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Abstract
Herein, an artificial neural network (ANN)-based approach for the efficient automated modeling and simulation of isotropic
hyperelastic solids is presented. Starting from a large data set comprising deformations and corresponding stresses, a simple,
physically based reduction of the problem’s dimensionality is performed in a data processing step. More specifically, three
deformation type invariants serve as the input instead of the deformation tensor itself. In the same way, three corresponding
stress coefficients replace the stress tensor in the output layer. These initially unknown values are calculated from a linear least
square optimization problem for each data tuple. Using the reduced data set, an ANN-based constitutive model is trained by
using standard machine learning methods. Furthermore, in order to ensure thermodynamic consistency, the previously trained
network is modified by constructing a pseudo-potential within an integration step and a subsequent derivation which leads to
a further ANN-based model. In the second part of this work, the proposed method is exemplarily used for the description of
a highly nonlinear Ogden type material. Thereby, the necessary data set is collected from virtual experiments of discs with
holes in pure plane stress modes, where influences of different loading types and specimen geometries on the resulting data
sets are investigated. Afterwards, the collected data are used for the ANN training within the reduced data space, whereby an
excellent approximation quality could be achieved with only one hidden layer comprising a low number of neurons. Finally,
the application of the trained constitutive ANN for the simulation of two three-dimensional samples is shown. Thereby, a
rather high accuracy could be achieved, although the occurring stresses are fully three-dimensional whereas the training data
are taken from pure two-dimensional plane stress states.

Keywords Data-driven approach · Artificial neural networks · Hyperelasticity · Finite element simulation

1 Introduction

Continuum-based theories combined with the finite element
(FE) method provide a powerful tool for the virtual design
and testing of engineering components. Regarding classical
solid mechanical problems, the FE formulation is based on
the weak form of the balance of linear momentum which is a
universal and well known physical principle corresponding
to the set of material independent equations [24,49]. Fur-
thermore, in order to simulate components which consist of
a specific material, constitutive equations which describe the
behavior of the considered material have to be formulated
mathematically and parameterized based on experimental
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or micro-mechanically generated data. Since this process is
however still a challenging task for single phase materials or
composites which reveal complex behavior as highly non-
linear elasticity, anisotropy or dissipative properties, it could
be useful to automate or circumvent the formulation of con-
stitutive equations. For this purpose, several approaches –
generally referred to as data-based or data-driven methods –
exist which have become increasingly popular in the compu-
tational mechanics community during the last years [4,47].
In the following, a brief overview of these methods is given.

Pure data-based methods in solid mechanics A first pos-
sibility to replace classical constitutive equations is the
direct data-driven mechanics approach, recently proposed
by Kirchdoerfer and Ortiz [31]. This method totally avoids
the formulation of constitutive equations and uses sets of
stress-strain tuples which characterize the material’s behav-
ior instead. Consequently, a data-driven solver seeks to
minimize the distance between the searched solution (σ , ε)
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and the material data set within a proper energy norm, while
compatibility and equilibrium have to be satisfied simultane-
ously. In the meanwhile, several extensions and applications
of the direct data-driven approach have been proposed, e. g.,
for noisy data sets [3,32], dynamics [33], finite strains [48],
inelasticity [12], fracture mechanics [5] or bio-mechanics
[51].

In contrast to classical constitutive modeling, the data-
driven approach obviously requires a huge set of data
characterizing the specific behavior of a material. These
data could be collected from experiments or, due to the
steadily increasing computing power, generated in silicio
from lower scale simulations. Within the data-driven formal-
ism the latter one has been applied by Karapiperis et al. [30]
for sand recently. In order to enable the collection of data
from experiments, Leygue et al. [38] and Stainier et al. [55]
have introduced the data-driven identification which allows
to collect strain-stress tuples from displacement fields and
boundary conditions in inhomogeneous samples. An appli-
cation of the data-driven identification to real experiments
is shown in [10], the robustness regarding incomplete input
data is discussed in [11].

A further possibility to circumvent the formulation of clas-
sical constitutive equations has been proposed by Ibañez et
al. [25]. Therein, the construction of constitutive manifolds
from collected data is described for elasticity and inelastic-
ity. Based on this, an application to nonlinear elasticity is
given in [26]. Finally, the strict fulfillment of the 2nd law of
thermodynamics, i.e., the thermodynamic consistency, dur-
ing the construction of constitutive manifolds is possible by
using the GENERIC paradigm (General Equation for Non-
Equilibrium Reversible-Irreversible Coupling) [22].

Besides the discussed direct data-driven approach and the
construction of constitutive manifolds which are compara-
tively new data-based methods, the application of artificial
neural networks (ANNs) as a mechanical constitutive model
have already been proposed in the early 90s by Ghabussi et
al. [19]. Due to their easy use, straight forward integrability
into FE codes [23] and the excellent ability to learn com-
plex relationships, the usage of ANNs is the most common
data-based constitutive modeling method in the computa-
tional mechanics community. Thereby, the topology of the
ANN, i.e., the network architecture, plays a decisive role
in its overall functioning. Thus, the so called input, hidden
and output layers differ in their basic tasks. Accordingly,
input variables, e. g., strains ε, enter into the system in the
input layer and are processed further in the hidden layer.
Finally, the signals that reach the output layer are the output
variables, e. g., stresses σ . In so called feedforward neu-
ral networks (FNNs) connections between the neurons are
always uniquely directed. In contrast, ANNs for which feed-
back is explicitly desired are called recurrent neural networks
(RNNs), cf. [34]. Both types of networks have been used

for the mechanical constitutive modeling intensively. For
instance, to model one-dimensional viscoelasticity [1], vis-
coplasticity [17] or time dependent behavior of concrete [28].
Likewise, several two- and three-dimensional ANN-based
models could be found, e. g., to describe the behavior of
geomaterials [20] or nonlinear viscoplasticity [56]. In order
to ensure thermodynamic consistency of the trained ANN-
models, Masi et al. [44] recently suggested the concept of
thermodynamics-based ANNs for the constitutive modeling.
Thereby, a scalar energy function is approximated by the
network instead of the stress σ . In order to still enable the
trainingwith respect toσ , customized training loops inwhich
gradients of the energy with respect to the input variables
occur in the loss, see also [9,58].

Finally, ANNs have been used to set up so called decou-
pled multiscale schemes [29,57] which enable computation-
ally efficient macroscopic simulations based on the homoge-
nized response of lower scale representative volume elements
(RVEs). Thereby, in contrast to computationally expen-
sive FE2 schemes [35] which require an RVE-simulation
at each quadrature point in each iteration, the small scale
processes within the heterogeneous microstructure that lead
to the effective macroscopic response are implicitly cap-
tured via an appropriate macro- or surrogate-model. In this
context, ANN-based models are predestined for the approx-
imation of the homogenized data basis. For instance, this
has been done for the scale bridging of composites with
cubic microstructures [37], the simulation of the elastic-
plastic deformation behavior of open-cell foam structures
[52] and to link stresses and strains or traction-separation
curves obtained from molecular dynamics simulations to the
continuum scale [6,14], respectively. A combination of clas-
sical FE2 simulations with on-the-fly adaptive switching to
ANN-based surrogate models is shown by Fritzen et al. [16].

Hybrid approaches in solid mechanics The big advantage
of pure data-based methods, i.e., the potential to model the
reality with high accuracy in an automatized manner, is also
countered by some disadvantages: namely the loss of physi-
cal sense, the lackof data and the possibly high computational
cost. According to that, a combination of classical constitu-
tive models with data-based methods or even an enrichment
with physical knowledge – the so called hybrid approach –
seems to be a promising modeling strategy.

A first possibility to apply the hybrid approach is to
enhance classical well established constitutive models with
information from data. Thus, the stress σ is calculated as the
sum of the model prediction σmod and a correction obtained
from a data-based method which describes the deviation
between the chosen model and the real data, i.e. σ − σmod.
This technique has been used for the correction of hypere-
lastic models in the GENERIC formalism by González et al.
[21] or for the correction of plasticity models by Ibañez et
al. [27].
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Likewise, it is possible to replace parts of classical mod-
els with data-based approaches as ANNs. This has been
done by Settgast et al. [53] for irreversible elastic-plastic
deformations and damage of metal foams, whereby the yield
function and the evolution equations are described by ANNs.
An application for the description of uncured natural rub-
ber by combining the micro sphere model with FNNs and
RNNs is shown by Zopf and Kaliske [59]. In Liu et al.
[42], a collection of connected mechanistic building blocks
with analytical homogenization solutions is used to describe
complex macroscopic responses without the loss of essential
physics. In the context of isotropic hyperelasticity Shen et al.
[54] as well as Liang and Chandrashekhara [39] approximate
the free energy function by an ANN-based model with three
deformation-type invariants as the input and thus incorpo-
rate knowledge about the anisotropy class of the considered
material. Thismethodology, i.e., the usage of invariants as the
input instead of the strain, has been continued for materials
with more general anisotropy [40,41].

Content Within this contribution, an ANN-based hybrid
approach for the efficient automatedmodeling and simulation
of isotropic hyperelastic solids is presented. Following Shen
et al. [54], three deformation-type invariants are used as the
input in order to incorporate physical knowledge. Unlike pre-
vious works, three corresponding stress coefficients which
follow from simple linear least square optimizations replace
the stress tensor in the output layer likewise. Thus, a fully
physically-based reduction of the problem’s dimensionality
is applied for both, input and output quantities, respectively.
With the reduced data set, an ANN is trained by using
standard machine learning methods. A combination of the
predicted stress coefficients with derivatives of the invariants
with respect to the deformation finally enables the calculation
of the stress. Furthermore, in order to ensure thermodynamic
consistency a posteriori, the previously trained network is
modified by constructing a pseudo-potential within an inte-
gration step and a subsequent derivation which leads to a
further ANN-based model. The proposed strategy enables
the efficient application of ANNs for the constitutive model-
ing by using standard training algorithms. It is exemplarily
applied to the description of a highly nonlinear Ogden type
material [49], where only two-dimensional plane stress data
are needed for the training of a fully three-dimensional
model. The trained ANNs are included into an open source
FE software to test their approximation quality in different
three-dimensional simulation examples.

The organization of the paper is as follows: In Sect. 2,
the basic equations of the finite strain continuum mechanics
theory as well as general constitutive relations for isotropic
hyperelastic solids are given. After this, a general framework
for the ANN-based modeling of isotropic hyperelasticity is
presented in Sect. 3. The developed approach is exemplarily
applied to hypothetic data which were generated by using

a Ogden model in Sect. 4. Therein, the data processing and
training processes as well as a validation by means of rep-
resentative FE simulations are shown. After a discussion of
the results, the paper is closed by concluding remarks and an
outlook to necessary future work in Sect. 5.

2 Continuum solid mechanics and
hyperelasticity

In this section, the main relations of hyperelastic constitutive
models including the relevant basic continuum mechanical
equations are summarized. For a detailed overview, the reader
is referred to the textbooks of Holzapfel [24] or Ogden [49].
In order to describe the physical state of the considered solids,
the space of tensors

Ln := R
3 ⊗ · · · ⊗ R

3
︸ ︷︷ ︸

n-times

∀n ∈ N≥1, (1)

except for a tensor of rank zero, is defined, where R3 is the
Euclidean vector space and N is the set of natural numbers.

2.1 Kinematics and balance laws

Regarding the reference and current configurations of amate-
rial body given by B0 ⊂ R

3 and B ⊂ R
3, the displacement

vector u ∈ L1 of a material point capturing the positions
X ∈ B0 at time t0 ∈ R≥0 and x ∈ B at time t > t0 is given
by u(X, t) := ϕ(X, t) − X . Therein, ϕ(X, t) represents the
bijective motion function which is continuous in space and
time. With that, in order to describe the state of deformation,
the deformation gradient F ∈ L2 and its determinant are
defined by

F := (∇Xϕ)T and J := det F > 0, (2)

where ∇X := EK ∂XK is the nabla-operator with respect
to the reference configuration. Therein, EK ∈ L1 denotes
the Cartesian basis vector. Furthermore, the positive defi-
nite right Cauchy-Green deformation tensor C := FT · F ∈
Sym withSym := {τ ∈ L2 | τ = τT

}

is introduced.
To complete the necessary general equations, relevant bal-

ance laws are given in short. Supposing mass conservation,
the balance of linear momentumwith neglected inertia terms
is given by

∇ · σ + � f = 0 or ∇X · (T · FT) + �0 f = 0, (3)

where the symmetry of the introducedCauchy and 2nd Piola-
Kirchhoff stress tensors σ ∈ Sym and T ∈ Sym follows
from the balance of angular momentum. These tensors are
related via the equation T := J F−1 · σ · F−T. The symbols
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f , � and �0 denote a mass specific force and the mass den-
sity with respect to B and B0, respectively. Finally, in order
to ensure thermodynamic consistency, all physical processes
have to fulfill the Clausius-Duhem-inequality. If thermal
effects are neglected, it is given by

−�̇ + 1

2
T : Ċ ≥ 0. (4)

In the equation above, � denotes the Helmholtz free energy
density with respect to dV0 ⊂ B0 and ˙(·) is the material time
derivative.

2.2 Constitutive relations for isotropic hyperelastic
materials

Regarding a hyperelastic solid, one finds from Eq. (4) and
applying the principle of Coleman andNoll [7], that the stress
tensor T follows from the Helmholtz free energy density �

by

T = 2
∂�

∂C
. (5)

If the behavior is restricted to isotropy, i.e. the relation
�(C) = �(Q · C · QT) holds for all special orthogonal
tensors Q ∈ Orth+ := {τ ∈ L2 | τT = τ−1 , det τ ≡ 1},
the free energy function can be given by � = �(I1, I2, I3)
including

I1 := tr C, I2 := 1

2

(

tr2 C − tr C2
)

and I3 := det C, (6)

where Iα with α ∈ {1, 2, 3} denote the invariants of C. Using
the definition (6), the stress follows to

T =
3
∑

α=1

2
∂�

∂ Iα
︸ ︷︷ ︸

=: fα

∂ Iα
∂C
︸︷︷︸

=: Gα

=
3
∑

α=1

fαGα. (7)

Therein, fα and Gα ∈ L2 denote stress coefficients related
to the invariants Iα and corresponding tensor generators,
respectively.

3 ANN-based constitutive modeling
framework for isotropic elasticity

After the continuum mechanical basics, the following sec-
tion introduces the main idea of this work, i.e. the way
how the constitutive ANN is efficiently trained by a suit-
able data set D := {D1,D2, . . . ,Dn} consisting of n ∈ N

data tuples Di := (iC, iT) ∈ R
6×1 × R

6×1. The intro-
duced vectors iC and iT contain the coordinates of the

symmetric deformation and stress tensors, respectively: iC =
(iC11,

iC22, . . . ,
iC12)

T, iT = (i T11, i T22, . . . , i T12)T.Within
the proposed framework, known physical conditions and
constraints are incorporated, where – as mentioned in the
beginning – a restriction to isotropic hyperelasticity is made
for now. The framework is subdivided into the steps

(a) data mining,
(b) data processing,

(c.1) training process, and
(c.2) thermodynamically consistent correction.

A scheme representing the procedure of the approach is
depicted in Fig. 1. The single steps are described detailed
in the following.

3.1 Datamining (a)

To start with, the data basis for the training of the network has
to be achieved. Thereby it is important to collect a broad set
of stress strain states to ensure the correct description of the
material’s behavior later on. Ideally, the data mining has to
be done based on real experiments of complex shaped sam-
ples in combination with digital image correlation [10]. The
evaluation of such experiments with the algorithm proposed
by Leygue et al. [38] enables the extraction of a high number
of multiaxial stress-strain states for the considered material.
However, in want of such experiments, the data basis is gen-
erated numerically by means of virtual experiments for now.
To this end, a virtual sample is tested in several FE simula-
tions. Within these virtual experiments which are described
in the examples given in Sect. 4, the required data tuples Di

are collected at the quadrature points of the finite elements.

3.2 Data processing – transforming the data into the
space of invariants (b)

Now it is assumed that a suitable data set D of a specific
material is available. In order to achieve a constitutive ANN
which is able to compute the stress T from a given state of
deformation C with high accuracy and at the same time as
few neurons as possible, it is essential to reduce the dimen-
sionality of the input and output quantities. To this end, a
variety of methods exist, e. g. the locally linear embedding
(LLE) technique which is used in Ibañez et al. [25].

Following theworks of Shen et al. [54] or Liang andChan-
drashekhara [39], such a transformation is naturally given
for the input values by using the invariants according to Eq.
(6) instead of the coordinates of the deformation tensor C .1

1 In the case of non-isotropic materials, the input values can be trans-
formed from the coordinates of C into a set of invariants which contains
structural tensors, see Linka et al. [41].
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(a) (b) (c.1)

(c.2)

Fig. 1 Procedure of the ANN-based constitutive modeling framework for isotropic elasticity with four steps. a data mining: collection from stess-
strain tuples from FE simulations, b data processing: reduction of the data set’s dimensionality, c.1 training process: training of the constitutive
ANN within the reduced data space, and c.2 thermodynamically consistent correction: adjustment of the weights based on the Clausius-Duhem
inequality

However, in contrast to these works in which the free energy
density � : Sym → R≥0 is approximated by the ANN and
the stress tensor T is not trained directly, quantities related to
T should serve as the output in the following. Consequently,
the evaluation of the path integral

�(C) = 1

2

∫

PC

T (C̃) : dC̃ (8)

with PC : [a, b] → Sym, PC(a) = 1, PC(b) = C from
the data tuples Di could be avoided.2 In order to reduce the
dimensionality of the output variables anyhow, the isotropy
property according to Eqs. (6) and (7) is used so that the vari-
ables fα replace the coordinates of T . The ANN thus directly
approximates on the level of stresses which is preferable for
the solution of the balance of linear momentum (3).

In contrast to the deformation type invariants Iα , the stress
coefficients fα cannot be determined directly since the ana-
lytical expression for the free energy function� is unknown.
However, if it is assumed that�(I1, I2, I3) exists, the relation

2 In general, the path integral given in Eq. (8) have to be evaluated
numerically, cf. Shen et al. [54]. This is due to the fact that the function
T(C) is unknown at this step.

iT =
3
∑

α=1

i fα
iGα (9)

holds for each tuple Di . Consequently, the three stress coef-
ficients i fα could be determined from a simple least square
optimization for each tuple. For the cases of states with dif-
ferent eigenvalues λ2α ∈ R≥0 of the deformation tensor C ,
the optimization problem is given by

i f = argmin
i f∈R3×1

∥

∥

∥

iT −
3
∑

α=1

i fα
iGα
∥

∥

∥

2 ∀ i ∈ {1, . . . , n}, (10)

where ‖ · ‖ denotes the Frobenius norm of a rank two ten-
sor. Due to the convexity with respect to i fα , the solution of
Eq. (10) is unique and follows from a linear optimization.
With that, each data tupleDi could be transformed to a tuple
Dred

i := (i I, i f) ∈ R
3×1 × R

3×1 of reduced dimensionality.
In Fig. 2, the transformation step is exemplarily visualized

for deformation-stress states collected from an FE simulation
of a uniaxially pulled disc with a hole. Thereby, the constitu-
tive behavior is given by a hyperelastic Ogdenmodel [49], cf.
Sect. 4.1.1. In the transformation process, a transition from
a rather disordered set of data to well-ordered structures in
the reduced space takes place. Furthermore, as part of the
transformation process, the cardinality n of the reduced data
set Dred := {Dred

1 ,Dred
2 , . . . ,Dred

n } can be decreased by sev-
eral orders of magnitude compared to the original set D, by
just removing similar tuples within a given tolerance. Con-
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(a) (b)

Fig. 2 Transformation of a hyperelastic stress-strain data setD into the reduced spaceDred consisting of strain invariants Iα and stress coefficients
fα . Correlation plots of the transformed quantities: a deformation components and strain invariants, as well as b stress components and stress
coefficients

sequently, the training of the constitutive ANN within the
reduced space Dred is much more efficient later on.

Considering deformation states with multiple eigenvalues
such as the undeformed one, where C = 1, the uniqueness
of Eq. (10) is not given anymore. Thus, the true stress coef-
ficients, which – according to Eq. (7) – have to follow from
a free energy function, are not determinable as described
above. Due to this, the sought values fα have to be calculated
by means of an interpolation. Each function fα(I1, I2, I3) is
now approximated by a hyperplane in the invariant space.
Thus, within the surrounding of the deformation state C∗,
the ansatz

f intα (I1, I2, I3, κ) := κα0 +
3
∑

β=1

καβ Iβ with (11)

κ := (κ10, . . . , κ13, κ20, . . . , κ32, κ33)
T ∈ R

12×1 (12)

for all α ∈ {1, 2, 3} is chosen. The parameters κ can now be
find from a constrained optimization problem which ensures
that the corresponding state of stress T∗ is correct. In this
case with β ∈ {1, 2, 3} it is given by

κ = argmin
κ∈C

1

2

n
∑

k=1

3
∑

α=1

(

f intα (Iβ(kC), κ) − k fα
)2

(13)

with respect to the corresponding constraint subset

C :=
{

κ ∈ R
12×1 : T∗ =

3
∑

α=1

f intα (Iβ(C∗), κ) ∂C Iα(C∗)
}

.

(14)

3.3 Training of the constitutive ANN (c.1)

Based on the extracted and transformed data basis Dred, a
feed forward neural network has to be trained which could
be done by using conventional training loops. In the exam-
ples given in Sect. 4, the fasted training could be achieved
with the deep learning toolbox included in Matlab, where a
Levenberg-Marquardt optimization procedure has been used.
Since input data Iα and output data fα are normalized to the
range [−1, 1], the ANN-based model for the stress coeffi-
cients is given by

f ANNα (iβ) := f max
(α) − f min

(α)

2
︸ ︷︷ ︸

=: Xα

fα(iβ) + f max
α + f min

α

2
︸ ︷︷ ︸

=: Yα

, (15)

where the superscripts (·)max and (·)min denote themaximum
and minimum components of a given data set, respec-
tively. Choosing hyperbolic tangent activation functions and
restricting the network architecture to only one hidden layer,
the normalized stress coefficients are given by
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fα(iβ) := Bα +
N
∑

β=1

Wαβ tanh

⎛

⎝

3
∑

γ=1

wβγ iγ + bβ

⎞

⎠ ,

(16)

iβ(I(β)) :=
[

Iβ − Imax
β + Imin

β

2
︸ ︷︷ ︸

=: Vα

]

2

Imax
(β) − Imin

(β)
︸ ︷︷ ︸

=: U−1
α

, (17)

where fα, iβ ∈ [−1, 1]. In the equations above, Wαβ , wαβ

and Bα , bβ are weights and bias values, so that the total
number of training parameters follows to p = 3 + 7N .
Using the introduced Eqs. (15)–(17), the linkage of the 2nd
Piola-Kirchhoff stress tensor T and the right Cauchy-Green
deformation tensor C is modeled by

TANN(C) =
3
∑

α=1

f ANNα (Iβ(C)) Gα(Iγ (C),C). (18)

The model equations have been implemented within the FE
toolbox FEniCS [2,43]. Therein, the tangent

C
ANN := 2

∂T
∂C

∈ L4

= 2
3
∑

α=1

3
∑

β=1

∂ f ANNα

∂ Iβ

∂ Iα
∂C

⊗∂ Iβ
∂C

+2
3
∑

α=1

f ANNα

∂2 Iα
∂C∂C

,

(19)

which is required within the solution via a Newton–Raphson
scheme, is calculated automatically by means of automatic
differentiation. The reader is referred to Hashash et al. [23]
for details concerning the implementation into classical FE
codes.

3.4 Thermodynamically consistent correction (c.2)

With the conventional training of the constitutive ANN, an
accurate approximation of the deformation-stress relation is
possible. However, the thermodynamic consistency of the
ANN-basedmodel is not ensured in any case, since thiswould
require the existence of a free energy density� that is related
to the stresses via Eq. (5). Thus, in order to satisfy ther-
modynamic consistency a priori, customized training loops
which optimize the network not only with respect to the out-
put which have to be chosen to �, but also with respect to
gradients ∂C� of the output quantities have to be used, cf.
[9,41,44,58].

Fig. 3 Possible integration paths from the undeformed state C0 to a
deformed state Ĉ within the invariant space. The chosen straight path
is given by Ĩα = ( Îα − I 0α )p + I 0α

Within this work, an alternative approach which allows to
easily use standardmachine learning algorithms is presented.
It obligatorily enforces the fulfillment of the 2nd law of ther-
modynamics a posteriori and is based on the calculation of a
pseudo-potential from a network which has been previously
trained according to (c.1).

In a first step, the mechanical work W along a piecewise
smooth path PC : [a, b] → Sym has to be calculated by
the integration

W = 1

2

∫

PC

T (C̃) : dC̃ (20)

using the approximated relation (18). By exploiting the dif-
ferential relationship dIα = ∂C Iα : dC = Gα : dC , the
introduced integral (20) can be transformed into the space
of invariants. Consequently, the path PC is now replaced by
PI : [a, b] → R

3×1 and it follows

W =
3
∑

α=1

∫

PI

fα( Ĩ1, Ĩ2, Ĩ3) d Ĩα

=
3
∑

α=1

b
∫

a

fα( Ĩ1(p), Ĩ2(p), Ĩ3(p)) Ĩ
′
α(p) dp. (21)

To facilitate the calculation of Eq. (21), a path given by the
parametrization Ĩα = ( Îα − I 0α)p + I 0α with p ∈ [0, 1] is
chosen in the following, where I 0α denotes the values of the
invariants according to Eq. (6) at C = 1. A graphical visual-
ization of an arbitrary and the chosen path is given in Fig. 3

Considering a trained constitutive ANN with only one
hidden layer, the integral could be solved analytically. By
using Eqs. (15)–(17), the mechanical work W follows to
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W = 1
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⎥
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⎛

⎜

⎜
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⎜

⎜

⎝
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∑

κ=1

wβκ

Uκ

(I 0κ − Vκ) + bβ

)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

(22)

Now, the determined workW is assumed to define a pseudo-
potential �∗ := W 3, so that an alternative model for the
stress response can be obtained by T∗ = 2∂C�∗. Since the
corrected ANN-based model fulfills Eq. (5), the thermody-
namic consistency is guaranteed in any case. The updated
stress coefficients are given by

f ANN*ε = Yε + X(ε)Bε +
N
∑

β=1

X(ε)Wεβ

3
∑

μ=1

wβμ

Uμ
(Iμ − I 0μ)


β

+
3
∑

α=1

N
∑

β=1

(Iα − I 0α)
wβε

U(ε)
XαWαβ

3
∑

κ=1

wβκ

Uκ
(Iκ − I 0κ )

�β

−
3
∑

α=1

N
∑

β=1

(Iα − I 0α)
wβε

U(ε)
XαWαβ

( 3
∑

κ=1

wβκ

Uκ
(Iκ − I 0κ )

)2

β,

�β := tanh

( 3
∑

γ=1

wβγ

Uγ

(Iγ − Vγ ) + bβ

)

(23)

including normalization weights Xα , Yα , Uα and Vα . This
results in the corrected ANN-based model

TANN*(C) =
3
∑

α=1

f ANN*α (Iβ(C)) Gα(Iγ (C),C), (24)

where the weights bα , Bα , wαβ and Wαβ –determined in the
training step (c.1) – stay unchanged. Consequently, no cus-
tomized training loops have to be designed for the application
of the proposed approach. Similar to the original model (18) ,
the thermodynamically corrected equations are implemented
into FEniCS.

3 The scalar�∗ is termed a pseudo-potential since the underlying stress
coefficients f ANNα do not have a conservative character in the general
case. As a consequence of this, the �∗ naturally depends on the cho-
sen integration path. However, in the case of a highly accurate stress
prediction by the ANN, the path dependence should be nominal.

4 Examples

4.1 Data generation

In a first step, the data set for the training of the ANN has to
be achieved. As mentioned above, the data basis is generated
numerically in want of real experiments for now. To this end,
a virtual sample is tested in several FE simulations. Within
these virtual experiments, the required data set D consisting
of the tuples Di is collected at the quadrature points of the
finite elements.

4.1.1 Constitutive behavior

In order to demonstrate the ability of the proposed ANN-
based method, a highly nonlinear stress-strain relation is
chosen for the constitutive behavior of the sample’s mate-
rial. To this end, an Ogden model [49] which is given by the
free energy density function

� :=
NO
∑

p=1

μp

αp

⎛

⎝

Nλ
∑

β=1

νβλ̄
αp
β − 3

⎞

⎠+ κ

4

(

J 2 − 2 ln J − 1
)

(25)

is used. In the equation above, μp, αp and κ denote parame-
ters of the Ogden model and the compression modulus. The
symbols νβ ∈ {1, 2, 3} and Nλ ∈ {1, 2, 3} are the algebraic
multiplicity of λβ and the number of independent eigenval-
ues. Furthermore, λ̄β := J−1/3λβ are the isochoric principal
stretches which follow from the Flory split [15]

F = J 1/31 · F̄ with F̄ = J−1/3F and det F̄ ≡ 1, (26)

i.e. the decomposition of the deformation gradient into volu-
metric J 1/31 and isochoric F̄ parts. The stress of the Ogden
model is given by

T =
Nλ
∑

β=1

[

1

λ2β

NO
∑

p=1

μp

⎛

⎝λ̄
αp
β − 1

3

Nλ
∑

γ=1

νγ λ̄
αp
γ

⎞

⎠

+ κ

2
λ−2

β (J 2 − 1)

]

Mβ,

(27)

where Mβ ∈ L2 denotes the projection tensors of the right
Cauchy-Green deformation tensor:

C =
Nλ
∑

β=1

λ2βM
β with Mβ := δ1Nλ1 +

Nλ
∏

β 
=α

C − λ2β1

λ2α − λ2β
.

(28)
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Table 1 Constitutive parameters of the Ogden model (27) within the virtual experiments. Initial shear modulus G init and Poisson’s ratio νinit as
well as parameter sets μp , αp and κ

G init/kPa νinit/− μ1/kPa μ2/kPa μ3/kPa α1/− α2/− α3/− κ/kPa

100.0 0.44 −26.62 29.04 0.0098 −5.0 2.3 12.0 800.0

For further details on the calculation of isotropic tensor func-
tions, the interested reader is referred to Miehe [45,46].

The material parameters chosen for the virtual experi-
ments are given in Table 1, where they are related to initial
shear modulus G init and Poisson’s ratio νinit via

G init = 1

2

NO
∑

p=1

αpμp and κ = 2

3
G init 1 + νinit

1 − 2νinit
. (29)

Regarding the stretch-stress curves for uniaxial loading, a
highly nonlinear response is achieved with this parameter
set, cf. Fig. 4. Here, the quantity P := J F−1 · σ ∈ L2 is the
non-symmetric 1st Piola–Kirchhoff stress tensor.

4.1.2 Virtual experiments

In order to enable the training process of the constitutive
ANNwithin a broad subset of the invariant space I ⊂ R

3×1,
the deformation states of the virtual samples have to be as
heterogeneous as possible. With regard to real experiments
[10,50], non-uniform thin discs, e. g., with holes, are chosen
for this purpose. Thereby it has to be taken into account that
only displacements on the surface of the sample are measur-
able in an experimental setting. A thin sample which could
be loaded into a close to plane stress state is thus preferable.

Consequently, in order to obtain perfect plane stress data,
the virtual experiments are realizedwithin a two-dimensional

Fig. 4 Uniaxial tension test of the Ogdenmodel (27) for the parameters
given in Table 1: Stretch-stress curves for the Cauchy stress σ11 as well
as the 1st and 2nd Piola-Kirchhoff stresses P11 and T11

3

21

3

21

(a) (b)

Fig. 5 Specimen loading with bearings and prescribed displacement
u within the virtual experiments: a uniaxial tension and b equibiaxial
tension

setting.4 A study analyzing twomain influences – loading and
hole geometry –with respect to the resulting sets of invariants
is presented in the following. Thereby, the FE meshes were
generated by using Gmsh [18].

Influence of the specimen loading on the data set In a first
study, the two load cases (i) uniaxial tension and (ii) equi-
biaxial tension are considered for a specimen with circular
hole (sample I). As shown in the schematic representations
given in Fig. 5, displacement boundary conditions with a
maximum value of û ≤ 60mm for the uniaxial tension and
a maximum value of û ≤ 40mm for the equi-biaxial ten-
sion are prescribed within 40 increments. Each data set is
depicted in the three invariant-planes I1–I2, I1–I3 and I2–I3
within Fig. 6a, whereby the homogeneous uniaxial as well as
equi-biaxial tension and compression load cases are included
for reasons of orientation. For the case of incompressible
solids, where I3 ≡ 1 holds, these curves are independent
of the material’s behavior and delimit the area of admissible
invariant sets within the I1–I2-plane [8,41]. However, these
statements do not hold without restriction for the considered
case of a compressible material.

Regarding the collected data sets in the invariant space,
it can be seen that I is widely sampled between the plotted
curves for homogeneous uniaxial as well as equi-biaxial ten-
sion and compression load cases, see Fig. 6a. Furthermore,
although only tensile tests were performed, data points in the
compression range with I3 < 1 can also be found due to the
inhomogeneous stress and strain states occurring in the spec-
imen. Finally, it is observed that I is sampled over a much
wider range by the equi-biaxial tensile test compared to the
uniaxial one. As a resulting consequence for the investigated
disc containing a circular hole geometry, the calibration of

4 The out of plane stress is enforced to zero by locally searching the
out of plane stretch λ3 from the implicit constraint T33(λ1, λ2, λ3) = 0,
cf. Eq. (27).
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(a)

(b)

(c)

Fig. 6 Representation of the extracted data sets by means of the strain invariants Iα for the analyzed plane stress samples: a sample I with a circular
hole, b sample II with an elliptical hole, and c sample III with arbitrarily arranged elliptical holes. The plotted gray lines represent the homogeneous
uniaxial as well as equi-biaxial tension and compression states for the considered material

ANN-based models can be significantly improved if equi-
biaxial tension tests are available.

Influence of the hole geometry on the data set Besides
the loading type, the two-dimensional specimen geometry is
varied in the following second study. For better comparabil-
ity, the plots for sample II and III given in the Fig. 6b, c are
truncated with respect to those of specimen I.

A comparison of the simulation results for sample I and
II reveals that a replacement of the circular by a more com-
plex elliptical hole geometry leads to an improved sampling
of I. The ratios of the collected uniaxial and biaxial data
sets however stay approximately unchanged. Considering
the data for sample III which includes several randomly dis-
tributed ellipses, so once again more complex than sample
II, the information content of the simple uniaxial tension test
is clearly increased compared to the samples I and II. Here,

much more data points could be collected, especially in the
compression range.

Accordingly, in order to test the proposedmethod schema-
tized in Fig. 1 for the most easily realizable experimental
setup, only the uniaxial tension data of sample III will be used
for the ANN training process later on. The highly nonlinear
character of the investigated Ogden-type material manifests
in the corresponding stress coefficients fα shown in Fig. 7. To
close the virtual experiments study, it is mentioned again that
the collected data set consists of true plane stress tuples with
iT = (i T11, i T22, 0, 0, 0, i T12)T, since a two-dimensional
simulation setting were used during the virtual experiments.
In three-dimensional specimens, of course, gradients in the
thickness direction will always appear under real loading
conditions. However, the resulting deformation and stress
components on the sample’s surface are in good agreement
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Fig. 7 Visualization of the
reduced Ogden-type elastic data
set used for the training of the
constitutive ANN. The data set
is shown by means of the three
stress coefficients fα in
dependence of the three strain
invariants Iα

compared to a realistic three-dimensional setting. This is
shown in theAppendixA for the considered example, Fig. 14.

4.2 Training of the constitutive ANN

After the selection of a suitable data set D and the transfor-
mation toDred, the ANN training process according to Sect.
3 (c.1) – i.e. the calibration of the normalized stress coeffi-
cients fα defined in Eq. (15) – is performed. In order to find
a network which contains a minimum number of parame-
ters while approximating fα(iβ) with sufficient quality, the
number of neurons N ∈ N in the only hidden layer is sys-
tematically varied within the range [1, 20] ∩ N. For each
particular neuron number, the respective ANN is trained 100
times, where the weights of the best achieved training state
are stored at the end.5 For this purpose, the reduced data
set Dred is randomly divided into training (70%), valida-
tion (15%) and test (15%) data. These subsets serve for the
calibration in the training, generalization after each training
progress and for the evaluation of the network’s quality after-
wards, respectively. In order to evaluate the trained networks
with respect to the prediction of the stress tensor T , the fol-

5 Due to local minima in the loss function, the optimization procedure
which is applied within the training process depends on the starting
values of the weights. To overcome this, the network is trained several
times.

lowing mean and maximum error measures are used:

iεmean := (i TANN
11 − i T11) + · · · + (i TANN

12 − i T12)

6‖iT‖∞
and

(30)

iεmax := ‖iTANN − iT‖∞
6‖iT‖∞

. (31)

In the equations above, ‖·‖∞ denotes themaximumnormof a
vector valued quantity. To avoid singularities, the introduced
errors are set to zero if ‖iT‖∞ ≤ 10−4 kPa holds which
is a negligible stress value according to the material’s shear
modulus G init = 100 kPa.

The performance of the trained ANNs measured by the
maximum values max |iεmean| and max iεmax is given in
Fig. 8. According to that, a clear tendency to decrease the
errors while increasing the number of neurons N in the hid-
den layer is visible. Defining the criteria maxi |iεmean| ≤
0.015% and maxi iεmax ≤ 0.015% lead to the selection
of an ANN with N = 11. Regarding other ANN-based
approaches, this is a rather small network, see [6,13]. More-
over, the transformation step D → Dred enables to use a set
containing only n ≈ 300 tuples Dred

i for the training which
is, again, comparatively small, cf. [37,41].

Finally, the predictions of the chosen network are com-
pared with the true plane stress values generated by using
the Ogden model in Fig. 9. Analogously, this comparison is
depicted for the thermodynamically corrected model, cf. the
formalism given in Sect. 3 (c.2), within Fig. 10. Summarizing
the approximation quality, both ANN-based models provide
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(b)

(a)

Fig. 8 Magnitude of the a maximum error measures maxi |iεmean| and
b maxi iεmax for training, validation data and test data in relation to the
number of neurons in hidden layer

nearly perfect predictions for the in-plane stress components.
However, for the out-of-plane components, the corrected
model performs slightly worse compared to the simple orig-
inal ANN model, although the predictions are still small in
magnitude compared to the in-plane components.

4.3 Validation

In order to prove the suitability of both ANN-based models
for the simulation of complex shaped samples and compo-
nents, a comparison to reference results generated with the
Ogden model (27) which has been used for the calibration
is shown in the following. Thereby, two three-dimensional
problems are considered: the uniaxial tension of a cuboid
sample, and the torsion of a prismatic torsional sample, cf.
the sketches given in Fig. 11a, b.

Cuboid under uniaxial tension To start with, the three-
dimensional cuboid with a thickness-length ratio of 1/4 is
considered. It is loaded under uniaxial tension, where a
displacement of û = 60mm – this is equal to 60% effec-
tive strain of the sample – is prescribed on the top surface.
Although the overall strain is identical to the utilized train-
ing load case, complex three-dimensional stress states are
expected within the cuboid. Thus, regarding the highly non-
linear material response of the reference constitutive law, this

example is a good possibility to validate and explore potential
limits of the ANN-based approaches.

For all of the three models, the global reaction force
depending on the prescribed displacement has been calcu-
lated within the simulations. Considering these curves which
are given inFig. 11a, a nearly perfect alignment of bothANN-
solutions with the reference curve is observed.

Furthermore, in order to evaluate the ANN-predictions of
local deformation C and stress fields P , the simulated 11-
components within the cuboid domain are compared to each
other in Fig. 12a, b, respectively. According to that, rela-
tive errors below 0.06% and 0.16% are achievable with the
original and the corrected ANN-based model, respectively.
Slightly increased deviations below 0.47% and 0.42% are
observed for the stress component P11, whereby – in order
to avoid singularities – the absolute errors |P11 − PANN

11 | and
|P11− PANN*

11 | are related to the maximum value of |P11|. As
expected, the predictive performance of the corrected model
(24) is of similar quality compared to the initial model (18).
However, a significantly aggravated convergence behavior
within the Newton iteration is observed within the performed
FE simulation for the corrected model. This behavior is sup-
posably attributable to the singular points occurring in the
corrected stress coefficients, cf. Eq. (23). In total, slightly
twice as many iterations are required compared to the uncor-
rected ANN model.

Altogether, a rather high accuracy could be achieved
for C and P , although the occurring maximum stress of
P11 = 237 kPa is increased compared to the training data
set which is moreover purely two-dimensional with respect
to the stresses, cf. Fig. 9a. In view of the inability of ANNs to
extrapolate, this is a quite astonishing result. However, since
the trained network lives in the reduced Iα– fβ -space and the
final stress prediction is obtained in combination with the
tensor-valued generators Gα , the network actually does not,
or only slightly, have to extrapolate at all. More precisely,
the deformation-type invariant set of the considered cuboid
under uniaxial loading is almost completely included within
the data set used for the training process. This is shown in
Fig. 15a within the Appendix B. However, since the cuboid’s
data set within the space I is not completely covered by the
training data set, extrapolation is at least partially necessary.

Torsional sample In the second validation setup, a three-
dimensional torsion samplewith three circular holes is loaded
by specifying a distortion of φ̂ = 45◦.

Similar to the previous validation case, the global reac-
tion torque depending on the prescribed distortion has
been calculated. Again, a nearly perfect alignment of both
ANN-solutions with the reference curve is visible in Fig.
11b. Likewise, a comparison of the predictions for local
strain C12 and stress P12 reveal relative errors in a simi-
lar range as for the first example, see Fig. 13. The stress
prediction of the corrected model is now apparently worth
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Fig. 9 Verification of the
ANN-based stress prediction
(18) for a model with N = 11
neurons trained with pure plane
stress data: a in-plane
components and b out-of-plane
components

(a) (b)

Fig. 10 Verification of the
thermodynamically corrected
stress prediction for an
ANN-based model with N = 11
neurons trained with pure plane
stress data: a in-plane
components and b out-of-plane
components

(a) (b)

(a) (b)

Fig. 11 Reaction loads for the considered validation cases: a force-displacement curves of the cuboid sample with edge length 100mm×100mm×
25mm under uniaxial tension, and b torque-angle curves of the torsional sample with edge length 200mm × 100mm × 100mm

compared to the original one but however still below
0.46%.

Thus, also in this example, the ANN-based approach is
very well able to describe the trained nonlinear constitu-
tive behavior within the FE simulation of a comparatively
complex load case. This is once again due to the fact that
the deformation-type invariant space of the torsion sample
is included into the used training data set within wide areas
which is shown in the It has to be Appendix B, Fig. 15b.
Thereby, the used ANN with not more than N = 11 neurons

in only one hidden layer is very small compared to other
ANN-based constitutive models [41].

5 Conclusions

In this work, a novel ANN-based approach for the automated
constitutive modeling of isotropic hyperelastic solids is pre-
sented. It is based on a physically motivated reduction of the
problem’s dimensionality for the deformation and stress type
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(a)

(b)

Fig. 12 Simulated local distribution of secondary field quantities for the cuboid under uniaxial tension as well as relative errors of the ANN-
based models (18) and (24) with respect to the reference Ogden model: 11-components of a right Cauchy-Green deformation tensor C, and b 1st
Piola-Kirchhoff stress tensor P . The surface plots are given on the deformed configuration B
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(a)

(b)

Fig. 13 Simulated local distribution of secondary field quantities for the torsional sample as well as relative errors of the ANN-based models (18)
and (24) with respect to the reference Ogden model: 11-components of a right Cauchy-Green deformation tensor C, and b 1st Piola-Kirchhoff
stress tensor P . The surface plots are given on the deformed configuration B

quantities. In contrast to the most ANN-based constitutive
models, the proposed procedure enables a highly accurate
stress prediction with only small network architectures. Fur-
thermore, it is possible to resolve fully three-dimensional
stress fields while only two-dimensional plane stress data
are used for the training process of the ANN.
Starting from basic continuummechanical equations, a short
revision of hyperelastic constitutive models is given. Based
on this, the developed ANN-based modeling approach is

presented, where four steps – (a) data mining, (b) data pro-
cessing, (c.1) training process, and (c.2) thermodynamically
consistent correction – are discussed in detail. This approach
is exemplarily applied to data collected from virtual exper-
iments with samples comprising a highly nonlinear Ogden
type material behavior. Thereby, different influences on the
resulting data sets are investigated. In view of realistic exper-
iments, where only information on the sample’s surface are
available and thin specimens are thus preferable, the virtual
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samples are loaded in pure plane stress states. Finally, the
trained ANN-based models are used for the simulation of
two three-dimensional samples, a cuboid under uniaxial ten-
sion and a prismatic torsional sample. A comparison of these
simulations with the results achieved with the Ogden type
model shows a rather high accuracy for both ANN-based
models with a small architecture consisting of only 11 neu-
rons in one hidden layer.
Altogether, the presented ANN-based approach has shown
to be an efficient tool for the description of isotropic
hyperelastic solids which reveal a strongly nonlinear stress-
strain-response. Due to the use of standard machine learning
toolboxes, it is easy to use and could be integrated as a user
subroutine into commercial or non-commercial FE codes.

In order to enable the robust application of the proposed
ANN-based procedure for the analysis and design of com-
plex engineering components, several extensions have to be
made in the future. For instance, an extension for the pro-
cessing of noisy data sets [3,36] which enables to use data
collected from real experiments is essential. Furthermore, to
overcome the poor convergence behavior of the a posteri-
ori corrected model, it is favorable to approximate the free
energy function� instead of variables on the stress level with
the ANN. With that in combination with customized train-
ing processes which incorporate gradients ∂C� in the loss,
an a priori thermodynamically consistent training process is
possible [41,44,58]. Finally, an extension to more general
anisotropy classes [13,41] or dissipative constitutive behav-
ior [44,56,59] is needed.
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A Comparison of two- and three-dimensional
simulation settings

Into this appended section, deformation and stress fields
within a thin sample which were computed by using the
plane stress assumption are considered. These plane stress
results are compared to a fully three-dimensional simulation
of the same sample with 5 mm thickness and 100 mm edge
length shown in Fig. 14a. Since gradients in the thickness
direction will always appear under real loading conditions,
only the surface of the three-dimensional setup is of inter-
est. As shown in Fig. 14b, the in-plane components of C are
perfectly aligned along a diagonal path across the sample for
both simulations. The in-plane stress components depicted
in Fig. 14c are likewise in good agreement in the main part
of the path. Only close to the points F and G larger deviations
occur. Moreover, almost no differences can be identified for
the reaction force in dependence of the prescribed displace-
ment, cf. Fig. 14d.
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Fig. 14 Comparison of plane
stress and full three dimensional
FE simulations for a thin disc
with 5 mm thickness and
100 mm edge length: a path
along the specimen surface, b, c
calculated deformation and
stress components, as well as d
resulting force displacement
curves

(a) (b)

(c) (d)

B Comparison of training and validation
invariant sets

Within this appended section, the data sets Dcub and Dtor

related to the cuboid under uniaxial tension and the torsional
sample are compared to the training data setDtrain which has

been used for the ANN calibration process. To this end, the
deformation-type invariants I1–I3 of the three reduced sets
are visualized in Fig. 15. As shown therein, the set Dtrain

which contains only pure plane stress states, covers almost
the entire data sets of both sampleswithin the invariant space.
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(a)

(b)

2

1

3

1

3

2

Fig. 15 Representation of the extracted data sets by means of the strain invariants Iα for the validation cases: a cuboid with arbitrary arranged
circular holes and edge length 100mm× 100mm× 25mm under uniaxial tension and b torsional sample with three circular holes and edge length
100mm × 100mm × 200mm
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