
Computational Mechanics (2022) 69:1–21
https://doi.org/10.1007/s00466-021-02080-8

ORIG INAL PAPER

Two-field formulations for isogeometric Reissner–Mindlin plates and
shells with global and local condensation

G. Kikis1 · S. Klinkel1

Received: 19 February 2021 / Accepted: 7 August 2021 / Published online: 25 September 2021
© The Author(s) 2021

Abstract
In this paper, mixed formulations are presented in the framework of isogeometric Reissner–Mindlin plates and shells with
the aim of alleviating membrane and shear locking. The formulations are based on the Hellinger-Reissner functional and
use the stress resultants as additional unknowns, which have to be interpolated in appropriate approximation spaces. The
additional unknowns can be eliminated by static condensation. In the framework of isogeometric analysis static condensation
is performed globally on the patch level, which leads to a high computational cost. Thus, two additional local approaches to
the existing continuous method are presented, an approach with discontinuous stress resultant fields at the element boundaries
and a reconstructed approach which is blending the local control variables by using weights in order to compute the global
ones. Both approaches allow for a static condensation on the element level instead of the patch level. Various numerical
examples are investigated in order to verify the accuracy and effectiveness of the different approaches and a comparison to
existing elements that include mechanisms against locking is carried out.

Keywords Mixed formulation · Isogeometric analysis · Reissner–Mindlin · Plates and shells · Locking

1 Introduction

Isogeometric Analysis (IGA) was introduced by Hughes et
al. [1] with the aim of unifying the design and analysis pro-
cess. This is achieved by using for both the same higher
order basis functions that are common in CAD tools, such
as Non-Uniform Rational B-splines (NURBS). Since then,
isogeometric analysis has been successfully implemented
in structural mechanics and many other fields, e.g. in fluid
mechanics [2], contact mechanics [3] and fracturemechanics
[4].

Especially in the context of shell structures, isogeomet-
ric analysis offers many advantages. The higher continuity
of splines over the patch is essential for the correct com-
putation of the shell’s curvature and the surface’s normal.
Furthermore, free form structures can now be computed with
a significantly lower computational cost. Thus, in the past
years a lot of effort was put in integrating isogeometric anal-
ysis into the existing shell formulations. The first step was
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done with the Kirchhoff-Love shells, see [5–8] and later with
the Reissner–Mindlin shells in [9–13] and the solid-shells in
[14–16].

Even though splines are very advantageous due to their
higher order and continuity, they suffer from the same lock-
ing effects as Lagrange shape functions, see [17]. Locking
leads to an artificial stiffening of the system, an underes-
timation of the deformation and oscillations in the stress
resultants. Various methods have been proposed in order to
eliminate these undesirable effects in the framework of iso-
geometric analysis. The easiest one is to use higher order
shape functions, however, this approach does not eliminate
locking completely and at the same time increases the compu-
tational cost, see [10,17,18]. An attempt to overcome locking
effects on the theoretical level by using hierarchic formula-
tions was made in the framework of Reissner–Mindlin and
3D shells in [19–22]. Even though these formulations were
able to avoid transverse shear and curvature thickness lock-
ing ab initio, additional methods had to be implemented for
the elimination of membrane locking. In [23,24] the classical
Timoshenko beam problem was reformulated to a single dif-
ferential equation with only one primal variable in order to
avoid shear locking by construction. A mixed displacement
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method that avoids the geometrical locking effects ab initio
was presented in Bieber et al. [25].

In addition to these formulations, methods that have
been valuable in the classical finite element analysis for the
elimination of locking effects have been extended to iso-
geometric analysis, like the Assumed Natural Strain (ANS)
method in [26,27], the Discrete Shear Gap (DSG) approach
in [17,20] and the Enhanced Assumed Strain (EAS) method
[28]. Non-uniform integration techniques were implemented
for isogeometric Reissner–Mindlin shells in [12,29] in order
to overcome locking and increase the efficiency of the
formulations. However, the latter method fails for general
non-uniform knot vectors and is thus not relevant for indus-
trial applications. Reduced integrated fields were applied for
a solid-shell in [30] in combination with a moving least
square approach to project thembackonto the fully integrated
space. The use of adjusted approximation spaces for the dis-
placements and the rotations in Reissner–Mindlin plates and
shells was able to eliminate transverse shear locking, see
[31,32].

The B̄ method, one of the most popular methods for
the finite element analysis, was introduced for isogeomet-
ric analysis in Elguedj et al. [33] along with an F̄ projection
in order to alleviate locking in nearly incompressible lin-
ear and nonlinear elasticity and plasticity problems. Later, it
was extended to straight and curved Timoshenko beams in
Bouclier et al. [34] and in Greco et al. [35] to plane curved
Kirchhoff rods. A first attempt to apply the B̄ method to iso-
geometric 2D solid shells was made in Bouclier et al. [18].
As it was often stated in theseworks, the B̄methodwithin the
framework of isogeometric analysis leads to a linear system
where a matrix defined on the patch level has to be inverted
and the resulting stiffness matrix is fully populated, which
increases the computational cost. This led to the introduction
of local B̄ formulations, where the B̄-projection is applied
locally and the global variables are obtained from the local
ones using reconstruction algorithms. Such a local B̄ for-
mulation was first introduced in Bouclier et al. [15] for a
NURBS-based solid-shell. A local B̄ formulation based on
the Bézier projection proposed by Thomas et al. [36] was
presented in Miao et al. [37] to alleviate transverse shear
locking in Timoshenko beams and volumetric locking in
nearly incompressible elastic solids. In addition, Miao et al.
presented a non-symmetric Bézier B̄ projection, where the
variation of the assumed variables is discretizedwith the dual
basis functions. This way, the assumed variables are directly
condensed out without the need of an inversion and lead to
a sparse stiffness matrix with a slightly higher bandwidth.
This method was later applied to geometrically nonlinear
Reissner–Mindlin shells in Zou et al. [38]. A much simpler
reconstruction algorithm which is also based on the work
of Thomas et al. [36] can be found in Greco et al. [35,39]
for plane curved Kirchhoff rods and Kirchhoff-Love shells.

There the local variables are directly interpolated with local
B-spline functions without a Bézier projection and transfor-
mation to the Bernstein basis. Local B̄ formulations where
the locking strains or stresses are projected onto interpola-
tion spaces with the lowest possible order for each element
leading to different projection spaces for the inner, corner
and boundary elements are presented in Hu et al. [40,41].
Antolin et al. [42,43] used discontinuous polynomial spaces
for the projection of the strains.

Mixed formulations, which are equivalent to the B̄ formu-
lations for linear cases as stated in [15,44],were implemented
in the context of isogeometric analysis for a solid-shell in
order to eliminate membrane, shear and thickness locking
in linear [15] and geometrically nonlinear cases [45]. Echter
et al. [20] and Rafetseder et al. [46] used a mixed formu-
lation to overcome membrane locking in hierarchic shells
and Kirchhoff-Love shells, respectively. Mixed variational
formulations for nearly incompressible solids were imple-
mented in [47,48]. However, as it is for the B̄ method, mixed
methods involve static condensation on the patch level due
to the high continuity of the shape functions in isogeomet-
ric analysis. This includes the inversion of a matrix on the
patch level and leads to a fully populated stiffness matrix. In
order to overcome these issues and reduce the computational
cost, in this work, two approaches are presented based on the
two-field Hellinger-Reissner variational principle which per-
form static condensation on the element level. In the first one,
the stress fields are defined discontinuously (C−1) across the
element boundaries. The resulting stiffness matrix is sparse
and has the same bandwidth as the standard displacement-
based shell which additionally reduces the computational
cost. The second approach is based on the reconstruction
algorithm used by Greco et al. [35,39] in the framework of a
B̄method. Here, it is reformulated for themixedmethodwith
the stress resultants as additional unknowns and is extended
to the case of Reissner–Mindlin plates and shells where
membrane and transverse shear locking occur. The resulting
stiffnessmatrix has a slightly higher bandwidth than the stan-
dard displacement-based formulations. Both methods can be
applied for any polynomial degree. They are compared to the
mixed formulationwhere static condensation is performedon
the patch level.

The paper is organized as follows. In Sect. 2, the Reissner–
Mindlin shell formulation from [11,32] is briefly summa-
rized. In Sect. 3, the isogeometric mixed formulation based
on the Hellinger-Reissner variational principle is presented
for alleviating membrane and shear locking. The two meth-
ods for performing static condensation on the element level
are presented, and the existing approach, where static con-
densation is performed on the patch level is recalled. In
Sect. 4, the performance of the different approaches is com-
pared on the basis of various numerical examples. Finally,
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in Sect. 5, conclusions are drawn and an outlook for future
research is presented.

2 Reissner–Mindlin shell formulation

2.1 Kinematics and basis systems

The shell formulation presented in this section is based on
the Reissner–Mindlin shell theory and can be found in [11],
[32]. It is derived from continuum mechanics and the shell
structure is definedwith respect to its mid-surface. In order to
describe the thickness direction, the so-called director vector,
see Fig. 1, is used. The director vector of the reference con-
figuration D coincides with the normal vector of the shell’s
surface, whereas the director vector of the current configura-
tion is defined by a difference vector formulation

d = D + b, (1)

since only linear problems are considered. The difference
vector reads

b = ω × D = WTωwithW = skew(D) (2)

and depends on the rotational parameter ω of the shell’s
mid-surface and the reference director vector D. Only small
rotations are considered and the inextensibility condition in
thickness direction is fulfilled in the sense of |d| � |D| = 1.

Using the director vector, the reference position vector of
an arbitrary point on the shell is given as

X̃(ξ i ) = X(ξα) + ξ3D(ξα), (3)

where i = 1, 2, 3, ξa with α = 1, 2 are the two in-plane
coordinates of the convected curvilinear coordinate system
of the mid-surface,− t

2 ≤ ξ3 ≤ t
2 is the thickness coordinate

and X(ξα) is the position vector of themid-surface in the ref-
erence configuration. In the same manner, the displacement
vector ũ of an arbitrary point on the shell is defined as

ũ(ξ i ) = u(ξα) + ξ3d(ξα), (4)

where u(ξα) is the displacement vector of the mid-surface.
The current position vector x(ξα) and the displacement vec-
tor u(ξα) are linked to each other in the following way

x(ξα) = X(ξα) + u(ξα). (5)

The covariant basis vectors Gi of the shell are defined
with respect to ξ i as follows

Gα = X ,α + ξ3D,α, G3 = D, (6)

Fig. 1 Basis systems and director vector at a point on the shell’s mid-
surface

while the contravariant basis vectors G j form their dual basis
systemwithGi ·G j = δ

j
i and δ

j
i theKronecker delta symbol.

However, an orthonormal basis system is needed for the con-
stitutive relation, thus, a local basis system Ai is introduced,
see Fig. 1. It is defined with respect to the local Cartesian
coordinate system θ i and is computed as close as possible
to the convected basis system using the lamina coordinate
system, see [11]. In this sense, the displacement and position
vectors in Eqs. (3)–(4) are now defined with respect to the
new coordinate system θ i .

The definition of the Jacobian matrix J is necessary for
the computation of the derivatives with respect to the local
Cartesian coordinate system as well as for the transformation
of the stress resultant components in Sec. 3. Its entries Jαβ

are defined as

Jαβ = Gα · Aβ. (7)

Since only smooth surfaces are considered, the unknown
deformation is summed up in the following deformation vec-
tor

v =
[
u
β

]
= [

u1 u2 u3 β1 β2
]T

, (8)

where ui are the displacements and βα the rotations. In the
case of surfaces with kinks the third rotation β3 should be
considered additionally.

2.2 Strains and stresses

The strains and stresses are expressed with respect to the
local Cartesian basis system Ai and its dual basis system
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Ai = Ai . Since only linear problems are considered the
linearizedGreen-Lagrange strain tensor is used and the strain
tensor with respect to Ai is defined as

E = Ei j Ai ⊗ A j . (9)

The components Ei j are split into the in-plane and transverse
shear strains as follows

Eαβ = εαβ + θ3καβ + (θ3)2ραβ, (10)

2Eα3 = γα. (11)

E33 is zero due to the inextensibility constraint. In Eq. (10)
εαβ denote the membrane strains

εαβ = 1

2
(X ,α · u,β + X ,β · u,α), (12)

and καβ the curvatures

καβ = 1

2
(X ,α · b,β + X ,β · b,α + D,α · u,β + D,β · u,α).

(13)

The second-order curvatures, which are denoted as

ραβ = 1

2
(d,α · d,β − D,α · D,β) (14)

are neglected here because only thin shells are considered
and their contribution to the strain energy tends to zero. The
shear strains γα in Eq. (11) are given as

γα = X ,α · b + u,α · D. (15)

The different strain components are assembled in Voigt nota-
tion in the strain vector

ε = [
ε11 ε22 2ε12 κ11 κ22 2κ12 γ1 γ2

]T
. (16)

The corresponding stress resultant vector in Voigt notation
includes the membrane forces nαβ , the bending moments
mαβ and the shear forces qα

σ = [
n11 n22 n12 m11 m22 m12 q1 q2

]T
. (17)

Since a linear elastic material is considered, the relation
between the stress resultants and the strains is defined as
σ = D̄ · ε, where D̄ is the constitutive matrix, see [12].

3 Isogeometric displacement-stress mixed
method for alleviatingmembrane and
shear locking

3.1 Hellinger-Reissner variational formulation

In contrast to classical displacement-based formulations,
mixed formulations include as additional unknowns the
stresses or strains (Hellinger–Reissner) or both the stresses
and the strains (Hu–Washizu). The approximation spaces
for these additional unknowns must be chosen accordingly,
with the aim of alleviating locking effects. In this work, the
Hellinger–Reissner functional is used within the framework
of an isogeometric Reissner–Mindlin shell formulation, in
order to alleviate membrane and shear locking.

The mixed formulation based on the Hellinger-Reissner
principle from [49] and [50] reads

G(v, σ , δv, δσ ) =
∫

Ω

(δεT σ − δvT p̄0)dΩ

+
∫

Ω

δσ T (ε − D̄
−1

σ ) dΩ −
∫

∂Ωσ

δvT t̄0∂Ωσ = 0 (18)

with p̄0 the surface loads, t̄0 the boundary tractions and

v =
[
u
β

]
= [

u1, u2, u3, β1, β2
]T

the deformation vec-

tor. The strains ε and their variations δε are functions of the
unknown displacements and rotations v and their variations
δv, respectively. The formulation results from the princi-
ple of minimum complementary energy when employing
Lagrangian multipliers in order to additionally include the
equilibrium and traction boundary conditions in the expres-
sion. The Hellinger-Reissner functional leads to a saddle
point type problem, thus, the existence of a unique solution
and the stability of the system are only guaranteed when
fulfilling additional conditions, see [51]. In particular, the
Babuška-Brezzi condition (inf-sup condition), see [52] and
[53], which ensures the stability of the system should be ver-
ified. Here, the condition was not examined, however, since
the results obtained in the numerical examples in Sect. 4
were accurate and robust it is assumed that the condition
is fulfilled. Nevertheless, in order to ensure the stability of
the proposed mixed formulations in general, a mathemat-
ical verification of the condition should be carried out in
future work. The corresponding variational formulation for
a classical displacement-based approach of an isogeometric
Reissner–Mindlin shell formulation can be found in [32].

The stress resultant components that are considered as
additional unknowns and interpolated with adjusted approx-
imation spaces are those that correspond to the occurring
locking effect. In other words, for shear locking the unknown
stress resultants include σ = [

q1, q2
]
, for membrane lock-

ing σ = [
n11, n22, n12

]
and in the case where both locking

123



Computational Mechanics (2022) 69:1–21 5

effects occur, e.g. in shells, the unknowns include σ =[
n11, n22, n12, q1, q2

]
.

In the following, the formulation is presented for the
case that shear and membrane locking occur. However, in
the numerical examples of Sect. 4 all three versions have
been implemented and used for the corresponding examples.
The equations are then adjusted. Furthermore, in the case of
shells, the bending parts could be also considered as addi-
tional unknowns. Here, this does not lead to a significant
improvement of the results and increases the computational
cost considerably. Thus, only the membrane and shear terms
are considered. However, in cases where the membrane and
bending terms are coupled the consideration of the bending
terms as additional unknowns is mandatory, see [51]. They
are then interpolated in the same manner as the membrane
terms.

TheHellinger-Reissner variational formulation fromEq. (18)
is nowmodified for the casewheremembrane and shear lock-
ing is expected

G(v, σ , δv, δσ ) =
∫

Ω

δεTεγ σ dΩ +
∫

Ω

δκT D̄
κ
κ dΩ

+
∫

Ω

δσ T εεγ dΩ −
∫

Ω

δσ T ( D̄
εγ

)−1σ dΩ

−
∫

Ω

δvT p̄0 dΩ −
∫

∂Ωσ

δvT t̄0 ∂Ωσ = 0. (19)

Here, εTεγ = [
ε11, ε22, 2ε12, γ1, γ2

]
are the corresponding

strains to σ and κT = [κ11, κ22, 2κ12] the curvatures. The
strainsεεγ ,κ and their variations δεεγ , δκ are functions of the
unknown displacements and rotations v and their variations
δv, respectively. The isotropic linear elastic material tensor
is also split into the part that corresponds to the membrane
and transverse shear strains

D̄
εγ =

⎡
⎢⎢⎢⎢⎢⎢⎣

E t
1−ν2

E t ν
1−ν2

0 0 0
E t ν
1−ν2

E t
1−ν2

0 0 0

0 0 E t (1−ν)

2(1−ν2)
0 0

0 0 0 E t κs
2(1+ν)

0

0 0 0 0 E t κs
2(1+ν)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (20)

and the part that corresponds to the curvatures

D̄
κ =

⎡
⎢⎢⎣

E t3

12(1−ν2)
E t3 ν

12(1−ν2)
0

E t3 ν
12(1−ν2)

E t3

12(1−ν2)
0

0 0 E t3(1−ν)

24(1−ν2)

⎤
⎥⎥⎦ , (21)

where E is Young’s modulus, ν is Poisson’s ratio, t is the
shell’s thickness and κs = 5

6 is the shear correction factor.
In the framework of isogeometric analysis, the appropri-

ate shape functions for the stress resultant fields are, in the

relevant direction, one order lower than the ones used for
the interpolation of the deformation, see Table 1. There also
exists the possibility to reduce the polynomial degree in both
directions by one, see [15,43]. However, this version is not
considered here. The resulting approximation spaces for the
different stress resultant components for a polynomial degree
of p = 3 and q = 2 is depicted in Fig. 2. It should be
noted that all approximation spaces have the same number
of elements and the same number of Gauss points as the
deformation mesh. However, the number of control points
and their location is different for each approximation space.

Here, NURBS shape functions are used for the approx-
imation of the deformation and the stress resultants, see
[54,55]. The shape functions for the stress resultant com-
ponents σ = [

n11, n22, n12, q1, q2
]
are summed up in the

following way

Nσ =

⎡
⎢⎢⎢⎢⎢⎢⎣

N p−1,q 0 0 0 0

0 N p,q−1 0 0 0

0 0 N p−1,q−1 0 0

0 0 0 N p−1,q 0

0 0 0 0 N p,q−1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where the color indicates the corresponding approximation
space from Fig. 2 and p, q are the polynomial degrees of
the deformations in the first and second direction. N p−1,q ,
N p,q−1 and N p−1,q−1 include the shape function’s values at
all control points N p−1,q

I , N p,q−1
I and N p−1,q−1

I . This way,
the stress resultantsσ are definedwith respect to the covariant
basis Gα . However, they need to be defined with respect to
the local Cartesian basis Aβ , thus, the transformation matrix
Tσ is introduced

Tσ =

⎡
⎢⎢⎢⎢⎢⎢⎣

J 211 J 221 2J11 J21 0 0

J 212 J 222 2J12 J22 0 0

J11 J12 J21 J22 J11 J22 + J21 J12 0 0

0 0 0 J11 J21

0 0 0 J12 J22

⎤
⎥⎥⎥⎥⎥⎥⎦

, (22)

where the entries of the Jacobian matrix Jαβ are evaluated
at the integration points and are defined in Eq. (7). The new
resulting shape functions for the stress resultants read N̂σ =
Tσ Nσ . Finally, the interpolations of v and σ are given in
matrix notation as follows

vh = N p,q v̂, (23)

σ h = N̂σ σ̂ , (24)

where v̂ includes the 5 nodal degrees of freedom of all the
control points in the deformation mesh and σ̂ includes the
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Table 1 Order of the shape
functions for the deformation
and stress resultants. Sp

α1 , S
q
α2 are

the one-dimensional B-spline
spaces with degree p, q and α1,
α2 continuous derivatives across
interior knots, respectively

vh(ξ1, ξ2) Ξ
p
1 ⊗ Ξ

q
2 N p,q {Sp

α1 ⊗ Sqα2 }

n11,h(ξ1, ξ2) and q1,h(ξ1, ξ2) Ξ
p−1
1 ⊗ Ξ

q
2 N p−1,q {Sp−1

α1−1 ⊗ Sqα2 }
n22,h(ξ1, ξ2) and q2,h(ξ1, ξ2) Ξ

p
1 ⊗ Ξ

q−1
2 N p,q−1 {Sp

α1 ⊗ Sq−1
α2−1}

n12,h(ξ1, ξ2) Ξ
p−1
1 ⊗ Ξ

q−1
2 N p−1,q−1 {Sp−1

α1−1 ⊗ Sq−1
α2−1}

Fig. 2 Approximation spaces for the deformation v (green) and the stress resultant components n11, q1 (red), n22, q2 (blue) and n12 (orange)

stress resultant components of all the control points in the
different stress resultant meshes.

Isogeometric analysis uses the same shape functions for
the design and analysis which leads to an exact representa-
tion of the geometry. Thus, the interpolated values of X and
D are not approximations but exact values and are denoted
without (...)h . In order to interpolate the difference vector bh ,
the interpolation of the rotational parameter ωh from Eq. (2)
has to be calculated first. It depends on the nodal transfor-
mation matrix T3I = [

A1I A2I
]
, which includes the nodal

Cartesian system Aα I at the I−th control point. These nodal
values Aα I are calculated using a method proposed by Dor-
nisch et al. [11]. There, the nodal Cartesian basis systems are
defined in a way that their interpolated values at any point
of the surface coincide as well as possible with the basis
system defined by the geometry. In this sense, the resulting
interpolated rotational parameter reads

ωh =
nen∑
I=1

T3I N
p,q
I β I , (25)

where nen is the number of shape functions that are non zero
for a given element.

The strain-deformation matrices Bεγ and Bκ provide a
relation between the strains and the nodal deformation

εhεγ = Bεγ υ̂, (26)

κh = Bκ υ̂. (27)

Eqs. (26,27) are given inmatrix notation and Bεγ , Bκ include
the values for all the control points I = 1, ncp of the defor-

mation mesh

Bεγ

I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

XT
,1N

p,q
I ,1 0

XT
,2N

p,q
I ,2 0

XT
,1N

p,q
I ,2 + XT

,2N
p,q
I ,1 0

DT N p,q
I ,1 XT

,1W
T T3I N

p,q
I

DT N p,q
I ,2 XT

,2W
T T3I N

p,q
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (28)

Bκ
I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

DT
,1N

p,q
I ,1

XT
,1W

T T3I N
p,q
I ,1

+XT
,1W

T
,1T3I N

p,q
I

DT
,2N

p,q
I ,2

XT
,2W

T T3I N
p,q
I ,2

+XT
,2W

T
,2T3I N

p,q
I

DT
,1N

p,q
I ,2 + DT

,2N
p,q
I ,1

XT
,1W

T T3I N
p,q
I ,2

+XT
,1W

T
,2T3I N

p,q
I

+XT
,2W

T T3I N
p,q
I ,1

+XT
,2W

T
,1T3I N

p,q
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.(29)

Inserting the interpolated values from Eqs. (23-24) and
Eqs. (26-27) in Eq. (19) leads to the discrete weak form of
the Hellinger-Reissner variational formulation

Gh(v̂, σ̂ , δv̂, δσ̂ ) =
∫

Ωh
δv̂

T
(Bεγ )T N̂σ σ̂ dΩh

+
∫

Ωh
δv̂

T
(Bκ)T D̄

κ
Bκ v̂ dΩh +

∫
Ωh

δσ̂
T N̂

T
σ Bεγ v̂ dΩh

−
∫

Ωh
δσ̂

T N̂
T
σ ( D̄

εγ
)−1 N̂σ σ̂ dΩh

−
∫

Ωh
δv̂

T
(N p,q)T p̄0 dΩ

h

−
∫

∂Ωh
σ

δv̂
T
(N p,q)T t̄0 ∂Ωh

σ = 0. (30)
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The linear system of equations that results from Eq. (30)
and has to be solved is given as follows

[
K vv K vσ

Kσv −Kσσ

] [
v̂

σ̂

]
=

[
F
0

]
(31)

with the different stiffness parts defined as

K vv =
∫

Ωh
(Bκ)T D̄

κ
BκdΩh (32)

K vσ =
∫

Ωh
(Bεγ )T N̂σdΩ

h (33)

Kσv =
∫

Ωh
N̂

T
σ Bεγ dΩh (34)

Kσσ =
∫

Ωh
N̂

T
σ ( D̄

εγ
)−1 N̂σ dΩh (35)

and the force vector defined as

F =
∫

Ωh
(N p,q)T p̄0 dΩ

h +
∫

∂Ωh
σ

(N p,q)T t̄0 ∂Ωh
σ . (36)

Applying static condensation on the patch level, a new
mixed stiffness matrix KMixed can be defined

(K vv + K vσ · K−1
σσ · Kσv)︸ ︷︷ ︸

KMixed

·v̄ = F, (37)

that has the same dimension as the stiffness matrix from
the classical displacement-based formulation. This way, the
unknowns to be calculated are again only the deformations.
In the following three different approaches to perform the
static condensation are presented.

3.2 Continuous approach

In the first approach, the approximation spaces for the stress
resultant components σ̂ are chosen to be one level of continu-
ity lower than the approximation space of the deformation. In
other words, the continuity of the deformation across an inte-
rior element boundary is C p−1, while for the stress resultant
components the continuity can take the value C p−2 depend-
ing on the direction. The high continuity of the NURBS
shape functions, which is one of the advantages for using
isogeometric analysis, is now an obstacle when doing the
static condensation in Eq. (31). In the standard C0 continu-
ous finite element method, static condensation can be done
on the element level since the stress resultant components
are discontinuous across the element boundaries. However,
in isogeometric analysis, due to the higher continuity, static
condensation has to be performed on the patch level. Thus,
the stiffness matrix components in Eqs. (32-35) are going to
have the following dimension

– K vv has the dimension (ncpv · nd f ) × (ncpv · nd f ),
where ncpv is the total number of control points from the
displacement/rotation mesh and nd f = 5 are the degrees
of freedom per control point.

– K vσ and K T
σv have the dimension (ncpv ·nd f )× (ncps),

where here ncps includes the total number of control
points ncp11, ncp22, ncp12 from the stress resultant com-
ponent meshes. Depending on the locking phenomena to
be alleviated, ncps can take different values, as can be
seen in Table 2.

– Kσσ has the dimension ncps × ncps .

This way, also the stress resultant components σ̂ are
defined on the patch level

σ̂ = (Kσσ )−1Kσv v̂, (38)

where

σ̂
T = [

n11, n22, n12, q1, q2
]

(39)

with n11 = [
n111 , ..., n11ncp11

]
, n22 = [

n221 , ..., n22ncp22
]
,

n12 = [
n121 , ..., n12ncp12

]
, q1 = [

q11 , ..., q
1
ncp11

]
and q2 =[

q21 , ..., q
2
ncp22

]
. The inversion of Kσσ on the patch level

requires a significantly higher computational time since the
size of thematrix increases very quickly, see Table 2. Further-
more, the resulting stiffness matrix KMixed is not a banded
matrix anymore but a full one, which additionally increases
the computational cost, see Sect. 3.5.

Since here only linear problems are considered, the con-
tinuous mixed formulation is equivalent to the global B̄
formulation firstly presented in [33] and later used in [15] in
the framework of an isogeometric NURBS-based solid-shell
with the aim of alleviating membrane, shear and thickness
locking. It was later extended to the case of large rotations
and large displacements in [45]. Another continuous mixed
formulation can be found in the work of Echter et al. [20],
where it was applied to a hierarchic family of shells and in
the work of Rafetseder et al. [46], where it was implemented
to an isogeometric Kirchhoff-Love shell. In both approaches,
the aim was to alleviate membrane locking.

Advantages: The results are in generalmore accurate than
for the following two approaches as it will be seen in Sect. 4.

Disadvantages: Higher computational cost since Kσσ is
inverted on the patch level and the resulting stiffness matrix
is full.

3.3 Discontinuous approach

In the discontinuous approach, the shape functions for the
stress resultant components are again chosen with one order
lower in the relevant direction than the shape functions for
the deformations. However, this time, in order to enable static
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Table 2 Dimension ncps
defined for the continuous and
discontinuous approach as well
as for different locking cases

ncps Continuous Discontinuous

Membrane locking ncp11 + ncp22 + ncp12 nen11 + nen22 + nen12

Shear locking ncp11 + ncp22 nen11 + nen22

Membrane and shear locking 2ncp11 + 2ncp22 + ncp12 2nen11 + 2nen22 + nen12

condensation on the element level, the continuity between
internal element boundaries is reduced so that the elements
are discontinuous again. This is achieved by repeating the
internal entries of the knot vector until a continuity of C−1 is
reached. A discontinuous stress resultant field for the com-
ponent n11 and q1 is depicted in Fig. 3 in comparison to the
corresponding continuous deformation field.

Eqs. (32-35) are now defined on the element level, thus,
the integrals are computed within the element limits, i.e.∫
Ωe

dΩe. The stiffness matrix components have the follow-
ing dimension

– K vv has the dimension (nenv ·nd f )×(nenv ·nd f ), where
nenv = (p+ 1) · (q + 1) is the number of nonzero shape
functions for an element in the deformation mesh.

– K vσ and K T
σv have the dimension (nenv ·nd f )×(ncps),

where ncps includes the number of nonzero shape func-
tions nen11 = p · (q + 1), nen22 = (p + 1) · q,
nen12 = p · q for an element in the stress resultant com-
ponent meshes. Again, ncps varies based on the locking
phenomena that have to be alleviated, see Table 2.

– Kσσ has the dimension ncps × ncps .

The stress resultant components σ̂
e are now defined on the

element level

σ̂
e = (K e

σσ )−1K e
σv v̂

e
, (40)

where e = 1, numel and

σ̂
eT = [

n11, n22, n12, q1, q2
]

(41)

with n11 = [
n111 , ..., n11nen11

]
, n22 = [

n221 , ..., n22nen22
]
,

n12 = [
n121 , ..., n12nen12

]
, q1 = [

q11 , ..., q
1
nen11

]
and q2 =[

q21 , ..., q
2
nen22

]
. The inversion of K e

σσ is now computation-
ally much cheaper than for the continuous approach and the
resulting stiffness matrix KMixed has the same bandwidth
of 2 · p + 1 as the displacement-based formulation, which
additionally reduces the computational cost, see Sect. 3.5.
However, due to the discontinuity of the stress resultant fields,
locking is not completely eliminated, as will be shown in
Sect. 4.

In the framework of the B̄ method, a discontinuous
approach was presented in [35] for plane curved Kirchhoff
rods in order to alleviate membrane locking. However, there,

the assumed strain field is not directly implemented discon-
tinuously from the beginning. The strains are computed on
the element level using a local L2-projection or a colloca-
tion method where only the control variables which have
an influence on the given element are considered. Across
the element boundaries the continuity of the shape func-
tions for the assumed strains are still one continuity lower
than the ones for the displacements. This way the formula-
tion becomes quasi discontinuous. Discontinuous local basis
functions as the ones presented here were used in [26] in the
context of an Assumed Natural Strain method for solid shell
NURBS-based elements and in [43] again for isogeometric
solid shells. Furthermore, Antolin et al. [42] chose for the
projection space of the volumetric strain piecewise discon-
tinuous polynomials, however, they were built on a coarser
mesh than the displacements.

Advantages: Static condensation can be performed on the
element level. The resulting stiffnessmatrix is banded andhas
the same bandwidth as the displacement-based formulation.
Thus, the computational cost is low.

Disadvantages: The discontinuity of the stress resultants
seems to reduce the accuracy of the results. Larger input file
due to the additional control points.

3.4 Reconstructed approach

In order to achieve a low computational cost as in the dis-
continuous approach while maintaining a high accuracy as
in the continuous approach, a reconstruction algorithm is
implemented. Reconstruction algorithms have been intro-
duced mainly in the framework of the B̄ method when using
local approaches. One of these algorithms is presented in
the work of Greco et al. [39] for a B-spline based isoge-
ometric Kirchhoff-Love shell with the aim of alleviating
membrane locking. There, the assumed membrane strains
are first defined with a local L2 - projection and later recon-
structed by blending the local control variables usingweights
in order to get the global ones. Even though this method is
based on the algorithm proposed by Thomas et al. [36] it is
much simpler and easier to implement. In Thomas’ method,
first, Bézier extraction is applied to project the spline basis
functions onto the Bernstein basis of each element. In a next
step, the Bézier local control points are converted to spline
control points using an element reconstruction operator and
then weighted in order to compute the global spline control
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Fig. 3 Shape functions of n11/q1 for the continuous and the discontinuous approaches in comparison to the shape functions of the deformation v

(p = q = 3, 2 × 2 elements)

values. On the other hand, Greco et al. directly interpolates
the local variables with local B-spline functions and later
blends them using the same weights proposed by Thomas.

The Bézier projection algorithm from Thomas was also
implemented in the framework of the B̄ method in order to
alleviate transverse shear locking in Timoshenko beams and
volumetric locking in nearly incompressible solids inMiao et
al. [37]. There, a non-symmetric Bézier B̄-projectionmethod
was additionally proposedwhere the variation of the assumed
variables is discretized with the dual basis that correspond to
the spline basis functions. This way, the assumed variables
are condensed out using the orthogonality property of the
Bézier dual bases and an inversion of a matrix is not neces-
sary anymore. This method was extended to a geometrically
nonlinear isogeometric Reissner–Mindlin shell element to
alleviate shear and membrane locking in the work of Zou
et al. [38]. Another reconstruction algorithm that could be
compared to the one proposed in this work is the local B̄ for-
mulation presented in the work of Bouclier et al. [15] for a
NURBS-based solid-shell to alleviate membrane, shear and
thickness locking. A local least squares method is applied to
each element and afterwards the resulting local variables are
smoothed over the global structure using the average of the
shared local degrees of freedom, as it is proposed in the work
of Mitchell et al. and Govindjee et al. [56,57]. However, the
weights proposed by Thomas are more exact compared to
the ones proposed by Govindjee and lead to more accurate
results as stated in [36]. Here, the procedure presented by
Greco et al. [39] is adopted to the mixed formulation with
stress resultants as additional unknowns and is then extended
to the case of the Reissner–Mindlin shell.

As in the continuous approach, the stress resultant fields
are in the relevant direction one order and one level of con-
tinuity lower than the deformation field. However, static
condensation is still performed on the element level, as in

the discontinuous approach. Thus, the stress resultant com-
ponents σ̂

e are defined for each element as

σ̂
e = (K e

σσ )−1K e
σv v̂

e
, (42)

where e = 1, numel and

σ̂
eT = [

n11, n22, n12, q1, q2
]

(43)

with n11 = [
n111 , ..., n11nen11

]
, n22 = [

n221 , ..., n22nen22
]
,

n12 = [
n121 , ..., n12nen12

]
, q1 = [

q11 , ..., q
1
nen11

]
and q2 =[

q21 , ..., q
2
nen22

]
.

In order to reconstruct again a continuous stress resultant
field on the patch level, the local stress resultant control vari-
ables are blended with a weighted average as follows

nαβ
I ,rec =

∑
e∈DI

nαβ
I ,e w

αβ
I ,e (44)

qα
I ,rec =

∑
e∈DI

qα
I ,e wαα

I ,e, (45)

where DI includes the elements where the I -th NURBS
shape function is not zero. The weights w

αβ
I ,e are specified

according to the work of Thomas et al. [36] as the volume
included by the graph of the I -th shape function defined on
the element e divided by the volume included by the graph
of the I -th shape function defined on the whole patch:

w11
I ,e =

∫
Ω̂e N

p−1,q
I ,e dΩ̂e

∫
Ω
N p−1,q
I dΩ̂

, w22
I ,e =

∫
Ω̂e N

p,q−1
I ,e dΩ̂e

∫
Ω
N p,q−1
I dΩ̂

(46)

w12
I ,e =

∫
Ω̂e N

p−1,q−1
I ,e dΩ̂e

∫
Ω
N p−1,q−1
I dΩ̂

(47)

∑
e∈De

w
αβ
I ,e = 1, (48)
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Fig. 4 Control points of the stress resultant component q1 with poly-
nomial degrees p = 1, q = 2 and 2×2 elements and their weights w11

for each element according to Thomas et al. [36]. The reconstruction of
q1 for the 5th control point is demonstrated

where Ω̂ is the parametric domain of the patch while Ω̂e is
the parametric domain of the element e.

In comparison, the weights proposed in the local least
squares method of Mitchell et al. [56] and Govindjee et al.
[57] are defined as the average of the shared local degrees of
freedom

w11
I ,e = 1

n11I
, w22

I ,e = 1

n22I
, w12

I ,e = 1

n12I
(49)

∑
e∈De

w
αβ
I ,e = 1, (50)

where n11I , n22I , n12I are the number of elements in the support
of the I -th shape function.

The reconstructed stress resultant components σ̂ rec,which
include again the control variables of the whole patch are
used for the definition of KMixed in Eq. (37). An example
for the reconstruction algorithm is given for a plate in Fig. 4.
There the control points of the stress resultant component q1

with polynomial degrees p = 1, q = 2 and 2 × 2 elements
are depicted with their weights w11 for each element. The
reconstruction of q1 for the 5th control point is demonstrated.
The same example is in addition illustrated in Fig. 5 for the
case that the weights of Mitchell et al. [56] and Govindjee et
al. [57] are used, see Eq. (49).

The dimension of the stiffness matrix components in
Eqs. (32–35) are now partly defined as in the continuous
method and partly as in the discontinuous method. Kσσ and
Kσv are defined as in the discontinuous method on the ele-
ment level. Thus, the computational cost for the inversion of
Kσσ is low. On the other hand K vσ is defined as in the con-
tinuous method on the patch level. This way, the resulting

Fig. 5 Control points of the stress resultant component q1 with poly-
nomial degrees p = 1, q = 2 and 2×2 elements and their weights w11

for each element according to Mitchell et al. [56] and Govindjee et al.
[57]. The reconstruction of q1 for the 5th control point is demonstrated

stiffness matrix KMixed is not symmetric anymore. How-
ever, KMixed is again a banded matrix with a bandwidth
slightly higher than in the discontinuous case, which addi-
tionally reduces the computational time, see Sect. 3.5. The
exact value of the bandwidth is 6 · p − 3 as stated in [15].

Advantages: Accuracy almost as good as for the contin-
uous approach, see Sect. 4. The inversion of Kσσ is done
on the element level which reduces the computational cost.
The resulting stiffness matrix is banded which reduces the
computational cost compared to the continuous method.

Disadvantages: The weights for the reconstruction algo-
rithm have to be defined beforehand and stored. The resulting
stiffness matrix is not symmetric anymore. Loss of physical
meaning since Betti-Maxwell’s theorem is not valid any-
more.

3.5 Computational time

In the previous sections, while describing the advantages and
disadvantages of the different approaches to the static con-
densation, the computational time was often mentioned as an
argument. In this section the computational cost is discussed
in more detail. In particular, the computational time for the
inversion of the Kσσ matrix, the computation of KMixed and
the solution of the equations is going to be the main focus
since they can increase rapidly depending on the approach
that is used.

The computational complexity for the inversion of an n×n
matrix, based on the Gauss-Jordan elimination algorithm is
O(n3). There also exist other algorithms which are slightly
better concerning the computational time, for instance
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Table 3 Computational
complexity of the three methods
for two different cases

numel changing, p, q constant p changing, numel, q constant

Mixed Continuous O(numel3) O(p3)

Mixed Discontinuous O(numel) O(p3)

Mixed Reconstructed O(numel3) O(p3)

the Strassen algorithm (O(n2.807)) or the Coppersmith-
Winograd algorithm (O(n2.376)), see [58]. In the framework
of this comparison, only algorithms for the direct inversion
of a matrix are considered. Preconditioned iterative solvers
or multigrid solvers are not taken into account, since their
application to shell problems is often problematic and not
straightforward, see e.g. [59] and [60]. Here, the Gauss-
Jordan elimination algorithm is used for the inversion. The
dimension of Kσσ is ncps×ncps , wherencps was defined for
the continuous and the discontinuous method as well as for
different locking effects in Table 2. It can be seen that for the
continuous approach where ncps depends on the number of
control points from the different stress resultant meshes, the
dimension of Kσσ and thus the computational time increases
rapidlywhen increasing the number of elements.On the other
hand, for the discontinuous and the reconstructed approach,
where static condensation is performed on the element level,
the dimension of the Kσσ matrix is constant for a fixed poly-
nomial degree, regardless of the number of elements. Thus,
in this case the total cost for the inversion increases linearly
with an increasing number of elements numel (if t1 the com-
putational time for the inversion of Kσσ for one element, the
total time for the inversions is numel · t1).

The computation of the new mixed stiffness matrix
KMixed in Eq. (37) requires the matrix multiplication of
K−1

σσ , Kσv and K vσ . The computational complexity for the
multiplication of two (n×m) and (m × k) matrices is, when
using the simplest algorithm, O(nmk). Thus, if the matrices
are defined on the patch level as in the continuous approach,
the computational cost for computing KMixed is a lot higher
than for the discontinuous approach where they are defined
on the element level. The reconstructed approach, as defined
in Sect. 3.4, is going to be in between the continuous and the
discontinuous approach since K−1

σσ and Kσv are defined on
the element level whereas K vσ is defined on the patch level.

The resulting stiffnessmatrices for the continuous, discon-
tinuous and reconstructed approach have the same dimen-
sion, however, in the first case the stiffness matrix is full,
while in the last two cases the stiffness matrix is banded, see
Sect. 4.4. This has an influence on the computational time for
the solution of the equations. In particular, fast solvers like the
pardiso solver, where only the non zero entries of the matrix
are stored and used and which are running parallel can not be
applied when the matrix is full. This additionally increases
the total computational time for the continuous approach.

Regarding the question which of these operations is going
to dominate the total computational time and which compu-
tational complexity should be expected for each method, the
following has been observed:

– MixedContinuousmethod: The operations that dominate
in the mixed continuous method are the inversion of Kσσ

and the computation of K vσ (Kσσ )−1Kσv on the patch
level. The expected computational complexity is going
to be a combination of the computational complexities
of these operations, i.e. O(ncp3s ) + O((ncpv · nd f ) ·
ncp2s ) + O((ncpv · nd f )2 · ncps) with ncps as defined
in Table 2 for the continuous method. The values ncps
and ncpv depend on the polynomial degrees p, q and
the number of elements per direction nelx , nely , i.e. the
total number of elements numel = nelx ·nely . In the case
where the polynomial degrees are fixed and the number of
elements is increased, the computational complexity can
be rewritten depending on numel as O(numel3). This
cubic increase of the computational time when the num-
ber of elements is increased is going to be demonstrated
in Sect. 4.4 for the case of a pinched cylinder. In Table 3
the computational complexity is defined additionally for
the case that the number of elements and the polynomial
degree q are constant while the polynomial degree p is
changing.

– Mixed Discontinuous method: The operations that dom-
inate the total time are the inversion of K e

σσ and the
computation of K e

vσ (K e
σσ )−1K e

σv on the element level.
Since these operations are carried out for each element,
the computational complexity is going to be a combina-
tion of numel · O(ncp3s ) + numel · O((nenv · nd f ) ·
(ncps)2) + numel · O((nenv · nd f )2 · ncps), with ncps
as defined in Table 2 for the discontinuous method. This
time ncps as well as nenv only depend on the polynomial
degrees p, q. In the case where the polynomial degrees
are fixed and the number of elements is increased, the
computational complexity is going to be O(numel). This
linear increase in computational timewhen increasing the
number of elements is going to be observed in Sect. 4.4
for the case of a pinched cylinder. The computational
complexity for the case where the polynomial degree q
and the number of elements numel is fixed and only p is
changing is given in Table 3.
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– Mixed Reconstructed method: Since in the mixed recon-
structed method the inversion of K e

σσ and the matrix
multiplication (K e

σσ )−1K e
σv are carried out on the ele-

ment level, the computational time which is going to
dominate is from the matrix multiplication on the patch
level in order to compute KMixed . The computational
complexity for this is O((ncpv · nd f )2 · ncps), where
ncps is defined as for the continuous method in Table 2.
Thus, ncps and ncpv depend on the polynomial degrees
p,q and the number of elements numel. In the casewhere
the polynomial degrees are fixed and the number of ele-
ments is increased, the computational complexity can be
rewritten depending on numel as O(numel3). This is
also shown in Sect. 4.4 for the case of a pinched cylinder.
In Table 3 the complexity is additionally defined for the
case that numel and q are constant and p is changing.

It is important to notice that the computational complexity
only describes how the computational time is going to grow
as the input grows. The actual value of the computational
time for each method depends on the example. A case study
is given in Sect. 4.4 for the pinched cylinder. Furthermore, the
computational cost should always be considered in relation
to the accuracy of a method as shown in Sect. 4.4.

4 Numerical examples

In this section, the presented mixed formulation with its dif-
ferent ways of performing the static condensation is tested
and compared to other existing models. The elements and
their corresponding abbreviations which are going to be used
in the examples are summarized in the following

– ω-shell.The isogeometric 5-parameterReissner–Mindlin
shell formulation proposed byDornisch et al. [11]. It does
not include any measures against locking.

– Mixed Conti. Mixed continuous formulation presented
in Sect. 3.2.

– Mixed Discont. Mixed Discontinuous formulation pre-
sented in Sect. 3.3.

– Mixed Recon. Mixed reconstructed formulation as pre-
sented in Sect. 3.4.

– AAS shell.The isogeometric Reissner–Mindlin shell for-
mulation with adjusted approximation spaces for the
displacements and the rotations proposed in [32]. The
polynomial degrees pu , qu correspond to the displace-
ments ui while the rotations βα are interpolated with one
order lower polynomials in the relevant direction.

– Pian/Sumihara. 4 node plane stress element based on
the work of Pian and Sumihara, see [61], which uses a
mixed formulation.

Fig. 6 Cook’s membrane. Geometry and loading

4.1 Cook’s membrane

In the first example, Cook’s membrane [62] is examined,
which has been widely used as a benchmark example to
evaluate, among other things, the sensitivity of an element
to geometric distortions. It was also investigated in the orig-
inal work of Pian et al. [61]. Cook’s membrane consists of a
tapered panel which is clamped at one edge and subjected to
a uniformly distributed shear load on the opposite edge, see
Fig. 6. The material parameters are given as follows: E = 1,
ν = 0.33333, t = 1. The total load on the right side has
the value F = 1. Here, the plane stress version of Cook’s
membrane is considered.

The deflection of the panel is examined at two different
points, the middle point A of the right edge and the lower
point B of the right edge as shown in Fig. 6. As a reference
solution, the result of Pian/Sumihara’s element is considered
with a refinement of 200 × 200 elements and has a value of
uA
2,re f = 23.9659, uB

2,re f = 23.2162, respectively. The total
number of equations neq for the solution includes the total
number of degrees of freedom related to displacements and
rotations. It is the same for the mixed formulations, since the
additional degrees of freedom related to the stress resultants
are condensed out. As expected, a significant improvement is
observed when using the Pian/Sumihara compared to the ω-
shell with p = q = 1, see Figs. 7 and 8. For p = q = 2 the
ω-shell has better results than the Pian/Sumihara element,
which uses linear basis functions. However, both formu-
lations are surpassed by the mixed formulations presented
in this work. Namely, Mixed Discont with p = q = 2 is
already slightly better than the ω-shell in both points A and
B. Even more accurate are Mixed Conti and Mixed Recon
with p = q = 2. Kinks that occur in their error distributions
in Figs. 7 and 8, arise because the deflection first converges
from above, then crosses the reference solution to converge
again from below. Overall, the mixed formulations, espe-
cially Mixed Conti and Mixed Recon, lead to very satisfying
results.
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Fig. 7 Cook’s membrane. Error of the deflection at Point A over the
number of equations

Fig. 8 Cook’s membrane. Error of the deflection at Point B over the
number of equations

4.2 Clamped plate with point load

In this example a rectangular plate is considered which is
clamped at all edges and subjected to a point load at the
center. The material parameters are given as: E = 1 · 104,
ν = 0.3. The plate has a length of L = 100 and a thickness
of t = 0.1 and the point load at the center of the plate has
a value of F = 16.367 · 10−3, see Fig. 9. Due to symmetry
only one quarter of the plate is modeled. Here, shear lock-
ing is expected and the aim is to validate the ability of the
presented mixed formulations to alleviate this effect in com-
parison to another proven approach, the AAS shell, which
includes adjusted approximation spaces for the interpolation
of the displacements and the rotations, see [32]. For this pur-
pose, first, the error of the center deflection is evaluated for
the polynomial degrees p = q = 2 and p = q = 3. The
analytical solution is set, according to the Kirchhoff-Love

Fig. 9 Clamped plate. Geometry and loading

Fig. 10 Clamped plate. Error of the center deflection over the number
of equations for p = q = 2

theory, to u3,re f = 1, see [63]. All figures have been plotted
in double logarithmic scale.

In the case of p = q = 2 transverse shear locking is
very profound. This is visible in Fig. 10, where the ω-shell
is underestimating the deflection, leading to a high error
especially for a low number of elements. The AAS shell
on the other hand is much more accurate and has a con-
stant convergence rate which indicates that it is locking free.
Regarding the mixed methods, Mixed Discont is showing a
slight locking behavior for a low number of elements, which
is quickly overcomewhen increasing the elements. However,
its performance is still significantly better than the ω-shell’s.
The best results are obtained with Mixed Conti and Mixed
Recon,which both have a constant convergence rate.Another
interesting point is that the three mixed approaches have the
same starting point, since the formulations are identical for
a single-element mesh.

In the second case, where the polynomial degree is
increased to p = q = 3, a slightly different behavior can
be observed, see Fig. 11. The ω-shell does not exhibit lock-
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Fig. 11 Clamped plate. Error of the center deflection over the number
of equations for p = q = 3

ing as profound as in the first case since the increase of the
polynomial degree is a way to reduce locking, see Sect. 1.
Mixed Discont, which was significantly better than the ω-
shell for p = q = 2 is now only slightly improving the
results. The AAS shell is again able to overcome locking as
well as Mixed Conti and Mixed Recon. The latter two meth-
ods exhibit again the best behavior and their results lie very
close together.

In conclusion, even though for a low polynomial degree
Mixed Discont delivers good results, for higher polynomial
degrees it seems that the discontinuity of the stress resultant
fields hinders the complete elimination of locking. Another
interesting observation that can be made is that the conver-
gence rate of the AAS shell is lower than for all the other
methods. This is due to the fact that while the polynomial
degrees pu , qu of the displacements are the same as for the
othermethods, the rotationsβ1,β2 are interpolated, in the rel-
evant direction, with one polynomial degree less. This slows
down the convergence of the method compared to the others.

As it was outlined in the work of Oesterle et al. [22], lock-
ing does not only distort the results of the displacements but
also the stresses. Its effect is even more severe and visible for
the stresses since oscillations occur with high amplitudes.
This phenomenon is now examined for the different element
types. In Figs. 12(a–e) the shear force q1 is presented for the
different methods with p = q = 2 and 10× 10 elements. In
Fig. 12(a) it can be seen that for the ω-shell the shear force
q1 exhibits a strong oscillating behavior due to locking. The
amplitudes of the oscillations have even higher values than
the shear force at the center of the plate where the point load
is applied. On the other hand, theAAS shell in Fig. 12(b) suc-
cessfully eliminates these oscillations. Regarding the mixed
methods, Mixed Discont reduces the amplitudes of the oscil-
lations, which are now more concentrated around the center
of the plate, see Fig. 12(c). This makes sense since Mixed

Discontwas not able to completely eliminate transverse shear
locking for the center deflection, see Fig. 10. Mixed Conti
and Mixed Recon which led to the best results when consid-
ering the center deflection, eliminate almost all oscillations
as seen in Figs. 12(d) and (e). However, compared to theAAS
shell there are still some minor oscillations visible across the
midlines.

4.3 Cylindrical shell strip

In this example a cylindrical shell strip that is clamped at one
edge and subjected to a constant line load q̂ at the other is
investigated, see Fig. 13. The material parameters are E =
1000 and ν = 0. The shell strip has a radius of R = 10 and a
width of b = 1. The radial displacement u1P is computed for
different slenderness values R/t . Here, both membrane and
transverse shear locking are expected. These locking effects
depend strongly on the slenderness of the shell, i.e. they are
more pronounced the thinner the structure is. Thus, locking is
going to be more pronounced for higher slenderness values.
A reference solution based on Bernoulli beam theory yields
ure f = 0.9451. The applied line load q̂ = 0.1 is scaled with
t3 in order to receive the same reference solution independent
of the slenderness. The geometry is refined with 10 elements
in circumferential direction and 1 element in axial direction.

In Fig. 14 the results are computed for the different ele-
ment types. As can be seen, the ω-shell, which first matches
the reference solution for a slenderness of R/t = 10, quickly
exhibits locking behavior, which is worsen the thinner the
shell gets. To be more specific, for the case of p = q = 2 the
radial displacement is strongly underestimated and reaches
almost the value 0 for a slenderness of R/t = 10000. An
improvement is visible when using the higher polynomial
degree p = 3, however, locking is still present and visible for
an increasing slenderness. On the other hand, Mixed Discont
with p = q = 2 significantly improves the results compared
to the ω-shell, though locking is not completely eliminated,
as can be seen for a higher slenderness. When using a higher
polynomial degree p = 3 Mixed Discont shows a slight
improvement in the results which is more visible for the
highest slenderness, however, it does not reach such sig-
nificant differences to the ω-shell as for p = 2. Hence, as
it was also observed for the previous example where only
shear locking occurred, Mixed Discont should be preferred
when using lower polynomial degrees. The higher the poly-
nomial degree the smaller the improvement of the solution
compared to the ω-shell. The AAS shell, which includes a
mechanism to eliminate shear locking but has nothing against
membrane locking is also illustrated for a polynomial degree
pu = 3, qu = 2 for the displacements. As can be seen,
for low and medium slenderness values its behavior is very
similar to the one of the ω-shell and Mixed Discont. How-
ever, for the highest slenderness the displacement is strongly
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Fig. 12 Clamped plate. Shear stress resultant q1 for the (a) ω-shell, (b) AAS shell (c) Mixed Discont (d) Mixed Conti (e) Mixed Recon with
p = q = 2 and 10 × 10 elements
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Fig. 13 Cylindrical shell strip. Geometry and loading

Fig. 14 Cylindrical shell strip.Radial displacementu1P with increasing
slenderness

underestimated since membrane locking is more profound.
Mixed Conti and Mixed Recon successfully eliminate trans-
verse shear and membrane locking and lead to the correct
displacement regardless of the slenderness.

4.4 Pinched Cylinder

This example is part of the shell obstacle course ofBelytschko
et al. [64] and is a good test to validate the performance of
an element in the case of inextensional bending modes and
complex membrane states. This numerical benchmark con-
sists of a cylinder with a radius of R = 300, a length of
L = 600 and a thickness t = 3. The material parameters
are given as E = 3 · 106, ν = 0.3. The cylinder has at
both ends a rigid diaphragm and is subjected to a point load
F = 1 in radial direction. Due to symmetry only one eighth
of the geometry is used, see Fig. 15. The reference solution
ure f = −1.82889 · 10−5 is obtained by a computation with
100 × 100 elements of polynomial order p = q = 4.

As in the previous example, membrane and shear locking
are expected. This example is used to show again the ability
of the proposedmethods to alleviate these locking effects and

Fig. 15 Pinched cylinder. Geometry and loading

in addition to take a closer look on the computational cost of
each method. In Fig. 16 the error of the deflection under the
point load is shown for a varying number of equations neq in
double logarithmic scale. As expected, the ω-shell strongly
underestimates the deflection, especially for the lower poly-
nomial degree p = q = 2. Again, the solution can be
improved to a certain extent when increasing the polynomial
degree to p = 3, q = 2. Mixed Discont, on the other hand,
significantly improves the results compared to the ω-shell.
Even for the polynomial degree p = 3, q = 2 the improve-
ment is clearly visible and much greater than, e.g. in the case
of the clamped plate, since here, in addition to the transverse
shear locking, membrane locking is alleviated. Mixed Conti
and Mixed Recon lead to the best results and lie very close
together. Here, in addition to the mixed continuous method
with static condensation, the case of the mixed continuous
method is depicted when no static condensation is performed
and the full systemof equations is solvedwith the stress resul-
tants as additional unknowns. In this case the total number
of equations is neqtot = neq +2 ·ncp11 +2 ·ncp22 +ncp12,
where ncp11 is the number of control points of the stress
resultant componentsn11 andq1,ncp22 the number of control
points of n22 and q2 and ncp12 is the number of control points
of n12. The curve is shifted to the right and is in between
Mixed Recon and Mixed Discont.

A comparison of themixedmethods proposed in this work
with other existing methods against locking is depicted in
Fig. 17. The chosen methods are the Non-uniform integra-
tion technique from Dornisch et al. [12], the local B̄ method
presented in Bouclier et al. [15] and the ANS method from
Caseiro et al. [26]. The focus lies on the deformation under
the point loadwhen considering an increasing number of con-
trol points per edge. As can be seen in Fig. 17,MixedDiscont
lies very close to the Non-uniform integration method from
Dornisch et al. [12], which uses a carefully chosen set of inte-
gration points in order to reduce locking. Both methods have
a better convergence behavior than the ANS method from
Caseiro et al. [26]. More accurate results are achieved by the
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Fig. 16 Pinched Cylinder. Error of deflection in load direction over the
number of equations

local B̄ method from Bouclier et al. [15], which uses a local
least-squaresmethod for each element and afterwards applies
the weights proposed byMitchell et al. [56] and Govindjee et
al. [57] in order to reconstruct the global variables from the
local ones. However, this method is not accurate enough for a
very low number of control points per edge. The best results
are achieved by Mixed Conti and Mixed Recon. However, it
should be mentioned here that the methods from Dornisch
et al., Bouclier et al. and Caseiro et al. use in both direc-
tions quadratic basis functions. On the other hand, the mixed
methods proposed here use quadratic basis functions in the
axial direction whereas in circumferential direction cubic
basis functions are applied. For these methods the control
points per edge in Fig. 17 are the ones from the edge with
cubic basis functions.

Regarding the computational cost of Mixed Conti, Mixed
Discont and Mixed Recon, a comparison is made in Figs. 18
and 19 for p = 3, q = 2. The computational time which
is considered here includes a) the time for inversion of Kσσ

b) the time for the computation of KMixed c) the time for
triangular decomposition d) the time for the solution of the
equations. Time is defined in CPU seconds on one core of an
Intel®CoreTM i7-3520M CPU (CoreTMi7 vProTM).

In Fig. 18, first, a comparison of the total computational
time over the number of equations neq is made between
Mixed Conti and Mixed Recon. It can be seen that Mixed
Conti has a rapid, almost cubic increase of the computational
timewhen neq increases. This is in linewith the observations
made in Sect. 3.5. There it was mentioned that a cubic com-
putational complexity should be expected in the case where
the polynomial degrees are fixed and the number of elements
is increased. Here it is also observed, as expected, that the
resulting stiffness matrix is full, see Fig. 21.

Fig. 17 PinchedCylinder. Comparison of the deformation convergence
behavior of the mixed methods to other methods against locking

On the other hand, the computational time for Mixed
Recon increases much slower than for Mixed Conti. The
reason for this is again explained in Sect. 3.5 with refer-
ence to the reduced matrix dimension of Kσσ and Kσv .
Furthermore, the resulting stiffness matrix is banded, as it
is shown in Fig. 22, which additionally reduces the overall
computational time. The best time, however, is obtained with
Mixed Discont, see Fig. 19. There, an almost linear increase
of the computational time over neq is depicted. This is due to
the performance of the static condensation and the definition
of KMixed on the element level, which leads to a constant
dimension of Kσσ , Kσv and K vσ regardless of the number
of elements, see Sect. 3.5. In addition, the resulting stiffness
matrix is banded and has the same bandwidth as the standard
displacement-based method (ω-shell), see Fig. 20.

Considering nowFig. 16 and Figs. 18, 19 at the same time,
it can be seen that in order to achieve a desired accuracy as
fast as possible, it is often better to use Mixed Recon than
Mixed Conti, especially for a higher neq. On the other hand,
if a very large neq is considered it is even advisable to use
Mixed Discont, since it is going to reduce the computational
time significantly.

Here, the time depicted in Figs. 18, 19 should provide an
idea on the increase of the computational time for the three
different approaches. Of course, depending on how efficient
the code is programmed and on the system that is used, the
values for the time can slightly vary. However, the relation
between the three different approaches should stay the same.
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Fig. 18 Total time in the case of Mixed Conti and Mixed Recon

Fig. 19 Total time in the case of Mixed Discont and the Mixed Recon

Fig. 20 Pinched cylinder. Sparsity pattern of stiffness matrix in the
displacement-based method (ω-shell) and the mixed discontinuous
method (Mixed Discont) for p = 3, q = 2 and 10 × 10 elements

Fig. 21 Pinched cylinder. Sparsity pattern of stiffness matrix in the
mixed continuous method (Mixed Conti) for p = 3, q = 2 and 10×10
elements

Fig. 22 Pinched cylinder. Sparsity pattern of stiffness matrix in the
mixed reconstructed method (Mixed Recon) for p = 3, q = 2 and
10 × 10 elements

4.5 Partly clamped hyperbolic paraboloid

In the last example, the partly clamped hyperbolic paraboloid
which was introduced in [65] and further investigated e.g.
in [66], is considered. The geometry of the hyperbolic
paraboloid is given as Z = X2 − Y 2 with (X , Y ) ∈
[(−L/2, L/2)]2. The edge X = −L/2 is clamped and the
structure is subjected to its self-weight, see Fig. 23. Due
to symmetry only one half of the shell is considered with
respective symmetry boundary conditions along Y = 0. The
thickness of the shell is t = 0.0001 and the length is set to
L = 1. The material parameters are E = 2 · 1011, ν = 0.3
and ρ = 8000. The thinnest version of this shell is chosen
since it is expected that locking is going to be more severe
for this case.
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Fig. 23 Partly clamped hyperbolic paraboloid. Geometry and boundary
conditions

The aim of this example is to evaluate the two superior
mixed methods, i.e. Mixed Conti and Mixed Recon, for the
case of a double curved surface. In Fig. 24 the error of the
vertical displacement at point P (X = 0.5, Y = 0, Z = 0.25)
is depicted in relation to the number of equations. The plot
is given in double logarithmic scale. As a reference solu-
tion, the vertical displacement obtained at point P using a
100 × 50 mesh of ω-shell elements with p = q = 6 is used
(u3,re f = −5.3049·10−1). As it can be seen, theω-shell with
polynomial degrees p = q = 2 and p = q = 3 strongly
underestimates the displacement, especially for a low num-
ber of elements, due to membrane and shear locking. The
AAS shell, which alleviates transverse shear locking, only
improves the results for a higher number of elements since
for a low number membrane locking is still profound. On the
other hand, Mixed Conti and Mixed Recon strongly improve
the results for a low andmoderate number of elements, which
indicates that both membrane and shear locking have been
alleviated. However, the convergence rate of themixedmeth-
ods is lower than for the other formulations, creating a point
of intersection from where the other methods lead to better
results. In addition, for a high number of elements the error
curves of the mixed methods seem to flatten. The reason for
this is that thematrix Kσσ , which has to be inverted, is, in this
example, ill-conditioned. This has an influence on the results
especially for a high number of elements. This behavior is
not observed e.g. for the mixed and the local B̄ method pre-
sented in [15] for a solid-shell, where thicker versions of this
example were examined and a better convergence behavior
was observed. The choice of a thicker shell does not improve
the results. A combination of Mixed Conti or Mixed Recon
for membrane locking and AAS for transverse shear locking
could at least reduce this problematic and should be exam-
ined in future work.

Fig. 24 Partly clamped hyperbolic paraboloid. Error of the displace-
ment at point P over the number of equations

5 Conclusion

In this work, a displacement-stress mixed method is pre-
sented in the framework of an isogeometric Reissner–
Mindlin shell formulation in order to alleviate membrane
and shear locking. The method was derived using the
Hellinger-Reissner functional and by choosing appropri-
ate approximation spaces for the different stress resultant
components. One main issue which was discussed here, is
the performance of the static condensation. Three different
approaches were presented, a continuous approach which
performs static condensation on the patch level, a discon-
tinuous approach which performs static condensation on the
element level and a reconstructed approach which tries to
combine the advantages of the previous two approaches and
uses weights for the local control variables in order to get
blended global ones. The advantages and disadvantages for
using each approach were outlined.

Several numerical examples were investigated in order to
test the accuracy and efficiency of the different approaches.
They range from a simple panel subjected to an in-plane
loading to a plate and shell examples. Depending on the
example, different stress resultant components were consid-
ered as additional unknowns for the mixed formulation. A
comparison to existing elements with mechanisms against
locking was additionally carried out. It was shown that the
mixed discontinuous approach, while leading to good results
for low polynomial degrees, does not improve the results as
much for higher polynomial degrees. It seems that the dis-
continuity of the stress resultant fields hinders the alleviation
of locking in those cases. On the other hand, the mixed con-
tinuous and themixed reconstructed approaches surpassed in
terms of accuracy every other formulation that was examined
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here. However, considering the computational effort for the
continuous approachwhich leads to a full stiffnessmatrix and
is computed on the patch level, the use of the reconstructed
approach which leads to a banded stiffness matrix and is
computed partly on the element level should be considered.

An extension of the proposed mixed formulation to non-
linear problems with large deformations is going to be the
focus of future work.
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