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Abstract
The fusion welding process of metallic components, such as using gas tungsten arc welding (GTAW), is often accompanied
by detrimental deformations and residual stresses, which affect the strength and functionality of these components. In this
work, a phase-field model, usually used to track the states of phase-change materials, is embedded in a thermo-elastoplastic
finite element model to simulate the GTAW process and estimate the residual stresses. This embedment allows to track the
moving melting front of the metallic material induced by the welding heat source and, thus, splits the domain into soft and
hard solid regions with a diffusive interface between them. Additionally, temperature- and phase-field-dependent material
properties are considered. The J2 plasticity model with isotropic hardening is considered. The coupled system of equations is
solved in the FE package FEniCS, whereas two- and three-dimensional initial-boundary-value problems are introduced and
the results are compared with reference data from the literature.

Keywords Fusion welding process · Thermo-elastoplastic model · Phase-field modeling · Residual stresses · FEniCS project

1 Introduction

In fusion welding processes, two or more metallic parts are
permanently joined by applying a suitable heat source, e.g.
arc, laser, or electron beam sources. Such a way of joining
is of particular importance, especially for metallic struc-
tures, such as pressure vessels and piping systems. Due to
the highly-localized nature of the heat source, the highest
temperatures occur in the zone near the welding torch and
decrease with increasing distance from the weld centerline.
As a result, welded parts undergo higher nonuniform thermal
expansion followed by contraction due to the heating-cooling
cycle, which in turn leads to the generation of plastic defor-
mations within and around the weld zone. The expansion
and contraction result in high-level tensile residual stresses
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and distortions when the weld structure cools to the ambient
temperature. The presence of weld-induced tensile residual
stresses has detrimental effects on load-carrying capacity,
fracture toughness, stress corrosion resistance, and fatigue
crack initiation and propagation when subjected to cyclic
loading [2,11,14,54,66]. Therefore, understanding and pre-
dicting weld-induced residual stresses and deformations in
the welded structures are of high significance and should be
accounted for in the early design stages to avoid possible
reductions in their performance and reliability.

1.1 Thermo-elastoplastic models of residual stresses
computation

The presence of residual stresses in the welded structures is
complex to be only calculated by performing experiments
or applying analytical formulations. For instance, the exper-
imental measurements of residual stresses and distortions
involve some shortcomings related to the complexity, cost,
and difficulty of obtaining complete and detailed values.
For these reasons and due to the advancements in numer-
ical techniques and computational capacities, researchers
have focused on developing and implementing numerical
models. The developed models are then validated and cal-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-021-02104-3&domain=pdf
http://orcid.org/0000-0003-2281-2563


566 Computational Mechanics (2022) 69:565–587

ibrated with the experimental measurements using, e.g.,
the Finite Element Method (FEM). These FEM approaches
have shown acceptable capabilities to perform computational
analyses and to predict the residual stresses for differ-
ent fusion welding processes in multi-dimensional space,
e.g., [12,22,27,79,80,110,116–118]. Other works have inten-
sively studied the effect of finite and small strain theory
on the numerical results of the welding deformations, e.g.,
[28,31,76,116].

Inwelding computational analysis, it is a commonpractice
to use temperature-dependent material properties. However,
at high temperatures, the complete temperature-dependent
properties for many materials could be very difficult to mea-
sure and are not available in the literature [42,115]. The
parts being welded undergo complex multi-physical pro-
cesses that involve heat transfer, material flow, and other
metallurgical changes. As a result of these coupled phe-
nomena, the physical and chemical properties of the final
welded parts are usually changed. Therefore, the need for
considering the dependency of material properties on tem-
perature has been intensively investigated in the literature,
where assumptions and simplification approaches could also
be found. In most cases, numerical modeling approaches
related to welding are evaluated by their accuracy and per-
formance to predict the transient temperature field and the
welding-induced residual stresses and permanent deforma-
tions [7,8,13,15,42,55,61,67,84,115]. For instance, Little and
Kamtekar [67] have found that varying the thermal proper-
ties, namely the heat capacity and the thermal conductivity,
highly influence the computed temperature fields in the weld
and its surrounding regions. Zhu and Chao [115] performed
an analysis on welding of an aluminum plate using three dif-
ferent sets for the thermo-mechanical properties. The study
showed that the temperature distribution, residual stresses,
and distortions can be predicted with sufficient accuracy by
taking constant room-temperature properties, except for the
yield stress. Armentani et al. [8] showed how the residual
stresses of butt-welded joints can be affected by thermal
properties and concluded that varying the thermal conduc-
tivity has a significant influence on the calculated residual
stresses. Barroso et al. [13] applied a simplified material
model in their FEM simulations and found that the resid-
ual stresses in the longitudinal direction can be predicted
with reasonable accuracy when the mechanical properties
are taken as constant values. Joshi et al. [55] performed a FE
analysis of two overlapping beads, where the chemical com-
positions of the base and deposited metal were used in the
Weldware package to derive the equivalent material prop-
erties in the weld pool. Bhatti et al. [16] investigated the
influence of thermo-mechanical material properties of var-
ious grades of steel on the predicted residual stresses and
distortions. They found that considering constant proper-
ties, except for the yield stress, can provide good results for

residual stresses. Additionally, they concluded that accept-
able angular distortion can be achieved when the yield stress,
the heat capacity, and the thermal expansion coefficient are
functions of temperature. Similarly, Perić et al. [84] investi-
gated the influence of the temperature-dependent properties
on the FE model outputs, and suggested that using con-
stants properties, except for the yield stress, is suitable for
the prediction of the deformations. Moreover, temperature-
dependent properties can be used for the assessment of
the temperature distributions, the heat-affected zones, and
the residual stresses. Kong and Kovacevi [61] reported that
assigning a small value of the elasticmodulus at theweld pool
for temperatures exceeding the melting point can reduce the
computational time and increase the solution convergence
rate. Anca et al. [7] studied the melting-solidifying behav-
ior on the residual stresses calculation during the liquid/solid
and solid/liquid phase changes. For the mechanical analy-
sis, the weld pool was assumed as a soft region with no
further changes in the material properties above a specific
cut-off or zero-strength temperature. He et al.[42] intro-
duced an additional temperature-dependent internal state
variable to capture the irreversible welding interfaces and
accounted for the effects of the melting state on the thermo-
mechanical properties during the lap joint welding process of
two sheets. The aforementioned research works showed the
importance of considering state- or temperature-dependent
material parameters in the FE simulations to get reason-
able numerical results, as for the residual stresses. They also
showed that these considerations are associated with many
challenges concerning the parameter values measurement or
estimation. This leads to the conclusion that further investiga-
tions and reduction of model complexity are badly needed to
achieve more accurate numerical computation of, e.g., resid-
ual stress calculations, at moderate efforts and assumptions.

While utilizing the phase-field method to capture the
melting of metal during welding, the underlying work con-
siders the phase-change effects in both the thermal and the
mechanical analysis. In particular, it considers phase-field-
dependent material properties, such that the model domain
is divided into a hard (unmelted) and a soft (melted) region.
These regions are separatedby adiffusive transition interface,
where the material properties can smoothly change. Hence,
soft material properties are assigned to the fully melted
region in the weld pool, whereas hard material properties
are assigned to the material below the solidus temperature.

1.2 Phase-field modeling of thermally-induced
phase transition

In the literature, several approaches exist to describe the pro-
cess of phase transition of phase-change materials, such as
during melting, and to determine the position of the cor-
responding interface between melted and unmelted phases.
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These methods, such as the level-set [81,104], the volume-
of-fluid [51], and the phase-field method (PFM) allow to
describing the phase change within continuum mechanical
framework as needed in the current research work. The
developments and uses of the PFM have been discussed
by many research groups [18,23,34,58,98,109,111,114]. In
this, the PFM is originally applied in the mechanics of
materials to describe the complex microstructural evolu-
tion of the interfaces in non-equilibrium states [18,58,59,
98].

Here, we utilize the energy-based PFM to describe the
melting of metals as a phase-change phenomenon between
a hard state for temperatures below the melting point and a
soft state for temperatures above the melting point, whereas
the thermal energy during welding is the driving force
for the phase change. To this, a phenomenological phase-
field variable is used to indicate the state of the metal,
which allows for a diffusive state change across the inter-
face between the two states. Unlike the sharp-interface
approaches for describing the phase-change materials, the
diffusive-interface approaches allow a much easier and sta-
ble FE implementation, whereas the finite thickness of the
interface has its origin in the lower-scale phase-change
description, see, e.g., [18,86]. In this regard, the PFM is
applied in many research works to describe material phase
change on the continuum scale, see, e.g., [101,102,112–114].
In this case, the macroscopic interface thickness, which is
dictated by the FE mesh size, could be orders of magnitude
larger than the physical interface thickness. However, studies
related to the variation of the interface thickness parameter
in the PFM on the macroscale show that below a certain
limit, decreasing the value of this parameter will have an
insignificant effect on the overall solution or the interface
position [19,103]. To this, references and overview of the
origin of this method in the context of continuum mechanics
can be found in, e.g., [57] and [102,103]. Apart from PFM
of phase-change materials, the PFM has recently been inten-
sively applied within fracture mechanics for solids as well
as for porous media as in, e.g., [3,5,44–46,48,82,83], among
others. It is alsoworthmentioning that several researchworks
have recently employed the PFM to study the microstruc-
ture evolution, such as the investigation of the growth of the
columnar grains accompanied by the solidification process
in welding and additive manufacturing process, for exam-
ple, the works done in [36,63,90,107,108]. Therefore, the
underlying modeling framework together with the devel-
oped algorithms will be implemented in future works in
the context of modeling direct metal laser melting (DMLM)
in the additive manufacturing process. Additionally, future
workswill address the possible embedment ofmachine learn-
ing approaches, like in [35,49,50,60,99,100], to capture the
microscopic thermo-mechanical processes in the continuum
modeling.

1.3 Highlights and content overview

In summary, the main objective of this work is to gain
new insight into the challenging coupled inelastic thermo-
mechanical processes that occur during gas tungsten arc
welding (GTAW) via applying an advanced numerical study
and comparison with experimental and numerical data from
the literature. Theproposedmodelingmethodology allows an
accurate estimation of the spatial and temporal distribution of
the residual stresses and the permanent plastic deformations.
This approach includes: (1) Presenting and implementing a
continuummechanical frameworkwith unified kinematics of
themelted and unmelted phases of the solidmetal. (2) Apply-
ing a thermodynamically consistent phase-field approach to
describe study the effect of the phase transition during melt-
ing/solidification processes on the size and the shape of the
weld pool. (3) Proposing a new ansatz for the phase-field-
dependent material parameters, which reduces the modeling
complexity and gives a realistic description of the proper-
ties’ change across the diffusive interface. (4) Investigating
two different plasticity models and describing their imple-
mentation in the open-access/open-source FEniCS package
to solve two- and three-dimensional initial-boundary-value-
problems (IBVPs).

To give an overview, Sect. 2 describes the essential
kinematics and the formulation of the coupled phase-field
thermo-elastoplasticity within a thermodynamic framework.
In Sect. 3, the material properties are properly formulated to
be functions of the temperature field as well as the phase-
field variable, so that their values change smoothly across
the diffusive interface. The finite element implementation
is discussed in Sect. 4, which includes writing the weak
formulation and discussing the discretization with mixed
finite elements and the time-stepping via the backward finite
difference method. Two- and three-dimensional numerical
examples are presented in Sect. 5, where the proposed mod-
els are implemented to solve IBVPs. These implementations
allow to verify and validate the numerical model through
comparison with reference data from the literature. This is
followed by the conclusions in Sect. 6, where also a sum-
mary and an outlook of future works are presented. As the
focus of the current work is to develop a themomechanical
model for the prediction of residual stresses, currently small
strain theory is considered and geometrical nonlinearity will
be involved in future works.

2 Mathematical formulations of the
phase-field thermo-elastoplasticity model

In this work, a coupled phase-field thermo-elastoplasticity
problem is considered for the modeling of the GTAW weld-
ing process and the occurring residual stresses, where the
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material modeling is addressed within a thermodynamically
consistent framework. The three primary fields considered
in the following treatment are functions of the space x
and time t . These are the vector-valued displacement field
u = u(x, t), the scalar-valued temperature field θ = θ(x, t),
and the scalar-valued phase-field variable φ = φ(x, t). A
brief description of the phase-field modeling of temperature-
induced melting of metals is presented in (“Appendix A”).
However, in the following treatment, the phase-field evo-
lution equation along with the other constitutive formula-
tions are derived based on the restrictions imposed by the
Clausius–Duhem inequality.

2.1 Kinematics of the thermo-mechanical problem

The formulation of the thermo-elastoplasticity in the current
contribution is restricted to the small deformations assump-
tion. Therefore, the total strain tensor ε can be expressed in
terms of the displacement gradient and its transpose as

ε := 1

2
(grad u + gradTu) . (1)

For the thermo-elastoplasticity treatment, ε can additively be
decomposed into an elastic strain tensor εe and an inelastic
(plastic) strain tensor εp as

ε = εe + εp . (2)

2.2 Constitutive formulations of the phase-field
thermo-mechanical problem

In analogy to the work presented in [4] in the context of
gradient thermo-plasticity, the focus in the constitutive for-
mulations will be on the following set of independent state
variables

V = {ε − εp, α, θ, grad θ, φ, gradφ}, (3)

where α is the equivalent plastic strain, which is chosen to
characterize the state of the material hardening and φ is the
phenomenological phase-field variable (see, “Appendix A”).
Therefore, the free energy function Ψ (V) for the coupled
problem can be expressed as

Ψ (V) := Ψ e + Ψ p + Ψ e-th + Ψ φ + Ψ th

with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ψ e = 1
2K e2 + μ ε̄e · ε̄e ,

Ψ p = 1
2Hα2 ,

Ψ e-th = −3K αθ e(θ − θref) ,

Ψ φ = f (φ, θ) + l2
2 |gradφ|2 ,

Ψ th = cε

[
(θ − θref) − θ ln

(
θ

θref

)]
.

(4)

The above definitions of the free energy densities (per unit
volume) can be found, e.g., in [4,6,78,95]. In this, Ψ e is
the elastic stored energy, Ψ p is the plastic contribution due
to hardening, Ψ e-th is the energy term due to thermoelastic
coupling, Ψ φ is the phase-field contribution, and Ψ th is the
purely thermal energy. H is the linear hardening modulus,
which is taken (H ≈ 0.01E) in analogy to [92], cε is the
volumetric heat capacity, and K, μ are the bulk and shear
moduli, respectively. Moreover, e = tr εe and ε̄e = (εe −
1
3e I) are, respectively, the trace and the deviatoric (isochoric)
part of the elastic strain tensor εe. Furthermore, αθ is the
temperature-dependent coefficient of linear expansion, θref is
a specified reference temperature, and I is the identity tensor.
In connection with the temperature-related phase change of
the metallic material, the phase-field related energy function
Ψ φ is expressed in terms of a bulk free energy contribution
f (φ, θ) and the interfacial energy terms. This can further be
expressed, in analogy to [18], as

Ψ φ(φ, θ) = W g(φ) + ρ L
(θ̄M − θ)

θ̄M
p(φ)+ l2

2
|gradφ|2,

(5)

where W , g(φ), p(φ) and θ̄M are the energy barrier height
at the interface, the double-well potential, the interpolation
function, and the material melting temperature, respectively.
Moreover, ρ, L and l are, respectively, the material density,
the latent heat of fusion, and the gradient-energy coefficient
that affects the width of the diffusive interface. In the cur-
rent work, we consider a constant reference material density
at room temperature. For the heat capacity, thermal conduc-
tivity, Young’s modulus, yield stress, and thermal expansion
coefficient will be either temperature- or phase-depended as
discussed later in Sect. 3 and given in Table 2 and Figs. 1
and 2.

2.3 Plasticity-related response and yield functions

We proceed in the following discussion with the dissipative
force fields that represent the dual fields to the internal state
variables of the plastic response, i.e. σD dual to εp and qα

dual to α . For the J2 plasticity with isotropic hardening, the
von Mises yield criterion can be defined according to, e.g.,
[70,94,96], as

χ(σ , qα, θ) := 1

2
σD · σD − 1

3
q2 ≤ 0 with

σD = σ − 1

3
(tr σ ) I and

q = y0(θ) − qα , (6)
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where σD, q, and y0(θ) are the deviatoric part of the stress
tensor, the internal stress-like dynamic variable, and the ini-
tial yield stress, respectively.

2.4 The free energy and the entropy evaluation

With the given definitions of the energy contributions in Eqs.
(4) and (5), the total free energy per unit volume can now be
expressed as

Ψ = K

2
e2 + μ ε̄e · ε̄e

+ 1

2
Hα2 − 3K αθ e (θ − θref)

+ cε

[
(θ − θref) − θ ln

( θ

θref

)]

+ W g(φ) + ρ L
(θ̄M − θ)

θ̄M
p(φ) + l2

2
|gradφ|2 .

(7)

The time derivative of the energy formulation, needed for the
entropy inequality evaluation, can be expressed as

Ψ̇ = ∂Ψ

∂εe
· ε̇ − ∂Ψ

∂εe
· ε̇p + ∂Ψ

∂α
α̇ + ∂Ψ

∂θ
θ̇

+ ∂Ψ

∂ grad θ
· grad θ̇ + ∂Ψ

∂φ
φ̇ + ∂Ψ

∂ gradφ
· grad φ̇ . (8)

Using the divergence theorem in analogy to [32], the last term
in the above derivative can be reformulated as follows

∂Ψ

∂ gradφ
· grad φ̇ = div

(
φ̇

∂Ψ

∂ gradφ

)
− div

( ∂Ψ

∂ gradφ

)
φ̇ .

(9)

Following this, we rely on the 2nd law of thermodynamics
(entropy inequality) in order to generate thermodynamically
consistent constitutive formulations for the coupled problem
under consideration. This inequality can be expressed in the
Clausius–Duhem general representation as

σ · ε̇ − Ψ̇ − η θ̇ − qθ

θ
· grad θ ≥ 0 , (10)

where η and qθ are the entropy and the heat flux vector.
Substituting the formulation in (8) into the entropy inequality
(10) and applying reformulation yields

(
σ − ∂Ψ

∂εe

)
· ε̇ −

(
η + ∂Ψ

∂θ

)
θ̇ + ∂Ψ

∂εe
· ε̇p

− ∂Ψ

∂α
α̇ − ∂Ψ

∂ grad θ
· grad θ̇ −

[∂Ψ

∂φ

− div
( ∂Ψ

∂ gradφ

)]
φ̇ − div

(
φ̇

∂Ψ

∂ gradφ

)
− qθ

θ
· grad θ ≥ 0 .

(11)

The evaluation of the entropy inequality (11) towards deriv-
ing thermodynamically consistent constitutive formulations
is applied following the procedure presented in [24]. In this,
the fulfillment of the inequality is guaranteed if each term
is greater or equal to zero. Thus, we conclude the following
equilibrium relations:

σ := ∂Ψ

∂εe
= p I + σD where

p := K(e − 3αθ (θ − θref)) and

σD := 2με̄e , (12a)

η := −∂Ψ

∂θ
= 3K αθ e + cε ln

( θ

θref

)
+ ρ L

1

θ̄M
p(φ) ,

(12b)

∂Ψ

∂ grad θ
= 0 , (12c)

div
(
φ̇

∂Ψ

∂ gradφ

)
= 0 . (12d)

Analogous to the continuity equation influidmechanics, rela-
tion (12d) describes the continuity of the vector term in the
parentheses. Following this, integration of (12d) over the
volume of the domain and applying the Gaussian integral
theorem as presented in [32] yields

∫

Ω

div
(
φ̇

∂Ψ

∂ gradφ

)
dv =

∫

ΓNφ

(
φ̇

∂Ψ

∂ gradφ

)
· n da , (13)

where n is the outward unit surface normal. The resulting
equation (13) can be realized in the numerical implemen-
tation through applying the following Neumann boundary
condition:

∂ Ψ

∂ gradφ
· n = 0 . (14)

Additionally, the evaluation of (11) results in the following
three non-equilibrium (dissipative) restrictions

− qθ

θ
· grad θ ≥ 0 , (15a)

−
[∂Ψ

∂φ
− div

( ∂Ψ

∂ gradφ

)]
φ̇ ≥ 0 , (15b)

σ · ε̇p − ∂Ψ

∂α
α̇ ≥ 0 , (15c)

representing the thermal, phase change, and mechanical dis-
sipation contributions, respectively. In the case of the thermal
dissipation or the so-called Fourier’s inequality in (15a), this
is related to the existence of the temperature gradient with the
restriction such that the heat must flow from warm material
points to colder ones [26,62]. In this regard, the constitutive

123



570 Computational Mechanics (2022) 69:565–587

equation for the heat flux vector may be given by Fourier’s
law qθ := −κ grad θ .

To satisfy the dissipation inequalities in (15b) and (15c),
proper evolution equations should be formulated. First, an
evolution equation for the phase-field variable can be intro-
duced by assuming the following natural proportionality
[32,71]

φ̇ ∝ −
[

∂Ψ

∂φ
− div

( ∂Ψ

∂ gradφ

)]

,

φ̇ = −M

[

Wg′(φ) + ρ L
(θ̄M − θ)

θ̄M
p′(φ) − div(l2 gradφ)

]

,

(16)

where M > 0 can be interpreted as the interface mobility
parameter,which is discussed in “AppendixA” and expressed
according to [18] in Eq. (49). It is worth mentioning here that
the phase-field evolution equation can be derived based on
other approaches, such that presented byGurtin [41] and pro-
ceeded from the microforce equilibrium laws. This approach
is however beyond the scope of the current work. In addition,
due to the time history of the plastic deformation, the first and
second terms in (15c) do not vanish [29]. The thermodynamic
variable qα conjugate to α can be expressed as

qα := −∂Ψ

∂α
= −Hα . (17)

Having the latter definitions, an expression for non-negative
reduced dissipation, or the so-called mechanical dissipation,
given by the Clausius-Planck inequality, can be written as

Dred
loc := σ · ε̇p + qα α̇ ≥ 0 . (18)

2.5 Evolution and governing balance equations

The starting point in the derivation of the evolution equations
for ε̇p and α̇ is the application of the principle of maximum
plastic dissipation, which is widely used in connection with
a plasticity variational formulation [96]. In this regard, the
yield surface (6) of the associative plasticity model together
with the plastic dissipation relation (18) are employed to
transfer the maximum plastic dissipation into a minimiza-
tion problem by introducing the Lagrangean functional [29]

P(σ , qα, ε̇p, α̇, θ) = −Dred
loc + λ̇ χ(σ , qα, θ)

subject to λ̇ χ(σ , qα, θ) = 0 , (19)

where λ̇ ≥ 0 is the Lagrange (or plastic) multiplier, which
enforces the restriction χ ≤ 0 on the yield surface potential.
Finally, the evolution equations can be obtained by taking

the derivative with respect to σ and qα as

∂P
∂σ

= −ε̇p + λ̇
∂χ

∂σ
= 0 , (20)

∂P
∂qα

= −α̇ + λ̇
∂χ

∂qα
= 0 . (21)

Following this, the governing balance equations in their local
form will be introduced. The balance of linear momentum
can in general be defined as

ρü − div σ − b = 0 , (22)

where ü is the acceleration vector and b is the body force vec-
tor, defined per unit volume. Making use of the balance of
internal energy, the scalar-valued local energy balance equa-
tion can be expressed as

Ė = σ · ε̇ − div qθ + r . (23)

In this, Ė and r are the internal energy rate and the inter-
nal energy supply per unit volume. A relationship between
the energetically conjugate variables θ and η is obtained via
the application of Legendre transformation for the internal
energy

E = Ψ + θη −→ Ė = Ψ̇ + θ̇η + θη̇. (24)

Recalling the reduced local dissipation relation (18), the def-
inition of the time derivative Eq. (8) can be expressed as
follows

Ψ̇ = σ · ε̇ − Dred
loc − ηθ̇ +

[∂Ψ

∂φ
− div

( ∂Ψ

∂ gradφ

)]
φ̇

−→ Ė = σ · ε̇ − Dred
loc + θη̇ +

[∂Ψ

∂φ
− div

( ∂Ψ

∂ gradφ

)]
φ̇.

(25)

With the latter definition of the internal energy density Ė ,
Eq. (23) can be rewritten as

θη̇ = Dred
loc −

[
Wg′(φ) + ρ L

(θ̄M − θ)

θ̄M
p′(φ) − div(l2gradφ)

]
φ̇

−div qθ + r .

(26)

Following this, we derive an explicit relationship to the
entropy rate η̇ in analogy to the procedure presented in [4]. In
nutshell, we start from the general definition of the entropy
η := − ∂Ψ (V)

∂θ
with V = {ε − εp, α, θ, grad θ, φ, gradφ}

and carry out the time derivative using the chain rule to obtain
η̇. This leads to the following relation
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η̇ = − ∂

∂θ

[
σ · ε̇ − Dred

loc

]
− ∂2Ψ

∂θ2
θ̇

− ∂

∂θ

[
Wg′(φ) + ρ L

(θ̄M − θ)

θ̄M
p′(φ)

− div(l2gradφ)
]
φ̇

= − ∂

∂θ

[
σ · ε̇ − Dred

loc

]

− ∂2Ψ

∂θ2
θ̇ + ρ L

1

θ̄M
p′(φ) φ̇ .

(27)

By subtitling Eq. (27) into (26), we finally obtain the gov-
erning energy balance equation in its local form

c θ̇ = −div qθ + r + Dred
loc + Hep − Hpc (28)

with

c : = −θ
∂2Ψ

∂θ2
,

Hep : = θ
∂

∂θ

[
σ · ε̇ − Dred

loc

]
,

Hpc : =
[
ρL

θ

θ̄M
p′(φ) + Wg′(φ)

+ ρL
(θ̄M − θ)

θ̄M
p′(φ) − div(l2gradφ)

]
φ̇ ,

(29)

where c and Hep represent the volumetric heat capacity and
the structural elastoplastic heating effect. The term,Hpc, rep-
resents the phase-change contribution.

For linear elastic isotropic materials with temperature-

dependent elastic modulus
4
C, the stress given in Eq. (12a)

can be expressed using the additive strain decomposition in
Eq. (2) as

σ = ∂Ψ

∂εe
= 4

C εe = 4
C (ε − εp − εth) , (30)

in this, εth can be expressed within the isotropic small strains
framework as

εth := αθ (θ − θref) I . (31)

Following (30), the rate form can be expressed as

σ̇ = 4
C (ε̇ − ε̇P − ε̇th) . (32)

To account for plastic strains, a rate-independent asso-
ciative plasticity model with J2 von Mises plasticity and
isotropic strain hardening law is used. The derivation of the
plasticitymodel is presented briefly in the following,whereas
a detailed description can be found in, e.g., [1]. According to
Eqs. (20) and (21) with the definition of the yield function in

(6), the evolution for both plastic strain and equivalent plastic
strain can be established as follows

ε̇p = λ̇
∂χ

∂σ
= λ̇ σD , α̇ = λ̇

∂χ

∂qα
= λ̇

2

3
q . (33)

Incorporating the consistency condition χ̇ = 0 and using the
rate of the yield stress function, one finds another relation for
the rate of the equivalent plastic strain

χ̇ = ∂χ

∂σ
· σ̇ + ∂χ

∂ q
q̇ = 0 −→ α̇ = σD · σ̇

2
3Hq

. (34)

Combining equations of the equivalent plastic strain (33)2
with (34) and using the stress rate Eq. (32) augmented with
the flow rule (33)1, the plasticmultiplier evolution can finally
be written as

λ̇ = σD · 4
C(ε̇ − ε̇th)

4
9Hq2 + σD · 4

C σD

. (35)

Once λ̇ is calculated, the rates of stress σ̇ and equivalent
plastic strain α̇ can be computed, as will be discussed in
details in Sect. 4 within the numerical treatment.

2.6 Summary of the governing balance relations

Following the previous discussion, Table 1 summarizes
the local system of coupled nonlinear partial differential
equations (PDEs),which are needed to solve IBVPs of phase-
change thermo-elastoplasticity.

3 Temperature and phase-field dependent
material properties

In the numerical simulation of the welding process using
the FEM, the choice of the material properties and their
dependencies on the temperature or the material state
(melted/unmelted) plays a vital role in the thermal and
mechanical analysis [40,64,93]. For the transient tempera-
ture field computation, the material density (ρ), the thermal
conductivity (κ ), and the heat capacity (c) are of particu-
lar importance. The Young’s modulus (E), the yield stress
(y0), the hardening parameter (H ), the Poisson’s ratio (ν),
and thermal expansion coefficient (αθ ) play the major role
in the calculation of elastoplastic deformations and, thus, the
residual stresses. However, Poisson’s ratio has only a slight
effect on the final state of the residual stress as discussed
in [21,105]. In the literature, it is a common practice in the
thermomechanical analysis of the welding process in metals
to consider the values of ρ and ν to be independent of the
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Table 1 Summary of governing
partial differential equations Momentum balance: ρü − div σ − b = 0

Energy balance: c θ̇ = −div qθ + r − Hpc + Dred
loc + Hep

Phase-field evolution equation: φ̇ = −M
[
Wg′(φ) + ρ L (θ̄M−θ)

θ̄M p′(φ) − div(l2 gradφ)
]

Table 2 Material properties as functions of φ

Material property Expression Soft state Hard state

Thermal conductivity mW/(mmK) κ(φ) := φ κM + (1 − φ)κH κM = 31.451 κH = 11.29

Heat capacity mJ/(mm3 K) c(φ) := φ cM + (1 − φ)cH cM = 5.06 cH = 3.295

Yield stress MPa y0(φ) := φ yM0 + (1 − φ)yH0 yM0 = 30 yH0 = 300.62

Young’s modulus GPa E(φ) := φ EM + (1 − φ)EH EM = 89.41 EH = 197.08

Thermal expansion coeff. 1/K αθ (φ) := φ αM
θ + (1 − φ)αH

θ αM
θ = 18.3 · 10−6 αH

θ = 12.8 · 10−6

Soft/hard-state-related values are adapted from [31]

temperature or the material state, whereas their values are
usually taken equal to that measured at room temperature.
This simplification will also be applied in the underlying
work. However, the consideration of the dependency of the
other material properties, i.e. E , c, y0, H , κ , and αθ , on
the temperature field or the material state via the phase-
field is crucial for the accurate computation of the residual
stresses. In this case, the dependency on the temperature
can experimentally be figured out through conducting spe-
cial measurement techniques as presented in, e.g, [85,93].
Alternatively, to capture the variation of the parameter’s val-
ues during the welding process, we propose in this work an
alternative and easier-to-implement approach, in which the
phase-field variable is utilized to generate state-dependent
material properties. In particular, depending on the state of
the material, i.e. soft or hard, a state-dependent value is
assigned to each parameter (one value for the soft state and
one value for the hard state). In this case, a smooth transition
between these two values is achieved via the utilization of a
phase-field-dependent interpolation function. Table 2 sum-
marizes the proposed expressions of the material properties
for the nickel-based alloy IN718 with their soft/hard-state-
related values.

To show the effect of the gradient-energy coefficient l on
the resulted parameter curves given in Table 2, a transient
one-directional melting analysis is performed. In this, the
right-end of the rectangular FE domain is kept at a constant
temperature of 1700 K above the melting point, while the
left-end is kept at 293 K as illustrated in Fig. 1a.

In this way, the melting interface moves from the right
to the left-hand side of the considered domain. Figure 1a
shows the contour plots of the temperature distribution and
the phase-field variable at time equals 50 s. The spatial vari-
ation of the phase-field-dependent properties with change

of the gradient-energy coefficient is given in Fig. 1b. On
the other hand, Fig. 2 shows the counterpart contours and
curves when the temperature-dependent properties are used
[31].

4 Finite element formulation

The following discussion focuses on the numerical solution
of IBVPs related to residual stresses in gas tungsten arc
welding using the finite element method (FEM). The pri-
mary variables in connection with the applied phase-field
thermo-elastoplasticitymodeling approach are {θ, φ, u} and
the governing PDEs are summarized in Table 1. LetΩ ⊂ R

3

be the homogenized spatial domain under consideration with
∂Ω being its boundary, ∂Ω is split for each variable into two
parts, i.e. Dirichlet or essential (ΓD) and Neumann or natu-
ral (ΓN ) boundaries. These boundaries fulfill the conditions
∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. More specifically, the
Dirichlet and Neumann boundary conditions for each vari-
able together with the initial values at t = t0 can be specified
as follows:

−κ grad θ · n = q̄ on ΓNθ × [ t0, t ] ,

θ = θ̄ on ΓDθ × [ t0, t ] ,

gradφ · n = 0 on ΓNφ × [ t0, t ] ,

φ = φ̄ on ΓDφ × [ t0, t ] ,

σn = t̄ on ΓNu × [ t0, t ] ,

u = ū on ΓDu × [ t0, t ] ,

θ = θ0, φ = φ0, u = u0 in Ω × {t0} .

(36)

In this, n is the outward unit normal vector to ∂Ω and q̄ is a
prescribed external heat flux.
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4.1 Governing weak formulations

In connection with the implementation in the open-access/
open-source FE package FEniCS, one needs to derive the
weak or variational form of the governing PDEs, given in
strong form in Table 1. The required trial spaces Vθ , Vφ ,
and Vu for the primary variables and the related weighting
functions can be defined as

Vθ := {θ, δθ : Ω −→ R | θ, δθ ∈ H1(Ω), θ |ΓDθ

= θ̄ , δθ |ΓDθ
= 0 } ,

Vφ := {φ, δφ : Ω −→ R | φ, δφ ∈ H1(Ω), φ|ΓDφ

= φ̄, δφ|ΓDφ
= 0 } ,

Vu := {u, δu : Ω −→ R
3 |u, δu ∈ [H1(Ω)]3, u|ΓDu

= ū, δu|ΓDu
= 0 }

(37)

with H1(Ω) denoting the Sobolev space of order one. For
the numerical examples of welding process in Sect. 5, the
energy balance equation will be simplified by ignoring the
terms Dred

loc and Hep from the energy balance equation in
Table 1. This is justified as the amount of heat produced by
the mechanical deformations is too small in comparison with
the heat provided by the welding heat source, see, e.g., [25,
89,92] for analogous discussion. In this regard, investigations
performed in [77] for entropic thermoelasticity showed also
that the structural elastoplastic heating term has a negligible
contribution. Following this, the variational problem after
multiplying the governing equations in Table 1 by the test
functions and applying integration by parts over the entire
domain can be posed as: Find {θ, φ,u} ∈ Vu ×Vθ ×Vφ such
that
∫

Ω

[
c θ̇ + Hpc

]
δθ dv +

∫

Ω

κ grad θ · grad δθ dv

+
∫

Ω

r δθ dv −
∫

ΓN θ

q̄ δθ da = 0 ,

∫

Ω

[ 1

M
φ̇ δφ+W g′(φ) δφ+ρ L

(θ̄M−θ)

θ̄M
p′(φ) δφ

+l2 grad φ · grad δφ
]
dv−

∫

ΓNφ

l2 grad φ · n δφ da=0 ,

∫

Ω

ρ ü · δu dv +
∫

Ω

σ · grad δu dv

−
∫

Ω

b · δu dv −
∫

ΓNu

t̄ · δu da = 0 . (38)

4.2 Temporal and spatial discretization

In the numerical solution of time-dependent IBVPs in FEn-
iCS, a time-stepping scheme based on the finite difference

approximation over a time intervalΔ t = tn+1−tn is applied.
This results in time-discrete (stationary) equations, where the
time stepping is followed by constructing the variational for-
mulation towards the spatial FE discretization, see, e.g., [68]
for more details. In this work, an “isothermal split”-like strat-
egy is applied in accordance to the descriptions presented
in, e.g., [9,72,73], which results in a robust solution of the
volumetrically-coupled problem. In particular, at each time
step tn+1, the solution of the coupled problem is carried out
in two sequential steps: (i) The thermal and the phase-field
problem are solvedmonolithically under a constantmechani-
cal state to get θn+1 and φn+1. (ii) Themechanical subsystem
of elastoplasticity is solved under an isothermal state, which
allows computing the updated displacement un+1 . For the
spatial-discretization using the FEM, the continuous homog-
enized domain Ω is transformed into a discrete domain Ωh

subdivided into Ne finite elements. For an abstract represen-
tation, the primary unknowns of the problem are summarized
in a vector v := v(x, t) with v = [ θ, φ,u ] . Thus, the trial
and test functions read

vh(x, t) = v̄h(x, t) +
Nv∑

i=1

Nv(i)(x) v(i)(t) ∈ V h(t) ,

δvh(x) =
Mv∑

i=1

Mv(i)(x) δv(i) ∈ V̂ h .

(39)

In this, v̄h are the approximated Dirichlet boundary con-
ditions and Nv denotes the total number of FE nodes.
Additionally, Nv(i) and Mv(i) denote the global basis func-
tions of the trial and test functions at node i , whereas v(i) are
the nodal degrees of freedom and δv(i) represent the nodal
values of the test functions.Moreover, V h and V̂ h are the dis-
crete, finite-dimensional trial and test spaces, respectively. In
this work, we follow the ContinuousGalerkin (CG) approach
with first-order basis functions, which provides standard lin-
ear Lagrange elements, e.g., a triangle with nodes at the three
vertices of each element [68]. For the FE treatment of the last
term in Eq. (29)3, i.e. div(l2gradφ), we carried out numerical
studies employing second-order basis functions to check the
importance of this term. The results showed that this term has
a negligible value in comparison to the contribution of other
terms inHpc. Thus, it is neglected in the later numerical treat-
ments. Furthermore, the application of the Bubnov-Galerkin
procedure, in which v and δv are approximated using the
same basis functions Nv(i) ≡ Mv(i), implies that V h and V̂ h

coincide [74]. Moreover, for the implementation in FEniCS,
a common space V h is used for both test and trial function
as v̄h are not specified as part of this function space [68].
For further details on the finite element formulations, the
interested reader is referred to, e.g., [10,38,43,47,52,53,68],
among others.
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4.3 Integration algorithms for plasticity

For the numerical solution of IBVPs of rate-independent
plasticity with linear isotropic hardening, proper integration
algorithms have to be specified to integrate the evolution
equations of the plastic strain and the related hardening
parameters. Adopting the FE package FEniCS in this con-
tribution, a special focus is laid in the following on the
implementation and comparison between two plasticity inte-
gration algorithms,which are the “returnmapping algorithm”
and an “incremental plasticity” approach.

4.3.1 The return mappingmethod (RM)

Proceeding with a known material state {θ, φ}n+1 at tn+1

and {ε, σ , εp, α}n at tn , the RM applies a strain increment
Δε and aims to figure out the updated current state at tn+1 as
summarized in Algorithm(I).

Algorithm (I): Solution procedure
using the return mapping method
(RM)

Step 1: while tn+1 < tend do

Compute thermal and phase-field
solution (·)n+1 : {θ, φ}n+1

Initial: Given mechanical state (·)n at time tn :
{ε, σ , εp, α}n

Update: Parameter update:

If φ -dependent then
4
C := 4

C(E(φn+1)) , y0 := y0(φn+1)

else
4
C := 4

C(E(θn+1)) ,
y0 := y0(θn+1)

Step 2: Apply Δε and compute trial state:

σ trial
n+1 = 4

C (εn+1 − ε
p
n − εthn+1) ,

σDtrial
n+1 = σ trial

n+1 − 1
3 tr σ

trial
n+1 I,

χ trial
n+1 = 1

2 σDtrial
n+1 · σDtrial

n+1 − 1
3q

2 ,
with q = y0 + Hαn

Step 3: If χ trial
n+1 < 0 then −→

elastic loading step

σ n+1 = σ trial
n+1

, Δλ = 0 , αn+1 = αn , ε
p
n+1 = ε

p
n

Compute the tangent modulus (pure
elastic)

Continue to step (1)

Step 4: If χ trial
n+1 ≥ 0 then −→

plastic loading step

Solve nonlinear problem and find Δλ

with j = 1

Update quantities:

ntrialn+1 = σDtrial
n+1√

3
2 σDtrial

n+1·σDtrial
n+1

,

αn+1 = αn + Δα

σ n+1 = σ trial
n+1 − 3μΔα ntrialn+1 ,

ε
p
n+1 = ε

p
n + Δλntrialn+1

Compute the consistent algorithmic
tangent

Assemble the global Jacobian and
residual

Check global convergence:

If ‖Res‖ < Tol then

(·)n+1 −→ (·)n
else

j −→ j + 1 iterate within step (4)

Increment time tn+1+ = Δt and
continue to step(1)

In this, the updated values have to satisfy the yielding
condition and the global equilibrium within a predefined tol-
erance. For this purpose, an iterative procedure is used to
drive the residual (Res) between the internal forces and the
external force vector. Furthermore, in the FEniCS implemen-
tation of plasticity, the solution of the internal variables is
carried out at the quadrature points, which are interpreted
as degrees of freedom when using the so-called “quadra-
ture element”. This element type is developed within the
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FEniCS framework to avoid a suboptimal convergence rate
for Newton’s method [17,68]. The suboptimal convergence
arises due to the linearization procedure followed by FEn-
iCS Form Compiler (FFC) when nonlinear continuous weak
forms are linearized using Newton’s method. Thus, the
implementation of RM in FEniCS requires the definition of
quadrature elementswith the applicationofNewton’smethod
to compute the stress and its linearization at the quadrature
points.

4.3.2 The incremental method (IM)

The incremental method (IM) is presented here as an alterna-
tive procedure to solve the plasticity problem. In the IM, the

plasticity problem can be solved by avoiding the quadrature
element definition and the nonlinear problem in step (4) given
in Algorithm(I). The method simply uses the stress state σ n

from the previous step tn to calculate the plastic multiplier
λ̇n+1 and update the internal state variables. Then updated
σ n+1 and ε

p
n+1 at the current time (tn+1) can be computed as

σ n+1 = σ n + Δt σ̇ , αn+1 = αn + Δt α̇,

ε
p
n+1 = ε

p
n + Δt ε̇p , (40)

where (•)n denotes the value computed at the previous time
step. Themethod provides an accurate numerical solution for
small time increments [1]. The solution steps for the IM are
presented in Algorithm(II).

Algorithm (II): Solution procedure using the incremental method (IM)

Step 1: while tn+1 < tend do

Compute thermal and phase-field solution (·)n+1 : {θ, φ}n+1

Initial: Given mechanical state (·)n at time tn : {ε, σ , εp, α, γ }n
Update: Parameter update:

If φ -dependent then
4
C := 4

C(E(φn+1)) , y0 := y0(φn+1)

else
4
C := 4

C(E(θn+1)) , y0 := y0(θn+1)

Step 2: Apply Δε and compute the trial state:

Compute λ̇n+1 using σ n

Update quantities:

ε̇
p
n+1 = λ̇n+1 σD

n

σ̇ n+1 = 4
C (ε̇n+1 − ε̇

p
n+1 − ε̇thn+1)

σ n+1 = σ n + Δt σ̇ n+1

αn+1 = αn + Δt α̇n+1

Step 3: Evaluate the yield criterion:

χn+1 = 1
2 σD

n+1 · σD
n+1 − 1

3 (qn+1)
2 , qn+1 = y0 + Hαn+1

Compute the flow direction nn+1

Compute the parameter γn+1

{
0 : next step is elastic

1 : next step is plastic

}

(·)n+1 −→ (·)n
Increment time tn+1 + = Δt and continue to step (1)
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Fig. 3 Schematic illustration of the two-dimensional numerical model
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5 Numerical examples

The proposed phase-field thermo-elastoplasticity model in
the previous sections is adopted and tested against two
representative numerical examples.These examples employ
the material properties of nickel-based alloy IN718 for
temperature-dependent and phase-field-dependent proper-
ties as given in Figs. 2 and 1, respectively. The first example
involves a two-dimensional (2D) GTAW spot welding prob-
lem, while in the second example a three-dimensional (3D)
analysis of the moving GTAW process is performed. The
numerical implementation is carried out in the FE-package
FEniCS Project according to the settings and assumptions
discussed in the previous sections.

5.1 2Dmodeling of welding-induced residual
stresses

In this section, the numerical simulations are carried out for
an IBVP problem of GTAW spot welding in 2D plane strain
settings. The focus in the phase-field thermo-elastoplastic
model is laid on the performances of the two different algo-
rithms for plasticity, i.e. the return mapping method (RM)
and the incremental method (IM) previously discussed in
Sect. 4.3. The phase-field-dependent material properties,
depicted inFig. 1, are employed in the analysis. Figure 3 illus-
trates the geometry of the symmetric 2D problem together
with the mechanical and heat flux boundary conditions.

The left symmetry surface is thermally insulated, while
the bottom and right surfaces are subjected to heat losses by
convection according to

q̄loss = hc(θ − θamb) (41)

with θamb being the surrounding ambient temperature 293
K and hc is the convective heat transfer coefficient of the
surrounding air. The heat flux at the top surface represents
the heat exchange between the top surface and the GTAW

Table 3 Numerical and material parameters

Parameter Value Units

Kinetic coefficient μφ 0.5 (mmK−1 s−1)

Melting temperature θ̄M 1514 (K)

Interface width δ 1 (mm)

Surface tension σφ 65 × 10−6 (mJmm−2)

Latent heat of fusion L 219 × 109 (mJ · tonne−1)

torch, i.e.

q̄heat = −qmax exp

(

− x21
r20

)

+ hc(θ − θamb) , (42)

where qmax = 81280mW being the welding power and
r0 = 1.4mm is the Gaussian radius of the heat source.
Additionally, a constant value of the material density ρ =
7737 × 10−12 tonne·mm−3 is considered, and the value of
convective heat transfer coefficient is chosen to be hc = 700
mW·mm−2 K−1 . For the 2D analysis case, the gradient-
energy coefficient is set to 3 (mJ/mm)1/2 and the rest of the
parameters used for solving the phase-field variable Eq. (38)2
are listed in Table 3.

Thermal analysis results are presented in Fig. 4, which
depicts a contour plot of the phase-field variable after 5 s
heating timewith themelted weld pool as a soft region φ = 1
and the unmelted hard region with φ = 0.

At each time step, the computed values of the tempera-
ture and phase-field variables are passed to the mechanical
problem for the computation of the residual stresses. The
distribution of the residual stress components in x1 and x2-
directions are shown in Fig. 5 at the end of the analysis,
i.e. at t = 50 s. For quantitative comparisons of the results
obtained by RM and IM, Fig. 6 shows curves of σ11 and σ22
along the sections indicated in Fig. 5. It can be seen that a
good agreement is obtained between the solutions by RM
and IM. This indicates that both methods are reliable to be
used for performing the mechanical analysis. However, they
differ in the convergence behavior and computational costs,
as will be discussed in the following.

Within the model sensitivity study, the implementation is
tested with different time steps and mesh refinements. The
results of the sensitivity study are summarized in Tables 4, 5
and 6. The computations are performed using a workstation
of an Intel� Core™ i7-8700 CPU@3.20 GHz ×12 and 16
GBRAM.The results presented in these tables show that both
RM and IM have good stability and convergence behavior.
However, IM attains convergence for a wider range of time
steps and mesh refinements over RM, whereas the total time
needed for the IM computation for a given time-step size is
longer. Due to its stability and convergence characteristics
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for a relatively large time-step size, the IM will be used in
the subsequent section for the simulation of residual stresses
within a 3D IBVP.

5.2 Model validation by 3D bead-on-plate welding
problem

5.2.1 Problem setup

In the following, a 3D problem of the GTAW process will
be studied. It represents bead-on-plate welding as illustrated
in Fig. 7 (left). The boundary conditions, the geometry, and
the material parameters are adopted from [31] for the case
study on an autogenouswelding process of a platemade from
Nickel-based alloy IN718.

For the considered bead-on-plate welding IBVP and due
to the symmetry of the surface heat source (illustrated in Fig.
8) along the welding central-line, only half of the domain
is considered in the FE model. In this way, the computa-
tional time is reduced and, thus, the employed domain has
the dimensions of 50×200×2mm3, as shown in Fig. 7 (left).
The unstructured FEmesh, which consists of four-node tetra-
hedral elements, is created by the mesh generator Gmsh [37]
and illustrated in Fig. 7 (right). The mesh density is higher
towards the welding zone and gradually decreases far away
from this zone. The side length of the smallest elements uti-
lized in the FE model is (0.6mm), while the largest allowed
element side has a size of 5mm. The FE mesh consists of
107,151 elements and 27,147 nodes. The same finite ele-
ment mesh is used for the thermal and mechanical analyses
choosing first-order Lagrange elements. Moreover, thermal
and mechanical boundary conditions are defined on the con-
sidered domain. In the thermal analysis, the moving heat
source model is applied as a surface heat flux at the top sur-
face of the domain. For the plate with a small thickness of
2mm, a 2D heat source with circular Gaussian distribution
is a suitable choice for giving a good approximation of the
heating process with few parameters [31,92]. As indicated
in Fig. 8, the maximum power density mW/mm2 will be
experienced at the center of the top surface of the plate and
continuously decays as the distance increases. The surface
heat flux is given as a Neumann boundary condition at the
top surface of the considered FE model [33,39,106], which
can be written as

q̄sur = ηs Q

π r20
exp

(
− (x1 − x01)2 + (x2 − x02 − v t)2

r20

)
.

(43)

In this, Q, ηs , and r0, represent the input power provided by
the moving welding torch, the arc welding efficiency, and
the radius of the flux distribution, respectively. x01 and x02
refer to the initial position of the heat source and v and t are

Table 7 GTAW heat source parameters used in the 3D analysis [31,91]

Parameter Value Units

Welding efficiency ηs 0.57 (−)

Welding power Q 580 ×103 (mW)

Welding velocity v 1.59 (mm/s)

Characteristic radius r0 4 (mm)

Initial position x01, x02, x03 (0, 10, 2) (mm)

-01 01

Power density [mW/mm2]

6600
6000

5000

4000

3000

2000

10000

10-10
0

x1 x2 0.00

Fig. 8 Circular Gaussian heat source with r0 = 4mm and Q = 580 ×
103 mW

the torch velocity and time. The heat source parameters are
listed in Table 7.

On the top of the plate, the heat source travels along the x2-
direction for 180 mm, where the start and the end locations
are 10 mm distance from the edges. The heat losses due to
the interaction with the surroundings are considered to occur
through heat convection and modeled by Newton’s law. All
external boundary surfaces, except for the symmetry plane,
are assumed to interact with the surroundings by applying the
Neumann boundary conditions given in Eq. (41). To prevent
rigid bodymotion, artificial boundary constraints are applied
during the mechanical analysis, as depicted in Fig. 7 (left).
This includes a mechanical symmetry condition on the plane
of symmetry (u1 = ∂u2/∂x1 = ∂u3/∂x1 = 0mm), con-
strained degree of freedoms (u2 = u3 = 0mm) at point D,
and (u3 = 0mm) at point E. Furthermore, at the beginning
of computation, the primary variables are initialized with the
following values (φinit = 0, θinit = 293K and u0 = 0mm).
The total simulation time is 300 s, which includes the heat-
ing time of 113s. The time steps employed in the thermal
and mechanical analysis are Δt = 0.08s and Δt = 0.16s,
respectively.

5.2.2 Discussion of the thermal analysis results

The results of the 3D welding problem related to the tem-
perature field and phase change are presented in Figs. 9, 10,
11 and 12. Figure 9 shows temperature profiles assembled
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Table 4 Elapsed time by RM
and IM: coarse mesh (2677
elements× 1418 nodes) with
different time steps

Time step (Δt (s)) 0.2 0.1 0.066 0.05 0.04 0.033 0.0285 0.025 0.022 0.02

RM elapsed time (min) – 15 22 30 37 46 53 59 – 77

IM elapsed time (min) 8 – 26 37 45 54 63 71 81 93

Table 5 Elapsed time by RM
and IM implementation:
Δt = 0.05 s with different mesh
refinements

No. of elements 2677 4739 7390 10708 14586 18875 23880 29536

No. of nodes 1418 2477 3813 5512 7506 9651 12158 14992

RM elapsed time (min) 29 52 87 132 180 237 – –

IM elapsed time (min) 34 61 97 143 198 262 374 460

Table 6 RM and IM
implementation: fine mesh
(12,450 elements× 6396 nodes)
with different time steps

Time step (Δt (s)) 0.2 0.1 0.066 0.05 0.04 0.033 0.0285 0.025 0.022 0.02

RM elapsed time (min) – – 108 150 177 – 246 285 – –

IM elapsed time (min) 41 86 135 178 226 261 296 352 416 462

at three different locations corresponding to points A, B and
C, which are, respectively, at a distance of 6 mm, 8 mm, and
10 mm from the weld centerline. As shown in Fig. 9a, when
temperature-dependent properties are used, the predictions of
the thermal analysis have a good agreement with experimen-
tal measurements conducted in [31] with some deviations
related to the peak temperatures. The deviations of the pre-
dicted peak temperatures are expressed by the relative errors1

ofERRθ,A ≈ 6%,ERRθ,B ≈ 7%andERRθ,C ≈ 7%at points
A, B and C, respectively.

The corresponding temperature profiles at these points for
the analysis based on phase-field-dependent properties are
shown in Fig. 9b. In comparison with the experimental ones,
higher peak temperature relative errors of ERRθ,A ≈ 19%,
ERRθ,B ≈ 13%, and ERRθ,C ≈ 10% are observed. The
increase in deviations is attributed to the lowered thermal
conductivity at the hard state of the material, which in turn
affects the flow of heat from the soft region (the weld
pool) to the surrounding regions. Bhatti et al. [16] have
also reported that more heat accumulation occurs at lower
thermal conductivity values and thus it takes a longer time

1 ERRθ :=|(θ f − θex )/θex | : θex as the experimental value of θ and θ f
is the numerical one.

for the specimen to conduct heat to the surrounding mate-
rial. As shown in Fig. 10, this effect can be mitigated if we
use an averaged value for thermal conductivity of the hard
phase, i.e., κH = (κH + κM )/2. Reduced relative errors
ERRθ,A ≈ 10%, ERRθ,B ≈ 8%, and ERRθ,C ≈ 8% can be
achieved for the profiles at the specified points. Thus, the
averaged value for thermal conductivity will be considered
in the forthcoming thermal and mechanical analysis.

When it comes to the thermomechanical modeling of
welding processes, several researchworks ignore the effect of
the phase change term,Hpc, occurring in the energy equation.
Investigations of this term exhibits a sound effect on both size
and shape of the weld pool, where a wider and shorter weld
pool is observed if this term is neglected as shown in Fig. 11.
Thus, by utilizing the phase-field approach, it is possible to
account for the effect of energy release or absorption in the
shape of latent heat during the phase change. Furthermore,
this term has a prominent effect on the temperature evolution
in the weld pool, which was also observed in, e.g., [56,97].
The impact on the temperature profile is shown in Fig. 12 for
the point (0, 100, 2)mm within the weld pool.

Fig. 7 Geometry (left) and
finite element mesh (right) used
for the bead-on-plate analysis
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Fig. 9 Temperature profiles of
points A, B, and C compared to
the experiment in [31] for
temperature-dependent
properties (a) and
phase-field-dependent
properties (b)
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Fig. 10 Temperature profiles of points A, B, and C compared to the
experiment in [31] for temperature-dependent properties using an aver-
aged value of thermal conductivity

5.2.3 Discussion of the mechanical analysis results

The results of the 3D mechanical analysis are presented in
Figs. 13 and 14. In this, the final states of the residual stress
distributions for both transverse σ11 and longitudinal σ22
stress components are presented in Fig. 13 on a plane at
x3 = 1mm.

To closely investigate the stress state, Fig. 14 shows line
plots for σ11 and σ22 at the mid-length and mid-depth of
the FE model along the path P1 indicated Fig. 7 (left). The
residual stress components are compared with the results in
[31] as shown in Fig. 14a for the case of a small deforma-
tion assumption. Fromaqualitative point of view, the resulted
stresses using the temperature-dependent properties are com-
pared to the benchmark results by calculating the Weighted
Mean Absolute Percentage Error (WMAPE). The definition
of WMAPE can be expressed as [75]

WMAPE := 100 ×
∑n

t=1 |At − Ft |
∑n

t=1 |At | , (44)

where At and Ft being the actual (reference) values and
the predicted values by the proposed model. The trans-
verse stress deviates by 16% while the longitudinal stress
shows 17% deviation.Moreover, Fig. 14b depictes a compar-
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Fig. 11 Comparison of weld pool size and shape. Neglecting phase-
change term (left) and considering phase-change term (right). Figures
depict the top view of the weld pool
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Fig. 12 Effect of the phase-change term on the calculated peak tem-
peratures. Neglecting this term leads to a relative error of ERRθ ≈ 6%

ison of the results obtained from the model and benchmark
temperature-dependent analyses with the ones from the
phase-field-dependent properties analysis. It is shown that,
in the region of the weld bead, the longitudinal stress σ22
starts decreasing earlier than in the case of the temperature-
dependent analysis. The WMAPE deviation error is 24%
for the transverse stress and 8% in the case of the longi-
tudinal stress component. From both Fig. 14a and b, one
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observes that the region close to the weld centerline expe-
riences tensile stress of the yield stress magnitude, which
gradually decreases and turns to compressive stress as the
distance from the weld centerline increases. However, in this
region, it is noticed that the predicted longitudinal stress is
lower than the one predicted in [31]. This can be attributed
to the treatment of the plastic strain evolution in our model.
We involve the annealing effect in the proposed model. The
annealing effect accounts for the hardening reduction due to
the change in the dislocation structure caused by the solid-
liquid phase change [65]. This is modelled such that for any
material point going through melting/re-melting effect, the
artificial accumulated plastic strains are eliminated [25,30].
From a quantitative point of view, the residual stresses pre-
dictions by the numerical model are in good agreement with
the small deformation analysis given in [31].

6 Conclusions and future works

The presented work proposes a modeling methodology
for the phase-field thermo-elastoplasticity problem of gas
tungsten arc welding in a thermodynamically consistent
framework. The involvement of the phase-field method pro-
motes the use of phase-field-dependent material properties
for the melted (soft) and the unmelted (hard) material states.
In this way, the thermomechanical properties are driven by
the melting/solidification state with the phase-field variable.
Two- and three-dimensional IBVP numerical examples are
introduced to investigate the performance of the proposed
model. In the two-dimensional example, two approaches
(algorithms) are tested for the computation of the residual
stresses using the von Mises isotropic hardening plasticity.
The first approach relies on the conventional return-mapping
method by solving a nonlinear problem using Newton’s
method to correct the stress state. The second approach
applies simplified “incremental plasticity”, in which the
stress from the previous step is used to compute the plas-
tic multiplier. The numerical models are implemented in the
open-source finite element package FEniCS, where for the
return-mapping algorithm the quadrature element type devel-
oped with the FEniCS framework is used.

The capability of the proposed model in capturing real-
istic scenarios of the gas tungsten arc welding process was
investigated and a three-dimensional bead-on-plate analysis
was performed. The numerical results of temperature pro-
files and residual stresses have good agreement with results
available in the literature. The model shows that using phase-
field-dependent parameters can provide reliable predictions
for both thermal and mechanical analyses. Furthermore,
as a matter of implementation in FEniCS, employing the
described incremental plasticity approach gives accurate

numerical results when compared to those obtained from the
return-mapping method.

To this end, the proposed numerical treatment and model-
ing framework can serve as a base for future research works
in related fields to GTAW and the prediction of residual
stresses. As future works, the approach can be extended to
consider thermo-elastoplasticity within finite deformations,
which allows for more accurate description of the coupled
processes if large deformations occur. One of the important
extensions would also be the consideration of the material
in a melted state as a fluid, which can be treated within a
unified kinematics framework together with the solid phase.
Another future aspect in connectionwith the proposed phase-
field thermo-elastoplasticity approach is the application to
predict residual stresses induced by additive layer manu-
facturing processes of metal parts. Moreover, modeling the
weld-induced cracks can also be achieved by incorporating
the phase-field fracture approach.
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Appendix A: Phase-field modeling of heat-
induced phase transition

The phase change between unmelted (hard solid) state
and a melted (soft solid or liquid-like) state is a com-
mon phenomenon in fusion welding processes [113]. In
this work, the phase-field method (PFM) is applied to
model the melting/solidification processes of the metal
being welded. Applying the PFM is accompanied by many
advantages, where two of them will be mentioned in the
following: (1) No need to explicitly track the interface
between the melted and the unmelted metal. Therefore,
no need to explicitly fulfill the continuity equation or the
force balance on the interface, which is considered then a
part of the interior domain. (2) Applying the PFM allows
for a unified-kinematics treatment of the melted and the
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Fig. 13 Contours of a
transverse σ11 and b
longitudinal σ22 residual
stresses depicted at x3 = 1mm
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Fig. 14 Transverse σ11 and
longitudinal σ22 stresses plotted
along the path P1 indicated in
Fig. 7 (left). Solid lines represent
the results obtained from the 3D
mechanical analysis and dashed
lines for small-deformation
results in [31], wherein case a
temperature-dependent
properties are used and case b
phase-field-dependent
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unmelted metal. In particular, putting the material param-
eters as functions of the phase-field variable allows for a
smooth variation of their values between the two metal
states and across the diffusive interface. For illustration, Fig.
15 illustrates the concept of a diffusive interface in phase-
change materials in comparison with the sharp-interface
concept.

The first step in the PFM approach is the definition
of the phenomenological phase-field variable that governs
the smooth change across the interface. This is defined
as

φ(x, t) ∈ [0, 1] with

⎧
⎨

⎩

φ = 1 : melted (soft) state ,

φ = 0 : unmelted (hard) state ,

0 <φ< 1 : diffusive interface .

(45)

The treatment in the following assumes that the phase-
change process occurs merely due to changing of the thermal
energy and ignores the contribution of themechanical energy
in this process. Thus, in analogy to the thermodynamically
consistent approach in [18] and following the Ginzburg-
Landau theory, the global potential energy function F over

the spatial domainΩ is expressed as the sum of the bulk free
energy term f (φ, θ) and the interfacial energy terms as

F(φ, θ) =
∫

Ω

[

f (φ, θ) + l2

2
|gradφ|2

]

dV (46)

with l being a gradient-energy coefficient that influences the
width of the diffusive zone. At equilibrium, the variational
derivative of (46) results in the following restriction:

δF
δφ

= ∂ f

∂φ
− l2 ∇2φ = 0 . (47)

The phase-field evolution and the resulting migration of the
diffusive interface is a time-dependent process. To describe
this evolution, the application of the Allen-Cahn reaction-
diffusion equation is a common practice. It can be expressed
as

∂φ

∂t
= φ̇ = −M

δF
δφ

= −M

[
∂ f

∂φ
− l2 ∇2φ

]

. (48)
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In this, M represents the interface mobility parameter, which
can be expressed according to [18] as

M = μφ θ̄M

6 δ ρL
(49)

with μφ , θ̄M , and δ as the kinetic coefficient, the material
melting temperature and the interface width, respectively. In
absence of the mechanical or chemical free energy contribu-
tions, the free energy density of the system is defined by

f (φ, θ) = Wg(φ) + Q(θ) p(φ) , (50)

where the first termWg represents the energy barrier related
to the interface between the soft and hard phases of themetal.
Moreover,W , g(φ), and p(φ) are the energy barrier height at
the interface, the double-well potential, and the interpolation
function, respectively:

W = 3
σφ

δ
, g(φ) = (φ)2(1 − φ)2,

p(φ) = (φ)3
(
6(φ)2 − 15φ + 10

)
(51)

with σφ being the surface tension. For melting/solidification
phase-change problems, the main thermal force driving for
the evolution of the phase-field parameter, Q(θ), can be
expressed as

Q(θ) = ρ L
(θ̄M − θ)

θ̄M
. (52)

Using Eqs. (50) and (51), the evolution of the phase-field
variable, Eq. (48), can be rewritten as

φ̇ = M
[
l2 ∇2φ − 2Wφ (1 − φ)(1 − 2φ)

− 30 Q(θ) (φ)2(1 − φ)2
]
.

(53)

More details, references, and applications can be found in
[20,69,87,88,90,98] among others.
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