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Abstract
Computational homogenization is a powerful tool allowing to obtain homogenized properties of materials on the macroscale
from simulations of the underlying microstructure. The response of the microstructure is, however, strongly affected by
variations in the microstructure geometry. In particular, we consider heterogeneous materials with randomly distributed
non-overlapping inclusions, which radii are also random. In this work we extend the earlier proposed non-deterministic
computational homogenization framework to plastic materials, thereby increasing the model versatility and overall realism.
We apply novel soft periodic boundary conditions and estimate their effect in case of non-periodic material microstructures.
We study macroscopic plasticity signatures like the macroscopic von-Mises stress and make useful conclusions for further
constitutive modeling. Simulations demonstrate the effect of the novel boundary conditions, which significantly differ from
the standard periodic boundary conditions, and the large influence of parameter variations and hence the importance of the
stochastic modeling.

Keywords Parametric FEM · Stochastic local FEM · Large strain plasticity · Computational homogenization · Ergodic model

1 Introduction

Computational homogenization is a widely used technique
due to the fact that it can be equally applied without anymod-
ifications to both linear and nonlinear problems, arbitrary
complex geometries, and any types of physical problems—
elasticity, plasticity, electromagnetism, etc. This technique
consists of three steps. Firstly, we need to design a suitable
model of the microstructure and transfer macroscopic loads
and deformations to the microscale. This is done using the
Hill-Mandel [14,23,44,45,54] condition which states that the
virtual work performed by microscopic stresses at micro-
scopic deformation gradients must be equal to the virtual
work performed by macroscopic (homogenized) stresses at
macroscopic (homogenized) deformation gradients. The sec-
ond step is to simulate the response of the micromodel. This
step is the most challenging due to the high computational
costs of a high resolution FEM model [35,36,38]. The third
step is the transfer of homogenized quantities back to the
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macroscale, which is also determined by the Hill-Mandel
condition.

Computational homogenization is a well developed tech-
nique, however there are still some open questions, e.g. the
design of a suited representative volume element (RVE) of
the microstructure in case that uncertainties (randomness) in
the microstructure are present. The effect of uncertainties in
the microstructure is the crucial aspect in this paper. Here
we follow our work [39], where an ergodicity assumption
and boundary conditions for a non-deterministic (stochas-
tic) problem were analyzed. The purpose of this work is to
increase the overall realism of the presented approach by
extending it to the realm of large deformation plasticity.

Stochastic plasticity was already intensively studied in
works of Rosic [40–43], and many problems in stochastic
plasticity are considered as solved. However, random geom-
etry and hence random boundaries and interfaces, which
are the topic of interest for us, provide a new dimension
of complexity. For example the application of the common
polynomial chaos expansion and related methods becomes
inefficient [33,34].

The most widely used approach towards computational
homogenization of random media is to run large simula-
tions with a sufficiently large number of randomly generated
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inclusions or voids (non-ergodic approach). This approach
is presented in particular in [1,5,11,15,21–23,25,26,30,51].
Specifically, plasticity is studied within this approach in
[7,16,19,20]. The effect of the scale of an RVE is studied
in detail in [29]. This work also highlights the differences
between a fully representative volume element and a statisti-
cal volume element and thus builds a necessary bridge to the
ergodic approach.

The ergodic approach is another possibility in the treat-
ment of random media. It uses some parameterized model
together with a sophisticated non-deterministic modeling
technique [2–4,8–10,17,18,24,47–49,52,53]. In the extreme
case themodel of themicrostructure is fully replaced by some
statistically similar volumeelement [50]. Particular questions
regarding the design of the representative volume element
of the microstructure are discussed in [29]. The approach
presented in this work is also classified as extreme ergodic.
Using results from [39,56] we reduce amodel with randomly
distributed inclusions to a simple parametric model with
only one single inclusion possessing random geometry. This
reduction results however in a highly sophisticated stochas-
tic problem with discontinuous random fields. It is worth to
notice that a similar approach towards the homogenization
of elasto-plastic materials with random microstructure was
recently developed in [54].

In order to simulate a non-deterministic RVE we use the
recently proposed stochastic local FEM (SL-FEM) [34,37].
Thismethodwas originally developed for problemswith only
a few random parameters, but these parameters can affect the
geometry of an RVE, cause random interfaces and bound-
aries, and, as a consequence, the microscopic displacements
and stresses exhibit strongly nonlinear and discontinuous
dependencies on randomparameters. This techniquewas also
used for more general fuzzy-stochastic problems [31,32].
Our simulations demonstrate that the SL-FEMcan be applied
without any modifications also to fuzzy and interval prob-
lems: since a local formulation is used, the nature of uncertain
parameters is not important for the solution procedure, but
only for the postprocessing [37].

Another advantage of the SL-FEM is that it reduces any
parametric (stochastic, fuzzy, interval) FEM model to an n-
dimensional deterministic FEMmodel. As a result, plastic or
any other complex material response is implemented in the
same way as for the common FEM—no modifications are
required. A subroutine written for a standard FEM code can
be directly used in a SL-FEM code.

The structure of this paper is as follows. Section 2
describes the method which is used in simulations. Section 3
schematically depicts our approach towards the design of an
RVE and provides parameters used for simulation. Section 4
provides a brief validation of the ergodic RVE design. Sec-
tion 5 contains simulation results. Finally, Sect. 6 concludes
the paper.

2 Stochastic local FEM

In this section we introduce the basic idea of the stochastic
local FEM. Similar to the common deterministic FEM, the
SL-FEM is a special case of the Galerkin method. To start
with let us consider the physical space E, i.e. the Euclidean
space with coordinates x ∈ R

3 augmented by a correspond-
ing algebra, and the stochastic space (space of parameters) S
with coordinates (parameters) θ ∈ R

n . Note that we consider
here only the stochastic approach, however any problem can
be treated using the non-probabilistic methods evolved from
interval arithmetic and fuzzy set theory [12,13]. In case of
non-probabilistic ormixed treatment the fuzzy space or some
generic parameter spaces can be introduced with only small
changes in definitions [37].

The solution of the deterministic FEMbelongs to the phys-
ical Hilbert space of functions H defined over the physical
domain D ⊂ E. Analogously, we introduce the stochastic
Hilbert space of functions Q defined over the stochastic
domain S ⊂ S. The solution of the stochastic (or general
parametric) FEM belongs to the space H × Q.

Next, let us introduce some random differential operator

D(x, θ) y(x, θ) = f (x, θ), (1)

where f (x, θ) is the (random/parameterized) loading. Its
solution

y(x, θ) =
∞∑

i=1

yiϕi (x, θ) (2)

belongs to the spaceH×Q, with ϕi (x, θ) representing some
basis inH×Q. If we consider only a finite number of terms
N in (2), the function y(x, θ) will approximate the exact
solution. Then the basic idea of the Galerkin method is to
project not only the unknown function y(x, θ) but also the
differential operator D(x, θ) onto the basis ϕi (x, θ):

〈[
D(x, θ) y(x, θ) − f (x, θ)

]
ϕi (x, θ)

〉 = 0,

∀i = 1, ... , N .
(3)

The key ingredient here is the Galerkin projection 〈 〉 which
coincides with the inner product in the physical-stochastic
space H × Q:

〈g1(x, θ)g2(x, θ)〉 :=
∫

D

∫

S
g1(x, θ)g2(x, θ) fθdθdx, (4)

where fθ is the joint probability density function of the ran-
dom parameters θ .
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For a geometrically nonlinear problemwith nonlinear con-
stitutive equations the differential operator reads explicitly as

D(x, θ) y(x, θ) := −DivFS(C),

C = FtF,

F = Grad y(x, θ),

f (x, θ) := f (x, θ),

(5)

where y(x, θ) corresponds to the non-deterministic defor-
mation map describing the position of material points in the
spatial configuration, f (x, θ) denotes the non-deterministic
body force density, F denotes the deformation gradient, S
and C represent the Piola-Kirchhoff stress tensor and the
Cauchy-Green strain tensor, respectively. Note that the Grad
and Div operators involve differentiation only with respect
to the physical coordinates x in the material configuration.

Expression (3) provides the residual vector Ri which is
then minimized using, e.g. the Newton iterations.

The FEM formulation is obtained by considering that
yi are nodal values of the unknown function y(x, θ) and
the basis functions ϕi (x, θ) are piece-wise continuous and
defined locally over elements. In contrast to the common
polynomial-chaos based stochastic FEM, ϕi (x, θ) are piece-
wise continuous and local not only in the physical space,
but also in the stochastic (parameter) space. As a result, we
discretise the parameter domain using FE shape functions as
common in the physical domain.

Both the common deterministic FEM and the SL-FEM
utilize the isoparametric concept. Therefore we can switch
to isoparametric coordinates ξ and represent the solution
element-wise as

⎡

⎣
xe

θe

ye(x, θ)

⎤

⎦ =
∑

i∈I e

⎡

⎣
xi
θ i
yi

⎤

⎦ ϕe
i (ξ), (6)

with

dim(ξ) = dim(x) + dim(θ),

ξ ∈ [−1, 1]n+3,

where ξ are local (isoparametric) coordinates,n is the number
of random variables/parameters, ϕe

i , x
e, θe, and ye are the

basis functions, the physical and stochastic coordinates, and
the unknown function defined over element e, respectively,
and I e is a set of indices associated with a current element.

This method becomes advantageous in case of random
interfaces and boundaries, where the physical-stochastic
domain cannot be obtained as the tensor product of the phys-
ical domain and the stochastic domain due to curvilinear
boundaries, and thus meshes in the physical and the stochas-
tic spaces are not independent [34,37]. This is demonstrated
schematically in Fig. 1 demonstrating a 2D problem in the

Fig. 1 Schematic FEM models generated as the tensor product of a
FEMmesh in the physical space (x, y) and the polynomial chaos expan-
sion along some stochastic parameter θ (left), and an isoparametric local
FEM mesh as utilized in SL-FEM (right)

physical space (x, y). The third dimension θ depicts some
random parameter. Figure 1 left demonstrates the model
build as the tensor product of the FEM mesh in the phys-
ical domain and the traditional polynomial chaos expansion
in the stochastic domain. It is not suitable for problems with
random interfaces (like Fig. 1 right). Figure 1 right demon-
strates an isoparametric local mesh generated originally in
the general n-dimensional physical-stochastic space.

The local formulation is also highly compatible with var-
ious order reduction and hyperreduction techniques [36].

3 Representative volume element

3.1 Design of the RVE for non-overlapping
inclusions

This section shortly reassembles the approach developed in
[31,32,34,39]. In our work we study materials with non-
overlapping randomly distributed circular inclusions, which
radii are also random. The basic idea is to replace the large
randomly generated sample of material with a huge number
of inclusions (non-ergodic model) by some simple para-
metric model with only one inclusion (ergodic model). The
replacement (ergodic model) must be statistically similar to
the original model in some sense [50].

Themain questions are:which propertiesmust be captured
by the reduced model and how to perform model reduction?
The answer to the first question comes directly from the huge
experience gained by material scientists in recent decades.
We know now that the main factor defining homogenized
properties of heterogeneous materials is the global volume
fraction of inclusions. Twomodels with a very different num-
ber of inclusions but the same global volume fraction exhibit
very close homogenized stresses [56]. This is also the main
quantity in analytical homogenization methods [44] like the
Mori-Tanaka scheme, etc. On themicroscale themost impor-
tant quantity is the distance between neighboring inclusions
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[10]. It defines fluctuations of the microscopic stresses. The
distance between neighboring inclusions can be estimated
using the Delaunay triangulation [31]. Taken together, we
thus keep our reduced ergodic model statistically similar to
the original non-ergodic model in terms of the global volume
fraction and the interparticle distances.

The second question is how to perform the reduction to
the simplified ergodic model. To give an answer, we refer
to the concept closely related to the Delaunay triangulation,
namely the Voronoi tessellation. The Delaunay triangulation
and theVoronoi tessellation are dual and unique. TheVoronoi
tessellation divides the material sample into cells such that
each cell contains only one inclusion. The Voronoi cell Ci

is the set of points which are closer to the inclusion i than
to any other inclusion. It can be understood as the region
of predominant influence of the given inclusion. The vol-
ume fraction of the Voronoi cell is called the local volume
fraction v f . It depends on interparticle distances, the size
of inclusions, and the number of neighbors to the inclusion.
Thus, it reassembles a huge amount of statistical information
regarding the microstructure. Furthermore, the local volume
fraction determines the global volume fraction. Hence we
can create a statistically similar ergodic model by preserving
only one quantity—the local volume fraction.

Theprocedure is schematically illustrated inFig. 2. Firstly,
the large non-ergodic sample is divided into Voronoi cells.
Next, the areas and local volume fractions of the Voronoi
cells are computed. After that all Voronoi cells are reduced
to rectangular unit cells, however, keeping the same values of
the local volume fraction. The last step is the rearrangement
of unit cells into the parametricmodel.Unit cells are re-scaled
at this step, however, their areas are not lost, they become
weight factors in the new model and thereby are included
into the statistics. The detailed description of this procedure
and a statistical comparison of the ergodic and non-ergodic
models is presented in [39].

Remark The probability density function of the inclusion
radius r in the ergodic model reflects the inclusion distribu-
tion in the non-ergodic model. Thus, different distributions,
the effect of clustering, etc. are included into the simula-
tion through the probability density function. Figure 1 right
depicts the model with variable inclusion radius. The depen-
dency r(θ) and correspondingly the shape of the inclusion
in Fig. 1 are uniquely evaluated from the probability density
function of r [32].

3.2 Example of the ergodic RVE design

In this section we provide a simple example of the ergodic
RVE design for the purpose of illustration. In order to show
how interparticle distances are included into the ergodic
RVE, we consider inclusions of one size. Note that there will

Fig. 2 Reduction of a non-ergodic model to a simple ergodic model:
division into Voronoi cells, reduction into rectangular cells with the
same local volume fraction, and further rearrangement into a parametric
model

be still only one variable in the ergodic model—the inclusion
radius.

To start with, we generate one large non-ergodic random
sample with 35 000 inclusions and use it to collect statisti-
cal information. Inclusions are distributed using the random
number generator. Overlapping inclusions are removed from
the sample and regenerated. For purpose of convenience
we locate all inclusions within bounding boxes and enforce
that the bounding boxes are also non-overlapping. This is
done for two reasons: firstly, we guarantee some minimal
distance between inclusions and simplify the meshing for
a further simulation; secondly, we induce anisotropy in the
non-ergodic sample. The ergodic RVE is anisotropic due to
its rectangular shape, which is a well-known issue and can
be fixed using some novel RVE types like the circular RVE
[6]. Since we rely on the classical rectangular RVE, we need
to make the non-ergodic RVE also anisotropic for a fair com-
parison of two models.

Since we use bounding boxes, we check distances not
between inclusions, but between boxes. Mathematically this
is equivalent to the distances between inclusions measured
not in the Euclidean metric, but in the max value metric.

After the non-ergodic sample is generated, the interparti-
cle distances between neighbor inclusions and the number of
neighbors for each inclusion is measured. This is done using
the Delaunay triangulation.
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Fig. 3 The cumulative distribution function of the normalized radius
in the sample with 35,000 inclusions and its log-normal fit

Anergodicmodelwith variable inclusion radius can repro-
duce a variable interparticle distance. Under consideration of
the PBC the distance to the neighbor inclusion is twice the
distance from the inclusion interface to the boundary of the
RVE. Therefore the ergodic model is capable to replicate the
interparticle distances simply by choosing the correct radii
distribution. Theoretically this can be done immediately at
this stage, but the general procedure is developed for a more
complicated example and requires some further transforma-
tions.

The next step is to compute the Voronoi tessellation and to
evaluate Voronoi cell areas (the main statistical information
for an ergodic model). It is expected that the area distribu-
tion is close to the log-normal distribution: Area is strictly
positive, has no upper limit, and results from a fully random
sequence. Another reason for using the log-normal distri-
bution to approximate statistical data is that division and
multiplication of log-normal variables yield a log-normal
variable.

The quantity of interest is now the normalized radius eval-
uated from the non-ergodic sample. This is the relation of the
inclusion radius (fixed value) to the square root of the cell
area. It is also expected to be close to a log-normal distri-
bution. The original distribution of the normalized radii in
the non-ergodic sample and its log-normal fit are depicted in
Fig. 3. The presented theoretical distribution (fitting curve)
is then incorporated into the ergodic RVE. For the purpose of
convenience we truncate the log-normal distribution in a way
that the smallest radius value is exactly 0.25 and the largest
radius value does not exceed 0.6. This is the radii distribution
we use in ergodic simulations.

The non-ergodic sample with 35 000 inclusions is how-
ever far too large and computational costs required for a FEM
simulation of this sample exceed our capabilities. Thus we
need samples of a more modest size for simulations. Rea-
sonable computational time can be achieved if non-ergodic
samples contain only 128 inclusions.

Fig. 4 The cumulative distribution function of the normalized radius in
the sample with 35,000 inclusions and in ten samples with 128 inclu-
sions

In order to improve the quality of non-ergodic samples
with 128 inclusionswe generate a large number of them (100)
and select the ten samples demonstrating statistical proper-
ties closest to those depicted in Fig. 3. Figure 4 shows the
normalized radii distributions for the ten best samples with
128 inclusions and the normalized radii distribution obtained
for 35 000 inclusions. The selected ten samples are used for
a comparison with the ergodic model in the sequel.

The last step is the generation and meshing of the ergodic
samplewith the given radii distribution. Information on inter-
particle distances is included into the model through the
variable radius, however the information on the number of
neighbors and many-point probability distributions are cap-
tured only partially and indirectly (they also affect the areas
of Voronoi cells and thus the normalized radii).

The statistical study of the non-ergodic sample shows
[39] that the average number of neighbors in the presented
non-ergodic model equals six. The rectangular shape of the
ergodic RVE prescribes the existence of only four neigh-
bors in ergodic model. This disagreement is significant. The
number of neighbors is related to 3- and higher-point distri-
butions. The ergodic model can be further improved by using
arbitrary-sided or even circular RVEs, but this is the subject
of a separate study.

3.3 Boundary conditions

The accuracy of the presentedmodel depends strongly on the
proper choice of boundary conditions (BC) since by switch-
ing to the ergodic model we increase their influence. For a
sufficiently large non-ergodic sample the effect of boundary
conditions is negligible. In contrast, varying the boundary
conditions in an ergodic model can even double the micro-
scopic stress values [48,56].

All BC applied to the microstructure must satisfy the
Hill-Mandel condition, which states the equality between
the microscopic and macroscopic energy increments. The
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quantities involved in the Hill-Mandel condition are often
understood as incremental internal energies or as virtualwork
of internal forces on the macroscale and on the microscale.
In classical (deterministic) computational homogenization
there are only three types of BC satisfying the Hill-Mandel
condition: the Dirichlet BC (DBC), the periodic BC (PBC),
and the traction BC (TBC). The recently introduced novel
weak PBC [46] and other advanced techniques still belong
to one of the three classical types of BC from this perspective.
It is well-known that the DBC overestimate stresses, while
the TBC underestimate them [6,44,45,48,55,56]. The most
reliable results even in case of randommaterials are obtained
using the PBC, which is however often criticized in literature
since random samples are not periodic.

In our previous study [39] we addressed this criticism and
proposed a novel type of boundary conditions for stochas-
tic problems, namely the soft PBC. Note that the soft PBC
reduce to the classical strong PBC in the deterministic case.
To set the stage, let us define two spaces: the physical spaceE,
i.e. the Euclidean space with coordinates x ∈ R

3 augmented
by a corresponding algebra, and the stochastic space (space
of parameters) S with coordinates (parameters) θ ∈ R

n . Let
us consider the physical domain D ⊂ E associated with the
space occupied by a body in its undeformed state and the
stochastic domain S ⊂ S associated with uncertain parame-
ters. The soft PBC are introduced as follows:

1

V0

∫

D
F(x, θ) dx = F̄

θ
, ∃F̄θ 	= F̄,

∫

S
F̄

θ
fθdθ = F̄,

1

V0

∫

D
P(x, θ) dx = P̄

θ
, ∃P̄θ 	= P̄,

∫

S
P̄

θ
fθdθ = P̄,

1

V0

∫

∂D
δwθ · [Pθ · N] dA = 0, ∀θ.

(7)

where V0 is the physical volume of the RVE, F and P are the
microscopic deformation gradient and the microscopic Piola

stress tensor, F̄
θ
and P̄

θ
are quantities averaged over the phys-

ical volume (but still functions of the random parameters),
and F̄ and P̄ are themacroscopic (homogenized) deformation
gradient and themacroscopic (homogenized) Piola stress ten-
sor, δwθ is the variation of the displacement at a fixed θ , N is
the unit normal vector to the boundary ∂D. The last equation
implies that the displacements are periodic, and stresses are
antiperiodic on the boundary of the RVE for each value of θ .
By considering condition (7) we apply some sort of weak-

ened Hill-Mandel condition and thus allow local fluctuations
of F̄

θ
and P̄

θ
, whereby only the parameter averages of F̄

θ

and P̄
θ
must coincide with their macroscopic counterparts F̄

and P̄. In contrast, in the classical PBC the following strong

relations are enforced F̄
θ = F̄ and P̄

θ = P̄.
Simulations considered in this paper are performed using

either the strong PBC or the soft PBC. For the purpose of
comparison, the macroscopic deformation gradient applied
to the microstructure corresponds to 10% uniaxial extension
or to 10% simple shear:

F̄ =̂
[
1.1 0
0 1

]
, F̄ =̂

[
1 0.1
0 1

]
. (8)

3.4 Elasto-plastic material model

For the sake of demonstration, the consideredmaterial model
is isotropic. We use finite additive von-Mises plasticity in
the logarithmic strain space with a saturation-type nonlinear
isotropic hardening [27,28]. Let us consider the rightCauchy-
Green strain tensorC = Ft ·F and its dual the Piola-Kirchhoff
stress tensor S = F−1 ·P, where�t and�−1 denote transpo-
sition and inversion, respectively. Within this approach the
Hencky strain E := 1

2 lnC is additively decomposed into
elastic Ee and plastic Ep parts. Since the elastic and plas-
tic strains are decomposed additively, relations known from
small strain plasticity can be used further. Let us consider the
stress T dual to the Hencky strain. The stress T is evaluated
using a standard (small-strain) constitutive model [27], e.g.
linear isotropic von-Mises plasticity with nonlinear harden-
ing:

E = Ee + Ep,

Tvol = 3kEe,vol , Tdev = 2μEe,dev,

� = ‖Tdev‖ −
√
2

3
[y0 − β] ≤ 0,

Ėp = λ̇Tdev/‖Tdev‖,

α̇ = λ̇

√
2

3
,

λ̇ ≥ 0, � ≤ 0, λ̇� = 0,

Ṫ = Jep,log : Ė,

(9)

where �̇ is the time derivative, �vol is the volumetric part
of a tensor, �dev is the deviatoric part of a tensor, Jep,log is
the elasto-plastic tangent modulus in the logarithmic strain
space, k and μ are the bulk modulus and the shear modulus,
λ is the plastic multiplier, α is the internal variable, β is
the hardening stress, and � is the yield function [27]. The
saturation type isotropic hardening is defined by

β = −hα − [y∞ − y0][1 − exp(−ωα)],
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Fig. 5 The Cauchy stress plotted versus the Biot strain for the ideal-
ized uniaxial tension experiment. Hysteresis curve obtained using the
specified material properties

whereω is the saturation parameter, h is the hardening param-
eter, y0 and y∞ are the initial yield stress and the limit yield
stress.

Once the stress T and tangent modulus Jep,log in the loga-
rithmic strain space have been obtained from the constitutive
model, they are mapped back into the Piola-Kirchhoff stress

S = T : P1

and the elasto-plastic tangent modulus

Jep = [P1]t : Jep,log : P1 + T : P2,

where P1 = ∂E
∂C and P

2 = ∂2E
∂C2 are some projection tensors.

A detailed outline of the projection tensors is given in [28].
The following values of material parameters of a matrix

are considered for all simulation presented in the sequel: the
bulk modulus k = 17.33, the shear modulus μ = 8, the
saturation parameter ω = 20, the hardening modulus h = 1,
the initial and limit yield stresses y0 = 1 and y∞ = 1.2. The
inclusion is ten times stiffer than the matrix material (k =
173.3, μ = 80). The hyperelastic material model, which is
used for comparison, is obtained by considering an infinite
yield stress but keeping the same bulk modulus and shear
modulus [27].

The plastic hysteresis curve under uniaxial loading is
depicted for the specified material model in Fig. 5. Here the
Cauchy stress is plotted versus the Biot strain

√
C− I, where

I is the second order identity tensor.

Fig. 6 Fragment of the mesh generated for the non-ergodic model with
128 inclusions

4 Validation of the ergodic RVE

The validation of the ergodic RVE design is performed in
[39] for elastic problems. The application of the ergodic RVE
design for plastic problem can result in higher errors due to
the increased role of the 3- and higher-point distributions.
In this section we provide the comparison of the ergodic
RVE described in Sect. 3.2 with ten non-ergodic samples
including 128 inclusions each (see alsoSect. 3.2).Due to high
computational costs of the non-ergodic models, simulations
with higher number of inclusions are not performed. The FE
mesh is also restricted to linear finite elements. A fragment
of the mesh used in the non-ergodic simulations is depicted
in Fig. 6.

The non-ergodic simulations are performed with the clas-
sical PBC, the ergodic simulation is repeated twice with the
strong PBC and the soft PBC.We apply amacroscopic defor-
mation gradient which corresponds to 10% uniaxial tension.
Material properties are presented in Sect. 3.4. The inclusions
remain elastic, their bulk and shear modulus are ten times
higher than those of the matrix.

The microscopic stress distribution over the volume of the
non-ergodic RVE at maximum tension of 10% is depicted in
Fig. 7. The microscopic equivalent plastic strain distribution
over the volume of the non-ergodic RVE is depicted in Fig. 8.
For comparison thedistributionof themicroscopic equivalent
strain within the ergodic RVE with the soft PBC is presented
in Fig. 9. A detailed analysis and discussion on the ergodic
RVE is presented in Sect. 5.

In this section only the microscopic quantities are com-
pared, because they are shared by both the ergodic and
the non-ergodic models. Macroscopic quantities cannot be
compared directly (except of homogenized stress values),
because the ergodic RVE is a stochastic RVE and all quan-
tities are computed not as single values but as probability
distributions.

123



474 Computational Mechanics (2022) 69:467–488

Fig. 7 Stress distribution within the non-ergodic sample: the first component of the stress tensor (left), the microscopic von-Mises stress (right)

Fig. 8 The equivalent microscopic plastic strain α distributed over the
volume of the non-ergodic RVE

Here we compare the following statistical moments of
microscopic quantities: the mean value (the mean micro-
scopic stress equals the macroscopic/homogenized stress),
standard deviation of themicroscopic quantities, higher order
standardizedmoments like skewness (3rd ordermoment) and
kurtosis (4th order moment), and min and max values over
the volume.

Considering some scalar σ as quantity of interest, the
mean value is evaluated as:

meanσ = 1

V0

∫

D

∫

S
σ(x, θ) fθdθ dx, (10)

Fig. 9 The equivalent microscopic plastic strain α distributed over the
volume of the ergodic RVE with the soft PBC

meanσ = 1

V0

∫

D
σ(x) dx, (11)

for an ergodic model and for a non-ergodic models, respec-
tively.
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The standard deviation is evaluated for an ergodic model
and for a non-ergodic models as:

stdσ =
√√√√

1

V0

∫

D

∫

S
[σ(x, θ) − meanσ ]2 fθdθ dx, (12)

stdσ =
√√√√

1

V0

∫

D
[σ(x) − meanσ ]2 dx. (13)

Standardized n-th order moments are given as:

μnσ =
1
V0

∫

D

∫

S
[σ(x, θ) − meanσ ]n fθdθ dx

[stdσ ]n , (14)

μnσ =
1
V0

∫

D
[σ(x) − meanσ ]n dx

[stdσ ]n . (15)

Since the reference solution obtainedwith ten non-ergodic
samples demonstrates some spread, the relative error is esti-
mated as the normalized distance between the reference
interval and the ergodic solution:

M = max(σ non−ergo),

N = min(σ non−ergo),

A = average(σ non−ergo),

error =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, σ ergo ∈ [N , M]
σ ergo − M

|A| , σ ergo > M

σ ergo − N

|A| , σ ergo < N

.

(16)

Note that the error is set to zero if the ergodic solution fits
into the reference interval.

Figures 10, 11 and 12 demonstrate comparison of statis-
tical moments for the first component of the stress tensor
σ11, for the second normal stress σ22, and for the equivalent
plastic strain α, respectively.

The ergodic RVE with the soft PBC performs better than
the ergodic RVE with the strong PBC in terms of skewness
andkurtosis.Highest disagreement is observed for the second
normal stress. The error of the ergodic model is much higher
for plastic materials than for hyperelastic materials [39], but
is still reasonable. The main contribution to the error is most
probably associated with the model simplifications, namely
the loss of information regarding the number of neighbors
in the non-ergodic model (Sect. 3.2). It is worth to mention
however that some ergodic model inaccuracy is caused by
the fitting error (Fig. 3). Our previous study shows that up to
2% disagreement in homogenized stresses is associated with
fitting error [32].

Fig. 10 Comparison of statistical moments for the first component σ11
of the microscopic stress tensor

Fig. 11 Comparison of statisticalmoments for the second normal stress
σ22 of the microscopic stress tensor

Fig. 12 Comparison of statistical moments for the microscopic equiv-
alent plastic strain α

The simulation is performed with 10 load steps. For each
step we increase the applied macroscopic Biot strain by 1%
until the maximum strain of 10% is obtained. The evolu-
tion of the macroscopic von-Mises stress plotted versus the
macroscopic Biot strain (for different load steps) is depicted
in Fig. 13. The non-ergodic samples demonstrate only a very
small spread, that is why it is depicted schematically by red
bars. Numbers near red bars give the exact size of the spread.
Note that the spread is temporally decreased in the transition
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Fig. 13 Evolution of the macroscopic von-Mises stress in ergodic and
non-ergodic models plotted versus Biot strain

region between the fully elastic and the fully plastic macro-
scopic response (4-6% strain).

Note that the soft PBC perform clearly better in the elastic
region. However in the plastic region of the diagram both
types of PBC yield a regular error about 4%. In the plastic
region the soft PBC seems to be better in terms of higher
order moments (Fig. 10). Further comprehensive discussion
and comparison of the strong and the soft PBC is given in
Sect. 5.

The main conclusion is that the ergodic model performs
well for elastic problems, is still reasonably accurate for plas-
tic problems, and can be further improved by including the
3- and higher-point distributions. The 4% regular error in
stresses in the current example is the price for model simpli-
fication in the ergodic RVE design.

4.1 Computational costs of ergodic model

The stochastic FEM is known for high computational costs.
Furthermore most of stochastic methods are sensitive to the
curse of dimensionality, i.e. the exponential growth of the
problem complexity with an increase of number of parame-
ters.

The presented design of the ergodic RVE allows to over-
come the curse of dimensionality by reducing the problem to
only one random parameter. Even if further noise and error
terms are added to the model to reflect the fitting error and
measurement imprecision in case of experimental data taken
from a lab, the dimension reduction presented in [37] allows
to avoid additional parameters in the simulation. The stochas-
tic model with only one parameter is in general very cheap.

Already medium-precision RVE with 128 inclusions
require 10 times more computational time than the ergodic
RVE. Furthermore the convergence of the non-ergodicmodel
is the typical convergence of the Monte-Carlo simulation
with fully random input sequence. It is theoretically esti-
mated as the square root of the number of inclusions.

The ergodic RVE design permits for use of highly precise
stochastic methods like the stochastic collocation method
or the spectral Galerkin method, which demonstrate from
polynomial up to exponential convergence rate. The ran-
dom generator used in the non-ergodic approach produces
unstructured data sequence, while the ergodic approach uti-
lizes the well-structured uncorrelated parameterized random
variables, which allows for an optimized sampling strategy.

Another possibility to reduce the computational costs of
the ergodic simulation is the reduced order modeling. Very
good results are achieved for elastic problems by using the
combination of the proper orthogonal decomposition (POD)
and the discrete empirical approximation [36]. However the
standard sampling based order reduction (like POD) fails for
plastic problems due to the existence of internal variables and
thus material memory. Up to our knowledge, the application
of the POD for plasticity is still under consideration.

5 Simulation results

In this workwe compare ergodic stochastic FEM simulations
performedwith four different models. In the first example we
consider a single unit cell with a randomly oriented elliptic
inclusion. This model is simply used to compare the elastic
and plastic material models and also to demonstrate the sig-
nificant influence of the uncertain (random) parameter on the
simulation results.

In the second example we consider a circular inclu-
sion with random radius. This RVE model is based on the
approach described in 3.1. The second example is provided
to demonstrate the effect of the novel soft PBC in comparison
to the standard strong PBC.

The third example focuses on macroscopic plasticity sig-
natures such as themacroscopic von-Mises stress (von-Mises
stress of the homogenized stress tensor). Here, the RVE
model is similar to the previous one, however, here we con-
sider two random parameters: the inclusion radius and the
limit yield stress. These simulations provide additional data
for further constitutive modeling on the macroscale.

The fourth example is similar to the third example, but
it considers that the yield stress for the soft matrix and for
the stiff inclusion are the same, which is a very rare situation
in practice. This example has rather academic interest. It is
particularly interesting because it shows that themacroscopic
von-Mises stress can be a misleading signature of plasticity
on the microscale.

Remark The inclusion orientation and the radius varia-
tion reflect some actually observed property fluctuations
over the volume of the non-ergodic RVE. This type of
uncertainty is called in the dedicated literature an aleatoric
uncertainty. Corresponding simulations (the first and sec-
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Fig. 14 A single unit cell with a randomly oriented elliptic inclusion

ond examples) are performed with both the soft PBC and
the strong PBC. In contrast, the variation of the limit yield
stress in the third example represents only our doubts (lack
of knowledge) regarding some simulation constants. Here,
we do not consider the property fluctuations over the vol-
ume (a classical example of an aleatoric random field),
but only the unknown/imprecisely measured value. This
type of uncertainties is called epistemic. The soft PBC
are designed only for aleatoric uncertainties (representing
volume fluctuations), hence they cannot be used in the
third example, where the effect of epistemic uncertainty is
studied.

5.1 Example I: stochastic RVE with an elliptic
inclusion

To start with, we consider a simple model of heterogeneous
materials with periodic microstructure consisting of a soft
matrix and stiff elliptic randomly oriented inclusions. The
inclusions possess higher yield stress and stay elastic during
the entire simulation. The orientation angle ϕ is the only ran-
dom parameter in the RVE (see Fig. 14). Due to periodicity it
is sufficient tomodel only a single unit cell. This problemwas
studied in [39] for purely elastic materials. The soft PBC are
applied, however the previous study [39] demonstrated that
there is only a very small effect of the soft PBC in comparison
to the classical strongPBC for thismodel.Material properties
and the macroscopic deformation gradient are introduced in
Sect. 3.4.

Note that the physical model is 2D. The third dimension
is the parameter θ . This parameter is linked to the orientation
angle of the elliptic inclusion. For the sake of convenience the
randomvariable θ ismodeled as a truncatedGaussian random
variable with zero mean and unit variance. This implies that
the parameter is specified in the range θ ∈ [−3, 3].

Fig. 15 Themicroscopic von-Mises stress distribution for an RVEwith
a single randomly oriented elliptic inclusion. The third dimension is the
parameter θ . Elastic material model

Fig. 16 Themicroscopic von-Mises stress distribution for an RVEwith
a single randomly oriented elliptic inclusion. The third dimension is the
parameter θ . Plastic material model
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Fig. 17 The distribution of the equivalent microscopic plastic strain α

within the RVE. The third dimension is the parameter θ . Plastic material
model

In this example the parameter θ is related to the orientation
angle ϕ through the expression:

ϕ(θ) = π

4
+ π

12
θ, (17)

where θ ∈ [−3, 3] and consequently ϕ ∈ [0, π/2].
Figures 15 and 16 demonstrate the micromechanical von-

Mises stress distribution within the unit cell for a purely
elastic material model (Fig. 15) and for a plastic material
model (Fig. 16). The distribution of the equivalent plastic
strain within the RVE is plotted in Fig. 17, different colors
depict the plastic strain intensity. Note that nearly the entire
RVE exhibits plastic strains.

These figures demonstrate that (1) the effect of the param-
eter variation is significant (Fig. 16), (2) the unit cell exhibits
large strain plasticity with most of material being plastified
(Fig. 17), and 3) plasticity strongly changes the microscopic
stress distribution (Figs. 15, 16). This is also a suited example
to demonstrate the methodology.

Remark Any output in the parametric simulation (stress, dis-
placement, etc.) is a function of a parameter. If the model
parameter is a random variable, the output becomes also
a random variable with some probability distribution and
probabilistic moments. The parametric simulation does not
return however the probability density of the output, instead
the mapping function is evaluated. This is a function which

Fig. 18 The output of the parametric simulation is the function which
maps the input parameter θ into some quantity of interest σ . The input
θ has predefined probability density, the probability density of σ can
be uniquely obtained from the mapping function according to Eq. (18)

maps input (random parameter) into the output (Fig. 18). Let
us consider the output quantity σ (a random variable) with
the probability density function fσ (σ ), σ(θ) is the mapping
function, θ is the input parameter with the predefined proba-
bility density function fθ (θ). For the sake of simplicity, let us
consider only themonotonicmapping functionσ(θ), then the
probability density fσ (σ ) is obtained from the expression:

fσ (σ )dσ = fθ (θ)dθ, σ = σ(θ). (18)

In fact the two probability density functions fσ (σ ) and
fθ (θ) are connected through the derivative dσ(θ)

dθ . Any prob-
abilisticmoments of the output can be indeed estimated using
themapping function only, for instance, themean value reads
as

mean(σ ) =
maxσ∫

minσ

σ fσ (σ )dσ =
maxθ∫

minθ

σ (θ) fθ (θ)dθ. (19)

Figure 19 depicts the macroscopic von-Mises stress σ(ϕ)

(the von-Mises stress obtained from the homogenized stress
tensor) as function of the orientation angle ϕ for the purely
elastic (the top red curve) and elasto-plastic (the bottomgreen
curve) material models. The blue area depicts schematically
the pdf fϕ(ϕ) of the input variable ϕ. The input pdf will
be skipped in subsequent figures for the sake of simplicity.
Stress mean values are obtained from (19) by integrating
σ(ϕ)with the input pdf fϕ(ϕ). Note that both curves σ(ϕ) are
nearly straight. This is due to the soft PBC,which redistribute
the loading between different unit cell configurations (RVE
sections which correspond to different parameter values) in a
way that the totalmechanical energy isminimized. The effect
of the soft PBC is similar to connecting springs sequentially:
all springs possess the same stress but different strains. In
contrast, the strong PBC are similar to springs connected
in parallel: all springs possess the same strain but different
stresses.
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Fig. 19 The macroscopic von-Mises stresses for an elastic RVE model
(top red) and for an elasto-plastic RVEmodel (bottomgreen) as function
of the orientation angle ϕ. The blue area depicts schematically the pdf
of the angle ϕ. All probabilistic moments of themacroscopic von-Mises
stress can be evaluated form the mapping function σ(ϕ) according to
Eq. (19). (Color figure online)

The behavior implemented through the soft PBC is more
realistic due to interaction between separate unit cells, as it
happens in the non-ergodic models. Also the stress standard
deviation is strongly reduced in case of the soft PBC. Note
that the only quantity transferred to the macroscale is the
mean value of the stress. The stress standard deviation, higher
order moments, as well as the upper and lower stress bounds
are relevant mostly in case of non-perfect scale separation,
for the mesoscale simulations, for damage models, and as
plasticity signatures on the macroscale. Too large standard
deviation means that model is not reliable, it is too sensitive
to parameter variation, and the mean value can be calculated
with significant error. In some sense the soft PBC stabilize
model response.

5.2 Example II: stochastic RVE with variable size of
inclusion

The second example investigates a heterogeneous material
consisting of a soft matrix and non-overlapping randomly
distributed circular inclusions, which radii are also random.
The design of a simple stochastic ergodic RVE for this type
of materials is briefly introduced in Sect. 3.1. Material prop-
erties are the same as in the previous example (see Sect. 3.4).
The soft PBC (Sect. 3.3) are applied since they are found to
be the most accurate for this model in the purely elastic case
[39].

The purpose of this example is to apply the plastic
constitutive relation within the homogenization framework

Fig. 20 The von-Mises stress distribution for an ergodic RVE which
corresponds to randomly distributed circular inclusions. The third
dimension is the parameter θ . Elastic material model, the soft PBC

developed earlier and to study microscopic and macroscopic
plasticity signatures (von-Mises Stress). It suits also for the
comparison of the soft PBC and the strong PBC in case of
large deformation plasticity.

The physical microstructure is modeled as a 2D unit cell.
The third dimension in these figures is the parameter θ .
The random parameter θ is related to the inclusion radius
r through the expression:

r(θ) = exp(rmean + rvarθ), (20)

where θ ∈ [−3, 3] and r ∈ [0.25, 0.6].Note that the radius is
here a truncated log-normal random variable and possesses a
corresponding truncated log-normal probability distribution.

For the sake of demonstration we plot firstly the microme-
chanical von-Mises stress distribution within the RVE for a
purely elastic model (Fig. 20) and for a plastic model (Fig.
21) under uniaxial tension (Sect. 3.3).

Figure 22 shows the macroscopic von-Mises stress (the
von-Mises stress obtained from the homogenized stress ten-
sor) as function of the inclusion radius r(θ) for the elastic
(the top dashed curve) and plastic (the bottom solid curve)
material models. These curves are obtained at 10% uniaxial
tension. Stress mean values are obtained by integrating the
stress curves with the input pdf according to (19). The first
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Fig. 21 The von-Mises stress distribution for an ergodic RVE which
corresponds to randomly distributed circular inclusions. The third
dimension is the parameter θ . Plastic material model, the soft PBC

interesting result is that the macroscopic von-Mises stress
in the elastic model decreases while the inclusion radius
is increased. Normally we would expect higher stresses for
larger radii, since the cell is getting stiffer. This effect is fully
explained by the soft PBC, which redistribute the loading
between different RVE sections (different radii). A larger
radius causes a higher stiffness of the unit cell and has a very
low probability of appearance according to the log-normal
distribution (20). The minimization of the total mechanical
energy is achieved if these rare and stiff unit cells are less
loaded than the rest. In the elasto-plastic material model the
plasticity also causes some load redistribution and the corre-
sponding stress curve monotonically increases.

The strong PBC (Fig. 23) do not imply this behavior: a
higher radius corresponds to a stiffer unit cell and causes
larger von-Mises stress. Obviously, the plastic curve (bottom
solid) demonstrates a smaller spread and significantly lower
absolute stress values than the elastic curve (top dashed). The
soft PBC (Fig. 22) yield much lower curve slopes than the
strong PBC (Fig. 23) in all simulations. In these simulations
we considered only uniaxial tension. Analogous results for
10% simple shear are depicted in Fig. 24.

In summary, theRVEwith the classical strongPBCand the
RVE with the soft PBC demonstrate significantly different
stress distributions.

Fig. 22 The macroscopic von-Mises stresses for an elastic model (top
dashed) and for a plastic model (bottom solid) as function of the inclu-
sion radius. Uniaxial tension, the soft PBC

Fig. 23 The macroscopic von-Mises stresses for an elastic model (top
dashed) and for a plastic model (bottom solid) as function of the inclu-
sion radius. Uniaxial tension, the strong PBC

Nextwe study the evolution of themacroscopic von-Mises
stress while increasing the uniaxial loading. The simulation
is performedwith 10 load steps. For each stepwe increase the
applied macroscopic Biot strain by 1% until the maximum
strain of 10% is obtained. Figures 25 and 26 depict the evo-
lution of the macroscopic von-Mises stress plotted versus the
macroscopic Biot strain (for different load steps). Figure 25
is obtained for the soft PBC, while Fig. 26 is obtained for
the strong PBC. The two dashed lines in each figure corre-
spond to the maximum and minimum stresses (upper and
lower bounds). The dependency on the random parameter is
not depicted, but the parameter variation causes some spread
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Fig. 24 The macroscopic von-Mises stresses for a plastic model with
the strong PBC (red curve) and with the soft PBC (green curve) as
function of the inclusion radius. Shear loading. (Color figure online)

Fig. 25 The evolution of the macroscopic von-Mises stress plotted ver-
sus the macroscopic Biot strain. The soft PBC

of the macroscopic stresses. The stress spreads at 10% strain
in Figs. 25 and 26 coincide with the lower curves in Figs. 22
and 23, respectively.

Figure 26 demonstrates the proportionally increasing
spread in macroscopic stresses, while the load increases, but
only up to 3% strain. After this point the stress spread is
even reduced. This is the signature that plasticity started in
the most stiff cells. After approximately 6–7% strain all cells
exhibit plastic deformations and the spread in macroscopic
stresses starts to increase proportionally again. In general,
when plasticity starts, the spread is reduced. At the strain of
10% all unit cells exhibit massive plastic deformations and
the spread inmacroscopic stresses is smaller than at the strain
of 3%, when all cells are elastic.

Fig. 26 The evolution of the macroscopic von-Mises stress plotted ver-
sus the macroscopic Biot strain. The strong PBC

Figure 25 demonstrates a behavior similar to Fig. 26, how-
ever with much smaller spread in stresses. This is related
to the load redistribution between unit cells. Similarly to
Fig. 26, there is a bottle-neck in stress spread at 7% loading.
At this point all unit cells start to deform plastically and the
macroscopic stress curve (see Fig. 22) flips from the dashed-
curve-like shape to the solid-curve-like shape in Fig. 22.

The spread of the macroscopic von-Mises stresses is an
important quantity for further macroscale simulations. Thus
the effect of the soft PBC is very important.

It is always hard to say when plastic deformations on
the macroscale appear. From the moment when first plas-
tic deformations are indicated on the microscale, until the
microscale is massively plastic deformed, the stress curve
on the macroscale slowly changes from the typically elastic
behavior to the typically plastic behavior. There is no clear
sharp transition between elastic and plastic regions on the
macroscale. In case of a parametric simulation (as the one
presented here), the stress spread is an additional indicator.
In case of the soft PBC its signals are vague, but still can
indicate the end of the transition region.

5.3 Example III: stochastic RVE with variable size of
inclusion and variable material parameters

In the following example we add an additional random
variable θy that relates to the limit yield stress in Eq. (9).
Therefore the parameter variation θy does not affect elas-
tic deformations of the body. Note that we do not consider
here the empirically measurable property fluctuations over
the volume. The additional random variable reflects another
source of uncertainty: measurement imprecision due to
poor experimental data, poor measurement tool accuracy,
etc. Similarly to the previous simulations we consider the
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Fig. 27 The von-Mises stress distribution for an ergodic model with
limit yield stress variation. The third dimension is the parameter θy .
Radius of the inclusion r = 0.25, plastic material model

truncatedGaussian randomvariable θy as the additional para-
metric dimension to the problem.The limit yield stress is then
given by:

y∞ = 1.2 + 0.1

3
θy, (21)

where θy ∈ [−3, 3] and y∞ ∈ [1.1, 1.3].
The simulation is performed using material properties

given in Sect. 3.4. The RVE design is presented in Sect.
3.1. In contrast to the previous example we apply only the
strong PBC, since the variation of the material parameters is
a typical example of the so-called epistemic uncertainty. The
epistemic uncertainty results not from a natural variation of
some system properties which is observed in reality, but from
our lack of knowledge. It has no physical background, we
cannot treat it in a way presented in Sect. 3.3, hence the soft
PBC are not applicable to epistemic uncertainties.

Due to the obvious difficulty to visualize a 4D model we
do not show the parameter dimension related to the radius
variation, instead we plot separate models for three different
radii: r = 0.25—the smallest radius (Fig. 27), r = 0.4—the
rounded mean value (Fig. 28), and 0.6—the largest radius
(Fig. 29).

The dependence of the macroscopic von-Mises stress on
the limit yield stress under uniaxial tension is depicted in
Fig. 30. A larger limit yield stress corresponds to a stiffer
unit cell and thus results in higher homogenized stresses.

Fig. 28 The von-Mises stress distribution for an ergodic model with
limit yield stress variation. The third dimension is the parameter θy .
Radius of the inclusion r = 0.4, plastic material model

Fig. 29 The von-Mises stress distribution for an ergodic model with
limit yield stress variation. The third dimension is the parameter θy .
Radius of the inclusion r = 0.6, plastic material model
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Fig. 30 The macroscopic von-Mises stresses for a plastic model with
variable limit yield stress and three different inclusion’s radii. Uniaxial
tension, the strong PBC

Fig. 31 The macroscopic von-Mises stresses for a plastic model with
variable limit yield stress and three different inclusion’s radii. Shear
loading, the strong PBC

The middle points in the upper, middle, and lower curves
in Fig. 30 coincide with the far right, middle, and far left
points in the solid curve in Fig. 23, respectively. These are
points where both diagrams intersect. Analogous results for
the shear loading are depicted in Fig. 31. The middle points
in curves in Fig. 31 coincide with the far right, middle, and
far left points in the red curve in Fig. 24.

Figure 32 demonstrates the evolution of the macroscopic
von-Mises stress while increasing the Biot strain. For the
purpose of visualization we plot separately curves for three
selected radii.

Fig. 32 The evolution of the macroscopic von-Mises stress plotted ver-
sus the macroscopic Biot strain. The variable parameter is y∞. The
strong PBC

Since the variation of y∞ does not affect the elastic defor-
mations, elastic stresses show no spread. The point when the
spread in stresses starts to grow indicates the start of plas-
tic deformations. Softer cells with smaller inclusions start
to deform plastically a bit later, this cause the transition
region [3%–6%], where part of the unit cells exhibits still
elastic deformations only. The spread between the red and
blue curves in Fig. 32 coincides with the diagram in Fig. 26.

5.4 Example IV: stochastic RVE with plastic inclusion

In this example we consider an RVE very similar to the
one in the previous example. The only difference is that the
yield stress (and also the hardening, the limit yield stress,
and the saturation parameter) for the soft matrix and for the
stiff inclusion is the same, which is a very rare situation in
practice. Thus, this example has rather academic interest to
demonstrate the disagreement between quantities observed
on the macroscale and microscopic effects.

Let us consider firstly the RVE with only one random
parameter—the inclusion radius. The macroscopic von-
Mises stress in case of 10% uniaxial tension and the soft
PBC is presented in Fig. 33 (blue curve). For the purpose of
comparison we also present here results for a purely elastic
model (dashed green curve), and a realistic model with elas-
tic inclusion (solid green curve) from example II. Analogous
results but for the strong PBC are presented in Fig. 34.

Note that the blue curve in Fig. 34 is nearly horizontal
but still slightly decreasing. This is unexpected and cannot
be explained by the load redistribution, since the strong PBC
are applied. This effect is observed only for uniaxial tension.
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Fig. 33 The macroscopic von-Mises stresses for a purely elastic model
(dashed green), for a plastic model with elastic inclusion (solid green),
and for a plastic model with plastic inclusion (bottom blue) as function
of the inclusion radius. Uniaxial tension, the soft PBC. (Color figure
online)

Fig. 34 The macroscopic von-Mises stresses for a purely elastic model
(dashed red), for a plastic model with elastic inclusion (solid red), and
for a plastic model with plastic inclusion (bottom blue) as function of
the inclusion radius. Uniaxial tension, the strong PBC. (Color figure
online)

The corresponding simulations under shear loading do not
exhibit this behavior (Fig. 35).

For further analysis of this problem let us consider the
second random parameter—the limit yield stress. Similar to
example III, we plot the macroscopic von-Mises stress as
function of the limit yield stress for three different inclusion
radii (Fig. 36). This diagramclearly indicates the behaviorwe
have reported in Fig. 34: unexpected decrease of the macro-

Fig. 35 The macroscopic von-Mises stresses for a plastic model with
the strong PBC (red curve) and with the soft PBC (green curve) as
function of the inclusion radius. Dashed lines correspond to the model
with plastic inclusion. Shear loading. (Color figure online)

Fig. 36 The macroscopic von-Mises stresses as functions of the limit
yield stress plotted for different inclusion radii. The RVE with plastic
matrix and inclusion, uniaxial tension, the strong PBC

scopic von-Mises stress, while the inclusion radius and hence
the cell stiffness increase. This observation contradicts our
intuitive picture. A larger inclusion radius corresponds to a
higher unit cell stiffness and must increase the macroscopic
stresses. However we see the opposite situation. This sim-
ulation is performed using the strong PBC, thus there is no
load redistribution.

Figure 37 demonstrates the evolution of the macroscopic
von-Mises stress while increasing the Biot strain. Note that
the unexpected behavior of themacroscopic von-Mises stress
is observed only in the plastic region of the diagram. When
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Fig. 37 The evolution of the macroscopic von-Mises stress plotted ver-
sus the macroscopic Biot strain. The variable parameter is y∞. The
strong PBC

the macroscopic strain reaches 6% the red, green and blue
curves switch order : the top curve in the elastic region cor-
responds to the largest radius, it becomes the lowest curve in
the plastic region.

In order to explain this paradox, we need to look closer
at the macroscopic stress. In case of the smallest radius r =
0.25 and the maximum uniaxial tension of 10% the mean
macroscopic Cauchy stress reads:

σ̄ 0.25=̂
⎡

⎣
2.2294 0.000 0.000
0.000 1.2473 0.000
0.000 0.000 1.2567

⎤

⎦ . (22)

Since the problem is 2D, the first and the second indices in
the stress tensor correspond to x and y axes, and the third
index is related to the out-of-plain stress evaluated based on
the plane strain assumption.

In case of the largest radius r = 0.6 themeanmacroscopic
Cauchy stress tensor reads:

σ̄ 0.6=̂
⎡

⎣
2.6625 0.000 0.000
0.000 1.6757 0.000
0.000 0.000 1.7325

⎤

⎦ . (23)

As expected, in case of a larger inclusion all stress com-
ponents are also larger. However, the von-Mises stress is
evaluated using only the deviatoric component of the stress
tensor, and in case of the larger radius it becomes smaller for
some reasons.

Furthermore, it is known that the von-Mises stress evalu-
ated from the homogenized stress (macroscopic von-Mises
stress) is not the same as the homogenized von-Mises stress

(averagemicromechanical von-Mises stress). The first option
is the stress which can be observed and studied on the
macroscale, while the second option is related to the intensity
of plastic deformations but loses the connection to stresses
observed on the macroscale. For the purpose of comparison,
both quantities are evaluated (Table 1). Note that the aver-
aged microscopic von-Mises stress grows with increasing
inclusion size, indicating thereby the increased plastic defor-
mation. At the same time the macroscopic von-Mises stress
decreases. This table clearly indicates that the macroscopic
von-Mises stress does not correctly represent the intensity of
plastic deformations in heterogeneous materials.

From the simulation results we can conclude that neither
the RVEwith elastic inclusion nor the RVE under shear load-
ing display the macroscopic von-Mises stress decay. Thus
this effect is observed in one academic example only. This is
however a bad sign telling us that themacroscopic von-Mises
stress is not directly linked to processes on themicroscale and
can be potentially a misleading indicator of the plastic yield-
ing. These observations are important for a further design of
macroscopic constitutivemodels of heterogeneousmaterials.

The second conclusion is that the effect of the soft PBC is
still significant and, as expected, fixes the entire stress curve
near some averaged value.

6 Conclusions

In this paperweperform the non-deterministic computational
homogenization of heterogeneous materials which exhibit
large plastic deformations.We utilize a simplified parametric
ergodic model of materials with randomly distributed non-
overlapping inclusions and the recently proposed novel soft
periodic boundary conditions for non-deterministic prob-
lems. Following our previous works, we compare the new
soft periodic boundary conditions with the standard strong
periodic boundary conditions. Furthermore, we estimate the
effect of parameter variations on homogenized stresses in
case of large plastic deformations. The non-deterministic
(stochastic) solutions are obtained using the recently devel-
oped stochastic local FEM (SL-FEM). Thereby we extend
to and examine the earlier proposed homogenization frame-
work in case of large deformation plasticity.

On the basis of the performed simulations we conclude
that the effect of the soft PBC compared to the strong PBC
is significant for materials with non-periodic microstructure.
The soft PBC redistribute load between parameter realiza-
tions (samples) and minimize the overall mechanical energy
of the parameterized system. As a consequence, the spread in
macroscopic stresses (which are functions of random param-
eters) is strongly reduced. Dependent on the weight factor
(probability density function of random variable) the redis-
tribution can even cause counterintuitive material response,
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Table 1 Comparison of the mean macroscopic von-Mises stress and the averaged microscopic von-Mises stress for two inclusion radii

Radius Unit cell stiffness Macroscopic von-Mises stress Averaged microscopic von-Mises stress

r = 0.25 Soft 0.9774 0.9872

r = 0.6 Stiff 0.9597 1.0128

where stiffer unit cells with large inclusions possess lower
stresses than softer unit cells.

Plastic constitutive relations have a similar effect and
reduce the spread in homogenized stresses. However, in case
of the soft PBC the effect of plasticity on the stress spread is
not significant. The stress redistribution caused by the bound-
ary conditions clearly dominates.

Also there is a clear difference between the strong PBC
and the soft PBC in predicting macroscopic yielding. An
interesting result is that the macroscopic stress spread can be
considered as an indicator for yielding on the microscale.

The response of the parameterized model cannot be
obtained as a simple rescaling of the response of only one
single deterministic model. Thus, the parametric simulation
provides much more realistic results and must be preferred
for the simulation of the material microstructure.

An unexpected stress response is observed while study-
ing materials with plastic inclusions under uniaxial loading.
Stiff unit cells displaying larger plastic strains and larger
microstructural stresses exhibited smaller macroscopic von-
Mises stresses (the von-Mises stress evaluated from the
homogenized stress tensor). Interesting is also that the aver-
aged microscopic von-Mises stress does not show this effect.
Also, this is observed neither in case of shear nor in more
realistic setting with stiff elastic inclusion. So, this effect is
observed in only one academic example, but this shows that
the macroscopic von-Mises stress is not necessarily a good
representative for mechanical effects on the microscale. This
is important for later constitutive modeling of heterogeneous
materials and for formulating the yield criterium based on
macroscopic indicators.

Note that the mentioned von-Mises stress decrease is
related only to uncertain parameters affecting the geometry.
Thus the significance of the accurate modeling of geomet-
rical uncertainties for large deformation plasticity becomes
undeniable.

Finally,we conclude that the application of advanced tech-
niques like the SL-FEM, non-deterministic homogenization,
the soft PBC and large strain plasticity increases the overall
realism of simulations and allows to harvest important and
non-trivial data for further constitutive modeling of hetero-
geneous materials.
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