
Computational Mechanics (2022) 69:315–333
https://doi.org/10.1007/s00466-021-02095-1

ORIG INAL PAPER

First-order VEM for Reissner–Mindlin plates

A. M. D’Altri1 · L. Patruno1 · S. de Miranda1 · E. Sacco2

Received: 14 June 2021 / Accepted: 10 September 2021 / Published online: 6 October 2021
© The Author(s) 2021

Abstract
In this paper, a first-order virtual element method for Reissner–Mindlin plates is presented. A standard displacement-based
variational formulation is employed, assuming transverse displacement and rotations as independent variables. In the frame-
work of the first-order virtual element, a piecewise linear approximation is assumed for both displacement and rotations
on the boundary of the element. The consistent term of the stiffness matrix is determined assuming uncoupled polynomial
approximations for the generalized strains, with different polynomial degrees for bending and shear parts. In order to mitigate
shear locking in the thin-plate limit while keeping the element formulation as simple as possible, a selective scheme for the
stabilization term of the stiffness matrix is introduced, to indirectly enrich the approximation of the transverse displacement
with respect to that of the rotations. Element performance is tested on various numerical examples involving both thin and
thick plates and different polygonal meshes.

Keywords Virtual element method · Shear deformable plates · Locking-free · Polygonal meshes · Reissner–Mindlin plates

1 Introduction

The Reissner–Mindlin theory is widely used to study the
mechanical response of shear-deformable plates. In the last
decades, many numerical methods have been proposed to
dealwith this problem [1], paying attention to thewell-known
shear locking phenomenon which may appear in the thin-
plate limit.

The scientific attention on the developments of dis-
cretization methods for Reissner–Mindlin plates is still very
animated [2–4], with a recent focus on polygonal elements
[5–8]. Indeed, polygonal meshes may be particularly appeal-
ing for a number of applications, e.g. meshing domains with
cracks/inclusions, hanging nodes, adaptivity, etc.

In the framework of polygonal elements, the Virtual
Element Method (VEM) [9,10] represents a recent and
promising discretization method which allows to deal with
general polygonal/polyhedral meshes. Due to its appealing
features, VEM has been used to solve a wide range of prob-
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lems in Mechanics, e.g. plane elasticity [11–13], contact
mechanics [14,15], fracture mechanics [16,17], solid non-
linear mechanics [18,19], Kirchhoff-Love plates [20–22].

Notwithstanding the importance of the shear deformable
plate in common structural applications, at best of authors
knowledge, very few virtual elements for the analysis of
Reissner–Mindlin plates have been presented in the litera-
ture. Beirão da Veiga et al. proposed in [23] a virtual element
that assumes the shear strains and the transverse displacement
as independent variables while the rotations are obtained
by post-processing. This stratagem allows to avoid shear
locking, while considering for each vertex 5 degrees of
freedom plus 1 degree of freedom per side, i.e. basically
6 degrees of freedom per vertex in a first-order approxima-
tion framework. Moreover, Chinosi [24] presented a virtual
element for Reissner–Mindlin plates which makes use of the
mixed interpolation of tensorial components (MITC) philos-
ophy to overcome shear locking phenomenon. In a first-order
approximation, for each vertex/side this approach considers
3 rotational degrees of freedom, 1 transverse displacement
degree of freedom, and 1 shear stress degree of freedom, i.e.
basically 5 degrees of freedom per vertex.

The present paper aims at proposing simple and effi-
cient first-order virtual elements for Reissner–Mindlin plates
based on a standard displacement-based variational formu-
lation, assuming only the transverse displacement and the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-021-02095-1&domain=pdf


316 Computational Mechanics (2022) 69:315–333

rotations as independent variables in the vertexes, i.e. saving
degrees of freedom with respect to existing approaches. The
consistent term of the stiffness matrix is developed assuming
uncoupled polynomial approximations for the generalized
strains, possibly adopting different polynomial degrees for
bending and shear parts. To mitigate potential shear locking
in the thin-plate limit while keeping the formulation as sim-
ple as possible, a selective stabilization scheme is used for
the stabilization term of the stiffness matrix. In particular, the
idea is to indirectly enrich the approximation of the transverse
displacement with respect to that of the rotations by assum-
ing the stabilization order for the transverse displacement
higher than the one used for the rotations. Numerical tests
are conducted on a number of polygonal meshes, involving
thin and moderately thick plates under different loading and
support conditions to test the performance of the method.

The paper is organized as follows. The basic plate equa-
tions and the displacement-based variational formulation are
presented in Sect. 2. Section 3 is devoted to the description of
the VEM formulation. The main assumptions with regards to
the calculation of the consistent and stabilization terms of the
stiffness matrix are discussed in Sect. 4. Numerical results
are presented in Sect. 5. Some final considerations end the
paper.

2 Basic equations

A homogeneous plate P with mid-surface Ω and constant
thickness h is considered, resulting P = Ω ×h. A Cartesian
reference coordinate system (O, x, y, z) is introduced so that
x, y describe the plane of the mid-surface Ω , while the z-
axis is in the thickness direction, with −h/2 ≤ z ≤ h/2, as
illustrated in Fig. 1.

The Reissner–Mindlin plate theory is herein adopted to
model the response of the plate. Thus, the displacement field
is represented in the form:

u(x, y, z) = zθx (x, y)

v(x, y, z) = zθy(x, y) (1)

w(x, y, z) = w(x, y)

where θx and θy represent the rotation of the fiber orthogonal
to the mid-surface of the plate in the x − z and y − z planes,
respectively, while w is the transverse displacement, i.e. the
deflection, of the plate. The two rotations are organized in
the vector θ = [

θx θy
]T, useful for the next developments.

The generalized strains for the Reissner–Mindlin plate
theory are the bending curvatures χ = [

χx χy χxy
]T and

the shear strains γ = [
γxz γyz

]T, defined as:

χ = Lbθ, γ = Lsw + θ , (2)

where the bending and shear compatibility operators are
introduced as:

Lb =
⎡

⎣
∂/∂x 0
0 ∂/∂ y

∂/∂ y ∂/∂x

⎤

⎦ , Ls =
[

∂/∂x
∂/∂ y

]
. (3)

The equilibrium equations of the plate are:

− LT
bM + S = m, −LT

s S = q, (4)

where vectorsM and S collect the bendingmoment and shear
resultants, respectively:

M =
⎡

⎣
Mx

My

Mxy

⎤

⎦ , S =
[
Sx
Sy

]
, (5)

while q and m = [
mx my

]T are the prescribed transverse
loads and couples acting on Ω .

A linear elastic response is assumed for the plate; thus,
the constitutive equations are written in the form:

M = Cbχ , S = Csγ , (6)

where Cb and Cs are the matrices of bending and transverse
shear moduli. In particular, for the isotropic case, the elastic-
ity matrices are:

Cb = Cb

⎡

⎣
1 ν 0
ν 1 0
0 0 (1−ν)

2

⎤

⎦ with Cb = Eh3

12(1 − ν2)
, (7)

Cs = Cs

[
1 0
0 1

]
with Cs = kEh

2(1 + ν)
, (8)

being E the Young’s modulus, ν the Poisson’s ratio and k a
correction factor to account for non-uniform distribution of
shear stresses through the thickness. Because of the homo-
geneity of the plate in the thickness, it is set k = 5/6.

The equilibrium problem of the linear elastic shear
deformable plate is ruled by Eqs. (2), (4) and (6) in Ω ,
together with appropriate boundary conditions on ∂Ω .

The variational formulation of the above problem in terms
of generalized displacements w and θ stems from the virtual
work principle:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Find w ∈ Uw and θ ∈ Uθ such that∫

Ω

(Lsδw + δθ)TCs(Lsw + θ) dA

+
∫

Ω

(Lbδθ)TCb(Lbθ) dA = δ	ext

∀ δw ∈ U0w and δθ ∈ U0θ

(9)
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Fig. 1 Sign conventions for rotations and stress resultants on positive
faces

whereUw andUθ are the spaces of the admissible generalized
displacements,U0w andU0θ the spaces of their variations and
δ	ext the virtual work done by external (body and boundary)
loads.

3 VEM formulation for Reissner–Mindlin
plates

To solve the problem in Eq. (9) through the VEM scheme,
the domain Ω is discretized by means of nonoverlapping
polygons with straight edges. Each polygon can be denoted
with ΩE , while ∂ΩE indicates its boundary. In the VEM, the
approximated generalized displacements in the element inte-
rior ΩE , denoted as wh and θh in the following, are assumed
to be not explicitly known and, thus, are referred to as virtual.
On the contrary, the approximated generalized displacements
on the element boundary ∂ΩE , denoted in the following by
w̃h and θ̃h, are assumed to be explicitly known and written
as:

w̃h = NV
wṼ, θ̃h = NV

θ Ṽ, (10)

where NV
w and NV

θ are the matrices of the approximation
functions on ∂ΩE and Ṽ is the vector collecting the gener-
alized displacements of the nodes on the element boundary.
Vector Ṽ hasmkw +2mkθ components, wherem is the num-
ber of vertexes of the polygonal element, and kw and kθ are
the degrees of the polynomial representations assumed over
the element boundary for w̃h and θ̃h, respectively.

3.1 Projection operator and consistent term

As neither wh and θh nor their gradients are explicitly com-
putable in the element interior, the key aspect of the VEM
consists in the introduction of a projection operator, which
represents the approximated generalized strains associated
with the virtual generalized displacements, called projected
generalized strains and denoted by χ P and γ P in the fol-
lowing. Accordingly, given the virtual displacementswh and
θh, χ P and γ P can be defined as the unique functions that

minimize

∥∥∥χ P − χ(θh)

∥∥∥
norm

+
∥∥∥γ P − γ (wh, θh)

∥∥∥
norm

(11)

where subscript norm indicates the type of norm used. Fol-
lowing the approach proposed in [25], an energy norm can
be used and, thus, the minimization of Eq. (11) leads to: find
χ P ∈ Ppb (
E ) and γ P ∈ Pps (
E ) such that

∫

ΩE

[χ P − χ(θh)]TCbδχ
PdA

+
∫

ΩE

[γ P − γ (wh, θh)]TCsδγ
PdA = 0

∀ δχ P ∈ Ppb (ΩE ) and δγ P ∈ Pps (ΩE ),

(12)

where Ppb (ΩE ) and Pps (ΩE ) denote the spaces of polyno-
mials of degrees (up to) pb and ps defined onΩE , and are the
spaces of the approximation functions adopted for the rep-
resentation of χ P and γ P , respectively, which are assumed
as:

χ P = NP
b ε̂, γ P = NP

s ε̂. (13)

NP
b and NP

s being the matrixes of the polynomial approxi-
mation of the consistent generalize strains of the plate and ε̂

is the vector of the coefficient of that approximation.
Using Eqs. (13) and (2), Eq. (12) can be rewritten as:

δε̂
T
∫

ΩE

(NP
b )TCb[NP

b ε̂ − Lbθh]dA

+δε̂
T
∫

ΩE

(NP
s )TCs[NP

s ε̂ − Lswh − θh]dA = 0 ∀ δε̂.

(14)

Integrating by parts and using Eq. (10) yields:

ε̂ = G−1
(∫

∂ΩE

(NEbCbNP
b )TNV

θ Ṽds

+
∫

∂ΩE

(NEsCsNP
s )TNV

wṼds

−
∫

ΩE

(LT
bCbNP

b )TθhdA −
∫

ΩE

(LT
s CsNP

s )TwhdA

+
∫

ΩE

(CsNP
s )TθhdA

)
,

(15)

where

G =
∫

ΩE

(NP
b )TCbNP

b dA +
∫

ΩE

(NP
s )TCsNP

s dA, (16)
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and

NEb =
[
nx 0 ny
0 ny nx

]
, NEs = [

nx ny
]
, (17)

being nx and ny the components of the unit outward normal
on ∂ΩE . The last three integrals in the r.h.s. of Eq. (15) collect
the moments of the virtual generalized displacements (up to
order ps − 1 for wh and up to order max(pb − 1, ps) for
θh) and their evaluation would require wh and θh explicitly
known in the interior of the element. Note that this differs
from the plane elasticity case, in which only moments up
to k − 1 arise. To overcome this problem, in the VEM, the
moments of the virtual displacement are assumed as internal
degrees of freedom of the element, in addition to the external
ones associated with the nodes on the element boundary.
Hence, denoting by V̂ the vector collecting the local internal
degrees of freedom,

Eq. (15) can be rewritten as:

ε̂ = G−1(B̃Ṽ + B̂V̂), (18)

where

B̃Ṽ =
∫

∂ΩE

(NP
Eb
CbNP

b )TNV
θ Ṽds

+
∫

∂ΩE

(NP
Es
CsNP

s )TNV
wṼds,

B̂V̂ = −
∫

ΩE

(LT
bCbNP

b )TθhdA −
∫

ΩE

(LT
s CsNP

s )TwhdA

+
∫

ΩE

(CsNP
s )TθhdA.

(19)

Over the generic element, using Eqs. (13) and (18), the
bilinear form in (9) can be written in terms of projected strain
as:

∫

ΩE

[γ P (δwh, δθh)]TCsγ
P (wh, θh)dA

+
∫

ΩE

[χ P (δθh)]TCbχ
P (θh)dA

=
∫

ΩE

[NP
s G−1B δV]TCsNP

s G−1B VdA

+
∫

ΩE

[NP
b G−1B δV]TCbNP

b G−1B VdA,

(20)

where

B =
[
B̃ B̂

]
, V =

[
Ṽ
V̂

]
. (21)

In Eq. (20), the consistent part of the stiffness matrixKc can
be recognized, which takes the form:

Kc = Kc
s + Kc

b, (22)

where

Kc
s = BTG-T

( ∫

ΩE

(NP
s )TCsNP

s dA
)
G−1B,

Kc
b = BTG-T

( ∫

ΩE

(NP
b )TCbNP

b dA
)
G−1B. (23)

3.2 Stabilization term

A suitable stabilizing term may be needed to assure the
rank sufficiency of the stiffnessmatrix and avoid zero-energy
modes. Indeed, the presence of a stability term is standard for
VEM [9–11,26,27], even though some recent advancements
[13,28] highlighted the possibility to device formulations
which could avoid the need for stabilization.

Denoting by sw and sθ the stabilization orders for w and
θ , respectively, the generalized displacements within the vir-
tual element can be written both in terms of vector-valued
polynomials up to degree sw and sθ , respectively, and also
in terms of the virtual basis of the admissible generalized
displacements of the element. In other words, the stabiliza-
tion orders sw and sθ represent the maximum degree of the
polynomials which can be found in the virtual fields ofw and
θ , respectively. By way of example, sw = 1 means that all
quadratic and higher order terms are penalized in the trans-
verse displacement virtual field. Accordingly, Dw and Dθ

are set as the matrices associated to the change of basis from
the polynomial space to the virtual functions space, i.e. the
components of the matricesDw andDθ are given by the eval-
uation of the polynomials on the degrees of freedom w and
θ , respectively, of the virtual element.

Consequently, denoting with Aw a suitable collocation
operator which matches the degrees of freedom related to w

to the global ones, andwithAθ a suitable collocation operator
which matches the degrees of freedom related to θ to the
global ones, the stabilization matrix can be written as:

Ks = AT
w Ks

w Aw + AT
θ Ks

θ Aθ , (24)

with

Ks
w = tw

[
I − Dw

(
DT

wDw

)−1
DT

w

]
,

Ks
θ = tθ

[
I − Dθ

(
DT

θDθ

)−1
DT

θ

]
, (25)

being tw and tθ scaling factors which serve to guarantee the
correct scaling of the energy with respect to the element size
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and material properties and are further specified in the fol-
lowing. Finally, the local stiffness matrix results in

K = Kc + Ks . (26)

It should be noted that the definitions of the stabilization
terms in Eq. (25) takes inspiration from the one discussed
in [11]. In particular, for further convenience, it is worth to
remark that such definitions of the stabilization terms imply
that the choice of sw (sθ ) leads to stabilize all the virtual
transverse displacement (rotations) fields of order > sw (>
sθ ). In other words, only the virtual transverse displacement
(rotations) fields of order ≤ sw (≤ sθ ) are free to develop
within the element from the stabilization point of view.

4 First-order virtual elements

Basing on the VEM formulation presented in the previous
section, here, the development of first-order virtual elements
for Reissner–Mindlin plates is detailed. In particular, the
main assumptions for the consistent term, the stabilization
term and the loading term are discussed.

4.1 Consistent term

First-order approximation functions are assumed for both w̃h

and θ̃h, i.e. kw = kθ = k = 1. Then, similarly to what is
usually done in plane elasticity, the polynomial degrees pb
and ps of the approximations for the generalized strains are
chosen related to the order k according to the compatibil-
ity equations, see Eq. (2), which suggest pb = k − 1 and
ps = k. Hence, assuming uncoupled polynomial approxi-
mation of each generalized strain component, the following
expressions for NP

s and NP
b are obtained:

NP
b =

⎡

⎣
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

⎤

⎦ , (27)

NP
s =

[
0 0 0 1 0 x 0 y 0
0 0 0 0 1 0 x 0 y

]
. (28)

This choice for NP
b and NP

s leads to the origin of 1 local
internal degree of freedom for w (i.e. its mean value) and 6
local internal degrees of freedom for θ (i.e. mean and first
order moments), see Fig. 2, as it can be checked from Eq.
(19). On this regard, it is worth to note that a standard static
condensation [29] can be used to express the internal degrees
of freedom in terms of those on the element boundary, so
reducing the final degrees of freedom only to the latter, as
carried out e.g. in [25].

According to the above assumptions, the virtual element
space Wh for the approximation of the transverse displace-

ment w is made of vector valued polynomials of degree ≤ 1
on each side of the element (which are also globally contin-
uous on the element border). The dimension of Wh is:

dim Wh = m + 1. (29)

Note that there is one internal degree of freedom for w.
The virtual element space�h for the approximation of the

rotations θ is made of vector valued polynomials of degree
≤ 1 on each side of the element (which are also globally
continuous on the element border). The dimension of �h is:

dim �h = 2(m + 3). (30)

Note that there are three internal degrees of freedom for both
θx and θy . A schematic description of the degrees of freedom
over a generic virtual element is shown in Fig. 2.

4.2 Stabilization term

As discussed in Sect. 3.2, the main task of the stabilization
term is to assure the rank sufficiency of the stiffness matrix.
As in the standard VEM formulation, a stabilization scheme
with sw = sθ = k = 1 would suffice to guarantee that
the stiffness matrix has the correct rank and no zero-energy
modes are present. However, unfortunately, the resulting ele-
ment would suffer shear locking phenomena in the thin-plate
limit, as it is clearly highlighted in “Appendix A”.

As it is well-known, in displacement-based finite ele-
ment formulations, locking phenomena can be alleviated by
enriching the representation of the transverse displacement
with respect to that of the rotations (i.e. kw > kθ ), for example
using different nodal schemes for w and θ or by employing
linked interpolations [30]. Although adopting a representa-
tion of w richer with respect to that of θ in Eq. (10) appears
potentially doable also in the context of the virtual element
formulation described in the previous section, a different and
simpler strategy is herein followed. Indeed, the concept is to
pursue the enrichment of the approximation ofwwith respect
to that of θ by operating on the stabilization term, i.e. in a
somehow indirect way. Particularly, the idea is to use a selec-
tive stabilization scheme as described in the following.

4.2.1 Rotations

Inspired by what is commonly done in two- and three-
dimensional elasticity, the stabilization order for the rotations
θ is assumed equal to the order of the representation assumed
for θ on the element boundary, i.e. sθ = k = 1. As noted
in Sect. 3.2, this choice implies to stabilize all the virtual
rotations fields of order greater than 1 or, equivalently, to
allow the rotations fields up to order 1 (i.e. the linear rota-
tions fields) to develop within the element. Accordingly, the
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Fig. 2 Degrees of freedom over
a generic virtual element

degrees of freedom degrees of freedom
degrees of freedom

polynomial space at the base of the construction of thematrix
Dθ used for the stabilization term, see Eq. (25), is chosen as:

P1(ΩE ) = span

{(
1
0

)
,

(
0
1

)
,

(
x
0

)
,

(
0
x

)
,

(
y
0

)
,

(
0
y

)}
.

(31)

Note that, with this assumption, the rotations field within
the element is governed by 6 parameters. Accordingly, the
matrix Dθ results:

Dθ =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

1 0 x1 0 y1 0
0 1 0 x1 0 y1
1 0 x2 0 y2 0
0 1 0 x2 0 y2
...

...
...

...
...

...

1 0 xm 0 ym 0
0 1 0 xm 0 ym

−
∫
1 0 −

∫
x 0 −

∫
y 0

0 −
∫
1 0 −

∫
x 0 −

∫
y

−
∫
x 1 0 −

∫
x x 0 −

∫
x y 0

0 −
∫
x 1 0 −

∫
x x 0 −

∫
x y

−
∫
y 1 0 −

∫
y x 0 −

∫
y y 0

0 −
∫
y 1 0 −

∫
y x 0 −

∫
y y

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

, (32)

where the short symbol −
∫
q denotes the integral average of

any scalar polynomial q on the virtual element domain, −
∫
x q

and −
∫
y q denote the scaled moments of the scalar polynomial

q with respect to x and y, respectively, on the virtual ele-
ment domain, and where the i-th vertex of the element has
coordinates (xi , yi ) being i = 1, 2, . . . ,m.

4.2.2 Transverse displacement

The stabilization order for the transverse displacement w is
assumed sw > sθ (being sθ = 1 in this case, see above),

which means that some higher-order terms in the virtual
transverse displacement field are allowed to develop within
the element and, hence,w can rely on an approximation richer
that that of θ . As it can be easily argued, an excessive sta-
bilization release of the transverse displacement field can
render the stabilization not effective in avoiding zero-energy
modes and, hence, sw has to be set while paying attention
to preserve the rank sufficiency of the stiffness matrix. Of
course, the higher is the side numerousness m (i.e. the richer
is the element boundary kinematics), the higher is the order
of the virtual transverse displacement field that can be acti-
vated within the element in absence of stabilization. Hence,
the effect that the choice of the stabilization order sw has
on the virtual transverse displacement field, and, hence, on
the rank sufficiency of the stiffness matrix, depends on the
element side numerousness m. On this regards, it could be
observed that we expect that the rank sufficiency of the stiff-
ness matrix is preserved if there is a balance between the
strain approximation assumed within the element and the
number of degrees of freedom governing the representations
of the rotations and transverse displacement fields. In other
words, we expect the stiffness matrix to have the correct rank
when the number of generalized strain modes plus the num-
ber of rigid body motions is greater or equal to the number of
parameters governing the rotations and transverse displace-
ment fields within the element (necessary condition).

In our case, on one hand the number of generalized strain
modes is equal to 9, see Eqs. (27) and (28), and the number
of the rigid body motions is equal to 3. On the other hand,
the number of the parameters governing the rotations field is
equal to 6 (see Eq. 31). Therefore, the above balance can be
fulfilled when the number of the parameters governing w is
less than or equal to 6. In this way, the number of deformation
modes plus rigid bodymotions is greater or equal to the num-
ber of parameters governing the generalized displacements.
With this in mind, the following two strategies are proposed.
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1. No stabilization is introduced for the transverse displace-
ment if its degrees of freedom, that are m + 1 (vertex
degrees of freedom plus 1 internal degree of freedom,
see Sect. 4.1), are less than or equal to 6. This means
that no stabilization is introduced for w if m < 6 (i.e.
in triangular, quadrilateral, and pentagonal elements).
Accordingly, it is herein adopted that when m < 6 the
stabilizationmatrix in Eq. (24) becomesKs = AT

θ K
s
θ Aθ .

2. Form ≥ 6, the transverse displacement field is stabilized
so to allow the development of a transverse displacement
field within the element governed by 6 parameters, for
fulfilling the above discussed balance. This can be easily
achieved by assuming the polynomial space at the base
of the construction of the matrix Dw as (sw = 2):

P2(ΩE ) = span
{
1 , x , y , x2 , xy , y2

}
. (33)

Note that, once the stabilization term is activated, it does
not dependon the number of sides of the element, but only
on the assumed polynomial space for Dw. Accordingly,
the matrix Dw results:

Dw =

⎡

⎢⎢⎢⎢
⎢
⎣

1 x1 y1 x21 x1y1 y21
1 x2 y2 x22 x2y2 y22
...

...
...

...
...

...

1 xm ym x2m xm ym y2m
−
∫
1 −

∫
x −

∫
y −

∫
x2 −

∫
xy −

∫
y2

⎤

⎥⎥⎥⎥
⎥
⎦

. (34)

For m = 6, it should be pointed out that zero-energy
modes would arise if the transverse displacement field is
not stabilized.

All the above choices preserve the rank sufficiency of
the stiffness matrix. Indeed, 3 null eigenvalues are found in
the stiffness matrix after stabilization for any element side
numerousness. More details on the stability of the virtual
elements herein discussed are given in the following section.

4.2.3 Scaling

In standard displacement-based VEM for plane elasticity
[11], the scaling of the stabilization term is classically car-
ried out trough the scalar τ tr(Kc), where τ is a positive real
number typically chosen equal to τ = 1/2, and the trace term
guarantees the scaling of the energy with respect to the ele-
ment size and material properties. Here, it should be pointed
out that the consistent stiffness matrix for the plate problem
collects terms related to both transverse displacement and
rotations which, beyond having different units, scale differ-
ently depending on the plate thickness, see e.g. Eqs. (7)-(8).
Accordingly, it is proposed herein to differentiate the scaling
between transverse displacement and rotations terms through

the factors tw and tθ , see Eq. (25), which can be defined as:

tw = τ tr(Kc
s ), tθ = τ tr(Kc

b). (35)

4.3 Loading term

The loading term, being k = 1, can be approximated by
applying an integration rule based on element vertexes [11]
as in standardVE technology. In otherwords, the load is eval-
uated in the center of gravity of the polygon and is distributed
to the polygon vertexes.

4.4 Stress recovery

In this work, the stress recovery follows the classic procedure
of standard displacement-based VEM [12], i.e. the consti-
tutive law is applied directly on the projected generalized
strains to obtain the generalized stresses. It should be herein
pointedout that itwouldbepossible, in general, to set upmore
advanced stress recovery procedures, see e.g. [16,25,31,32],
also for the case of plates.

5 Numerical results

In this section, the performance of the proposed first-order
plate virtual elements is tested numerically. In particular, a
stability assessment based on stiffness matrix eigenvalues is
discussed in Sect. 5.1, while two different load cases (i.e.
Test 1 with clamped boundary conditions and Test 2 with
simply supported boundary conditions) are presented and
discussed in Sects. 5.2 and 5.3, respectively. Finally, some
specific considerations on triangles are discussed in Sect. 5.4.

5.1 Stability assessment

In order to assess the stability of the plate virtual elements
described in Sect. 4, an eigenvalue analysis on the stiffness
matrix of three different virtual elements is herein con-
ducted for three values of plate thickness, i.e. h/L = 0.1,
h/L = 0.001 and h/L = 0.00001 (being L = 1 the length
of the plate). In particular, a right triangle with unit legs,
a square with unit sides, and a regular hexagon with side
length 1/4 are considered. The Young’s modulus and Pois-
son’s ratio of the material are set to be E = 103/h3 and
ν = 0.3, respectively, while τ = 1/2 is assumed as in
[11]. This stability assessment follows a classical procedure
also utilized in the FEM context for Reissner–Mindlin plates
(see e.g. [30,33]), that consists in comparing the eigenval-
ues by changing the thickness of the plate while keeping
constant the bending stiffness. Stable elements will show a
substantially constant ratio between the eigenvalues them-
selves while reducing thickness, whereas unstable elements,
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i.e. characterized by locking phenomena, will be character-
ized by one or more eigenvalues which show a significant
change with respect to the others, highlighting a solution
which changes while reducing the thickness.

Table 1 collects the non-null eigenvalues after static con-
densation of the stiffness matrix for the three considered
virtual elements, computed by keeping constant the bend-
ing stiffness while decreasing the thickness.

The obtained results reveal two fundamental points:

• the proposed strategy for the stabilization works fine, as
in all cases only 3 null eigenvalues are found ensuring the
rigid bodymotions and, in themeantime, all the elements
are free from spurious (zero energy) modes;

• all the elements present almost constant eigenvalues for
significant different values of the side-to-thickness ratio,
confirming that elements do not suffer from shear lock-
ing.

It can be also remarked that, while for triangle and square
no-stabilization is introduced for the transverse displacement
field w, the stabilization according to Eq. (33) is adopted for
w in the hexagon. Finally, this first numerical investigation
ensures the correct features of the virtual elements.

5.2 Test 1: Clamped boundary conditions

A load case with clamped boundary conditions is herein con-
sidered on a unit square domain Ω = (0, 1)2, by assuming
Dirichlet’s conditions over the entire boundary. Two val-
ues of plate thickness are considered, i.e. h/L = 0.1 and
h/L = 0.001, being L = 1 the length of the plate. The
Young’s modulus and Poisson’s ratio of the material are set
to be E = 1.0 and ν = 0.3, respectively, while τ = 1/2 is
assumed as in [11]. Numerical tests are performed on the
meshes shown in Fig. 3: structured regular quadrilaterals
(QUAD, Fig. 3a), structured distorted quadrilaterals (QDIS,
Fig. 3b), convex/concave quadrilaterals (RHOM, Fig. 3c),
structured regular hexagons (HEXA, Fig. 3d), random con-
vex polygons (POLY, Fig. 3e), convex/concave 6-vertex
polygons (WEBM, Fig. 3f), structured regular 6-node trian-
gles (TRI6, Fig. 3g), and structured regular 3-node triangles
(TRI, Fig. 3g). In particular, this last case is discussed specif-
ically in Sect. 5.4.

In order to test the convergence properties of the approach,
the following relative error in discrete L2-like norm (based
on the vertex values) is introduced to have a global estimation
on the generalized displacement error:

Displacement error =
(∑Ntot

i=1 (wh − wE )2

∑Ntot
i=1 (wE )2

) 1
2

+
(∑Ntot

i=1 (θx h − θx E )2

∑Ntot
i=1 (θx E )2

) 1
2

+
(∑Ntot

i=1

(
θyh − θy E

)2

∑Ntot
i=1

(
θy E

)2

) 1
2

,

(36)

where Ntot is the global number of vertexes, wE is the exact
transverse displacement, θx E and θy E are the exact rotations,
wh is the approximated transverse displacement, and θx h and
θyh are the approximated rotations. Also, a classical relative
error in energy norm is introduced to have a global estimation
on the generalized stress error:

stress error

= 1

||EE ||
(
1

2

∑

ΩE

(∫


E

(Mh − ME )TC−1
b (Mh − ME )dA

+
∫


E

(Sh − SE )TC−1
s (Sh − SE )dA

)) 1
2

,

(37)

whereME and SE are the exact generalized stress fields,Mh

and Sh are the approximated generalized stress fields, and
||EE || is the energy norm of the exact generalized stresses
on the whole domain:

||EE || =
(
1

2

∑

ΩE

(∫


E

MT
EC

−1
b MEdA

+
∫


E

STEC
−1
s SEdA

)) 1
2

. (38)

In the following, “log” denotes logarithm with base 10, and
“dofs” denotes the total number of degrees of freedom that
results after static condensation.

Test 1 refers to a square plate clamped on thewhole bound-
ary, forwhich the analytical solution [34] is explicitly known.
Indeed, by assuming the external load as:

q(x, y) = Eh3

12(1 − ν2)
{12y(y − 1)(5x2 − 5x + 1)

[2y2(y − 1)2 + x(x − 1)(5y2 − 5y + 1)]
+ 12x(x − 1)(5y2 − 5y + 1)

[2x2(x − 1)2 + y(y − 1)(5x2 − 5x + 1)]},

(39)
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Table 1 Non-null eigenvalues
for the considered virtual
elements

h/L = 0.1 h/L = 0.001 h/L = 0.00001

Triangle 0.00000351973572 0.00000353008332 0.00000353008436

0.00004405985384 0.00004407418525 0.00004407418669

0.00006625827406 0.00006626301395 0.00006626301442

0.00014476288360 0.00014476653078 0.00014476653114

0.00060075294369 0.00061813008079 0.00061814476967

0.00150188235922 0.00154532520082 0.00154533699994

Square 0.00000425618528 0.00000426297772 0.00000426297840

0.00003024696050 0.00003028593044 0.00003028914654

0.00006835874938 0.00006836554182 0.00006836554250

0.00007216127110 0.00007218343353 0.00007218375779

0.00012329911406 0.00012331059630 0.00012331059745

0.00060873988139 0.00061813091401 0.00061812956904

0.00060873988139 0.00061813091494 0.00061813186813

0.00061813186813 0.00061813186813 0.00061813186813

0.00061813186813 0.00061813186813 0.00061813456705

Hexagon 0.00000040334971 0.00000040381289 0.00000040372391

0.00003813322928 0.00003818724952 0.00003818985373

0.00004617297781 0.00004622634535 0.00004624854804

0.00005222974052 0.00005224831229 0.00005225916315

0.00005804583667 0.00005807949574 0.00005808906003

0.00010546494449 0.00010546507355 0.00010546511547

0.00050274827110 0.00050274827110 0.00050274827110

0.00050388198465 0.00050388198933 0.00050388198934

0.00050591033028 0.00050591033220 0.00050591033222

0.00061159029029 0.00061159029029 0.00061159029029

0.00061200338867 0.00061200338921 0.00061200338921

0.00062056590318 0.00062056590840 0.00062056590849

0.00162334463560 0.00174872943730 0.00174873438967

0.00252248554030 0.00265651683654 0.00265663801661

0.00405758136477 0.00423516782708 0.00423526999721

withmx (x, y) = 0 andmy(x, y) = 0, the analytical solution
in terms of generalized displacements results as:

w(x, y) = 1

3
x3(x − 1)3y3(y − 1)3

− 2h2

5(1 − ν)
[y3(y − 1)3x(x − 1)(5x2 − 5x + 1)

+ x3(x − 1)3y(y − 1)(5y2 − 5y + 1)]
θx (x, y) = −y3(y − 1)3x2(x − 1)2(2x − 1) (40)

θx (x, y) = −x3(x − 1)3y2(y − 1)2(2y − 1).

Figures 4 and 5 show the displacement and stress error
convergence curves, respectively. Particularly, the meshes
collected in Fig. 3 are tested for both h/L = 0.1 (see Figs. 4a
and 5a) and h/L = 0.001 (see Figs. 4b and 5b). As it can
be noted, the convergence rates are in agreement with the
expected ones for both displacement and stress errors. Addi-

tionally, it should be pointed out that the errors do not show
significant differences when passing from amoderately thick
plate (h/L = 0.1) to a thin plate (h/L = 0.001), thus show-
ing a locking-free nature of the method.

Finally, a direct comparisonof the numerical results versus
the ones presented in [23] is collected in “Appendix B”. As a
result, the present approach shows a slightly better accuracy
with respect to the results presented in [23], for both moder-
ate thick and thin plates. This outcome appears remarkable,
as the present approach is characterized by 3 degrees of free-
dom per vertex, while 6 degrees of freedom per vertex are
supposed in [23].

5.3 Test 2: Simply supported boundary conditions

Test 2 refers to a simply supported square plate. Here, the
samematerial of Test 1 is adopted, aswell as the samemeshes
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Fig. 3 Overview of meshes
considered

(a) QUAD (b) QDIS (c) RHOM

(d) HEXA (e) POLY (f) WEBM

(g) TRI & TRI6

Table 2 Values used for the
coefficients in Test 2

W Rx Ry

h/L = 0.1 47.9966423243 −142.735915928 −142.735915928

h/L = 0.001 4.54345093924 × 107 −1.42735915928 × 108 −1.42735915928 × 108

(Fig. 3) and error definitions of Sect. 5.2. The analytical solu-
tion is explicitly known also for Test 2. Indeed, by assuming
the external load as

q(x, y) = 16

π2 sin(πx) sin(π y), (41)

withmx (x, y) = 0 andmy(x, y) = 0, the analytical solution
in terms of generalized displacements results as:

w(x, y) = W sin(πx) sin(π y)

θx (x, y) = Rx cos(πx) sin(π y) (42)

θx (x, y) = Ry sin(πx) cos(π y)

where the values of the coefficients W , Rx , and Ry for the
present case are collected in Table 2.

Figures 6 and 7 show, respectively, the displacement and
stress error convergence curves. Analogously to Sect. 5.2,
the meshes collected in Fig. 3 are tested for both h/L = 0.1
(see Figs. 6a and 7a) and h/L = 0.001 (see Figs. 6b and 7b).
As it can be noted also in this case, the convergence rates are
in agreement with the expected ones for both displacement
and stress errors, and, analogously to the previous load case,
the errors do not show significant differences when passing
from a moderately thick plate (h/L = 0.1) to a thin plate
(h/L = 0.001), thus confirming the locking-free nature of
the method.

5.4 Considerations on triangles

The case of trianglesm = 3 is herein discussed separately as
it presents some peculiar critical aspects. It should be noted
that it could be somehow expected that the selective sta-
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Fig. 4 Test 1. Displacement
error convergence curves for a
h/L = 0.1, and b h/L = 0.001
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Fig. 5 Test 1. stress error
convergence curves for a
h/L = 0.1, and b h/L = 0.001
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Fig. 6 Test 2. Displacement
error convergence curves for a
h/L = 0.1, and b h/L = 0.001
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Fig. 7 Test 2. stress error
convergence curves for a
h/L = 0.1, and b h/L = 0.001

2 2.5 3 3.5 4 4.5 5

log(dofs)

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

lo
g(

st
re

ss
 e

rr
or

)

0.5

QUAD
QDIS
RHOM
HEXA
TRI6
POLY
WEBM

(a) h/L = 0.1

2 2.5 3 3.5 4 4.5 5

log(dofs)

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2
lo

g(
st

re
ss

 e
rr

or
)

0.5

QUAD
QDIS
RHOM
HEXA
TRI6
POLY
WEBM

(b) h/L = 0.001

123



Computational Mechanics (2022) 69:315–333 327

Fig. 8 Test 1. Displacement
error convergence curves for
triangles for a h/L = 0.1, and b
h/L = 0.001
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bilization scheme presented in Sect. 3.2, which indirectly
aims at enriching the approximation of w with respect to θ ,
can be not optimal for triangular elements given their poor
kinematics. In fact, triangles are characterized by the poorest
transverse displacement field that can be activated in absence
of stabilization on w. This can be noted in Figs. 8, 9, 10 and
11, which collect the convergence curves of displacement
and stress errors for Test 1 and Test 2. Indeed, by setting
τ = 1/2 as in the previously presented results, convergence
rates show unsuitable agreement with the expected ones for
the thin plate case (h/L = 0.001), although the moderately
thick case (h/L = 0.1) does not show any specific drawback
with this assumption.

It is interesting to observe that the performance of trian-
gles in the thin-plate limit could be recovered by the reduction
of the coefficient τ which rules, in this case, the scaling of
the stabilization matrix Ks

θ . Indeed, the weight of the sta-
bilization matrix with respect to the local stiffness matrix
decreases while reducing τ . With this in mind, Figs. 8, 9,
10 and 11 show also the convergence curves of displace-
ment and stress errors for Test 1 and Test 2 by varying
τ , i.e. for τ = 1/7, τ = 1/10, and τ = 1/20, in both
h/L = 0.1 and h/L = 0.001 cases. Moreover, for com-
pleteness and in the same fashion of Tables 2, 3 collects the
non-null eigenvalues for the triangle with τ = 1/20 for dif-
ferent thicknesses.

By focusing on the thin plate case h/L = 0.001, Figs. 8,
9, 10 and 11 show that the reduction of τ produces a positive
effect in terms of convergence rates for both Test 1 and Test
2, i.e. displacement and stress error convergence rates tend
to the expected ones while reducing τ . At the same time, it
is also observed a progressive reduction in accuracy in the
displacement error while decreasing τ , although no accuracy
loss is observed in stress error curves. Anyway, it should
be pointed out that if the rotations field is not stabilized,
i.e. no stabilization is considered over a triangular element,
zero-energy modes would arise in the local stiffness matrix.
Summingup, in all cases, the convergence performance of the
triangular elements is progressively enhancedwhile reducing
τ .

6 Conclusions

In this paper, a first-order VEM for Reissner–Mindlin plates
has been presented, based on a standard displacement-based
variational formulation assuming transverse displacement
and rotations as independent variables.

The consistent term of the stiffness matrix has been devel-
oped assuminguncoupledpolynomial approximations for the
generalized strains. Particularly, a linear polynomial approx-
imation has been assumed for the shear response, whereas
a constant approximation has been adopted for the bending
one.

123



328 Computational Mechanics (2022) 69:315–333

Fig. 9 Test 1. Stress error
convergence curves for triangles
for a h/L = 0.1, and b
h/L = 0.001
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Fig. 10 Test 2. Displacement
error convergence curves for
triangles for a h/L = 0.1, and b
h/L = 0.001
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Fig. 11 Test 2. Stress error
convergence curves for triangles
for a h/L = 0.1, and b
h/L = 0.001
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Table 3 Non-null eigenvalues
for the triangle with τ = 1/20
(after static condensation)

h/L = 0.1 h/L = 0.001 h/L = 0.00001

Triangle 0.00000035507097 0.00000035517660 0.00000035517661

(τ = 1/20) 0.00004038515466 0.00004038543475 0.00004038543477

0.00006163488589 0.00006181316898 0.00006181419893

0.00006431639531 0.00006431644096 0.00006431644096

0.00014333364014 0.00014333380183 0.00014333380184

0.00015408721473 0.00015453292247 0.00015453437059

With the purpose of mitigating shear locking in the thin-
plate limit while keeping the element formulation as simple
as possible, a selective scheme has been introduced in the cal-
culation of the stabilization term of the stiffness matrix. In
particular, the stabilization order for the transverse displace-
ment is assumed higher than the one used for the rotations, so
to achieve an indirect enrichment of the approximation of the
transverse displacement with respect to that of the rotations.
On the one hand, standard first-order stabilization has been
adopted for the rotations (i.e. rotations fields up to order 1 are
allowed). On the other hand, no stabilization has been intro-
duced for the transverse displacement when the polygon side
numerousness is lower than 6, while a quadratic stabilization
order has been introduced for the transverse displacement
when the polygon side numerousness is greater than or equal
to 6. Following this choices, the resulting stiffness matrices

have been found to be stable in the thin-plate limit and to
preserve rank sufficiency.

A number of numerical tests have been conducted on sev-
eral polygonal meshes, involving thin and moderately thick
plates under different loading and boundary conditions (e.g.
clamped and simply supported). Very good agreement of the
convergence rates with the expected ones has been found for
both thin and thick plates for meshes with polygons with
more than 3 sides, thus showing the locking-free nature of
the method. As expected, the case of triangles appeared not
fully optimal given their poor transverse displacement field
evenwhen no stabilization is introduced.Anyway, the perfor-
mance of triangles has been found to recover while reducing
the weight of the stabilization matrix in the local stiffness
matrix.

To conclude, the main objective of the paper, i.e. intro-
ducing simple and efficient virtual elements for Reissner–

123



330 Computational Mechanics (2022) 69:315–333

Mindlin plates, appears achieved as the proposed approach
allows to save degrees of freedom with respect to exist-
ing approaches while keeping comparable (or even better)
results. Further future developments could regard new strate-
gies to develop the stabilization term of the stiffness matrix
to optimally treat also triangles.
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Appendix A

In this appendix, results obtained through the present
approach are compared with the case in which the stabiliza-
tion termof the stiffnessmatrix is pursued by simply adopting
sw = sθ = k = 1, i.e. the standard stabilization procedure
for the VEM. Figures 12 and 13 show the comparison of

the displacement and stress, respectively, error convergence
curves for h/L = 0.1 and h/L = 0.001 for Test 1.

On the one hand, no significant differences from the
present approach are obtained in terms of displacement
(Fig. 12a) and stress (Fig. 13a) convergence rates for the
thick plate when adopting sw = sθ = k = 1, although a
significant loss of accuracy is observed in all cases.

On the other hand, the convergence rate is completely lost
for the thin plate for both displacement (Fig. 12b) and stress
(Fig. 13b) errors when adopting sw = sθ = k = 1. Indeed,
sub-horizontal error curves close to zero (note that the graphs
have logarithmic axes) are observed for both displacement
and stress errors, highlighting a solution which appears to
be locked in the thin-plate limit, i.e. a typical outcome of
the locking phenomenon. This aspect is also clearly high-
lighted by the transverse displacement at the plate center (thin
case) recorded at the finest refinement with the QDIS (i.e.
7.91326 × 10−7) and HEXA (i.e. 4.62155 × 10−7) meshes,
being the analytical solution equal to 8.13813 × 10−5, i.e.
two orders of magnitude higher.

Fig. 12 Test 1. Displacement
error convergence curves for a
h/L = 0.1, and b h/L = 0.001.
The ** symbol represents the
case in which the stabilization
term of the stiffness matrix is
pursued by adopting
sw = sθ = k = 1
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Fig. 13 Test 1. Stress error
convergence curves for a
h/L = 0.1, and b h/L = 0.001.
The ** symbol represents the
case in which the stabilization
term of the stiffness matrix is
pursued by adopting
sw = sθ = k = 1
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Appendix B

In this appendix, a results comparison is conducted between
the present approach and the approach presented in [23].
Particularly, the comparison is pursued in terms of error on
the transverse displacement, as it is the only primary variable
that the two approaches have in common. Indeed, in [23] the
rotations are obtained in post-processing. Accordingly, the
following relative error ew in discrete L2-like norm (based on
the vertex values) is introduced according to [23] to estimate
and compare the error on transverse displacement:

ew =
⎛

⎝

∑
ΩE

(
|ΩE |∑NΩE

i=1 (wh − wE )2
)

∑
ΩE

(
|ΩE |∑NΩE

i=1 (wE )2
)

⎞

⎠

1
2

, (43)

where NΩE is the number of vertexes of the elementΩE , and
|ΩE | is the area of the element ΩE .

The comparison of the transverse displacement error
convergence curves between the present approach and the
approach in [23] is shown in Fig. 14 for h/L = 0.1 and
h/L = 0.001 (this time, given the data available in [23],
in terms of the refinement parameter, i.e. the maximum ele-
ment diameter of the mesh). Test 1 with clamped boundary
conditions and the convex/concave 6-vertex polygons mesh
(WEBM, see Fig. 3f) is herein considered.

As it can be noted (Fig. 14), the present approach shows a
convergence rate in agreement with the expected one and the
one shown in [23]. In addition, the present approach shows a
slightly better accuracywith respect to [23] for bothmoderate
thick (h/L = 0.1) and thin (h/L = 0.001) plates (Fig. 14).
This appears remarkable, as the present approach is charac-
terized by 3 degrees of freedom per vertex, while 6 degrees
of freedom per vertex are supposed in [23].
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Fig. 14 Test 1, WEBM mesh.
Comparison of the transverse
displacement error convergence
curves between the present
approach and the approach in
[23] for a h/L = 0.1, and b
h/L = 0.001. The horizontal
axis of the graphs goes from
coarse (left) to finer meshes
(right). In this case, the expected
convergence rate is 2 as the
curves are in terms of the
refinement parameter
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