]

Cohesive fracture [12,239,242–245,281]

Dynamic fracture [172,221,222,235–237,241,282]

Fracture in incompressible [283–285]

solids

Finite deformation fracture [217,227,229–232]

3D fracture [151,202,221–228]

Plate/shell fracture [214–220]

Multi-field fracture [152,197–210,286]

Fatigue [189–193]

Layered material fracture [215,244,265–271]

Anisotropic surface energy [259–264]

with brittle fracture is described in [179]. Further proper-
ties of such damage models (and consequently phase-field
approaches) are investigated in [180]. Specifically, the stabil-
ity and uniqueness (in terms of bifurcation) of the evolution
of the gradient damage variational formulation is investi-
gated for uniaxial tests, namely the homogeneous response
of a bar under an increasing traction loading. The construc-
tion of bifurcations for a large class of gradient damage
models (i.e., elastic-softening materials) was continued in
[181]. Earlier work on stability and bifurcations using ener-
getic variational principles is fromNguyen [182,183]. Solely
bifurcations for a one-dimensional gradient damage model
applied to a bar were considered in [184]. Here, the mathe-
matical ill-posedness (aspects of uniqueness and dependen-
cies on the data) is discussed and possible consequences of
numerical approximations (in particular mesh sensitivity) is
drawn (here, we also point to [171] for uniqueness studies
for phase-field fracture). Another, more recent discussion
about similarities and differences can be found in [185]. In
what follows, we therefore have both fracture and damage
models in mind. Table 2 lists the available phase-field frac-
ture and damage models. The following models have been
developed within the phase-field framework: brittle fracture
[12,146,151,155,186–188], fatigue [189–196], multi-field
fracture [152,197–212], frictional contact [213], plate/shell
fracture [214–220] (where [220] solves some issues with
the energy decomposition which were leading in [214,216]
to unphysical results), three-dimensional fracture [151,202,
221–228], finite deformation/hyperelastic fracture [217,227,
229–234], dynamic fracture [172,221,222,235–241], cohe-
sive fracture [12,242–247], ductile fracture [199,225,248–
258], anisotropic surface energy [259–264], layered material
fracture [215,244,265–271], and polymer composites frac-
ture [272].

Furthermore, we summarize various models for split-
ting the energy (i.e., strain / stress) into different parts
for accounting the fracture growth behavior under tension
and compression. To the best of our knowledge, we are
aware of Amor et al. [273], Miehe et al. [151], Zhang
et al. [274], Strobl/Seelig [275], Steinke/Kaliske [276],
Bryant/Sun [277], Freddi/Royer-Carfagni [278], Bilgen-
/Homberger/Weinberg [279], and Fan et al. [280].

2.2.4 Treating the crack irreversibility constraint

For treating the irreversibility constraint ∂tϕ ≤ 0, six funda-
mental procedures have been proposed:

1. Fixing crack nodes by Dirichlet values [146,155];
2. Strain history function [186];
3. Penalization: simple and augmented Lagrangian [165,

287–289];
4. Primal-dual active set methods [290];
5. Complementarity system with Lagrange multipliers as

unknowns [283];
6. Interior-point methods [291].

Comparisons of some of these approaches were performed
in [288] and [17].

2.2.5 Discretization, solvers, and software for PF

Classical Lagrange Galerkin finite elements [146], expo-
nential shape functions [292], isogeometric elements [222],
discontinuous finite elements [293], or mixed formulations
[283] were mostly utilized for the spatial discretization
of the fracture/damage models as described in the previ-
ous section. Meshless methods for general phase-field were
first introduced in [294] and for meshless phase-field frac-
ture, see e.g., [216,295]. For discretized nonlinear systems,
the following solvers are available: alternating minimisa-
tion algorithms [146,153,187,237,273,296–298], alternating
minimisation algorithmwith path-following strategies [299],
staggered scheme [186], stabilized staggered schemes [300–
303], monolithic solvers [17,151,290,304–308], and mono-
lithic solvers with path-following strategies [309,310].

For solving linear equation systems, most often black-
box (direct) solvers have been adopted. Only recently [297]
proposed conjugate gradient (CG) solutions with multigrid
preconditioning for the decoupled phase-field displacement
system. For monolithic solvers, a generalized minimal resid-
ual (GMRES) method with parallel algebraic multigrid
preconditioning was proposed in [311]. A matrix-free geo-
metric multigrid preconditioner was developed in [307], and
its parallelized variant in [312]. Furthermore, we mention
the development of a FFT (fast Fourier transform) solver for
higher-order phase-field fracture problems [313].
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The following proprietary implementations using Matlab
[314,315], COMSOL [316], [317,318] using FEAP9, and
Abaqus [226,319–324] are available. Open source imple-
mentations are: [310] usingNutils [325], [243] using JIVE10,
[326] using MOOSE [327], [328] (pfm-cracks11 and [329]
using deal.II12, and [237,297] using FENICS [330] are avail-
able. In addition, a GPU-based implementation [331] and the
MEF 90 Fortran implementation [12,144,296,332] are avail-
able.

2.2.6 Numerical analysis for PF

A posteriori error estimation For numerical analysis with
respect to a posteriori error estimation, a short summary is
presented here. First, work on residual-based error estima-
tors goes back to [187,333]. Extracting error indicators for
local mesh refinement based on an a posteriori error esti-
mator for the phase-field variational inequality are presented
in [334,335] The development of goal-oriented mesh adap-
tivity was undertaken in [17,336]. The Ambrosio–Tortorelli
functional is used to Γ approximate each time evolution step
in [337]. An additional penalty constraint is enforced for
the irreversibility of the fracture as well as the applied dis-
placement field. An a posteriori error estimator driving the
anisotropic adaptive procedure is utilized formesh adaptivity.
According to the authors, the main properties of automat-
ically generated meshes are to be very fine and strongly
anisotropic in a small neighborhood region of the crack, but
only far away from the crack tip, while they show a highly
isotropic behavior in a neighborhood of the crack tip instead.
The Ambrosio-Tortorelli functional is applied in [187] to
two adaptive finite element algorithms for the computation
of its (local) minimizers. Two theoretical results demon-
strate convergence of the developed algorithms to the local
minimizers of the Ambrosio-Tortorelli functional. However,
the Ambrosio-Tortorelli functional is for quasi-static simu-
lations and might not apply to dynamic fracture situations.
The phase-field parameter itself is used in [158] to refine the
mesh. The gradients of the phase-field are high in the near
crack region and close to one away from the crack. A thresh-
old is introduced to run the dynamic phase-field simulation
for a few time steps, then all elements are refined above the
introduced threshold, and the simulation is resumed with the
newly refinedmesh. This procedure is repeated until the con-
vergence criterion is met.

It is expected that improved error estimates can further
advance both PD and PF modeling approaches to pave the

9 http://projects.ce.berkeley.edu/feap/.
10 http://www.jem-jive.com.
11 https://github.com/tjhei/cracks.
12 https://www.dealii.org/.

path for routine use as predictive simulations for a certain
class of fracture problems.
Goal functional evaluations and computational analysis for
l0 − h relationship In [17,336,338] a slit domain (a square
plate with an initial crack) with displacement discontinuity at
the crack and the manufactured displacement field [339,340]
are utilized to study the l0 − h relationship. Note that the
crack in this study is represented by the phase-field dam-
age function ϕ. Motivated by [161,341], various simulations
for l0 = chl with l ∈ (0, 1] and h as the mesh size are
conducted. Three cases of mesh refinement are studied: 1)
c = 2.0 and l = 1.0, 2) c = 0.5 and l = 0.5, and 3) c = 0.5
and l = 0.25. First, the influence of l0 on the goal func-
tion evaluation is considered. Therefore, the goal function
J (uFM) := uFM(0.75,−0.75) for a displacement point value
is utilized, which results in the total error J (uFM) − J (uh).
The maximal convergence order of r = O(l0) was obtained
in case 2) where r = l0 = 0.5. The observed order is
r = l0 = 0.25 for case 3) and r ≈ 0.9 < l0 for case 1). These
results lead to the assumption that |J (uFM)− J (uh)| = O(l0)
as presented in [202,290,300,311]. In addition, two phase-
field fracture configurations were proposed as prototype
models for comparison in the recent benchmark collection
[342].
AdaptivityRegarding adaptivity,we distinguish between spa-
tial and temporal mesh refinement and adaptive solution
schemes. Spatial mesh refinement goes back to anisotropies
introduced by the mesh [343], residual-based adaptive finite
elements [187,333], anisotropic adaptive mesh refinement
[337], and pre-refined meshes where the crack path is known
a priori [222]. Other computational convergence analyses
were undertaken in [344]. For unknown crack paths, a
predictor-corrector approach was developed and applied in
[202,290,345], goal-oriented error-control [336,338], and
mesh refinement in multiscale phase-field methods [346].
A few rigorous studies on temporal error control exist
[331,347]. Apart from classical mesh refinement, an adaptive
predictor-corrector non-intrusive global-local (multiscale)
approach [315] (see also [348]) was developed based on the
approach presented in [349], and was to porous media [350],
and extended to multilevel concepts [351].
Solver analyses Using alternating minimization for solving
the coupled displacement-phase-field problem, the conver-
gence of the scheme was established in [296] and [187].
A convergence proof for a truncated nonsmooth Newton
multigrid method was very recently undertaken in [352]. For
further fully-coupled (i.e., monolithic) techniques, no rig-
orous convergence are available, but significant numerical
evidence of the performance of nonlinear solvers [17,151,
290,291,304–310,353].

In the following, we discuss some papers in more detail.
Zhang et al. [354] used a length scale material parameter
to evaluate the accuracy of phase-field modeling of brittle
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fractures with available experimental data. They observed
significant discrepancies between numerical predictions and
the experimentally observed load-displacement curves after
the critical force, despite a reasonably accurate predic-
tion of crack paths. Zhuang et al. [355] implemented the
phase-field method in a staggered scheme to sequentially
solve for the displacement, phase-field, and fluid pressure.
Asymmetric deflection along material interfaces and pen-
etration of hydraulic fractures in naturally-layered porous
media were reported for different layer arrangements based
upon their respective stiffness as measured by E and Gc.
Farrell and Maurini [297] reformulated the alternate mini-
mization algorithm for the variational fracture approach to
simulate nucleation and propagation of complex fracture
patterns as a nonlinear Gauss-Seidel iteration along with
over-relaxation to accelerate its convergence. They showed
further reduction in solution time by utilizing the acceler-
ated alternate minimization with Newton’s method. Brun et
al. [300] showed an iterative staggered scheme, a two-field
variational inequality system with independent phase-field
variable and displacement variables. For the convergence
using a fix-point argument and a natural condition, the elastic
mechanical energy remains bounded and with a sufficiently
thick diffusive zone around the crack surface,monotonic con-
vergence is achieved. Noll et al. [356] presented results for
ductile fracture with linear isotropic hardening and discussed
the computational costs for 3D simulations while analyzing
added computations due to mesh refinement. Chukwudozie
et al. [357] presented a unified fracture-porous medium
hydraulic fracturing model that handled interactions among
multiple cracks, as well as the evolution of complex crack
paths in 3D simulations using energy minimization with-
out any additional branching criterion, but the location of
crack tip and its velocity remains a challenge in complex
configurations. Further, detailed linear solver analyses for
quasi-monolithic phase-field fracture using a GMRES solver
with matrix-free geometric multigrid preconditioning were
conducted in [307]. Scalability tests of parallel performance
were performed in [311] and [312].

It is evident that further improvements in robust solvers
will be the key for both PD and PF approaches to be
adopted as the engineering tools of choice to predict fracture
phenomena.

3 Macroscale view of crack propagation
physics using thermodynamics constraints
and constitutive relationships

According to Haslach [358], a maximum dissipation non-
equilibrium evolution model can describe the unsteady crack
propagation rate for both brittle fracture and for viscoplas-
tic behavior at the crack tip. Ulmer et al. [359] presented

a thermodynamically consistent framework for phase-field
models of crack propagation in ductile elastic-plastic solids
under dynamic loading with an incremental variational prin-
ciple and validated it against the classical Kalthoff-Winkler
experimental results. Mauthe andMiehe [360] used two con-
stitutive functions - free energy and dissipation potential to
incorporate fluid flow in cracks during hydraulic fracturing
and coupled it to a phase-field approach to fracture within a
variational framework. Miehe et al. [361] proposed a gradi-
ent damage formulation with two independent length scales
to regularize the plastic response and crack discontinuities
to ensure that the damage zones of ductile fractures remain
inside plastic zones. Roy et al. [362] presented a rephrased
phase-field theory of continuum damage in a peridynamics
setup and showed promising results of mode II delamination.
Farrahi et al. [363] demonstrated that under mode I crack
growth and proper calibration of parameters, PFM always
agreedwithGriffith’s theory. Alessi et al. [364] demonstrated
that macroscopic responses assimilable to brittle fractures,
cohesive fractures, and a sort of cohesive fracture, including
depinning energy contributions by tuning a few key constitu-
tive parameters such as relative yield stresses and softening
behaviors of the plasticity and damage criteria. It is duly
noted that both PD and PF show promise to visualize and pre-
dict complex fracture phenomenawithout resorting to ad-hoc
modeling assumptions.

4 Validation against experimental data

The validation against experimental data is a cornerstone to
access the predictive accuracy of any engineering fracture
mechanics model. In this section, the experiments used as
benchmarks for peridynamic models are compared against
the ones used as benchmarks for phase-field models. We
limited the focus to the Sandia Fracture Challenge and pub-
lications where both models were compared to the same
experimental data. For a detailed review about the compari-
son with experimental data, we refer to [4] for peridynamic
models and for phase-field models to [16, Section 2.12].
It is remarked that the experimental data from Jeffery and
Bunger [365] may be used in the validation of different
numerical simulators for hydraulic fracture propagation.

4.1 Reasons for Sandia Fracture Challenge and
outline

Two reasons make the Sandia Fracture Challenge (SFC) an
excellent example:

1. experimental data is usually not disclosed in the literature
[366] whereas all data and experimental designs are made
available in the Sandia challenge;
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2. the Sandia Fracture Challenge has two unique features
that together establish the validity of a free fracturemodel.
First, the calibration step requires the free fracture model
to be calibrated through a simple prototypical problem,
e.g. a tensile test. The subsequent validation step requires
the calibrated model to simulate a distinct and more com-
plicated fracture problem. It is themodel’s ability tomatch
experimental results for the complex problem that estab-
lishes its validity. This prohibits parameter fitting tomatch
a particular experiment.

The outline for the following subsections is as follows: we
first provide the methodology for error measurements used
to compare the different models. Afterward, the Sandia Frac-
ture Challenge is described in detail, with a focus on the first
and third test sets. These descriptions are followed by com-
parisons of both models, including details on the respective
discretizations, numerical cost, and error measurements.

4.2 Error measurements for comparisons

For all compared values, the following error measurements
were calculated: For scalar values, the relative error εrel =
(xsim − xexp)/xexp and for a time series the coefficient of determina-
tion R2 [367] is computed, when applicable. The coefficient
of determination R2 is defined as

R2 = 1 − SSE

SST
(18)

for two series of n values y1, . . . , yn , the so-called series of
observables and ŷ1, . . . , ŷn , the so-called series of predic-
tions. Where the total sum of squares SST reads as

SST =
n∑
1

(yi − y)2 with y = 1

n

n∑
1

yi (19)

and the sum of square residuals (or errors) reads as

SSE =
n∑
1

(yi − ŷi )
2. (20)

Thus, R2 is a statistical measure in the range of zero to one
to indicate how good the series of predictions ŷi approx-
imates the series of observables yi . Specifically, R2 = 1
implies that SSE = 0 and therefore, the series of observ-
ables fits the series of predictions perfectly. If R2 = 0
and therefore SSE = SST then the mean of observables
series is as good as any predicted series. For the time series,
the WebPlotDigitizer13 was used to extract the x and y
coordinates of the respective plot from the Sandia report.

13 https://automeris.io/WebPlotDigitizer/.

The scipy.stats.linregress14 functionality of the
python SciPy package [368] was utilized to compute the R2

correlation.

4.3 Sandia Fracture Challenge

The Sandia Fracture Challenge is considered as one of the
potential set of benchmarks to showcase the predictive accu-
racy of the two models for various complex experimental
data. There are many other experimental data sets available
which could serve as experimental benchmarks aswell.How-
ever, the SFCaddresses some important aspects of calibration
vs. validation against experimental results. One essential part
of this challenge is to calibrate the free fracturemodel on sim-
ple prototypical problems such as a tensile test, and use this
calibration to simulate the crack and fracture phenomena.
With this additional step, the model parameters can not be
calibrated or fitted to the complex scenario but instead have
been calibrated using the simple scenario. This additional
step of calibration makes the SFC an excellent problem to
benchmark phase-field models and peridynamic models to
assess their performance on different kinds of crack and frac-
ture phenomena. For the first and third fracture challenge,
we could find the contributions of peridynamic models, see
Sect. 4.3.1 and Sect. 4.3.2, respectively. No studies using
phase-field models were found for all three fracture chal-
lenges. The summary of model accuracy is shown in Table 5.

4.3.1 First Sandia Fracture Challenge

In the first Sandia Fracture Challenge [369] blind round robin
predictions of ductile tearing for an alloy (15-5PH)were stud-
ied. The stress-strain curve of a tensile bar was provided to
calibrate themodel. Experiments onCT specimenswere con-
ducted and the extracted quantities of interest are shown in
Fig. 7. The geometry has a blunt notch A and three holes
B, C , and D, respectively. The two unlabeled holes were
used for the load pins to apply the load in force ±F . The
following three challenge questions were used for predictive
simulations:

1. What is the load force and the COD displacement at the
time of the crack initiation?

2. What is the path of crack propagation?
3. At what force and COD displacement does the crack re-

initiate out of the first hole, if the crack does propagate to
either holes B, C , or D?

The teams had to answers these questions with their respec-
tive models. Team 9 from the University of Arizona used

14 https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.
stats.linregress.html.
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Fig. 7 First Sandia Fracture Challenge: Simplified geometry of the CT
specimen to sketch the experimental quantity of interests which the
peridynamic simulation was compared against. Adapted from [369]

a bond-based peridynamic model [37,38] to answer these
questions. The geometry was discretized using hexahedron
regions with edge length of 0.63mm and the horizon was
δ = 1, 5621mm. For more details about the simulations, we
refer to [369, Section 8.9].

During the ten experiments, the crack path A−D−C−E
occurred nine times and the crack path A −C − E occurred
one time. Team 9 predicted the second path in their simu-
lations as the answer to the second question. Table 3 shows
the answers to the remaining questions. The first row shows
the average value for the force (N) and the crack open dis-
placement (COD) ((mm)) for the first crack event and the
second crack event. The first value in every column is the
value obtained by the load drop, and the second one the visual
obtained value. The second row contains the average value
obtained by the simulations of team 9. The relative error εrel
for the 1st crack events are for the force -0.4/-0.28 and for
the COD -0.7/-0.7 respectively. The relative error for the 2nd
crack events are for the force -0.31/-0.2 and for the COD
-0.7/-0.7 respectively.

Using phase-field modeling, recent results were reported
in [370]. The discretization is based on tetrahedral ele-
ments with locally pre-refined meshes. The authors report
force-displacements curves for different numerical models
and show contour plots for three different loadings of the
crack path, elastic energy, plastic energy, and the coalescence
degradation function.

Table 3 The average values of the force (N) and the crack opening
displacement (COD) (mm) for the crack path A − C − E , see Fig. 7

1st crack event 2nd crack event

Force (N) COD (mm) Force (N) COD (mm)

Exp 8066/6621 3.542/3.538 5128/4363 5.217/5.362

PD 4782 1.092 3514 1.575

For the experiments, the average value obtained by the load drop is
shown first and the visual obtained value, second. For the simulations
of team 9, their obtained average value is shown. Adapted from [369]

Fig. 8 Third Sandia Fracture Challenge: Simplified sketch of the geom-
etry to showcase the quantity of interests in the fracture challenge.
Adapted from [372]

4.3.2 Third Sandia Fracture Challenge

In the third Sandia FractureChallenge, the predictions of duc-
tile fracture in additively manufactured metals were studied.
The data of tensile tests was provided to calibrate the sim-
ulation models. Figure 8 shows a simplified sketch of the
geometry to showcase the following challenge questions for
predictive simulations:

1. What is the force at the displacements 0.25, 0.5, 0.75, and
1.0mm?

2. What is the force and Hencky (logarithmic) strain in the
vertical direction of the points P1–P4 on the surface at
the following forces: 75% and 90% of peak load (before
peak), at peak load, and 90% after the peak load?

3. What is the force versus the gauge displacement for the
test?
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4. What is the force and Hencky (logarithmic) strain in the
vertical direction of the points P1–P4 on the surface over
time?

5. What is the force and Hencky (logarithmic) strain in the
vertical direction of the lines H1–H4 on the surface at
the same forces as in questions 2?

Team C from the University of Texas Austin used an explicit
peridynamicmodelwith bond damage [371]. For the damage
evolution, the Johnson-Cook model was used. The geome-
try was discretized with a nodal spacing of h = 0.14mm
resulting in a total of 460.000 nodes. Information of the used
horizon were not reported in [372, Table 9]. The answers
to question 1 are shown in Table 4. The relative errors are:
−0.05, −0.15, −0.47, −0.66, respectively. The R2 correla-
tion for question 3, load (kN) vs displacement (mm) is 0.7.
For the relative errors with respect to question 2, one can
only look at the trend at the peak load, since all other loads
were defined relatively to it. For the peak load, a relative
error of−0.08 was reported. The relative errors for the verti-
cal logarithmic strain (%) for point P2 are 7, 4.8, −0.8, and
−0.8, respectively. The R2 correlation at the peak load for
the Hencky strain on lines H3 for question 4 is 0.44. Unfor-
tunately, we had issues extracting the R2 correlations for line
H4 with our tools. Note that this was a blind verification, and
the same team performed a revisited simulation with more
details, receiving better results [373]. However, phase-field
simulations were done only qualitatively using the geometry
of the third Sandia Fracture Challenge [374].

4.4 Comparison of bothmodels with the same
experimental data

First, finite elastic deformation and rupture in rubber-like
materials [375] was studied for phase-field models in [376]
and for peridynamic models in [377]. In these publications,
a rubber sheet with double edge notches was studied on the
geometry shown in Fig. 9 (80mm × 200mm) and a thick-
ness of 3mm. For the experimental setup, the length of the
notches a varied from, 12mm, 16mm, 20mm, and 24mm.
For the PD simulations, the horizon δ = 3.015h was used. In
total, 16000 discrete PD nodes with a surrounding volume of
V=1mm2 and a nodal spacing of h = 1mm. For the PF sim-

Table 4 Comparison of the measurements and the obtained loads in
the simulations for four different displacements

Force (kN) for four displacements (mm)
0.25 0.5 0.75 1.0

Exp 7.884 8.164 8.203 6.538

PD 7.469 6.919 4.330 2.188

For the comparison, the nominal load is considered. Adapted from [372]

ulations, a quad mesh with a resolution of h = 6.66mm was
used. The applied displacement (mm) vs the reaction force
(N) was compared against the experimental observations and
the corresponding simulation results. The R2 correlation for
PD are: 0.83, 0.99, 0.98, 0.98, 0.98, and 0.78 respectively.
The R2 correlation for PF are: 0.78, 0.84, 1, 0.64, and 0.65
respectively.

Second, dynamic brittle fracture in glassy materials was
studied in [378,379]. In this study, a phase-field model [186],
a discontinuous-Galerkin implementation of PD [380], and a
meshfree discretization of PD [38] are used in the geometry
shown in Fig. 10. For the PD simulation, a nodal spac-
ing h =0.1mm and a horizon δ =0.5mm were used. For
the discontinuous-Galerkin implementation of PD a non-
uniform mesh with average element size h of 0.1mm and a
horizon δ of 0.5mm was used. For the phase-field model, the
nodal spacing was h =0.3mm and the length scale parameter
l0 was 0.6mm. Note that the authors did some δ-convergence
study in [379], however, we only report the finest resolution
here. Fore more details, we refer to [379, Section 5.2]. For all
three implementations, the crack angle after branching, the
time of crack branching, and position of the crack branching
were compared with the experimental results. In this study
various discretization parameters were studied, however, we
report the discretization parameters corresponding to the best
agreement with the experimental data. First, the value for the
meshfree discretization is presented, followed by the value
for the discontinuous-Galerkin discretization, and the value
for the phase-fieldmodel last. The relative errors for the crack
angle are: -0.21, -0.35, and -0.51, respectively. The relative
errors -0.06 for the event of crack branching in time are the
same for all simulations. The relative errors for the crack
branching position are: 0, -0.12, and 0, respectively.

5 Comparison between peridynamics
and phase-field fracture models

In this section, the two approaches PD and PF are compared
with respect to their computational aspects, advantages in
simulating complex fracture phenomena, and the challenges
faced by these numerical methods. For peridynamics, we
assume that the presented aspects hold for all three mod-
els presented in Fig. 2. If one aspect holds only for specific
models, we will mention that explicitly in the text below.

5.1 Computational aspects

In this section, we focus on the computational aspects of both
models from a bird’s eye view and compare the computations
on a very high-level. To do so, we define the quantity of a
field which can be a vector field f = { f1, . . . , fn | fi ∈ R

3}
or a scalar field f = { f1, . . . , fn | fi ∈ R}. Peridynamics is a
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Table 5 Overview of the Sandia Fracture Challenge with contributions
of peridynamic models. Two different research groups contributed to
the first and second Sandia Fracture Challenge using a peridynamic
model. To the best knowledge of the authors, no phase-field model
contributed to the Sandia Fracture Challenge. However, phase-field
simulations were done using the geometry of the third Sandia Frac-
ture Challenge [374]. To compare with the experimental measurement,
the relative error is provided for scalar values, and the R2 correlation

for a series of values. For the first Sandia Fracture Challenge, the fol-
lowing quantities were studied: (a) Force (N) 1st crack event, (b) Crack
Opening Displacement (COD) (mm) 1st crack event, (c) Force (N) 2nd
crack event, and (d) COD (mm) 2nd crack event. For the third Sandia
Fracture Challenge, the following quantities were studied: (a–d) Force
(kN) at 0.25, 0.5, 0.75, and 1mm displacement; (e) Force vs displace-
ment (time series); (f) Force (kN) at Peak load; and (g) Hencky strain
(%) on line H3 at peak load

First Sandia Fracture Challenge [369] Third Sandia Fracture Challenge [372]

a b c d a b c d e f g

εrel −0.4/−0.28 −0.7 −0.31/−0.2 −0.7 −0.05 −0.15 −0.47 −0.66 0.08

R2 0.7 0.44

Fig. 9 Geometry of the rubber sheet (80mm× 200mm) and a thickness
of 3mm. The length a of the notches varied from, 12mm, 16mm, 20mm,
and 24mm. The radius of the notches is fixed at 1mm

Fig. 10 Sketch of the geometry (100mm × 150mm) with a thickness
of mm. The angle of the cut-off is 40◦ and the initial crack has a length
of 8mm

single-field model, here one just solves for the displacement
field u and the peridynamic damage field d(u) is obtained
from the displacement field using the constitutive law. The
displacementfield is solvedwith explicit or implicit time inte-
gration [381–385]. The majority of PD simulations utilized
bond-based models due to the increased computational costs
for the state-based models. Similarly, the majority of sim-
ulations utilized explicit time integration due to their lower
computational costs.

For phase-field, we have a two field model with the dis-
placement field u and the damage field ϕ.
For staggered schemes and alternating minimization [186,
187,222,296,300–302,386] the global system is decoupled,
first, one solves for the displacement field u and second,
one solves for the phase-field damage field ϕ indepen-
dently. For the equation of motion, implicit or explicit
time integration schemes can be utilized. For the mono-
lithic scheme [151,155,236,304,306,307,319,353,387] the
displacement field and the phase-field damage field are
fully coupled and solved simultaneously. Pham et al. [162]
suggested that a suitable choice of fracture process zone
corresponding to the intrinsic length scale associatedwith the
phase-field model could provide valid predictions of crack
growth in quasi-static brittle fracture.

Classical elasticity parameters can be used to calibrate
both models. Both models require a minimal set of parame-
ters for calibration, i.e. Young’s modulus E , Poisson’s ratio
ν, and fracture energy Gc, which all can be experimentally
determined. Thus, both models could use the same elasticity
and fracture properties obtained by an experiment to cali-
brate and validate against the same quantity of interest. Both
models depend on length scale parameters; l0 for phase-field
models and the horizon δ for peridynamic models needs to
be calibrated. Techniques for calibration that includematerial
strength and flaw size have been shown for PF [388] and PD
[55,115]. On the other hand, when sharp cracks approxima-
tions are needed, mathematically l0 should tend to zero (see
Sect. 2.2), as confirmed for PF with numerical simulations
in [311] using an academic test case in which manufactured
solutions for the crack opening displacement and total crack
volume were constructed [389]. In the case of PD with bond
softening, one sees that the damage is confined to a thin
zone about the crack line of thickness controlled by the PD
horizon δ, [128]. Here, the thickness is δ + 2h where the
mesh diameter h is h = o(δ). Goswami et al. [390] devel-
oped an enhanced physics-informed neural network (PINN)
based machine learning (ML) for the fracture growth and
propagation problem using PF. Nguyen et al. [391] used
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ML to develop relationships between the displacements of
a material point and the displacements of its neighbors and
the applied forces within PD framework. Mandal [392] pre-
sented a comparison of PF and PD models and [393] for a
tensile impulse traction on the pre-crack faces experiment.
Good agreements were reported for crack tip velocities for
no-branching case as well as branching for higher stress
intensities cases despite the post-processing of PD and PF
results using distinct algorithms.

Weconclude that there are very few results availablewhere
both models are compared against the same experimental
data. Confronted with this paucity of information it is diffi-
cult to get insights regarding better suitability of a method
for specific crack phenomena. With this in mind, the San-
dia Fracture Challenge is pointed out in this review for the
two main reasons described in Sect. 4.1. This makes the San-
dia Fracture Challenge an excellent problem to benchmark
phase-fieldmodels andperidynamicmodels in order to assess
their performances for different kinds of fracture phenomena.
Further, it would be a good exercise for both communities to
come together and define a common set of benchmark sim-
ulations for experimental validation and model performance
assessment.

5.2 Advantages

Several advantages are highlighted for both PD and PF
approaches to show why these two methods have been pop-
ular approaches to understand fracture phenomena.

1. Crack initiation: Growth at the tips of long preexisting
cracks are handled by both phase field and peridynamics
noting that brittle crack extension is energy based. For
short interior cracks and notches quasi-static phase field
models have introduced strength based driving forces for
to account for crack nucleation Kumar et al. [175]. For
peridynamics crack nucleation about defects are man-
ifested as dynamic instabilities Silling et al. [394], for
cohesive models see Lipton et al. [47], [124].

2. Notion of damage in the model representation: In most
other models or computational techniques an additional
criteria, e.g. as in Linear Elastic Fracture Mechanics, is
needed to describe the growth of cracks. However, in peri-
dynamic and phase-field models the criteria for the crack
growth is determined as a part of the solution and no
external criteria is needed. The PD correspondence mod-
els offer the opportunity to incorporate classic continuum
damage models in state based peridynamics see Tupek et
al. [395].

3. Increasing complexity in multi-field fracture: Both
models were extended to multi-field fracture. For peri-
dynamic models: thermal effects [396–400], diffusion

[113,397,401–403], geomechanical fracture [1,404–414],
and corrosion [415–417]. For phase-field simulations:
hydraulic fracture [168,201–203,293,355,357,360,418–
428], diffusion [209], thermo-elastic-plastic [199], ther-
mal effects [152,197,198,286,429], geologic/geo-
materials [246,258,430], and fluid-structure interaction
[17,347,431].

5.3 Challenges

The following important issues are identified as challenges
in the context of both PD and PF modeling.

Common challenges to PD and PF

1. From dynamic to quasi-static evolution A long range
goal for fracture modelling will be the ability to recover
quasistatic fracturemodels directly fromdynamic fracture
modelswithout ad-hoc assumptions. This aspect is largely
absent in both PF and PD approaches. To the best of our
knowledge such questions have been raised and partially
answered only recently for a new local fracture model in
the context of the dynamic peeling test in one dimension
as described in Freund [432]. In this context the dynamic
model is a local model for free de-cohesion developed in
DalMaso et al. [433] and the quasistatic limit is identified
in Lazzarioni and Nardini [434]. It is recognized that this
is a hard problem and presents a challenge for PD and PF.

2. Computational cost: Both PD and PF approaches are
computationally expensive. For peridynamics it is the
meshless discretization,which is computational intensive,
similar to molecular dynamics (MD) and smoothed-
particle hydrodynamics (SPH). To accelerate the com-
putations implementations using the Message Passing
Interface (MPI) [84,86,87], the C++ standard library for
parallelism and concurrency (HPX) [88], and GPU accel-
erated [93–95] are available. To speed up the implicit
time integration the following methods were proposed:
Finite element approaches (FEM) [80,82,85], a Galerkin
method that exploits the matrix structure [435], using
sparse matrices instead of a dense tangent stiffness matrix
[436], adaptive dynamic relaxation schemes (ADR) [437–
439], the Fire algorithm [440,441], an explicit tangent
stiffness matrix [442] using bond softening [46], a con-
volution based approach [443,444], and the GMRES
algorithm [444,445] in conjunction with the Arnoldi pro-
cess [446,447]. Here, bond-based material models are
computationally cheaper than state-based models. Fur-
thermore explicit time integration is computationally
cheaper than implicit time integration.
For phase-field models the length scale parameter l0
tends to become small, thus, requiring small mesh sizes
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for finite element discretizations. Therefore, the method
gets computationally expensive due to the large number
of mesh elements. Phase-field models could be acceler-
ated using a staggered schemes instead of a monolithic
scheme [226], GPU acceleration [331], and the Message
Passing Interface (MPI) based parallelization [237,311],
and matrix-free geometric multigrid methods [307,312].
Other attempts to reduce the computational costs are
model order reduction [448,449], sympletic time inte-
grators [450], adaptive schemes [187,202,290,331,333,
336,337,451], and global/local (multiscale) approaches
[315,349,351,452].

3. Lackofdetailed three-dimensional simulations: Proba-
bly due to their computational expenses, only a few three-
dimensional simulations using PF and PD are reviewed
here. Following three-dimensional PD simulations are
available: hydraulic fracture [410,453], the Brokenshire
torsion experiment [454], polymer chains [455], Kalthoff
Winkler [143], pitting corrosion damage [456], 3-point
bending [96], impact damage on the glass layered struc-
ture [96,457,458], penny-shaped crack in a cylindrical bar
[459], double edge notch specimen [459], ductile material
behavior in a rectangular bar [460], pressurized cylinder
[222], and reinforced concrete lap splice [56].
The following three-dimensional research studies using
PF are available: formation and growth of echelon
cracks [228], pressure vessel simulation [222], single-
edge notched shear test [226], cube with rigid spherical
inclusion under tension [221], a block-like geometry
[342], Kalthoff Winkler experiment [221], bolted plate
compared against experimental results [225], simple shear
tests of thoracic aorta with anisotropic failure compared
against experimental results [227], random nucleation
sites [223], L-shaped specimen [224,307], tension test
of cube with spherical inclusion [151], bending of Hop-
kinson bar [461], and Sneddon/Lowengrub benchmark
[202,287,311], and non-isothermal pressurized fractures
[462].
To list some representative three-dimensional simula-
tions, Weinberg et al. [463] showed stress distributions
for modes I, II, and III fractures using NURBS-based
finite elements in three-dimensional simulations. Heider
et al. (2018) compared the hydraulic fracturing simulation
results using PF against the experimental data for granite
samples from the “Hohenberg” quarry in Germany with
good predictive accuracy (within experimental relative
errors less than 15%) for the pressure needed to initiate the
crack in both 2D and 3D geometries. Another plausible
reason for the lack of detailed three-dimensional frac-
ture simulations could also be the associated challenges
to perform detailed three-dimensional experimental mea-
surements and provide validation data sets.

4. Extraction of crack tip/surfaces: Since both models
have a notion of damage, the so-called phase-field crack
function ϕ and the peridynamic damage parameter d, the
position of the crack tip/surface is not encoded in the
model and needs to be approximated. This phenomenon
is not limited to phase-field [281] and peridynamic mod-
els, e.g. [464,465], and relates to any other method which
does not have explicit crack representation in the model.
This could be a source of error for tracking the crack tip
and comparing the crack tip velocity against experimental
observations in dynamic fracture simulations. Ziaei-Rad
et al. (2016) used the non-maximum suppression tech-
nique from an image processing field to detect the ridge
of the phase-field profile and then applied cubic spline fit
to determine the crack path representation with reason-
able success to identify crack branching as well as crack
tips within the mesh resolution limits. Agrawal and Dayal
[466] partially explained the relationship between phase-
field and crack opening displacement and irreversibility
in the phase-field model. Yoshioka et al. [467] presented
two approaches - a line integral and a level-set method, to
compute the crack opening displacement that is required
in hydraulic fracturing simulations and demonstrated that
both approaches computed the crack opening temporal
growth accurately. Despite these recent advances, there is
still room for improvement to extract the complex multi-
ple interacting crack surfaces from simulations.

5. Lack of validation studies against available experi-
mental data: Validation against experimental data for
peridynamics is summarized in [4] and for phase-field
models in [16, Section 2.12]. However, for an accurate
comparison of these twomodels, the same experiment or a
set of experiments should be utilized to gain some insights
of both methods on the same problem. Table 6 lists the
phase-field and peridynamic models which were com-
pared against the same experimental data. On the other
hand, accessing raw experimental data is a different chal-
lenge [366], and one of the Sandia Fracture Challenges
could be used to validate peridynamics and phase-field
models against the same experimental data.

6. Unavailability in commercial codes: Most simulations
of PF and PD models use their implementations in cor-
responding scientific code bases. At the time of writing
of this review, not many commercial codes implemented
either one of the models. LS-DYNA provides a bond-
based peridynamics implementation discretized with the
discontinuous Galerkin FEM [96].

7. Crack nucleation: Although crack propagation and path
is autonomously handled by both models, a complete
theoretical understanding of nucleation for dynamic and
quasistatic fracture is incomplete.
Recent developments include the introduction of a
strength based crack driving force for quasistatic PD [175]
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based on a realistic phenomenology and comparison with
experiments. [162,468–471]. As expected it is a very
active area of interest both for PF [175,176,388,472] and
PD [473–475].

8. Incompressible hyper elastic material behavior: At the
time of completing this review, not many material models
or simulations for incompressible hyper elastic material
behavior, e.g. a Poisson ratio ν = 0.5, were available
for PF [283,284] and the recent PhD thesis [476], and
the application to carbon black filled ethylene propy-
lene diene monomer rubber (EPDM) was done in [285].
For PD we have [140,477,478]. Note that modeling of
hyper elastic material behavior is challenging for any
numericalmethod since the constitutivematerial lawmust
reflect material behaviors such as a neo-Hookean [479]
or Mooney–Rivlin [480] solids and requires for the well-
posedness the inf-sup condition for both the continuous
problem formulation and the discretization.

9. Microscale view of crack propagation physics using
molecular dynamics (MD) simulations:
Seleson et al. [130] showed that peridynamics (PD) mod-
els can recover the same dynamics as the MD model
through appropriate selection of the length scale for
smooth deformations. Ahadi andMelin [481] investigated
accuracy of PD in capturing features emerging fromatom-
istic simulation [482] through calibration of interparticle
bond strength and length scale parameters elastic plas-
tic effects. In a similar attempt to connect the phase-field
method to MD, Patil et al. [483] derived PFM parame-
ters from the MD atomistic simulations and showed that
the theoretical energy release rate G and internal length
parameter are consistent with the MD simulation results.
It is important to note that the microscale physics of crack
nucleation and growth through MD atomistic simulation
can provide the information for upscaling [484]. Given
the current state of the art, the relation between first prin-
ciples models and the macroscopic models of PD and PF
with crack nucleation and propagation has not been firmly
established in the literature.

Specific challenges for peridynamics fracture models

The following challenges are highlighted to show the dif-
ficulties in applying boundary conditions, specific material
models, and controlling numerical errors in PD.

1. Application of boundary conditions: As mentioned in
[4] amajor challengewithinPD is the treatment of bound-
ary conditions in a non-local fashion [485–490]. This is
seen in nonlocal traction conditions for state based linear
peridynamic solids where surface effects appear. For this
case techniques to handle nonlocal traction are recently

developed [127]. More general non-ordinary state based
and correspondencemodels have yet to be addressed. For
local to nonlocal coupling one approach is to couple local
and non-local models to enforce boundary conditions
in the local region and have the non-local model in the
region where cracks and fractures arise. For more details,
we refer to the review on non-local coupling approaches
[491].

2. Constitutive modeling Figure 2 illustrates the plethora
of material models proposed for peridynamics. The
question of choosing a nonlocal model that is an accept-
able representative for a particular material system must
be the focus of a coordinated theoretical and exper-
imental effort. This applies to bond based and state
based PD models as well as correspondence models
Tupek et al. [395] that permit the usage of constitutive
models from local theory within the peridynamic formu-
lation. [41,41,63–70,72–78,492–494]. Thepossibility for
zero energy modes in correspondence models has been
acknowledged and methods for stabilization are being
developed [492,493,495].

3. Choice of discretization parameters: As mentioned
in [4] the choice of the nodal spacing and the hori-
zon results in diverse convergence scenarios [111,114].
One challenge is to find the proper ratio between the
horizon andmesh size, since the simulations are sensitive
[115,116] with respect of these parameters. One adjust-
ment is to select the ratio such that the PD simulation
matches the dispersion curve obtained by the experiment
[496]. Another adjustment is to determine the horizon
by Griffith’s brittle failure criterion [55]. To determine
the discretization parameters from experimental data, the
peridynamic formulation of the virtual fieldmethod could
be applied [497].

4. Surface effects and corrections: Most PD models are
calibrated under the assumption that a discrete PD node
has a full neighborhood. However, points close to the
boundary do not have a full neighborhood and their mate-
rial properties are slightly different from the oneswith the
full neighborhood. This is the so-called surface effect. Le
and Bobaru studied some proposed methods/algorithms
to address the surface effect [498]. The following meth-
ods/algorithms are available: volume method [9, Section
2], force density method [499], energy density method
[10,499,500], force normalization method [82], a modi-
fied position-aware linear solid constitutive model [72],
fictitious node method [397,501], and correction of the
transient heat conduction [502].

5. Development of adaptive PD models and methods:
There is a lack of adaptive methods developed to han-
dle peridynamic fracture problems for coupling interior
dynamics to boundary effects and for coupling inelastic
to elastic domainswithin a simulation.Avariable horizon
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Table 6 For the two experiments, phase-field and peridynamic models were used for comparison

Double edge notches Dynamic brittle fracture in glassy materials

R2 a b c d e εrel a b c

PD [377] 0.83 0.99 0.98 0.98 0.78 PD [379] −0.21/−0.35 0/−0.12 −0.06/−0.06

PF [376] 0.78 0.84 1 0.64 0.65 PF [379] −0.51 0 −0.06

EXP [375] – – – – – EXP [378] 57◦/55◦ {0.53,0.57,0.88}Width 30.7±1.5 μs

To compare with the experimental measurement, the relative error is provided for scalar values and the R2 correlation for a series of values. For the
double edge notches, the displacement (mm) vs the reaction force (N) was compared for a initial crack lengths 12, 16, 20, 24, and 28mm, see (a)–(d).
For the dynamic brittle fracture in glassy materials, the following quantities were studied: (a) crack angle, (b) crack branching position, and (c)
crack branching event. Here, two different PD discretizations: a meshfree discretion [38] and a discontinuous-Galerkin implementation [380]. For
each error measurement, the first value is with respect to the meshfree discretization, and the second one with respect to the discontinuous-Galerkin
implementation

approach is proposed for adaptivity in [503] and [504]. It
is well known that nonlocal models are far more expen-
sive to simulate than local models. Additionally they can
induce artificial dispersive artifacts in otherwise local
elastic regions. These considerations provide motivation
for adaptive local-nonlocal models for fracture evolution.
Here the fracture set is evolved in terms of bond based PD
while FEM methods can be used away from the fracture
set [505]. More on this type of numerical modeling and
implementation can be found in [491].

6. Asymptotically compatible quadrature methods: An
additional way to control accuracy of peridynamic meth-
ods is through development of asymptotically compat-
ible quadrature methods for state based fracture as in
recent approach of [127]. Here, the numerical scheme is
designed to recover linear elastic behavior away from the
crack set asymptotically as the horizon tends to zero.

7. Ductile fracture: As of the time of writing this review,
not many material models and simulation for ductile
fracture were available [506–509]. Note that ductile tear-
ing is challenging for any numerical method, due to the
choice of an appropriate ductile failure model. This fail-
ure model needs to incorporate the failure of hydrostatic
stress (or triaxiality of stress) to predict ductile failure.
Here, state-based and correspondence models will be
beneficial, as bond-based material models are limited to
model two point interactions.

8. Opportunities for quasistatic PD models: The pre-
ponderance of peridynamic simulation has focused on
dynamic problems and this provides an opportunity
for quasistatic fracture modeling [382,510–512] with
suitable PD models. There are plenty of experimental
benchmarks for the validation of peridynamic models in
the quasistatic regime.

Specific challenges for phase-field fracture models

The following challenges are highlighted regarding the han-
dling of complex geometries, material models, and control-
ling numerical errors in estimating crack surface geometries
in PF.

1. Crack path intersecting holes, obstacles, and bound-
aries: Several issues were reported while obtaining crack
paths in agreement with LEFM for problems involving
holes [16]. Another study [163] concluded that judgement
on if a crack arrests or the method simply does not permit
continuation across obstacles, requires expert knowledge.
In pressurized fractures, see e.g., [306], the fracture often
branches, which raises however whether this is physi-
cally reasonable. Moreover, goal functional evaluations
are sensitive to boundary conditions and the domain size
[311].

2. Fast crack propagation under dynamic loading: For
some fast crack propagation simulations, e.g. [466], the
calculated fracture velocity overestimated the fracture
energy dissipation.

3. Composite/Concrete fracture:At the timeofwriting this
review, not many fracture/damage models for composites
[267,513,514] and concrete [515–518] were available.

4. Asymptotic computational understanding of the inter-
action of regularization, model, and discretization
parameters: In terms of numerical and computational
convergence analysis, current PF understanding is still
incomplete. Ingredients of numerical analysis from image
segmentation [519], phase-field in fluid flow [520,521]
are available. Furthermore, computational convergences
analyses for phase-field fracture have been undertaken
[17,290] and [522,523]. Such a rigorous numerical anal-
ysis for a phase-field fracture model substantiated with
numerical tests is missing to date. However, passing to
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the limits in the regularization parameters also requires to
change the mathematical function spaces, e.g., [147,148].

5. Robust andefficient linear solvers andpreconditioners
Closely related to the previous aspect is the development
of iterative ormultigrid linear solvers andpreconditioners.
Several suggestions exist as we have previously dis-
cussed, but a robust preconditioner for variations in the
length-scale l0, the regularization parameter κ , both spa-
tial and temporal discretization parameters, and material
parameter limits, for instance, Poisson’s ratio ν → 0.5
has not yet been fully understood; first attempts can be
found in the PhD theses [524] and [476]. The challenge
are spectral-equivalent operators for preconditioning and
the multiscale-multidomain character due to the varia-
tions of several orders of magnitude of the regularization
parameters.

This review paper has highlighted some common chal-
lenges and specific challenges for both models. In our
opinion, listing these challenges are useful in many ways.
First, these challenges can guide young researchers to inter-
esting research topics they might address for their future
career. Second, these challenges need to be addressed for
rigorous comparison against experiments. Notably in Sect. 5
we point out that there are few comparisons of both meth-
ods against the same experiment. Here, more work is needed
for comparison of both models’ accuracy for specific crack
and fracture phenomena. Another aspect is that both mod-
els have not participated in the Sandia Fracture Challenge as
consistently as other methods. Third, more rigorous mathe-
matical and numerical analysis of cracks speeds, locations
and bifurcations are needed for both methods. Application
and calibration of these methods to composite materials
should be carried out. We believe that this is necessary
for both methods to have a broader acceptance in indus-
try. Presently these methods are being applied by some
research and development departments of companies, how-
ever, they are not used for validation and certification of
products. This is in contrast with the finite element method
where it is used in the final structural certification of the
the Boeing 777. Here, one could argue that the finite ele-
ment method was introduced 75 years ago [525–527], while
free fracture methods were introduced only around 21 years
ago. However, addressing these challenges is crucial for a
broader adaption of these methods outside the academic
setting.

6 Conclusions

A comprehensive review of two numerical modeling
approaches - Peridynamics (PD) and Phase-field (PF) is pre-
sented with the expectation to highlight their advantages, as

well as challenges in modeling fracture initiation, propaga-
tion, and predictive capabilities for experimental validation.
Both numerical methods can retrieve a consistent microscale
physics of crack initiation and propagation. Despite both
approaches being computationally challenging, their advan-
tages in capturingmultiple fracture interactionswithminimal
amount of phenomenological assumptions and closuresmake
PD and PF as a good choice to understand engineering frac-
turemechanics. The following items are listed here for further
improvement of both modeling approaches:

– Both PD and PF need to be evaluated against the same
experimental benchmark for a reasonable comparison in
a blind validation manner. Several experimental datasets
are identified as the available community resources.

– Phase-field simulation results for the Sandia Fracture
Challenge problems could provide the missing piece of
information for a comprehensive and validated compar-
ison among the two modeling approaches.

– There is in general a lack of comparative studies between
these two leading modeling approaches for fracture ini-
tiation and propagation, even for the same set of simple
fracture experiments.15,16
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171. Gerasimov T, Römer U, Vondřejc J, Matthies HG, De Lorenzis L
(2020) Stochastic phase-field modeling of brittle fracture: Com-
puting multiple crack patterns and their probabilities. Comput
Methods Appl Mech Eng 372:113353

172. Larsen CJ, Ortner C, Süli E (2010) Existence of solutions to a
regularized model of dynamic fracture. Math Models Methods
Appl Sci 20(07):1021–1048

173. Chambolle A, Giacomini A, Ponsiglione M (2008) Crack initia-
tion in brittle materials. Arch Ration Mech Anal 188:309–349

174. van Goethem N, Novotny A (2010) Crack nucleation sensitivity
analysis. Math Methods Appl Sci, 33(16)

123



Computational Mechanics (2022) 69:1259–1293 1285

175. KumarA, Bourdin B, Francfort G, Lopez-PamiesO (2020) Revis-
iting nucleation in the phase-field approach to brittle fracture. J
Mech Phys Solids 142:104027

176. de Lorenzis L, Maurini C (2021) Nucleation under multi-axial
loading in variational phase-field models of brittle fracture. Int J
Fract. https://doi.org/10.1007/s10704-021-00555-6

177. Chambolle A, Francfort G, Marigo J-J (2009) When and how do
cracks propagate? J Mech Phys Solids 57(9):1614–1622

178. Mielke A (2005) Evolution of rate-independent systems. Elsevier,
North-Holland, pp 461–559

179. PhamK, Amor H,Marigo J-J,Maurini C (2011) Gradient damage
models and their use to approximate brittle fracture. Int J Damage
Mech 20(4):618–652

180. Pham K, Marigo J-J, Maurini C (2011) The issues of the
uniqueness and the stability of the homogeneous response in uni-
axial tests with gradient damage models. J Mech Phys Solids
59(6):1163–1190

181. Pham K, Marigo J (2013) From the onset of damage to rupture:
construction of responses with damage localization for a general
class of gradient damage models. Continuum Mech Thermodyn
25:147–171

182. NguyenQ (1987)Bifurcation and postbifurcation analysis in plas-
ticity and brittle fracture. J Mech Phys Solids 35:303–324

183. Nguyen Q (2000) Stability and nonlinear solid mechanics. Wiley,
London

184. Benallal A, Marigo J-J (2006) Bifurcation and stability issues in
gradient theories with softening. Modell Simul Mater Sci Eng
15:S283–S295

185. de Borst R, Verhoosel CV (2016) Gradient damage vs phase-field
approaches for fracture: Similarities and differences. Computer
Methods in Applied Mechanics and Engineering, 312:78–94,
Phase Field Approaches to Fracture

186. Miehe C, Hofacker M, Welschinger F (2010) A phase field
model for rate-independent crack propagation: Robust algorith-
mic implementation based on operator splits. Comput Methods
Appl Mech Eng 199(45–48):2765–2778

187. Burke S, Ortner C, Süli E (2010) An adaptive finite element
approximation of a variational model of brittle fracture. SIAM
J Numer Anal 48(3):980–1012

188. Salman O, Truskinovsky L (2021) De-localizing brittle fracture.
J Mech Phys Solids 154:104517

189. Caputo M, Fabrizio M (2015) Damage and fatigue described by
a fractional derivative model. J Comput Phys 293:400–408

190. Amendola G, Fabrizio M, Golden J (2016) Thermomechanics of
damage and fatigue by a phase field model. J Therm Stresses
39(5):487–499

191. Boldrini J, de Moraes EB, Chiarelli L, Fumes F, Bittencourt
M (2016) A non-isothermal thermodynamically consistent phase
field framework for structural damage and fatigue. ComputMeth-
ods Appl Mech Eng 312:395–427

192. Alessi R, Vidoli S, De Lorenzis L (2018) A phenomenological
approach to fatigue with a variational phase-field model: The one-
dimensional case. Eng Fract Mech 190:53–73

193. Seiler M, Hantschke P, Brosius A, Kästner M (2018) A numeri-
cally efficient phase-field model for fatigue fracture-1d analysis.
PAMM 18(1):e201800207

194. Mesgarnejad A, Imanian A, Karma A (2019) Phase-field models
for fatigue crack growth. Theoret Appl Fract Mech 103:102282

195. Seleš K, Aldakheel F, Tonković Z, Sorić J, Wriggers P (2021) A
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