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Abstract
Standard finite element formulation and implementation in solid dynamics at large strains usually relies upon and indicial-
tensor Voigt notation to factorized the weighting functions and take advantage of the symmetric structure of the algebraic
objects involved. In the present work, a novel component-free approach, where no reference to a basis, axes or components
is made, implied or required, is adopted for the finite element formulation. Under this approach, the factorisation of the
weighting function and also of the increment of the displacement field, can be performed by means of component-free
operations avoiding both the use of any index notation and the subsequent reorganisation in matrix Voigt form. This new
approach leads to a straightforward implementation of the formulation where only vectors and second order tensors in R

3

are required. The proposed formulation is as accurate as the standard Voigt based finite element method however is more
efficient, concise, transparent and easy to implement.

Keywords Component-free · Finite element method · Large strain elastodynamics · Isotropic hyperelastic materials · B free

1 Introduction

It is well known that equations in the field of Continuum
Mechanics such as conservation of mass, conservation of
momentum, constitutive relations, etc., might be formulated
in a component-free (or intrinsic or symbolic or invariant)
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notation [13,29] where no reference to a basis, axes or com-
ponents is made, implied or required.

It is also well recognised that such a component-free nota-
tion is a convenient and concise tool tomanipulatemost of the
relations in Continuum Mechanics. However, particularly in
the field of Computational Mechanics, it seems to be essen-
tial to refer vectors and tensors quantities to a basis and thus
developing a discrete formulation based on indicial-tensor
notation. Most of the variational based numerical techniques
adopt this indicial-tensor notation in order to factorized the
weighting functions and then the indicial-tensor notation is
usually arranged in a matrix Voigt form to take advantage
of the symmetric structure of the algebraic objects involved.
Aside from the matrix Voigt form, there are other organi-
sations in indicial-tensor notation like the one proposed by
Gupta and Mohraz [12]. However, as explained in [14] (p.
156), Gupta and Mohraz approach [12] can not be applied
in the context of non-linear analysis. On the contrary, the
matrix Voigt form can be adjusted to formulate and compute
non-linear analysis.

Thus, standard textbooks on finite elements for solid
dynamics at finite strains [3–5,28,38,43] consider Voigt’s
notation and related algebra [42] as the appropriate conven-
tion to represent symmetric second order tensors and fourth
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order tensors (with major and minor symmetries) to perform
a finite element formulation and implementation. The main
reason argued for this choice, aside from being eligible in the
context of non-linear analysis, is the fact that under Voigt’s
notation symmetric tensors are represented by reducing its
order and therefore ‘simplifying’ its algebraic manipulation.
In other words, Voigt’s notation takes advantage of the sym-
metric structure of the algebraic objects involved to reduce
the computational effort. Also, it is oftenmaintained that sim-
ilar algebraic objects are obtained under Voigt’s notation for
different scenarios such as three dimensional, plane-strain,
plane-stress and axisymmetric problems, where the sym-
metric gradient of the shape functions B and the matrix of
material elasticities D always appear [27].

Due to the paramount influence of the finite element
method in Computational Mechanics field, Voigt’s notation
has been adopted in most of the variational based numerical
techniques, such us Discontinuous Galerkin Method [2], the
Material Point Method [19,20,40] or Optimal Transportation
Mesh-free [17,23], where symmetric gradient of the shape
functions B and the matrix of material elasticities D also
appear. Voigt based finite element formulation and imple-
mentation is also widespread considered in other branches of
continuummechanics like the theory of porousmedia includ-
ing large strain setting [16,24,25,35,36,44].

In the present work, the authors propose a completely dif-
ferent approach, as compared to the standardVoigt’s notation
and also to the indicial-tensor notation derived by Gupta and
Mohraz [12], to perform the finite element formulation and
implementation for isothermal elastodynamics at large strain
in the initial configuration. Our principal claim is that the
component-free notation, where no reference to a basis, axes
or components is made, implied or required, can be further
considered in the finite element formulation. Moreover, the
factorisation of the weighting function can be performed by
means of component-free operations, avoiding both the use
of any index notation and the subsequent reorganisation in
matrix Voigt form. The absence of any index notation at this
point of the finite element formulation, brings a concise and
transparent nodal equilibrium equations and related lineari-
sation that are easily implemented. The original idea of this
component-free approach was set by Planas and co-workers
in 2012 [31] with their B free formulation, and it is further
extended and clarified for large strain elastodynamics under
Lagrangian description in the present work. Even though,
the original designation of the component-free approach was
“B free”, the authors of the present manuscript consider
appropriate to adjust the given name to “component-free”
formulation, to further clarify that the proposed formulation
is not only free from the so-called B and D matrix, but, what
is further more paramount, from any basis, axes or compo-
nents, being the key ingredient of the propose approach. The

“B free” finite element approach has been also adopted in
[1,20,21,32,39].

The main benefits of the proposed component-free nota-
tionwith respect to the classical Voigt notation are as follows:

1. The discrete equilibrium equations and related lineari-
sation in the component-free approach resemble their
continuum counterparts. Therefore, this approach has a
more natural interpretation than the classical Voigt nota-
tion.

2. The component-free finite element formulation and
implementation, being as accurate as the classical Voigt
form, is more efficient in terms of computation time.

3. It is well known that first Piola-Kirchhoff stress P and its
power-conjugate Ḟ can be considered to develop a finite
element formulation in the Lagrangian description under
Voigt notation. However, these second order tensors are
non-symmetric andVoigt’s notation leads to larger arrays
of dimension 9 instead of dimension 6. Therefore, in this
circumstance, no reduction of the computational effort
can be gained in Voigt form. On the contrary, in the
component-free approach the computational cost is the
same irrespective of the conjugate pair considered P and
Ḟ or S and Ė. This is possible due to the fact that no
reference to a basis, axes or components is made in the
proposed formulation.

4. The component-free approach exploits the fact that fourth
order tensors never appear by itself in the finite element
equations, but always operating on second order tensors,
avoiding both the use of any index notation and the sub-
sequent reorganisation in matrix Voigt form. Therefore,
the so called B and D matrices never need to be con-
structed or implemented and Voigt vectors never need to
be employed. In the authors’ opinion this is the main rea-
son why the component-free finite element formulation
and implementation is more efficient than the classical
Voigt form.

5. As no reference to a basis, axes or components is made,
implied or required, the component-free approach can
naturally be applied to general classes of constitutive
models such as a general isotropic hyperelastic materials
or even multiplicative plasticity models.

6. As no reference to basis, axes or components is made,
implied or required, the proposed finite element formula-
tion is the same irrespective of the orthogonal coordinate
system considered in practical application cases. This
option is not accessible for any indicial-tensor formu-
lation as are basis dependent.

Evidences to support most of these claimswill be provided in
the present article. The differences of the present manuscript
with respect to [31] are as follows:
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1. Planas and co-workers [31], mainly focused in the small
strain setting where elastostatics, J2 plasticity and mean
dilatation approach were considered. Only a brief outline
for large strain elastostatics was presented in [31]. More-
over, many steps in the derivation as well as a detailed
description of the tensors involved for large strains were
omitted for the sake of brevity in [31]. On the contrary, in
the present work, a detailed derivation of the nodal equi-
librium equations and related linearisation for large strain
elastodynamics in the initial configuration is presented.
Most of the researches in the Computational Mechanics
community, are familiar with the Voigt based approach
and, in the authors’ opinion, they might appreciate a
detailed derivation of the equations and tensors appearing
in the component-free formulation for large strains.

2. In the present work, a careful comparison between the
component-free formulation and the Voigt based for-
mulation for large strain elastodynamics in the initial
configuration is included. This comparison was also
omitted in [31] for large strain elastostatics. Again, in the
authors’ opinion, this comparison is adequate to illus-
trate the scope of the component-free formulation and its
differences with the Voigt based approach.

3. The component-free finite element formulation and
implementation proposed in this work is developed for
a general isotropic hyperelastic material in the initial
configuration, with a strain energy function per unit
volume, W , expressed in terms of the principal invari-
ants IC , I IC , I I IC of the right Cauchy-Green tensor, i.e.
W = W (IC , I IC , I I IC ). Then, particularisation to a
compressible Neo-Hookean material is presented [43].
However, although in [31] the spatial tangent density
is outlined for a general isotropic material in the cur-
rent configuration, no initial configuration counterpart is
presented nor particularisation to any well known hyper-
elastic material is adopted.

4. In the present document, the component-free finite ele-
ment formulation leads to different expressions to be
implemented than those obtained by the standard Voigt
based approach. Therefore, accuracy and efficiency com-
parison with respect to standard Voigt based approach
must be performed for different initial boundary value
problems. In the present work, five different benchmarks
at finite strains are proposed for accuracy and efficiency
assessment. However, no benchmarks were proposed in
[31] to verify the performance of the B free formulation.

5. Planas and co-workers [31] only derived preliminary
analysis to show that the component-free formulation is
never slower than the traditional Voigt based approach,
i.e. they did not show definitive results regarding com-
pared computational costs. On the contrary, in the present
work, the five different benchmarks proposed at finite
strains enable the authors of the present work to con-

clude that the component-free finite element formulation
and implementation shows a clear quantitative improve-
ment in terms of computation time with respect to the
classical Voigt form.

The performance of the component-free approach for large
strain isothermal elastodynamics is illustrated by five numer-
ical examples, one in 1D, three in 2D and one in 3D.
All the proposed benchmarks are particularized for a com-
pressible Neo-Hookean material [7,13,18,29,43]. The 1D
application case is related with a Riemann problem at finite
strains[9,11]. On the other hand, the 2D benchmarks are
related with the plane strain Cook’s membrane [37] under
a dynamic load, a plane strain solid block with low stiffness
under the action of gravity and a large deformation vibra-
tion of a cantilever beam under its own weight. The 3D
benchmark is related with a thick-walled cylinder pinched
by two opposite line dynamic loads. The 1D benchmark
allows the verification of the performance of the proposed
component-free approach regarding the propagation of dis-
continuities in non-linearmaterials at large strains.Moreover,
the reproduction of the 2D and 3D benchmarks allows
the verification of the performance under a shearing dom-
inant behaviour (Cook’s membrane), compression dominant
behaviour (solid block), bending dominant behaviour (can-
tilever beam) and a shearing-compression-bending combined
behaviour (pinched cylinder) . Comparison with the results
obtained by the standard Voigt based finite element imple-
mentation is included.

The rest of the paper is organized as follows. For the
sake of completeness, in Sect. 2, the Lagrangian equations
for large strain isothermal elastodynamics are presented. In
Sect. 3, the variational formulation of the governing equa-
tions, time integration and linearisation of the variational
form is outlined. In Sect. 4, a detailed derivation of the nodal
equilibrium equations and related linearisation and factori-
sation within the component-free approach is provided in the
initial configuration. In this section, key comparisonswith the
standard Voigt base finite element formulation are described.
In Sect. 5 different expressions of the tangent matrix den-
sity are derived for a general isotropic hyperelastic material
within the component-free formulation. In Sect. 6, the
proposed elastodynamic component-free Lagrangian finite
element formulation is considered to reproduce five differ-
ent benchmarks including a Riemann problem, a plane strain
Cook’s membrane under a dynamic load, a plane strain solid
block with low stiffness under the action of gravity, a large
deformation vibration of a cantilever beam under its own
weight and a pinched thick-walled cylinder. This section ends
with an efficiency analysis in terms of computation time. Rel-
evant conclusions, as well as future and promising research
lines, are drawn in Sect. 7.
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2 Initial configuration large strain isothermal
elastodynamics governing equations

This section presents the equations, in the initial configura-
tion, for large strain elastodynamics, symbols and notations
for subsequent sections. For further details the interested
reader is referred to the specialized literature [6,7,13,18,29,
41].

In what follows B0 ⊂ R
3 is the initial configuration of

a deformable body. As the body deforms, its configuration
changes with time. Let t ∈ I ⊂ R denote time and for
each and every t ∈ I associate a unique configuration of the
body Bt ⊂ R

3, refer to as the current configuration at time t .
Material points of the body are labelled by its positionX in the
initial configuration B0 and by x in the current configuration
Bt at time t . The deformation χ : B0 × I → Bt , which is
considered twice-continuously differentiable with respect to
position and time, is a bijection for each and every t ∈ I that
maps points X ∈ B0 to points x = χ (X, t) ∈ Bt .

The deformation gradient F is a second order tensor that
maps material line elements dX in the initial configuration
B0 to line elements dx in the current configuration Bt , and is
defined through any of the following equalities

dx = F dX = ∂x
∂X

dX = Gradx dX (1)

Here and henceforth, Grad and Div denote gradient and
divergence operators in the initial configuration, i.e. with
respect to X. It is assumed F to be non-singular and there-
fore J = det(F) �= 0 (> 0). By introducing the displacement
vector

u (X, t) = χ (X, t) − X (2)

the deformation gradient F can be expressed as

F = I + Gradu (3)

where I is the second order identity tensor.
The velocity v and acceleration a of a material point are

defined, respectively, by

v = ẋ = Dx
Dt

= ∂χ (X, t)

∂t
(4)

a = ẍ = Dv
Dt

= ∂2χ (X, t)

∂t2
(5)

for a fixed X, i.e., by the material time derivative.
Usually, the large strain isothermal elastodynamic equa-

tions in the initial configuration can be derived for conjugate
pairs P and Ḟ or S and Ė, where P is the first Piola-Kirchhoff
stress tensor, S is the second Piola-Kirchhoff stress tensor

and E is the Green-Lagrange strain tensor. Both scenarios
will be considered in the present document.

For the analysis of a non-linear initial boundary value
problem for large strain isothermal elastodynamics in the
initial configuration, a coupled system of partial differential
equations has to be solved, which consist of the local bal-
ance of linear momentum and a constitutive equation. In the
present article, a general isotropic hyperelasticmaterial in the
initial configuration [10], with a strain energy function per
unit volume,W , expressed in terms of the principal invariants
IC , I IC , I I IC of the right Cauchy-Green tensor C = FTF,
is adopted first. Then, particularisation to the well known
compressible Neo-Hookean material [43] is considered for
the benchmarks. The Lagrangian formulation of the conser-
vation of mass is simply stated by ρ̇0 = 0. This implies that
the initial density ρ0 of the material is constant and therefore
does not need to be considered as part of the unknown. Thus,
the strong form of these equations reads

ρ0
Dv
Dt

= DivP + ρ0 g (6)

P = ∂W

∂F
(7)

where g is the gravity acceleration vector.
To complete the mathematical model, boundary and ini-

tial conditions need to be described. Boundary conditions
have to be prescribed on ∂B0. More specifically, accepting
the decomposition ∂B0 = Γu ∪ Γσ where Γu ∩ Γσ = ∅ and
the overline denoting closure, boundary conditions for dis-
placements are prescribed on Γu while boundary conditions
for tractions are considered on Γσ . This leads to

u = u on Γu (8)

PN = t on Γσ (9)

where N is the outward pointing unit normal at each point
on the boundary ∂B0.

Finally, initial conditions for the displacements u and
velocities v at time t = t0,where usually t0 = 0, need to
be prescribed

u (X, 0) = u0 (10)

v (X, 0) = v0 (11)

Eqs. (3), (6) and (7) together with the boundary conditions,
Eqs. (8) and (9), and initial conditions, Eqs. (10) and (11),
completely define the non-linear initial boundary value prob-
lem for large strain isothermal elastodynamics in the initial
configuration where the primary unknown variable is the dis-
placement vector u defined in Eq. (2).

Finally, u · v denotes the standard scalar product of two
vectors u, v ∈ R

3. A second order tensor A is a linear map
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that acts on a vector u giving a vector v = Au. The tensor
product of two vectors u, v ∈ R

3 is denoted by u ⊗ v and
is a second order tensor defined in component-free notation
by (u ⊗ v)w = (v · w)u. Furthermore, composition of two
second order tensors A, B is a second order tensor defined
by (AB) u = A (Bu) while the double contraction A :B is
defined by A :B = tr

(
ATB

)
where tr (u ⊗ v) = u · v and

AT is the transpose of the second order tensor A and is the
second order tensor defined by u · AT v = Au · v.

3 Variational formulation, time integration
and linearisation

3.1 Variational formulation of the governing
equations

Following standard variational principles [14,18], we define
for each t ∈ I ⊂ R the space of trial solutions

St =
{
u (·, t) :B0 → R

3
∣∣∣u ∈ H1,u = u on Γu

}
(12)

and the space of weighting functions

V =
{
η :B0 → R

3
∣∣∣ η ∈ H1, η = 0 on Γu

}
(13)

where H1 is the first-order vector value Sobolev space.
Defining the residual R (u) = DivP + ρ0 (g − v̇), mul-

tiplying this residual by a weighting function η ∈ V ,
integrating the residual over the initial configuration B0,
applying integration by parts, making use of the divergence
theorem and introducing the traction boundary condition
Eq. (9), the variational form of the linear momentum reads
as G (u, η) = 0 where

G (u, η) =
∫

B0

P :Gradη dV − ...

∫

B0

η · ρ0 (g − v̇) dV −
∫

Γσ

η · t d A (14)

Then, the variational form of the non-linear initial boundary
value problem for large strain isothermal elastodynamics in
the initial configuration reads as follows

For each t ∈ I find u ∈ St such that

G (u, η) = 0 ∀η ∈ V (15)

while the initial conditions Eqs. (10) and (11) must be ful-
filled.

3.2 Time integration of the variational form

Time integration of Eq. (14) is performed to obtain a dis-
crete evolution of the displacement vector u [33]. To this
end, let I = [0, T ] be the time interval where integration
of the equations take place and let tn = t0 + nΔt with
n = 0, . . . , N be a sequence of discretization nodes. Let
un, vn, an be the approximation, at node tn , of the displace-
ment vector u (X, tn), the velocity vector v (X, tn) and the
acceleration vector a (X, tn), respectively.

In the present work the well known Newmark method
[26,43] is adopted. This method is based on the following
approximation of the velocities and accelerations at time tn+1

upon the displacements

an+1 = α1

(
un+1 − un

)
− α2vn − α3an (16)

vn+1 = α4

(
un+1 − un

)
+ α5vn + α6an (17)

where the constantsαi for i = 1, . . . , 6 are defined by [22,43]

α1 = 1

β (Δt)2
, α2 = 1

βΔt
, α3 = 1 − 2β

2β
,

α4 = γ

βΔt
, α5 =

(
1 − γ

β

)
, α6 =

(
1 − γ

2β

)
Δt (18)

After evaluation of the variational expression Eq. (14) at time
tn+1, and keeping in mind Eqs. (16) and (17), the time dis-
cretization of the variational form of the non-linear initial
boundary value problem reads as follows

Knowing un, vn and an at time t = tn

find un+1 ∈ Sn+1 at time tn+1 such that

G
(
un+1, η

)
= 0 ∀η ∈ V (19)

subjected to the initial conditions u0 = u0 and v0 = v0.
The choice of the well known implicit Newmark method

[26] is justified for the sake of clarity in the description of
the component-free methodology applied to the large strain
isothermal elastodynamics problem in the initial configura-
tion, avoiding elaborated time integration schemes that could
obscure the process.

3.3 Linearisation of the variational form

In order to solve the non-linear initial boundary value prob-
lem for large strain isothermal elastodynamics in the initial
configuration, linearisation of the variational form must be
performed. The linear part of the variational form at u =
un+1 with respect to the initial configuration is given by

L [G]u=un+1 = G
(
un+1, η

)
+DG

(
un+1, η

)
·Δun+1 (20)
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whereG
(
un+1, η

)
is just the variational expression Eq. (14)

evaluated at time tn+1 while

DG
(
un+1, η

)
· Δun+1 = d

dε

∣
∣∣∣
ε=0

G
(
un+1 + εΔun+1, η

)

(21)

is the directional derivative of G (u, η) at u = un+1 in the
direction Δun+1.

Assuming the tractions t and gravity are independent of
the displacement vector u (dead loads) and keeping in mind
that the initial density ρ0 of the material remains constant
during the deformation process, the directional derivative
DG

(
un+1, η

) ·Δun+1 consists of the linearised internal vir-
tual work and the linearised inertial term, thus

DG
(
un+1, η

)
· Δun+1 = . . .

d

dε

∣∣∣
∣
ε=0

∫

B0

P
(
un+1 + εΔun+1

)
:Gradη dV + . . .

d

dε

∣∣∣
∣
ε=0

∫

B0

η · ρ0a
(
un+1 + εΔun+1

)
dV (22)

where P
(
un+1 + εΔun+1

)
means evaluation of the first

Piola-Kirchhoff stress tensor P at un+1 + εΔun+1, while
a
(
un+1 + εΔun+1

)
means evaluation of the acceleration

vector a at un+1 + εΔun+1.
As the linearisation process is performed with respect to

the initial configuration while P = P (F) and applying the
chain rule, the linearisation of the internal virtual work reads

d

dε

∣
∣∣∣
ε=0

∫

B0

P
(
un+1 + εΔun+1

)
:Gradη dV = . . .

∫

B0

Gradη :An+1 :GradΔun+1 dV (23)

where An+1 is the fourth order elasticity tensor defined by

dP = A
n+1 : dF = ∂P

∂F

∣∣
∣∣
un+1

: dF

If the relation P = FS between the first and the second Piola-
Kirchhoff stress tensors is now considered, keeping in mind
that S = 2 ∂W

∂C and by further use of the chain rule, the lin-
earisation of the internal virtual work then reads

d

dε

∣
∣∣∣
ε=0

∫

B0

P
(
un+1 + εΔun+1

)
:Gradη dV = . . .

∫

B0

(
GradΔun+1 Sn+1

)
:Gradη dV + . . .

∫

B0

(
Fn+1

)T
Gradη :Cn+1 :

(
GradTΔun+1

)
Fn+1 dV

(24)

where Cn+1 is the fourth order elasticity tensor defined by

dS = C
n+1 : dE = 2

∂S
∂C

∣
∣∣∣
un+1

: dE

with E the Green-Lagrange strain tensor. Minor symmetries
of the fourth order tensor C have been used in Eq. (24).

Finally, as the initial density ρ0 of the material remains
constant during the deformation process and considering the
approximation Eq. (16) of the accelerations at time tn+1 upon
the displacements, the linearisation of the inertial term reads
as follows

d

dε

∣
∣∣∣
ε=0

∫

B0

η · ρ0a
(
un+1 + εΔun+1

)
dV = . . .

α1

∫

B0

η · ρ0IΔun+1 dV (25)

where I is the second order identity tensor.
Then if Eqs. (23) and (25) are considered, the directional

derivative of G (u, η) at u = un+1 in the direction Δun+1

reads as follows

DG
(
un+1, η

)
· Δun+1 = . . .

∫

B0

Gradη :An+1 :GradΔun+1 dV + . . .

α1

∫

B0

η · ρ0Δun+1dV I (26)

On the contrary, if Eqs. (24) and (25) are taken in to
account, the directional derivative of G (u, η) at u = un+1

in the direction Δun+1 reads as follows

DG
(
un+1, η

)
· Δun+1 = . . .

∫

B0

(
GradΔun+1 Sn+1

)
:Gradη dV + . . .

∫

B0

(
Fn+1

)T
Gradη :Cn+1 :

(
GradTΔun+1

)
Fn+1 dV + . . .

α1

∫

B0

η · ρ0Δun+1dV I (27)

4 Component-free finite element
discretization

In this section the nodal equilibriumequations and related lin-
earisation are derived applying the component-free Bubnov-
Galerkin finite element discretization process [27,31] to the
variational form and its linearisation.

To obtain the finite element discretization of the varia-
tional problem Eq. (19), the domain B0 is subdivided into ne
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elements Ωe connecting nnd nodes. Each node has as many
degrees of freedom as the number of spatial dimensions. The
space of trial solutions Sn+1 at time tn+1 is restricted to a
finite dimensional subspace S h

n+1 spanned by isoparamet-
ric finite element shape functions Nα : Ω� → R. Standard
Bubnov-Galerkin procedure is considered, inwhich the space
of weighting functions V is restricted to a finite dimensional
subspaceV h spanned by the same shape functions Nα used to
approximate the primary variable un+1 at time tn+1. Spaces
S h

n+1 and V h might be express as

S h
n+1 =

⎧
⎨

⎩
un+1 ∈ Sn+1

∣∣
∣ un+1 =

nnd∑

β=1

Nβ (ξ)un+1
β

⎫
⎬

⎭

V h =
{

η ∈ V | η =
nnd∑

α=1

Nα (ξ) ηα

}

(28)

where ξ is the local orthogonal coordinate system at the ref-
erence element Ω�.

The finite element discretization of the variational prob-
lem Eq. (19) then reads as follows

Knowing un, vn and an at time t = tn

find un+1 ∈ S h
n+1 at time tn+1 such that

G
(
un+1, η

)
= 0 ∀η ∈ V h (29)

Substituting the approximation η = Nα (ξ) ηα in the vari-
ational form of the linear momentum Eq. (14) at time tn+1

yields

G
(
un+1, ηα

)
=

∫

B0

Pn+1 :Grad (
Nαηα

)
dV − . . .

∫

B0

Nαηα · ρ0

(
g − an+1

)
dV − . . .

∫

Γσ

Nαηα · tn+1
d A = 0 (30)

where Einstein summation convention of repeated indices is
considered while superscript n + 1 means evaluation at time
tn+1. In the case of Pn+1 and an+1 this evaluation is done
through its dependency upon un+1 = Nβ (ξ)un+1

β . In the

case of Pn+1 by means of Eqs. (3) and (7) and in the case of
an+1 by means of Eq. (16). For tn+1

only direct evaluation
at time tn+1 is required.

As the evaluation at time tn+1 of the different terms in
expression Eq. (30) have been clarified, superindex n+1 are
omitted for brevity from now on.

Using standard component-free tensor algebra, the inter-
nal virtual work density P :Grad (

Nαηα

)
becomes

P :Grad (
Nαηα

) = P : (
ηα ⊗ GradNα

) = . . .

ηα · (PGradNα) (31)

and keeping in mind that Eq. (30) must hold ∀η ∈ V h

the following nodal equilibrium equation for each node α

is obtained

Gα
(
uβ

) =
∫

B0

PGradNα dV − . . .

∫

B0

Nαρ0 (g − a) dV −
∫

Γσ

Nαt d A = 0 (32)

At this point a comparison between the component-free
approach and the standard Voigt based finite element proce-
dure for large strain elastodynamics in the initial configura-
tion might be beneficial. Before the comparison, the process
to compute the nodal internal virtual work in the standard
finite element method, in terms of the Voigt’s notation, is
briefly outline:

1. Starting with the natural internal virtual work density
P :Gradη, the following symmetrization is performed
[43]

P :Gradη = FS :Gradη = S :FTGradη = . . .

S : 1
2

(
FTGradη + (Gradη)T F

)
= S : δE

where the last equality is a definition for the variation
of the Cauchy-Lagrange strain tensor δE, while S is the
second Piola-Kirchhoff stress tensor and F is the defor-
mation gradient.

2. The weighting functions are approximated by η =
Nαηα and applying standard tensor algebra the following
expression of the gradient in the initial configuration is
achieved

Gradη = ηα ⊗ GradNα

3. Substituting back into the symmetrized internal virtual
work, the following expression is obtained

S : 1
2

(
FT (

ηα ⊗ GradNα

) + (
GradNα ⊗ ηα

)
F
)

4. Then, going back to index notation and letting S =
SABEA ⊗ EB , F = FaAea ⊗ EA, GradNα = Nα,AEA

and E = EABEA ⊗ EB the last expression reads

SAB
1

2

(
FaANα,B + Nα,AFaB

)
ηαa = SABδEAB

where factorisation of the nodal weighting function ηαa

is obtained by the commutative property of scalar multi-
plication.
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5. Voigt’s transformation enters the scene and the second
Piola-Kirchhoff stress tensor S is transformed into the
6 × 1 vector

S = [S11, S22, S33, S12, S23, S33]
T

while the variation of the Cauchy-Lagrange strain tensor
δE is transformed into the 6 × 1 vector

δE = [δE11, δE22, δE33, 2δE12, 2δE23, 2δE33]
T

where the symmetry of S and δE is considered.
6. The variation of the Cauchy-Lagrange strain tensor δE

can be further express by Bηα where B is the operator
defined by [27,43]

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

F11Nα,1 F21Nα,1 F31Nα,1

F12Nα,2 F22Nα,2 F32Nα,2

F13Nα,3 F23Nα,3 F33Nα,3

F11Nα,2 + Nα,1F12 F21Nα,2 + Nα,1F22 F31Nα,2 + Nα,1F32
F12Nα,3 + Nα,2F13 F22Nα,3 + Nα,2F23 F32Nα,3 + Nα,2F33
F11Nα,3 + Nα,1F13 F21Nα,3 + Nα,1F23 F31Nα,3 + Nα,1F33

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

(33)

7. Finally, taking into account the arbitrariness of the
weighting functions η, the nodal internal virtual work
density is expressed by BTS in the standard Voigt based
finite element method.

After comparison of the nodal internal virtual work density
PGradNα obtained with the component-free approach and
the one given by the finite element method in Voigt form
BTS, the following important remarks follow.

Aswe are dealingwith a variational approach, a key ingre-
dient in the formulation of the nodal internal virtual work
density is howandwhen the factorisation of the nodalweight-
ing functions ηα is performed. In the case of a Voigt notation
approach, this factorisation is obtained by means of the com-
mutative property of scalar multiplication, after the index
notation is considered (step 4) while the remainder terms are
reorganized in the matrix Voigt form BTS, where a dense
6 × 3 matrix B is computed and then a 3 × 6 times a 6 × 1
vector multiplication is finally performed.

On the contrary, in the component-free approach the fac-
torisation of the nodal weighting functions ηα is performed
by means of the component-free operation Eq. (31), avoid-
ing the use of any index notation for this factorisation and
the subsequent reorganisation in matrix Voigt form. The
absence of any index notation in the factorisation of the
nodal weighting functions ηα leads to a concise and transpar-
ent nodal internal virtual work density expression PGradNα .
In contrast to the Voigt’s notation, the nodal internal virtual
work term PGradNα in Eq. (32) is computed directly as a
3× 3 matrix 3× 1 vector multiplication, once an orthogonal

basis EA and eA are defined in the initial and in the current
configuration, respectively. Thus if P = PaAea ⊗ EA and
GradNα = Nα,AEA then

PGradNα = PaANα,Aea

A crucial point is that this basis plays no role in the
factorisation of the nodal weighting functions ηα in the
component-free approach.Adirect consequence of this novel
procedure to performed the factorisation of the nodal weight-
ing function is that less number of operations per element is
involved to compute the nodal internal virtual work density
in the component-free approach than in the classical Voigt
based finite element method.

The differences between the component-free and theVoigt
based approaches become evenmore clearwhen dealingwith
the discretisation of the linearised variational form of the
linear momentum. This will be the topic for the rest of the
present Sect. 4.

The starting point to derive the component-free discretisa-
tion of the linearised variational formof the linearmomentum
is either Eqs. (26) or (27) (superindex n + 1 omitted for
brevity), depending on the stress tensor adopted in the
formulation. If the first Piola-Kirchhoff stress tensorP is con-
sidered, then the discretisation of the linearised variational
form starts from Eq. (26). On the contrary, if the second
Piola-Kirchhoff stress tensors S is used, then the discretisa-
tion starts from Eq. (27).

For both scenarios, Eqs. (26) or (27), a key ingredient is
to considered the approximations η = Nα (ξ) ηα and Δu =
Nβ (ξ)Δuβ (superindex n + 1 omitted for brevity) together
with the following component-free expressions for theGradη
and GradΔu (superindex n + 1 omitted for brevity) in the
initial configuration

Gradη = ηα ⊗ GradNα (34)

GradΔu = Δuβ ⊗ GradNβ (35)

After substitution the approximations η = Nα (ξ) ηα and
Δu = Nβ (ξ)Δuβ as well as the Eqs. (34) and (35) in
Eq. (26), the following component-free discretisation of
the linearised variational form of the linear momentum is
obtained (superindex n + 1 omitted for brevity)

DG
(
uβ, ηα

) · Δuβ = . . .
∫

B0

(
ηα ⊗ GradNα

) :A: (Δuβ ⊗ GradNβ

)
dV + . . .

α1

∫

B0

Nαηα · ρ0NβΔuβdV I (36)

Similarly, substituting the approximations η = Nα (ξ) ηα

and Δu = Nβ (ξ)Δuβ as well as the Eqs. (34) and (35)
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in Eq. (27) the following component-free discretisation of
the linearised variational form of the linear momentum is
obtained (superindex n + 1 omitted for brevity)

DG
(
uβ, ηα

) · Δuβ = . . .
∫

B0

(
Δuβ ⊗ GradNβ

)
S : (

ηα ⊗ GradNα

)
dV + . . .

∫

B0

(
FT ηα ⊗ GradNα

)
:C :

(
GradNβ ⊗ FTΔuβ

)
dV + . . .

α1

∫

B0

Nαηα · ρ0NβΔuβdV I (37)

Integrand terms inEqs. (36) and (37) that include fourth order
tensors, can be expressed by the following component-free
expressions [31]

(
ηα ⊗ GradNα

) :A : (
Δuβ ⊗ GradNβ

) = . . .

ηα · A {
GradNα,GradNβ

}
Δuβ (38)

(
FT ηα ⊗ GradNα

)
:C :

(
GradNβ ⊗ FTΔuβ

)
= . . .

ηα · FC {
GradNα,GradNβ

}
FTΔuβ (39)

where A
{
GradNα,GradNβ

}
and C

{
GradNα,GradNβ

}
are

second order tensors that can be defined in component-free
notation as follows: For any vectors a,b, c ∈ R

3 and fourth
order tensor T, the second order tensor T {c,b} is defined by

[T {c,b}] a = [T : (a ⊗ b)] c (40)

Substituting Eq. (38) in Eqs. (36) and (39) in Eq. (37) while
keeping in mind that Eqs. (36) and (37) must hold for every
ηα , the following expressions are achieved

DGα
(
uβ

) · Δuβ = . . .
∫

B0

A
{
GradNα,GradNβ

}
Δuβ dV + . . .

α1

∫

B0

ρ0NαNβΔuβdV I (41)

DGα
(
uβ

) · Δuβ = . . .
∫

B0

S : (
GradNα ⊗ GradNβ

)
Δuβ dV + . . .

∫

B0

FC : (
GradNαGradNβ

)
FTΔuβ dV + . . .

α1

∫

B0

ρ0NαNβΔuβdV I (42)

As Δuβ are nodal directions at time tn+1, they can be taken
off the integral.

Then, from Eq. (41), the following nodal directional
derivative of the equilibrium equation, for the pair of nodes

(α, β), is obtained

DGα
(
uβ

) · Δuβ =
[
Kmat

αβ + Kiner
αβ

]
Δuβ (43)

whereKmat
αβ is the tangentmatrix relatedwith the constitutive

relation defined by

Kmat
αβ =

∫

B0

A
{
GradNα,GradNβ

}
dV (44)

whileKiner
αβ is the tangentmatrix relatedwith the inertial term

defined by

Kiner
αβ = α1

∫

B0

ρ0 NαNβ dV I (45)

Similarly, from Eq. (42), the following nodal directional
derivative of the equilibrium equation, for the pair of nodes
(α, β), is obtained

DGα
(
uβ

) · Δuβ =
[
K̃geo

αβ + K̃mat
αβ + Kiner

αβ

]
Δuβ (46)

where K̃geo
αβ is the geometric tangent matrix defined by

K̃geo
αβ =

∫

B0

S : (
GradNα ⊗ GradNβ

)
IdV (47)

while K̃mat
αβ is the tangent matrix related with the constitutive

relation defined by

K̃mat
αβ =

∫

B0

FC
{
GradNα,GradNβ

}
FT dV (48)

and again,Kiner
αβ is the tangent matrix related with the inertial

term, already defined in Eq. (45)
The Eq. (45) is the standard mass matrix under New-

mark time integration and requires no further clarification.
However, this is not the case for Eqs. (44) and (48) that
still require an explicit expression for the second order ten-
sors A

{
GradNα,GradNβ

}
and C

{
GradNα,GradNβ

}
for a

particular constitutive relation. This is done in Sect. 5 for
a general isotropic hyperelastic material in the initial con-
figuration and particularised afterwards to the well known
compressible Neo-Hookean material.

At this point, a comparison between the component-free
and Voigt based approaches regarding the process to formu-
late the tangent matrix is now performed. For the sake of
completeness, the process to derive the tangent matrix in the
standard Voigt form [43] is now outline:
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1. Starting with the linearised internal virtual work density
term from Eq. (22)(superindex n+1 omitted for brevity)

[DP (u) · Δu] :Gradη (49)

Considering the relationP = FS between the first and the
second Piola-Kirchhoff stress tensors, keeping in mind
that S = S (C) with C = FTF, that the following rela-
tions hold

d

dε

∣
∣∣∣
ε=0

F (u + εΔu) = GradΔu ;
d

dε

∣∣∣
∣
ε=0

S (u + εΔu) = . . .

C : 1
2

(
FTGradΔu + (GradΔu)T F

)
= C : ΔE ;

where C = 2 ∂S
∂C and E = 1

2 (C − I) and applying the
product rule for the directional derivative, then Eq. (49)
reads

[DP (u) · Δu] :Gradη = . . .

(GradΔu S) :Gradη + FTGradη : [C : ΔE]

taking advantage of the minor symmetries of the fourth
order tensor C the Eq. (49) can also be written as

[DP (u) · Δu] :Gradη = . . .

(GradΔu S) :Gradη + δE :C : ΔE (50)

2. The first term (GradΔu S) :Gradη in Eq. (50) is usu-
ally known as the initial stress. After substitution of the
approximations

Gradη = ηα ⊗ GradNα (51)

GradΔu = Δuβ ⊗ GradNβ (52)

in the initial stress, the following expression is obtained

(GradΔu S) :Gradη = . . .
[
S : (

GradNα ⊗ GradNβ

)]
Δuβ · ηα (53)

3. The second term δE :C : ΔE in Eq. (50) depends upon
the constitutive relation. After substitution in this sec-
ond term the approximations Eq. (51) and Eq. (52), the
standard finite element method again goes back to index
notation. Letting F = FaAea ⊗ EA, C = CABEA ⊗ EB ,
C = CABCDEA ⊗ EB ⊗ EC ⊗ ED and GradNα =
Nα,AEA this material dependent term can be read as fol-
lows

ηαa
1

2

(
FaANα,B + Nα,AFaB

)
CABCD . . .

1

2

(
FaC Nβ,D + Nβ,C FaD

)
Δuβa (54)

This time the index notation allows the factorisation of
both, the nodal weighting function ηαa and the increment
of the displacement fieldΔuβa , by the commutative prop-
erty of scalar multiplication.

4. Voigt’s transformation enters the scene and the fourth
order constitutive tensor C is transformed into a 6 × 6
symmetric matrix D being

D =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

C1111 C1122 C1133 C1112 C1123 C1113

C2222 C2233 C2212 C2223 C2213

C3333 C3312 C3323 C3313

C1212 C1223 C1213

C2323 C2313

C1313

⎤

⎥⎥⎥⎥
⎥⎥
⎦

where the components CABCD = 2 ∂SAB
∂CCD

depend upon
the constitutive relation considered.

5. Also by the Voigt’s transformation, the expression

ηαa
1

2

(
FaANα,B + Nα,AFaB

)

in Eq. (54) becomes ηαB
T while

1

2

(
FaC Nβ,D + Nβ,C FaD

)
Δuβa

also in Eq. (54) becomes BΔuβ where B is given by
Eq. (33). Therefore, Eq. (54) becomes ηαB

TDBΔuβ

6. Taking into account the arbitrariness of the weighting
functions η, and thatΔuβ are nodal directions and can be
taken off the integrals, in the standard Voigt based finite
element method the tangent density is finally expressed
by

[
S : (

GradNα ⊗ GradNβ

)]
I + BTDB (55)

including the initial stress term and the material term.

After comparison of the tangent densities obtained with the
component-free approach and the Voigt notation

A
{
GradNα,GradNβ

}
(component-free for P)

S : (
GradNα ⊗ GradNβ

)
I + FC

{
GradNα,GradNβ

}
FT

(component-free for S)

S : (
GradNα ⊗ GradNβ

)
I + BTDB (Voigt based)

some important remarks follow:

1. Oncemore, aswe are dealingwith a variational approach,
a key ingredient in the computation of the tangent matrix,
for a pair of nodes (α, β), is how and when the factori-
sation of both, the nodal weighting functions ηα and the
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increment of the displacement field Δuβ , is performed.
In the case of a Voigt notation approach, this factorisation
is obtained, again, bymeans of the commutative property
of scalarmultiplication, after the index notation is consid-
ered (step 3) while the remainder terms are reorganized
in the matrix Voigt form BTDB, to take advantage of the
symmetries of the second order tensor E and the fourth
order tensorC, by means of the dense 6×3 matrix B and
the symmetric 6 × 6 matrix D, respectively.

2. On the contrary, in the component-free approach the fac-
torisation of the nodal weighting functions ηα and the
increment of the displacement fieldΔuβ is performed by
means of the component-free operations Eqs. (38) and
(39), avoiding both, the use of any index notation and
the subsequent reorganisation in matrix Voigt form. The
absence of any index notation in this double factorisation
leads to the second order tensorA

{
GradNα,GradNβ

}
or

FC
{
GradNα,GradNβ

}
FT , depending on the stress P or

S adopted in the formulation, respectively. The specific
expression for both second order tensors,
A

{
GradNα,GradNβ

}
and C

{
GradNα,GradNβ

}
, will

be clarify for a general for a general isotropic hyperelastic
material in the initial configuration and then particu-
larised to the well known compressible Neo-Hookean
material in Sect. 5.

3. Direct comparison of the component-free tangent density
for S and the tangent density in Voigt notation give rise
to the following equality

FC
{
GradNα,GradNβ

}
FT = BTDB (56)

while the Voigt expression BTDB is a 3 × 6 times 6 × 6
times 6 × 3 matrix multiplication, the component-free
expression FC

{
GradNα,GradNβ

}
FT is a 3 × 3 times

3× 3 times 3× 3 matrix multiplication, once an orthog-
onal basis EA and eA are defined in the initial and in the
current configuration, respectively. Therefore, less num-
ber of operations per element is involved to compute the
nodal tangent density in the component-free approach
than in the classical Voigt based finite element method.

4. Again, a crucial point is that the basis considered to com-
pute the component-free tangent density plays no role
in the factorisation of the nodal weighting functions ηα

neither in the factorisation of the increment of the dis-
placement field Δuβ . This novel procedure to performed
this double factorisation, leads to a concise and transpar-
ent nodal tangent density in terms of the second order
tensor A

{
GradNα,GradNβ

}
or C

{
GradNα,GradNβ

}
.

Finally, the following general remarks are stated:

• As isoparametric finite element shape functions Nα :
Ω� → R are considered, its gradient GradNα at an arbi-

trary node α is computed by

GradNα = F̂
−T ˆGradNα

where the gradient F̂ is defined by

F̂ =
nnd∑

β=1

Xβ ⊗ ˆGradNβ

while ˆGradNβ means gradient of the isoparametric shape
function Nβ : Ω� → R with respect to the local orthog-
onal coordinate system ξ at the reference element Ω�
and Xβ is the position of the node β in the initial config-
uration B0.

• In order to compute integrals in Eqs. (32, 44, 45, 47, 48)
standard assembly process is considered.

• The final non-linear algebraic system of equations in
Eq. (29) can be solved by means of an iterative proce-
dure, like the Newton-Raphson method, to determine the
unknown displacements un+1 at time tn+1. Combining
Eqs. (32) and (43) or (32) and (46), the Newton-Raphson
method might be expressed as

DGα
(
un+1

β(i)

)
· Δun+1

β = −Gα
(
un+1

β(i)

)

un+1
β(i+1) = un+1

β(i) + Δun+1
β (57)

where subindex (i) is the iteration index.

5 Material tangent matrix density

5.1 General isotropic hyperelastic material

In this subsection, explicit expression of the second order
tensor A

{
GradNα,GradNβ

}
that appears in Eq. (44) and

the second order tensor C
{
GradNα,GradNβ

}
that appears

in Eq. (48), are derived for a general isotropic hyper-
elastic material, with a strain energy function per unit
volume, W , expressed in terms of the principal invariants
IC , I IC , I I IC of the right Cauchy-Green tensor C, i.e.W =
W (IC , I IC , I I IC ).

The steps followed to obtain the material tangent matrix
density for a general isotropic hyperelastic material are:

1. The expression of the fourth order elasticity tensor C
related with the second Piola-Kirchhoff stress S, i.e.
C = 2 ∂S

∂C = 4 ∂W
∂C∂C , is derived bymeans of the chain rule.

2. The expression of the second order tensor C {v,b}
for any vectors v,b ∈ R

3 is derived by means of
a component-free manipulation through the definition
Eq. (40). At the end of this step, an explicit expression
for C

{
GradNα,GradNβ

}
will be derived.
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3. Based on the expression for C
{
GradNα,GradNβ

}
, an

explicit expression for A
{
GradNα,GradNβ

}
is finally

obtained.

It is well known that the second Piola-Kirchhoff stress tensor
S for a hyperelastic material with a strain energy function
per unit volumeW that fulfils objectivity requirement can be
obtained [13,29] by means of S = 2 ∂W

∂C where C is the right
Cauchy-Green tensor.

If the hyperelastic material is isotropic, then the strain
energy function,W , may be regarded as function of the prin-
cipal invariants IC , I IC , I I IC . Therefore, by the chain rule,
the second Piola-Kirchhoff stress tensor S reads [43]

S = 2

(
∂W

∂ IC
+ IC

∂W

∂ I IC

)
I − ∂W

∂ I IC
C + I I IC

∂W

∂ I I IC
C−1

(58)

by further use of the chain rule and making use of the
component-free product rule ∂(αS)

∂C = S ⊗ ∂α
∂C + α ∂S

∂C for a
scalar valued α and second order tensor valued S tensor func-
tions, the following expression for the fourth order elasticity
tensor C is obtained [10]

C = Γ1C−1 ⊗ C−1 + Γ2

(
I ⊗ C−1 + C−1 ⊗ I

)
+ . . .

Γ3

(
C ⊗ C−1 + C−1 ⊗ C

)
+ Γ4I ⊗ I

+Γ5 (I ⊗ C + C ⊗ I) + . . .

Γ6C ⊗ C + Γ7I − Γ8
∂C−1

∂C
(59)

where the coefficients Γi are scalar functions of the principal
invariants IC , I IC , I I IC .

The second order tensor C {v,b}, for any vectors v,b ∈
R
3, is defined by Eq. (40). This definition is a component-

free definition of a second order tensor, i.e., the second order
tensor C {v,b} is understood as a linear map that acts over
a vector a, i.e. [C {v,b}] a, giving as a result the vector
[C : (a ⊗ b)] v.

As the space of fourth order tensors is a vector space itself,
then

C : (a ⊗ b) = Γ1

(
C−1 ⊗ C−1

)
: (a ⊗ b) + . . .

Γ2

(
I ⊗ C−1 + C−1 ⊗ I

)
: (a ⊗ b) + . . .

Γ3

(
C ⊗ C−1 + C−1 ⊗ C

)
: (a ⊗ b) + . . .

Γ4 (I ⊗ I) : (a ⊗ b) + Γ5 (I ⊗ C + C ⊗ I) : (a ⊗ b) + . . .

Γ6 (C ⊗ C) : (a ⊗ b) + Γ7I : (a ⊗ b) − . . .

Γ8
∂C−1

∂C
: (a ⊗ b) (60)

Taking into account the following three component-free rela-
tions

I: (a ⊗ b) = 1

2
(a ⊗ b + b ⊗ a)

∂C−1

∂C
: (a ⊗ b) = −1

2

(
C−1a ⊗ C−Tb + C−1b ⊗ C−T a

)

C−1 ⊗ C−1 : (a ⊗ b) =
(
a · C−1b

)
C−1

for any vectors a,b ∈ R
3, expression Eq. (60) reads

C : (a ⊗ b) = Γ1

(
a · C−1b

)
C−1 + Γ2

(
a · C−1b

)
I + . . .

Γ2 (a · b)C−1 + Γ3

(
a · C−1b

)
C + Γ3 (a · Cb)C−1 + . . .

Γ4 (a · b) I + Γ5 (a · Cb) I + Γ5 (a · b)C + . . .

Γ6 (a · Cb)C + Γ7

2
(a ⊗ b + b ⊗ a) + . . .

Γ8

2

(
C−1a ⊗ C−Tb + C−1b ⊗ C−T a

)
(61)

Applying the second order tensor obtained in Eq. (61) to an
arbitrary vector v ∈ R

3, i.e.[C : (a ⊗ b)] v, and considering
the following component-free expressions

(
a · C−1b

)
C−1v =

(
C−1v ⊗ C−1b

)
a

(b ⊗ a) v = (b ⊗ v) a

(a ⊗ b) v = (b · v) Ia

the following expression follows

[C : (a ⊗ b)] v = Γ1

(
C−1v ⊗ C−1b

)
a + . . .

Γ2

(
v ⊗ C−1b

)
a + Γ2

(
C−1v ⊗ b

)
a + . . .

Γ3

(
Cv ⊗ C−1b

)
a + Γ3

(
C−1v ⊗ Cb

)
a + . . .

Γ4 (v ⊗ b) a + Γ5 (v ⊗ Cb) a + . . .

Γ5 (Cv ⊗ b) a + Γ6 (Cv ⊗ Cb) a + . . .

Γ7

2
((b · v) Ia + (b ⊗ v) a) + . . .

Γ8

2

((
C−Tb · v

)
C−1a +

(
C−1b ⊗ C−1v

)
a
)

(62)

As the space of second order tensors is a vector space
itself, the vector a can be extracted as a common fac-
tor. Moreover, considering now definition Eq. (40), i.e.
[C {v,b}] a = [C : (a ⊗ b)] v, and keeping in mind that C
is symmetric, the following final expression is obtained for
the second order tensor C {v,b}

C {v, b} = Γ1
(
C−1v ⊗ C−1b

) + Γ2
(
v ⊗ C−1b

) + . . .

Γ2
(
C−1v ⊗ b

) + Γ3
(
Cv ⊗ C−1b

) + Γ3
(
C−1v ⊗ Cb

) + . . .
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Γ4 (v ⊗ b) + Γ5 (v ⊗ Cb) + Γ5 (Cv ⊗ b) + . . .

Γ6 (Cv ⊗ Cb) + Γ7

2
((b · v) I + (b ⊗ v)) + . . .

Γ8

2

((
C−1b · v)C−1 + (

C−1b ⊗ C−1v
))

(63)

finally, by considering v = GradNα and b = GradNβ in
Eq. (63) an explicit expression of the second order tensor
C

{
GradNα,GradNβ

}
is obtained.

The comparison of the component-free tangent density for
P and the component-free tangent density for S, both derived
in Sect. 4, gives rise to the following equality

A
{
GradNα,GradNβ

} = . . .

S : (
GradNα ⊗ GradNβ

)
I + FC

{
GradNα,GradNβ

}
FT

(64)

Combining Eqs. (63) and (64) an explicit expression for the
second order tensor A

{
GradNα,GradNβ

}
is obtained.

In the authors’ opinion, the formulation and implementa-
tion with Voigt notation, by means of the so-called matrix D,
of the material tangent matrix density for a general isotropic
hyperelastic material would be non-trivial as compared with
the component-free approach shown in this Subsect. 5.1.

5.2 Compressible Neo-Hookeanmaterial

The compressibleNeo-Hookeanmaterialmight be expressed
by the following strain energy function per unit volume [43]

W (IC , J) = Λ

4

(
J2 − 1

)
−

(
Λ

2
+ μ

)
ln(J) + 1

2
μ (IC − 3)

(65)

where J is the determinant of the deformation gradient F,
IC is the first principal invariant of the right Cauchy-Green
tensor C, while Λ and μ are the Lamé constants. Moreover,
the second Piola-Kirchhoff stress tensor S = 2 ∂W

∂C can be
computed by means of Eq. (58) as

S = Λ

2

(
J2 − 1

)
C−1 + μ

(
I − C−1

)
(66)

while the fourth order elasticity tensor C = 2 ∂S
∂C reads as

follows

C = ΛJ2C−1 ⊗ C−1 +
(
Λ

(
J2 − 1

)
− 2μ

) ∂C−1

∂C
(67)

In order to derive explicit expression for the second order ten-
sor C

{
GradNα,GradNβ

}
, particularized to the well known

compressible Neo-Hookean material, one could reproduce
the steps follow in Subsect. 5.1.

However, under the scopeof the component-free approach,
the second order tensor C

{
GradNα,GradNβ

}
has been eas-

ily obtained for a general isotropic hyperelastic material.
Thus, we can take advantage of it.

Following this second approach, it would be enough to
consider v = GradNα and b = GradNβ in Eq. (63) together
with the following values for the coefficients Γi

Γ1 = ΛJ2, Γ8 = −Λ
(
J2 − 1

)
+ 2μ,

Γi = 0 for i = 2, . . . , 7 (68)

Moreover, if the explicit expression for the second order
tensor A

{
GradNα,GradNβ

}
is sought for the compressible

Neo-Hookean material, then combination of Eqs. (63) and
(64) with the values of the coefficients Γi given by Eq. (68)
would be also enough.

6 Validation benchmarks and efficiency
analysis

The performance of the component-free approach for large
strain isothermal elastodynamics is illustrated by five numer-
ical examples, one in 1D, three in 2D and one in 3D.
All the proposed benchmarks are particularized for a com-
pressible Neo-Hookean material. The 1D application case
is related with a Riemann problem at finite strains[9,11].
On the other hand, the 2D benchmarks are related with
the plane strain Cook’s membrane [37] under a dynamic
load, a plane strain solid block with low stiffness under
the action of gravity and a large deformation vibration
of a cantilever beam under its own weight [34]. The 3D
benchmark is related with a thick-walled cylinder pinched
by two opposite dynamic line loads. The 1D benchmark
allows the verification of the performance of the proposed
component-free approach regarding the propagation of dis-
continuities in non-linearmaterials at large strains.Moreover,
the reproduction of the 2D and 3D benchmarks allows
the verification of the performance under a shearing dom-
inant behaviour (Cook’s membrane), compression dominant
behaviour (solid block), bending dominant behaviour (can-
tilever beam) and a shearing-compression-bending combined
behaviour (pinched cylinder). Comparison with the results
obtained by the standard Voigt based finite element imple-
mentation is included.

In all benchmarks considered, time integration is per-
formed by means of the Newmark method with γ = 0.5
and β = 0.25, e.g., an implicit unconditionally stable sec-
ond order trapezoidal rule is considered. The final non-linear
algebraic system is solved bymeans ofNewton-Raphson iter-
ative procedure with T OL = 10−10. All numerical solutions
with the component-free proposed formulation are obtained
at a quadratic rate of asymptotic convergence.
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6.1 1D Riemann problem at finite strains

In the present case of validation, aRiemann problem, consist-
ing of a longitudinal propagation of an initial discontinuity
in the velocity field over an infinite homogeneous compress-
ible Neo-Hookean bar, is analysed. This benchmark is of
paramount importance, as numerical methods might fail to
capture the complex behaviour display in time-dependent
non-linear hyperbolic conservation laws, where shock and
rarefaction waves might appear.

This problem might be represented in a Lagrangian
configuration by a longitudinal wave propagating in the
X−direction

x = X + u (X , t) , y = Y , z = Z (69)

where x = (x, y, z) and X = (X ,Y , Z), on a homogeneous
compressible Neo-Hookean continuum, subjected to a piece-
wise constant initial velocity field

v (X , 0) =
{

vL X ≤ X0

vR X > X0
(70)

where v = ut while vL > vR , on an undeformed bar and
without boundary conditions in X−direction.

The present initial problem leads to the following quasi-
linear second order partial differential equation

(
Λ

2
+ μ

)[
(1 + uX )2 − 1

1 + uX

]

X

= ρ0utt (71)

for u (X , t).
The analytical solution might be obtained as a first order

non-linear hyperbolic system in the independent variables
ε = ux and v = ut [9,11] and consists of two different
shock waves travelling in opposite directions from the initial
discontinuity location. Clustering the independent variables
as w = (ε, v) this analytical solution might be expressed as

w (X , 0) =
⎧
⎨

⎩

wL X ≤ s1t
wM s1t < X ≤ s2t
wR X > s2t

(72)

where s1 and s2 are the shock speed of the left and right travel-
ling sock waves, respectively, while wM is the intermediate
state connected to the left state wL = (0, vL) through the
left travelling sock wave and to the right state wR = (0, vR)

through the right travelling sock wave. For further details in
this analytical solution, the interested reader is referred to the
specialized literature [9,11].

The numerical set up of this benchmark is as follows.Abar
of 100m length and0.1mwide is analysedunder a plane strain
representation, Fig. 1. In order to obtain a 1D longitudinal

Fig. 1 Initially undeformed bar of 100m×0.1m. Velocity field discon-
tinuity at X = 50m with vL = 10m/s and vR = 0m/s

Table 1 Material parameters for
the Riemann problem

E [GPa] ν ρ0
[
Kg/m3

]

10 0.3 2600

Fig. 2 Zero initial deformation ux along the bar at time t = 0s
(upward); initial discontinuity in the velocity field at time t = 0s (down-
ward)

wave propagation, zero vertical displacement is imposed in
the upper and lower boundaries of the bar Fig. 1. The spatial
discretization has been performed by a unique row of 1000
four-node linear isoparametric quadrilateral elements (Q4)
with four Gauss points per element.

The material parameters considered for the compressible
Neo-Hookean material, including the initial density, are dis-
played in Table 1.

The Young modulus E , density ρ0, time step Δt = 5 ·
10−5s and spatial discretization considered, give a Courant
number of 0.98. In order to represent a bar of infinite length,
Neumann homogeneous boundary conditions were placed
at X = 0m and at X = 100m. The initial discontinuity in
the velocity field is set at X = 50m with vL = 10m/s and
vR = 0m/s on an initially undeformed bar Fig. 1.

Before the comparison between the component-free and
the Voigt based methods is performed, it would be benefi-
cial to visualised the longitudinal propagation of the initial
discontinuity in the velocity field over the bar. To this end,
in Figs. 2, 3, 4 and 5, snapshots of the propagation at times
t = 0s, 0.001s, 0.002s, 0.003s can be observed

In Fig. 6, comparison of the results obtained with the
component-free finite element formulation and the standard
Voigt based finite element method are shown for the defor-
mation field ux = F11 − 1 and the velocity field ut , along
the bar, at time t = 0.003s. The initial discontinuity in the
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Fig. 3 Deformation ux along the bar at time t = 0.001s (upward);
velocity field ut along the bar at time t = 0.001s (downward)

Fig. 4 Deformation ux along the bar at time t = 0.002s (upward);
velocity field ut along the bar at time t = 0.002s (downward)

Fig. 5 Deformation ux along the bar at time t = 0.003 (upward);
velocity field ut along the bar at time t = 0.003 (downward)

velocity field can be also appreciated in Fig. 2 as well as the
analytical solution outline in the present Subsect. 6.1.

As per Fig. 6 it is clear that both approaches, component-
free and Voigt base, are able to capture quite well the sock
strength, i.e. the amplitude of the jump, and the sock speed,
i.e. the propagation speed of the discontinuity, both in the
deformation and the velocity field. The spurious numerical
oscillations observed in Fig. 2 are due to the time integra-
tion considered. As no algorithmic damping is included in
the Newmark method (γ = 0.5), no dissipation of high-
frequency modes is introduced.

Although the nodal internal virtual work and the tangent
density matrix of the proposed component-free Lagrangian

Fig. 6 Component-free versus standard Voigt based finite element.
Deformation ux along the bar at time t = 0.003 (upward); velocity
field ut along the bar at time t = 0.003 (downward)

Table 2 Material parameters for
the solid block under the action
of gravity

E [kPa] ν ρ0
[
Kg/m3

]

250 0.3 2600

finite element approach are, in principle, completely differ-
ent from those derived in the standard Voigt base approach,
no significant differences can be appreciated between both
formulations. Thus, the component-free proposed formula-
tion for large strain elastodynamics might be understood
as a novel, concise, transparent, simple to implement,
component-free tensor based approach, being as accurate as
the traditional Voigt based formulation when dealing with
the propagation of discontinuities.

6.2 Solid block under the action of gravity

In the present case of validation, a plane strain solid block
with low stiffness under the action of gravity is analysed.
This benchmark allows the verification of the performance
of the proposed Lagrangian formulation approach under a
compression dominant behaviour.

The numerical set up of this benchmark is as follows. A
solid block of 1m×1m is analysed under plane strain Fig. 7.
At the base of the solid block, a zero vertical displacement is
imposed being free the horizontal component Fig. 7. The rest
of the boundaries are considered Neumann homogeneous.
The spatial discretization is performed by means of 10 × 10
eight-node isoparametric quadrilateral finite element (Q8)
with nine Gauss points per element Fig. 7.

The material parameters considered for the compressible
Neo-Hookean material, including the initial density, are dis-
played in Table 2.

The Young modulus E , density ρ0, time stepΔt = 10−2s
and spatial discretization considered, give a Courant number
of 0.98. Initial conditions u (X, 0) = 0 and v (X, 0) = 0 are
considered. The gravity g = 10s/m2 is applied gradually by
a ramp curve during the first second followed by a constant
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Fig. 7 Initially undeformed solid block of 1m × 1m

Fig. 8 Deformedmesh and contour plot of the determinant of the defor-
mation gradient at time t = 1.08s for the component-free approach

value, e.g. the gravity is applied by means of g (t) = g ·
min (t, 1).

In Fig. 8, the deformed mesh at time t = 1.08s along with
the contour plot of the determinant J of the deformation gradi-
ent F, can be appreciated for the component-free approach.
The minimum vertical displacement at node A (Fig. 7) is
attained for the first time at t = 1.08s. The initial unde-
formed mesh is also included in Fig. 8. No amplification
factor is considered.

In Fig. 9, comparison of the results obtained with the
component-free formulation and the standard Voigt based
finite element method are shown for the vertical displace-
ment with respect to time at node A (Fig. 7).

As per Fig. 9 it is clear that both approaches, component-
free and Voigt base, obtain the same evolution of the vertical
displacement at the central node of the upper horizontal
boundary.As no algorithmic damping is included in theNew-
mark method (γ = 0.5) no dissipation is introduced and the
same oscillations, same phase and amplitude, are recorded.

Again, no significant differences can be appreciated
between both formulations in Fig. 9. Thus, the component-
free proposed formulation for large strain elastodynamics
might be understood as a novel, concise, transparent, simple
to implement, component-free tensor based approach being

Fig. 9 Component-free versus standardVoigt based finite element. Ver-
tical displacement at node A in the upper boundary of the solid block

Table 3 Material parameters for the Cook’s membrane

E [MPa] ν ρ0
[
Kg/m3

]
fmax [MPa]

500 0.35 2600 20

as accurate as the traditional Voigt based formulation under
compression dominant behaviour.

6.3 Cook’s membrane under a dynamic loading

In the present case of validation, a plane strain Cook’s mem-
brane under a dynamic load is analysed. This benchmark
allows the analysis of the performance of the component-
free Lagrangian approach under a combination of bending
and shearing.

The numerical set up of this benchmark is as follows.
The domain consists of a tapered cantilever [8] with the left-
hand side clamped and a time-dependent shear load f (t) in
vertical direction applied on the right-hand side (Fig. 10).
The profile of the time-dependent shear load corresponds
with a ramp curve during the first half second followed by a
constant value fmax = 20MPa, e.g. the shear load follows
f (t) = 2 fmax · min (t, 0.5). The thickness of the Cook’s
membrane is chosen to be 1 mm. The spatial discretization
is performed by means of 10 × 20 eight-node isoparametric
quadrilateral finite element (Q8) with nine Gauss points per
element.The geometry, boundary conditions and applied load
are illustrated in Fig. 10.

The material parameters considered for the compressible
Neo-Hookeanmaterial, including the initial density andmax-
imum applied load fmax , are displayed in Table 3.

The values considered for the Young modulus E , density
ρ0, andmaximum of the applied load fmax are obtained from
[37]. The time step considered for the simulation is Δt =
0.02s. Initial conditions u (X, 0) = 0 and v (X, 0) = 0 are
adopted.

In Fig. 11, the deformed mesh at time t = 0.76s along
with the contour plot of the σxx Cauchy stress component can
be appreciated for the component-free approach.The Cauchy
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Fig. 10 Geometry, boundary conditions and applied load

Fig. 11 Deformed mesh at time t = 0.76s of Cook’s membrane and
contour plot of the σxx

stress tensor σ is defined by σ = 1
JPF

T . The maximum ver-
tical displacement at node A (Fig. 11) is attained for the
first time at t = 0.76s. The initial undeformed mesh is also
included Fig. 11. No amplification factor is considered.

In Fig. 12, comparison of the results obtained with the
component-free finite element formulation and the standard
Voigt based finite element method are shown for the vertical
displacement with respect to time at node A in the upper-
right corner. The stationary solution provided by [37] is also
included.

Fig. 12 Component-free versus standard Voigt based finite element.
Vertical displacement at upper-right corner node A of the Cook’s mem-
brane

Once more, as per Fig. 12, it is clear that both approaches,
component-free and Voigt base finite elements, describe the
same evolution of the vertical displacement at the upper-
right corner. Again, no algorithmic damping is included in
the Newmark method (γ = 0.5) therefore, no dissipation is
introduced and the same oscillations, same phase and ampli-
tude, are recorded for both approaches.

Again, no significant differences can be appreciated
between both formulations in Fig. 12. Thus, the component-
free proposed formulation for large strain elastodynamics
might be understood as a novel, concise, transparent, simple
to implement, component-free tensor based approach being
as accurate as the traditional Voigt based formulation under
a combination of bending and shearing.

6.4 Large deformation vibration of a cantilever
beam

In the present case of validation, a large deformation plane
strain vibrationof a cantilever beamunder its ownweight [34]
is analysed. This benchmark allows the analysis of the per-
formance of the component-free Lagrangian approach under
a bending dominant behaviour.

The numerical set up of this benchmark is as follows:
It consists of a compressible Neo-Hookean cantilever beam
clamped in the left boundary and loaded by the gravity,
g = 10m/s2. As shown in Fig. 13, the left end is fixed
while the rest of the boundaries are traction free. The large
deformation vibration of the beam is induced by its own
weight where gravity is fully applied at t = 0s. This large
deformation vibration is analysed along 3s using time steps
of Δt = 10−3s. The spatial discretization is performed
by means of 8 × 2 eight-node isoparametric quadrilateral
finite element (Q8) with nine Gauss points per element.The
geometry, boundary conditions, mesh and applied load are
illustrated in Fig. 13.

The material parameters considered for the compressible
Neo-Hookean material are displayed in Table 4.
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Fig. 13 Geometry, boundary conditions and applied load

Table 4 Material parameters for
the cantilever beam

E [MPa] ν ρ0
[
Kg/m3

]

1 0.3 1050

Fig. 14 Deformed mesh at time t = 1.4s of the cantilever beam and
contour plot of the vertical displacement

The values considered for the Young modulus E , Poisson
ν and density ρ0 are obtained from [34]. Initial conditions
u (X, 0) = 0 and v (X, 0) = 0 are adopted.

In Fig. 14, the deformed mesh at time t = 1.4s along
with the contour plot of the vertical displacement can be
appreciated for the component-free approach. The initial
undeformed mesh is also included in Fig. 14. No amplifi-
cation factor is considered.

In Fig. 15, comparison of the results obtained with the
component-free finite element formulation and the standard
Voigt based finite element method are shown for the vertical
displacementwith respect to time at nodeA in the lower-right
corner.

Once more, as per Fig. 15, it is clear that both approaches,
component-free and Voigt based finite elements, describe the
same evolution of the vertical displacement at the lower-
right corner. As no significant differences can be appreciated
between both formulations in Fig. 15, the component-free
proposed formulation for large strain elastodynamics might
be understood as a novel, concise, transparent, simple to

Fig. 15 Component-free versus standard Voigt based finite element.
Vertical displacement at lower-right corner node A of the cantilever
beam

implement, component-free tensor based approach being as
accurate as the traditional Voigt based formulation under a
bending dominant behaviour.

6.5 Pinched thick-walled cylinder

In the present case of validation, an adaptation of the tra-
ditional pinched thin-walled cylinder [30] to a pinched
thick-walled cylinder with solid elements (instead of shell
elements) is analysed. This benchmark allows the analysis of
the performance of the component-free Lagrangian approach
under a combination of shearing, compression and bending
in 3D.

The numerical set up of this benchmark is as follows. The
domain consists of a single-layered thick-walled cylindrical
tube with rigid end-diaphragms where x and y degrees of
freedom are fixed while the z degree of freedom is kept free.
Geometry and initial configuration can be found in Fig. 16.
The thick-walled cylindrical tube is pinched by two opposite
time-dependent line loads f (t) parallel to the y axis (Fig. 17).
The profile of the time-dependent line load f (t) corresponds
with a ramp curve during the first half second followed by a
constant value fmax = 3GN/m, e.g. the line load follows the
equation f (t) = 2 fmax ·min (t, 0.5). Due to the symmetry,
the computational domain is restricted only to one eight of
the cylinder as can be observed in grey colour in Fig. 17. The
spatial discretization is performed by means of 50 quadratic
20-node hexahedral isoparametric elements (H20) with 14
Gauss points per element [15].

The material parameters considered for the compressible
Neo-Hookeanmaterial, including the initial density andmax-
imum applied load fmax , are displayed in Table 5.

The time step considered for the simulation isΔt = 0.02s.
Initial conditions u (X, 0) = 0 and v (X, 0) = 0 are adopted.

The deformed mesh for two different viewpoints at time
t = 0.64s along with the component y displacement contour
plot can be appreciated for the component-free approach in
Fig. 18. The maximum component y displacement at node
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Fig. 16 Geometry, boundary conditions, initial configuration

Fig. 17 Computational domain (gray), mesh and applied time depen-
dent line load

Table 5 Material parameters for the thick-walled cylinder

E [GPa] ν ρ0
[
Kg/m3

]
fmax [GN/m]

5 0 1000 30

A (Fig. 16) is attained for the first time at t = 0.64s. No
amplification factor is considered.

Comparison of the results obtained with the component-
free finite element formulation and the standard Voigt based
finite elementmethod are shown in Fig. 19 for the component
y displacement with respect to time at node A (Fig. 16).

Once more, as per Fig. 19, it is clear that both approaches,
component-free and Voigt base finite elements, describe the
same evolution of the component y of the displacement at
node A. The same oscillations, phase and amplitude are

Fig. 18 Thick-walled cylinder deformedmesh from two different view-
points at time t = 0.64s including component y displacement contour
plot

Fig. 19 Component-free versus standard Voigt based finite element.
Component y displacement at node A for the pinched thick-walled
cylinder

recorded for both approaches. No significant differences can
be appreciated between both formulations in Fig. 19.

Thus, the component-free proposed formulation for large
strain elastodynamics might be understood as a novel,
concise, transparent, simple to implement, component-free
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Table 6 Efficiency analysis in terms of the computation time. Linear
elements Q4-2D, H8-3D

Component-free Voigt % of Voigt

Cook’s membrane 373s 456s 82

Solid block 292s 373s 78

Cantilever beam 160s 197s 81

Thick-walled cylinder 374s 471s 79

tensor based approach being as accurate as the traditional
Voigt based formulation under a combination of shearing,
compression and bending in 3D.

6.6 Efficiency analysis

As no significant accuracy differences can be appreciated
between the component-free and Voigt formulations regard-
ing the numerical results for each and every proposed
benchmark, in this section comparison is focus in compu-
tation time. Thus, an efficiency analysis is performed for
four of the benchmarks considered in the manuscript: The
plane strain Cook’s membrane under a dynamic load, the
plane strain solid block with low stiffness under the action of
gravity, the large deformation vibration of a cantilever beam
under its own weight and the thick-walled cylinder pinched
by two opposite time-dependent line loads.

For each of these cases, four simulations have been consid-
ered. Two of them with the proposed component-free finite
element formulation and implementation and other two with
the classical Voigt form. Furthermore, 8-node and 4-node
isoparametric quadrilateral finite elementswith 9 and4Gauss
points per element, respectively, have been considered for the
2D benchmarks. For the 3D benchmark 20-node and 8-node
isoparametric hexahedral finite elementswith 14 and 8Gauss
points per element, respectively, have been considered. Effi-
ciency analysis is performed in terms of computation time.
Results are displayed in Tables 6 and 7.

It can be observed that the proposed component-free finite
element formulation and implementation is more efficient
than the classical Voigt form. For the linear elements Q4
in 2D,the proposed component-free finite element formu-
lation and implementation shows an average improvement
of 20% of the computation time required by the classical
Voigt form. This average improvement is reduced to 16%
for the quadratic elements Q8 in the 2D. On the contrary,
the improvement obtained in the 3D benchmark is of 21%
regardless of the order considered for the elements, H8 or
H20.

Table 7 Efficiency analysis in terms of the computation time.Quadratic
elements Q8-2D, H20-3D

Component-free Voigt % of Voigt

Cook’s membrane 1666s 1969s 85

Solid block 1234s 1473s 84

Cantilever beam 603s 719s 84

Thick-walled cylinder 2775s 3507s 79

7 Conclusions

In thepresentwork, a component-freefinite elementLagrangian
formulation and implementation for isothermal elastody-
namics at large strain is presented. The key idea of the
proposed formulation is how the factorisation of the nodal
weighting function for the nodal internal virtual work and
the factorisation of both, the nodal weighting functions and
the increment of the displacement field for tangent matrix, is
performed. This factorisations are performed in the proposed
approach by means of component-free operations instead of
using the commutative property in indexnotation reorganized
with the aid of Voigt notation.

This point of view leads to concise and transparent nodal
internal virtual work and tangent matrix densities, that can
naturally be applied to general classes of constitutivemodels,
being as accurate as the classicalVoigt formbutmore efficient
in terms of computation time.

The proposed formulation for large strain elastodynamics
has been validated against five different benchmarks giving
very similar results than standard Voigt based finite element
approach in terms of accuracy. On the contrary, an average
improvement of 18% of the computation time require by the
classical Voigt form is observed for the proposed component-
free formulation. The benchmarks were a Riemann problem
at finite strains, a Cook’s membrane under a dynamic load,
a solid block with low stiffness under the action of gravity,
a large deformation vibration of a cantilever beam under its
own weight and a pinched thick-walled cylinder.

In the authors’ opinion, the clarity of the component-
free formulation should be favoured with respect to Voigt
based approach. Following this leading idea, the authors
have recently proposed these new paradigm to the novel
mesh-free variational based Material Point Model [20] with
very promising results. Moreover, application of the same
component-free philosophy to model and compute large
strain plasticity as well as multiphase materials will be con-
sidered.
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