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Abstract
We present a novel isogeometric method, namely the Immersed Boundary-Conformal Method (IBCM), that features a layer of
discretization conformal to the boundarywhile employing a simple backgroundmesh for the remaining domain. In thismanner,
we leverage the geometric flexibility of the immersed boundary method with the advantages of a conformal discretization,
such as intuitive control ofmesh resolution around the boundary, higher accuracy per degree of freedom, automatic satisfaction
of interface kinematic conditions, and the ability to strongly impose Dirichlet boundary conditions. In the proposed method,
starting with a boundary representation of a geometric model, we extrude it to obtain a corresponding conformal layer. Next,
a given background B-spline mesh is cut with the conformal layer, leading to two disconnected regions: an exterior region
and an interior region. Depending on the problem of interest, one of the two regions is selected to be coupled with the
conformal layer through Nitsche’s method. Such a construction involves Boolean operations such as difference and union,
which therefore require proper stabilization to deal with arbitrarily cut elements. In this regard, we follow our precedent
work called the minimal stabilization method (Antolin et al in SIAM J Sci Comput 43(1):A330–A354, 2021). In the end,
we solve several 2D benchmark problems to demonstrate improved accuracy and expected convergence with IBCM. Two
applications that involve complex geometries are also studied to show the potential of IBCM, including a spanner model
and a fiber-reinforced composite model. Moreover, we demonstrate the effectiveness of IBCM in an application that exhibits
boundary-layer phenomena.

Keywords Immersed method · Conformal boundary/interface · Boolean operations · Stabilized method · Isogeometric
analysis · Boundary layer

1 Introduction

Isogeometric analysis (IGA) was proposed to tightly inte-
grate computer-aided design (CAD) with downstream engi-
neering simulation [2,3], which is enabled by employing the
same basis of CAD in simulation.While significant advances
have been made in almost every aspect of IGA, dealing with
boundary representation (B-rep) remains one of the biggest
challenges in the field. In many current commercial CAD
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systems, solid modeling is built upon B-reps, where a solid
model is represented by its boundary only. However, B-reps
are not immediately ready to be used in IGA. A key issue
is the lack of a true volumetric description. They need to be
processed through either volume parameterization (from the
geometry point of view) or the immersed method (from the
analysis point of view). Volume parameterization conformal
to a given B-rep is appealing but remains an open problem
at large [4,5]. Alternatively, the immersed boundary method,
which embeds a given B-rep into a simple background mesh
(e.g., a Cartesian grid), eliminates the need for conformal
and quality volume parameterization and has gained wide
popularity in IGA [6–11].

The term “immersed boundary method” indicates a large
family of methods and is sometimes used interchangeably
with other terms such as “non-boundary-fitted method”,
“finite cellmethod”, “fictitious domainmethod” and “embed-
deddomainmethod”.Despite their various origins, all of such
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methods share the same idea: embedding a B-rep into a sim-
ple background mesh. We use the term only to reflect this
key idea. Interested readers may refer to [12] and references
therein for a comprehensive review.

In the context of IGA, the immersed idea is also closely
related to Boolean operations (i.e., intersection, difference,
and union) and the related trimming operations, which allow
the specification of arbitrary interfaces within the elements
of a tensor product surface. Indeed, an immersed method
needs to address the same challenging problems encountered
in dealing with Boolean operations, such as numerical inte-
gration of cut elements [13–17], stabilization for small cut
elements [18–21], and imposition of boundary/interface con-
ditions [22,23].

Motivated to accurately capture boundary/interface fea-
tures while retaining geometric flexibility of immersed
methods, we propose a novel method that combines the
immersed idea with a conformal discretization. We call it the
immersed boundary-conformal method (IBCM). The geo-
metric construction of IBCM is conceptually simple. It starts
with a B-rep of the domain of interest. The B-rep is first
extruded to yield a boundary layer that is clearly confor-
mal to the input B-rep, so we call it the conformal layer.
Next, we embed the conformal layer into a sufficiently large
background mesh such as a Cartesian grid. As a result, the
background mesh is cut into two disconnected regions: an
exterior region and an interior region.Depending on the prob-
lem of interest, one of the two regions is selected and coupled
with the conformal layer to constitute (a part of) underlying
computation domain. It is noted that we focus on 2D planar
domains in this paper.

An IBCM construction involves Boolean operations such
as difference and union. Properly dealing with them in anal-
ysis is the key to the success of IBCM, which includes
numerical integration on cut elements and interfaces, and
stabilized formulation regardless of how elements are cut.
To address the integration issue, we present an improved
decomposition method to minimize the number of resulting
quadrature cells. On the other hand, we adopt our previous
work, the minimal stabilization method [1,21], to guarantee
stability for its simplicity and effectiveness.

Two kinds of applications are studied with IBCM: (1)
accuracy enhancement via adding conformal layers to geo-
metric features (e.g., holes, reentrant corners, etc), and (2)
stress analysis on domains composed of multiple materials
(e.g., inclusions). It is straightforward for IBCM to con-
trol the mesh resolution near boundaries/interfaces due to
the conformal layers. As singularities and/or large gradi-
ents often happen close to the boundary, it is often vital to
have a sufficiently fine mesh near the boundary to obtain
accurate solutions. The conformal layer also provides the
possibility to strongly imposeDirichlet boundary conditions,
which, in contrast, is not possible in immersed methods. In

the case of modeling composite materials, material inter-
faces can be represented with conformal meshes in IBCM,
and thus kinematic constraints are automatically satisfied on
the interfaces by construction. While strong imposition of
boundary/interface conditions is enabled by the conformal
layer, coupling it with the background mesh is done weakly
with the control over where to put the coupling interface. In
addition to all these analysis benefits, we will further show
that IBCM indeed can easily model complex geometries via
the immersed idea.

It is worth mentioning that there exist several methods
that IBCM shares the essential idea with. First, a popular
group of methods in computational fluid dynamics, called
overset grid methods [24–29], also employ boundary-fitted
meshes near geometric features while keeping discretization
simple elsewhere. However, the two methods differ in the
key building blocks such as geometric representations and
treatment of coupling interfaces. Overset grid methods are
typically developed on linear elements, and different meshes
are coupled via, for instances, hybrid meshes [25], and inter-
polation schemes [24,27] that solve the problem iteratively
to reach a convergent solution. Second, in [30], disk-shaped
patches (represented by degenerated NURBS) are added on
top of a large domain (represented by a Cartesian grid) to
model holes or inclusions. Different domains are coupled
in a non-intrusive way that requires tens or even hundreds
of iterations to obtain a converged solution for the linear
elasticity problem. Moreover, the method primarily aims to
capture local features inside a rectangle-shaped domain and
thus does not support complex exterior geometries. Third,
a multi-mesh finite element method was proposed in [31]
to optimize the shapes of disk- or ring-like objects that are
embedded in a large background domain. Compared to the
multi-mesh approach [31–33], the main differences of our
proposedmethod lie in four aspects: (1) smoothdiscretization
with IGA, (2) emphasis on parameterizations of conformal
layers, (3) a minimal stabilization approach, and (4) use of
conformal layers to improve accuracy and provide flexible
control near the boundary/interface.

The paper is organized as follows. We first introduce sev-
eral basic concepts and notations in Sect. 2.1. Section 2
introduces how to deal with Boolean operations in IGA,
which lays the foundation to our proposed method. Sec-
tion 3 presents the proposed immersed boundary-conformal
method. In Sect. 4, we present several numerical examples
to demonstrate the proposed method in terms of improved
accuracy, ease of imposing Dirichlet boundary conditions,
and flexibility in modeling complex geometries. Section 5
concludes the paper and suggests future work.

123



Computational Mechanics (2021) 68:1385–1405 1387

2 Analysis-aware treatment of Boolean
operations

In this section, we introduce how to handle difference and
union operations in IGA. Their analysis-aware treatment lays
the foundation to our proposed method. As the difference
operation is built upon trimming, we discuss trimming in the
following without loss of generality. Our description is based
on 2D planar domains unless stated otherwise.

2.1 B-spline/NURBS surfaces

Wefirst introduce several basic notations ofB-spline/NURBS
surfaces to facilitate our discussion. Given a control mesh
{P i j }n,m

i=1, j=1 (P i j ∈ R
2), degrees p and q, and knot vectors

{ξi }n+p+1
i=1 and {η j }m+q+1

j=1 , a bivariate B-spline basis function
is defined as

Bi, p(ξ) = Ni,p(ξ)Mj,q(η), (1)

where i = (i, j), p = (p, q), ξ = (ξ, η), and Ni,p(ξ)

and Mj,q(η) are univariate B-spline basis functions defined

on {ξi }n+p+1
i=1 and {η j }m+q+1

j=1 , respectively. The geometric

mapping of a B-spline surface, F : Ω̂ → Ω , is defined as

F(ξ) =
∑

i∈I
Pi Bi, p(ξ), I = {(i, j)}n,m

i=1, j=1, (2)

where Ω̂ := (ξ1, ξn+p+1) × (η1, ηm+q+1) and Ω are called
theparametric domain and thephysical domain, respectively.
We also call a surface a patch, especially when multiple
surfaces are involved. Ω̂ is partitioned by the knot vectors,
leading to a parametric mesh M̂,

M̂= {(ξi , ξi+1) × (η j , η j+1) : ξi <ξi+1 and η j <η j+1,

i = 1, . . . , n+ p, j = 1, . . . ,m+q}. (3)

The corresponding physical mesh M is obtained as the
images of elements in M̂ through the geometric mapping,

M = {F(K ) : K ∈ M̂}. (4)

The element boundaries in M̂ are represented by knot lines,
i.e., {ξi }×[η1, ηm+q+1] and {η j }×[ξ1, ξn+p+1]. Their images
are called knot-line curves and they are the element bound-
aries inM.

NURBS are a generalization of B-splines and they are
able to exactly represent conic sections such as circles and
ellipses. A weight wi ∈ R is associated to each control point
in addition to its coordinates. The NURBS basis function

corresponding to the B-spline Bi, p(ξ) is defined as

Ri, p(ξ) = Bi, p(ξ)wi∑
j∈I B j , p(ξ)w j

. (5)

Note thatNURBSandB-spline basis functions are equivalent
when wi = 1 ∀i ∈ I, i.e., Ri, p = Bi, p(ξ). A NURBS
surface representation is obtained by replacing Bi, p(ξ) with
Ri, p(ξ) in Eq. 2. To simplify notations, we use Bi, p(ξ) to
generically denote a B-spline or NURBS basis function in
the rest of the paper.

The spline space on the physical domain Ω is defined as

B = span{Bi, p ◦ F−1(x) : i ∈ I}. (6)

Let Ωa ⊂ Ω be a subdomain. We further define the restric-
tion of B to Ωa as

B|Ωa = span{Bi, p ◦ F−1(x) : i ∈ I,

suppBi, p ∩ F−1(Ωa) �= ∅}, (7)

where suppBi, p := (ξi , ξi+p+1) × (η j , η j+q+1) is the sup-
port of Bi, p(ξ). B|Ωa will be used in trimmed geometries.

2.2 Trimming

From the geometric point of view, trimming provides a
powerful and flexible tool to represent complex shapes that
do not have a tensor-product structure. However, it is merely
a visualization means to make part of a geometry invisible
to users without changing anything else. More specifically,
we consider a NURBS surface F : Ω̂ → Ω . Applying
trimming is equivalent to restricting F to a visible or active
subdomain Ω̂a ⊂ Ω̂ . Correspondingly, the complementary
portion F(Ω̂\Ω̂a) is invisible or trimmed away.We note that
the only change in a trimming operation is the change in the
definition domain: from Ω̂ to Ω̂a . The trimming operation is
illustrated in Fig. 1. We can observe its resemblance to the
immersed idea, where neither of their background meshes
aligns with the domain boundary.

The active subdomain Ω̂a is identified by a set of closed
loops {Γ̂i }. Each trimming loop Γ̂i is generally a collection of
connectedB-spline curves. Trimming loops are oriented such
that all points in Ω̂a locate on the left side (in convention)
of any Γ̂i . In practice, trimming curves are often given in the
physical domain and may not even lie on the surface F(Ω̂).
To obtain the parametric counterpart Γ̂i , points are sampled
along Γi and then pulled back to Ω̂ through the inversion
algorithm [34]. Γ̂i is constructed based on these sampled
points.

From the analysis point of view, numerical integration
is performed on the active subdomain Ω̂a rather than the
entire domain Ω̂ . Ω̂a consists of non-trimmed elements and
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Fig. 1 Illustration of trimming,
where Γi (i = 2, 3) are
trimming loops in the physical
domain

trimmed elements. Given an element K ∈ M̂, K is cut if 0 <

|K ∩ Ω̂a | < |K |, where | · | denotes area. Its active portion,
K ∩ Ω̂a , is referred to as a trimmed element. Clearly, non-
trimmed elements are those with |K ∩ Ω̂a | = |K |, whereas
elements with no active area (i.e., |K ∩Ω̂a | = 0) are inactive
in the sense that they are not used in geometric representation
or in analysis.

While it is straightforward to integrate non-trimmed ele-
ments, the challenge lies in the integration for a trimmed
element because it is topologically a polygon with certain
edges corresponding to part of a (high-order) trimming curve,
where no quadrature rules are immediately available. One
solution is to reparameterize trimmed elements such that
the standard Gauss quadrature rule can be applied. Repa-
rameterization of a trimmed element is a local operation
that has no influence on other elements. It consists of an
approximation step and a decomposition step. The former
approximates each involved trimming curve with a Bézier
curve, whereas the latter decomposes trimmed element into
quadrilateral/triangular cells. We explain related details in
the following. Interested readers may refer to [35] for a com-
prehensive review on the treatment of trimming in IGA.

Approximation step An element K ∈ M̂ may be cut by
multiple trimming loops. For each involved trimming loop
Γ̂i , we focus on the portion restricted to K , i.e., Γ̂i ∩ K . In
general, Γ̂i ∩K may be composed of several B-spline curves
that are piecewise polynomials, but Gauss quadrature can
only be applied to polynomials.

Therefore, we approximate Γ̂i ∩ K with a Bézier curve
that has a polynomial representation. The degree of the target
Bézier curve is chosen to be that of spline discretization even
if the trimming curve has a higher degree. It has been proven
that this choice guarantees optimal error estimates [16]. The
remaining procedure of least-squares fitting the Bézier curve
to the sampled points of Γ̂i ∩ K is straightforward.

Note that the above discussion is based on the assump-
tion that the trimming curve Γ̂i ∩ K is sufficiently smooth.
However, generally it involves points of reduced continuity
or even C0 points. In practice, we observe that to retain inte-

gration accuracy, it suffices to only respect those C0 points,
for which we split Γ̂i ∩ K at each of them and fit a Bézier
curve separately to each resulting piece.

Decomposition step We develop a divide-and-conquer
approach to decompose trimmed elements into reparame-
terization cells. The method applies to 2D only. We first
investigate how an element (in the parametric domain) is
cut by one or two trimming curves. The key is to find a pair
of curves and create one or multiple ruled surfaces between
them. In each pair of curves, one has to be the trimming curve,
whereas the other can be a straight segment (A, H), a series
of concatenated segments (E, F), a point (K), or another trim-
ming curve (B, C, D); see Fig. 2. As a result, 8 base cases
are identified. Ruled surfaces are then created between a pair
of such curves. Note that cases G and H present a single red
curve and lead to degenerated quadrilateral reparameteriza-
tion cells: For the case G, the ruled surface is created using
the red curve and the opposite red vertex; whereas in the
case H, the cell is created by splitting the red curve at its two
vertices, and generating a ruled surface between them. As

Fig. 2 Reparameterization of trimmed elements using quadrilateral
cells
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already mentioned above, the curved segments of the trim-
ming loopmay presentC0 features. Using this strategy, these
features will be explicitly represented in the generated repa-
rameterization. On the other hand, applying the same idea to
finding base cases in 3Dbecomes intractable due to the prolif-
eration of possible cases. One viable solution is to explore the
unique base cases of marching cubes [36] and design a cor-
responding decomposition for each of them. Alternatively,
each cut element may be divided into a set of tetrahedra,
which, however, leads to a proliferation of integration cells
[37,38].

If the algorithm above fails (the generated ruled surface
presents a change in its Jacobian’s sign), or the trimmed ele-
ment does not fall into one of the base categories A-H, a
divide-and-conquer strategy is applied: The trimming loop is
split with a line parallel to one of the two coordinate axes, and
the algorithm is applied again for the resulting pieces. This is
also the case in which the element presents nested trimming
loops. Such a recursivemethodworks up to a certain geomet-
ric tolerance, beyondwhich the splitting algorithm terminates
and unresolved trimming features will be ignored. Adoption
of geometric tolerances is a common practice in CAD when
implementing trimming-related operations.

For selecting the splitting line we consider the bound-
ing boxes of all the curved segments on the trimming loop,
cherry pick the one with the smallest volume, and consider
a line that passes through that bounding box’s mid point and
is perpendicular to its longest coordinate direction. Never-
theless, whenever possible, the splitting line is defined such
that different curved segments are not intersected by the line
and they are separated into different reparameterization cells
(see, e.g., cases B, I, and J in Fig. 2). This is not always
possible; see for instance cases C, D, K, and L.

2.3 Union

Following [1,33], we adopt a hierarchy of overlapping
patches to perform the union operation. We consider a two-
patch union for simplicity, which is actually sufficient to help
explain our proposed method in Sect. 3. Interested readers
may refer to [1] for more general constructions. Given a pair
of domains, we put one on top of another. The top and bot-
tom domains have the geometric mappings Ft : Ω̂ t → Ω t

and Fb : Ω̂b → Ωb, respectively. Their union is created by
first trimming Ωb with Ω t , leading to a trimmed (bottom)
domain Ωb

a = Ωb\Ω t . Next, Ωb
a is combined with Ω t to

constitute the computational domainΩ = Ωb
a ∪Ω t ; see Fig.

3. In such an overlapping construction, the bottom patch is
always trimmed whereas the top patch is intact. Note that
we can choose either of the two patches to be on the top. It
has been shown that different arrangements do not influence
solution accuracy or matrix conditioning in linear elliptic
problems [1].

Fig. 3 Union of two overlapping patches and generation of their inter-
face quadrature mesh

With trimming handled according to Sect. 2.2, analysis-
aware treatment of the union operation centers on weakly
coupling patches through their interfaces, where we choose
Nitsche’s method for its consistent and symmetric formula-
tion [39]. We then need to address the following challenging
issues: (1) generation of interface quadrature meshes to
accurately compute involved interface integrals, and (2) sta-
bilization of flux terms in the interface integral to guarantee
the well-posedness of the problem regardless of how ele-
ments in the bottom patch are cut.

The key to generating an interface quadrature mesh is to
find a mesh intersection on the interface. This ensures that
on each quadrature cell, all the involved basis functions from
both top and bottom patches are polynomials rather than
piecewise polynomials. In 2D, this is to find curve–curve
intersections between the interface and the knot-line curves
of both patches. Note that in the overlapping construction of
union, the interface Γ (in the physical domain) is part of the
trimming loop in the bottom patch Ωb. Moreover, Γ itself is
part of the top patch boundary, i.e., Γ = ∂Ω t ∩ Ωb ⊂ ∂Ω t .
In other words, Γ already has the mesh information of Ω t ;
see, for example, the blue dots in Fig. 3. It is left to find its
intersections with the knot-line curves of Ωb. We proceed in
the parametric domain of the bottom patch Ω̂b. An approxi-
mate preimage ofΓ is first found in Ω̂b through the inversion

algorithm and spline fitting, i.e., Γ̂ b = F̃
−1
b ◦Γ , where F̃

−1
b

indicates an approximate inversion map. Next, we can eas-
ily find the intersections of Γ̂ b with the axis-aligned knot
lines in Ω̂b; see the orange dots in Ω̂b in Fig. 3. For each
resulting intersection point ξ , we find its image Fb(ξ) in the
physical domain and further bring it onto ∂Ω̂ t , leading to a

desired intersection F̃
−1
t ◦ Fb(ξ). Once all the intersections
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are found, a 1D mesh can be readily constructed as the inter-
face quadrature mesh, for example, based on the blue and
orange dots in Ω̂ t in Fig. 3.

2.4 Stabilized formulations

We choose Nitsche’s method [39] to couple independent
domains for its consistent and symmetric formulation. How-
ever, the flux terms (those involving normal derivatives) in
Nitsche’s formulation may give rise to an instability issue
when elements adjacent to an interface are badly cut, that is,
only an extremely small portion of an element is left after
trimming [21,40]. The lack of stability indicates the poten-
tial violation of the coercivity condition in the bilinear form,
leading to that the well-posedness of the problem is not guar-
anteed. Therefore, a proper stabilization method is needed
and it often poses as one of the most challenging problems
in employing Boolean operations in IGA.

In this regard, we adopt the minimal stabilization method
that was developed in our previous work on the overlap-
ping construction of union [1]. It was originally introduced
to address the stability issue in Nitsche’s formulation on
trimmed boundaries [21]. It has shown optimal convergence
behaviors as well as trimming-independent conditioning
in various tests. As stabilization methods are problem-
dependent, let us take two linear elliptic problems, Poisson’s
problem and linear elasticity, as the model problems to
explain the formulation details.

Poisson’s problem In the two-domain setting, the strong
form of the Poisson’s problem is stated as follows. Given
f : Ω → R, gD : ΓD → R, and gN : ΓN → R, find
u : Ω → R such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− Δu = f in Ω = Ω t ∪ Ωb
a ,

ut − ub = 0 on Γ = ∂Ω t ∩ Ωb,

∇ut · nt + ∇ub · nb = 0 on Γ = ∂Ω t ∩ Ωb,

u = gD on ΓD,

∇u · n = gN on ΓN ,

(8)

where ut = u|Ω t , ub = u|Ωb
a
are restrictions of u to respec-

tive domains; nt , nb, and n are outwards unit normals of ∂Ω t ,
∂Ωb

a and ∂Ω respectively; and ΓD and ΓN (ΓD ∩ ΓN = ∅,
ΓD ∪ ΓN = ∂Ω) are Dirichlet and Neumann boundaries,
respectively. The second and third equations are transmission
conditions across the interface Γ . We have also assumed that
the Dirichlet boundary ΓD is not trimmed to simplify formu-
lations. One may refer to [21] for the case of trimmed ΓD .

Before presenting the weak formulation of Problem (8),
wefirst introduce the following generic approximation space,

Vα
h ={vth ∈ Bt : vth |ΓD∩∂Ω t = α}

⊕{vbh ∈ Bb|Ωb
a

: vbh |ΓD∩∂Ωb = α}, (9)

where α : ΓD → R is a generic scalar function with suitable
regularity,Bt and Bb are B-spline (or NURBS) spaces onΩ t

andΩb, respectively, andBb|Ωb
a
is the restriction ofBb to the

active subdomain Ωb
a . We have the approximation spaces of

trial functions VgD
h and test functions V0

h when α = gD and
α = 0, respectively.

The discreteweak formof Problem (8) is stated as follows:
Find uh ∈ VgD

h such that

ah(uh, vh) = l(vh), ∀vh ∈ V0
h , (10)

where

ah(uh, vh) =
∫

Ω

∇uh · ∇vh

−
∫

Γ

〈∇uh · nt 〉[vh] −
∫

Γ

〈∇vh · nt 〉[uh]

+ β(h−1
t + h−1

b )

∫

Γ

[uh][vh],

(11)

and

l(vh) =
∫

Ω

f vh +
∫

ΓN

gN vh . (12)

The transmission conditions areweakly enforcedbyNitsche’s
method. In Eq. (11), [uh] := uth |Γ − ubh |Γ is the jump term
across the interface Γ , whereas 〈∇uh ·nt 〉 represents the flux
through Γ and will be discussed in detail soon. Assuming
quasi-uniform meshes in Ω t and Ωb, ht and hb represent
the maximum element sizes of corresponding meshes. β is a
penalty parameter.We takeβ = 6p2max following [33], where
pmax is the maximum degree in the neighboring patches of
Γ .

Wediscuss two types offluxes here, the symmetric average
flux,

〈∇uh · nt 〉 = 1

2
(∇uth + ∇ubh) · nt , (13)

and the one-sided flux from Ω t ,

〈∇uh · nt 〉 = ∇uth · nt . (14)

It has been shown that it is the flux from a certain trimmed
patch that causes the instability issue [1,21]. Therefore, if
the symmetric average flux is adopted in Eq. (11), ∇ubh · nt
is a flux from the trimmed patch Ωb

a , and thus stabilization
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is needed for ∇ubh · nt . In contrast, no further treatment is
needed to ensure stability if the one-sided flux from the non-
trimmed Ω t is used.1 It has been shown that the two types
of fluxes yield very similar results in terms of solution accu-
racy and matrix conditioning for linear elliptic problems [1].
Therefore,we choose the one-sided flux in thiswork to obtain
a formulation without further treatment regarding stabiliza-
tion.

Remark 1 The stabilization through Eq. (14) leverages the
adjacency of trimmed and untrimmed meshes. Essentially,
Eq. (14) can be viewed as imposing the third equation in
Eq. (8) as a Neumann boundary condition on the trimmed
domain. Since trimming at Neumann boundaries does not
lead to instability, the entire need for additional stabilization
vanishes.

Linear elasticity The second model problem is linear
elasticity under assumption of homogeneous and isotropic
material, small strains, and small displacements. The strong
form is stated as follows. Given fi : Ω → R, gDi : ΓDi →
R, and gNi : ΓNi → R, find the displacement ui : Ω → R

such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

σi j, j + fi = 0 in Ω = Ω t ∪ Ωb
a ,

uti − ubi = 0 on Γ = ∂Ω t ∩ Ωb,

σ t
i j n

t
j + σ b

i j n
b
j = 0 on Γ = ∂Ω t ∩ Ωb,

ui = gDi on ΓDi ,

σi j n j = gNi on ΓNi ,

(15)

where

⎧
⎨

⎩

σi j = λδi jδklεkl + μ(δikδ jl + δilδ jk)εkl ,

εkl = 1

2
(uk,l + ul,k).

(16)

In Eqs. (15,16), indices i , j , k, and l take on values 1, . . . , d,
where d ∈ {2, 3} is the number of the spatial dimensions. The
displacement field u is vector-valued with ui being the i-th
component; the samenotation applies to fi , gi , hi , and n j (the
j-th component of the normal n). σi j and εkl are Cartesian
components of the Cauchy stress tensor and the infinitesi-
mal strain tensor, respectively. The comma in σi j, j and ui, j
denotes differentiation with respect to the spatial coordinate,
e.g.,ui, j = ∂ui/∂x j .Moreover, the summation convention is
applied to repeated indices, for instances,σi j, j = σi1,1+σi2,2
and σi j n j = σi1n1 + σi2n2 in 2D. The superscripts “t” and
“b” again denote restrictions to the top and bottom patches,

1 This is true only in the two-patch union whereΩ t is already at the top
of the overlapping hierarchy. In the multi-patch union, Ω t may be cut
by certain patches that are on top ofΩ t , and thus∇uth ·nt may also need
to be stabilized according to, for instance, the minimal stabilization [1].

respectively. The Dirichlet and Neumann boundary condi-
tions are applied independently in each direction and thus

ΓDi ∩ ΓNi = ∅ and ΓDi ∪ ΓNi = ∂Ω for i = 1, . . . , d. δi j
is the Kronecker delta, i.e.,

δi j =
{
1 i = j,

0 otherwise.
(17)

In Eq. (16), constants λ and μ are material parameters
called Lamé parameters, which are often expressed in terms
of the Young’s modulus E and and Poisson’s ratio ν,

λ = νE

(1 + ν)(1 − 2ν)
,

μ = E

2(1 + ν)
.

(18)

In 2D, Eq. (18) falls into the plane strain assumption. Also
note that different domains may be occupied by different
materials, and thus the values of λ and μ can vary from
domain to domain.

The corresponding discrete weak formulation with
Nitsche’s method to deal with the interface is stated as fol-
lows: Find uh = (u1,h, u2,h) ∈ VgD1

h × VgD2
h (see Eq. (9))

such that

ah(uh, vh) = l(vh), ∀vh = (v1,h, v2,h) ∈ V0
h × V0

h , (19)

where

ah(uh, vh) =
∫

Ω

σi j (uh) εi j (vh)

−
∫

Γ

〈σi j (uh)ntj 〉[vi,h]−
∫

Γ

〈σi j (vh)ntj 〉[ui,h]

+β
(
h−1
t + h−1

b

) ∫

Γ

[ui,h][vi,h],
(20)

and

l(vh) =
∫

Ω

fi vi,h +
d∑

j=1

(∫

ΓN j

gNi vi,h

)
. (21)

In Eq. (20), [ui,h] := uti,h − ubi,h and 〈σi j (uh)ntj 〉 denote the
displacement jump and the stress flux across Γ , respectively.
We again adopt the one-sided flux, i.e.,

〈σi j (uh) ntj 〉 = σ t
i j (u

t
h) n

t
j , (22)

which does not need further treatment for stabilization. The
penalty parameter β depends on both spline degrees and
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(a) (b) (c) (d)

Fig. 4 Geometric construction of IBCM for the boundary type. a The
input boundary curve Γ (the red circle) and the resulting conformal
layer Ωc by extruding Γ inwards to the target curve Γ̃ , b the back-

ground patchΩb, c two disconnected regions (Ωex andΩ in) by cutting
Ωb with Ωc, and d the computational domain Ω composed of Ω in and
Ωc

material properties,

β = 6p2max × 8(3λmax + 2μmax), (23)

where λmax and μmax are the maximum Lamé constants of
neighboring patches. The choice is inspired by [33,41].

3 Immersed boundary-conformal
isogeometric method

In this section, we introduce the proposed method, namely
the Immersed Boundary-Conformal Method (IBCM). We
start with two types of geometric constructions using IBCM.
We then proceed to discuss the key technologies that guar-
antee IBCM to work properly, including parameterization-
consistent extrusion and analysis-aware treatment ofBoolean
operations in IBCM.

3.1 Geometric construction

The geometric construction of IBCM is conceptually simple
and canbe divided into two types depending on the features of
interest: the boundary type and the interface type. The bound-
ary type aims to capture boundary features, such as boundary
shapes and local solution features near boundaries. The inter-
face type, on the other hand, deals with interfaces between
different materials such as inclusions and fiber-reinforced
materials, where stresses exhibit discontinuity across mate-
rial interfaces. The major steps in constructing an IBCM
representation are the same in both types, including extru-
sion, trimming and union.

Boundary-type constructionWefirst explain the boundary
type. In the extrusion step, we start with the representa-
tion of a boundary Γ , which is a closed loop formed by a

set of oriented and connected B-spline/NURBS curves. We
extrude the loop inwards to yield a ring-like layer Ωc that
is obviously conformal to the given boundary, so we call it
a conformal layer. Ωc is generally represented by multiple
B-spline/NURBS patches. Details of constructingΩc will be
discussed in Sect. 3.2.

Weexplain the remaining stepswith the reference toFig. 4.
In the trimming step, we embed Ωc into a sufficiently large
background domain Ωb such that Ωc ⊂ Ωb. Ωb is usually
represented by a B-spline mesh defined on a Cartesian grid.
As a result, Ωb is cut by Ωc into two disconnected regions:
an exterior region Ωex and an interior region Ω in. In other
words, we have Ωb\Ωc = Ωex ∪ Ω in.

Finally in the union step, Ω in is coupled with Ωc to con-
stitute the computational domain Ω , i.e., Ω = Ω in ∪ Ωc.
This way, we obtain the IBCM representation of Ω .

Interface-type constructionWe next discuss the interface-
type construction, which can be obtained by repeatedly
applying the boundary-type construction. Let Γ denote an
interface of two domains Ω1 and Ω2, each of which has its
own material properties. We explain details in the following
with the help of Fig. 5.

We first create an IBCM representation for Ω1, which in
fact follows the same procedure as the boundary-type con-
struction; see Fig. 5b. The IBCM construction for Ω2 is
almost the same. Now, Γ is extruded towards the interior of
Ω2 to obtain a conformal layer Ω2,c. Clearly, the extrusion
direction is opposite to that for Ω1. After the corresponding
background mesh is cut, the exterior region is coupled with
Ω2,c; see Fig. 5c. Finally, the two IBCM representations are
combined together on Γ in a conformal manner, leading to
an entire IBCM representation of Ω1 ∪Ω2, as shown in Fig.
5d.

In general, when more than one boundary/interface fea-
ture appears in geometric modeling, we need to construct
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(a) (b) (c) (d)

Fig. 5 Geometric construction of IBCM for the interface type. a Two domains with different material properties and the interface Γ , b, c the IBCM
representation of Ω1 and Ω2, respectively, and d the entire IBCM representation of Ω1 ∪ Ω2

an IBCM representation for each of them. Combining all
the resulting IBCM representations together is straightfor-
ward through conformal interfaces. We will present such an
example in Sect. 4.

Remark 2 IBCMaims to leverage the geometric flexibility of
immersed methods with the advantages of boundary-fitted
methods. While the large portion of a geometry is repre-
sented following the immersed manner, its boundary (or
interface), as the key geometric feature, has a boundary-fitted
representation through the conformal layer. In other words,
the conformal mesh is placed where it is needed most. On
the other hand, meshing is still needed in IBCM to obtain
a desired conformal layer through extrusion. Although it
remains a challenge in general cases, extrusion ismuch easier
to manage than finding a boundary-conformal parameteri-
zation for the entire domain. From this perspective, IBCM
helps alleviate the meshing difficulties encountered in IGA
while retaining geometry-aligned discretization around key
geometric features.

Remark 3 Several benefits of conformal discretization are
immediately available in IBCM thanks to the conformal
layer. First, it is possible to strongly impose Dirichlet
boundary conditions, which is preferable when point-wise
satisfaction is desired (e.g., the clamped boundary in solid
mechanics). In contrast, imposing Dirichlet boundary condi-
tions often poses as one of the biggest challenges in immersed
methods. Second, IBCM is also suitable to model material
interfaces when perfect bonding is the case, as the kinematic
constraints are naturally met due to the conformal represen-
tation of the interface.

Remark 4 In immersed boundary methods, the geometry
boundary always serves as the trimming loop on the back-
ground mesh. In contrast, IBCM moves trimming curves
away from the boundary/interface. As such geometric fea-
tures are often critical to solution accuracy and trimming
is the origin of various issues in analysis, we expect that

Fig. 6 A progenitor curve (thick) and various offset curves (dashed)
with different distance d

by separating the two, IBCM can benefit solution accuracy.
Moreover, as conformal layers align with geometric features,
it is much more intuitive and convenient for IBCM to control
mesh resolutions there than by using immersed methods.

3.2 Parameterization-consistent extrusion

We aim for a conformal layer Ωc that (1) represents the
boundary or interface Γ exactly and (2) is consistent with
the parameterization of Γ . First, we define a target curve Γ̃ ,
which specifies the interface of Ωc to the interior region of
the background domain Ωin; see Fig. 4a.

Fromageometric point of view, themost natural choice for
Γ̃ is an offset to Γ . Offset curves are defined as the locus of
points that are at a constant distanced along the normal vector
from the so-called progenitor curve [42,43], and there are
several techniques in the literature to generate them; see e.g.
[44,45]. These schemes arewell-suited to preserve geometric
features such as kinks and cusps. In general, the resulting
offset curves are more complex than the progenitor curve,
and they may have additional cusps and may self-intersect
locally or globally.
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These self-intersections are linked to the distance d of the
offset curve (see Fig. 6). In particular, local self-intersections
occur in concave regions when the absolute value of d
exceeds the minimum radius of curvature, and global self-
intersections occur when the distance between two distinct
points on the progenitor curve is smaller than 2d [43].
Wallner et al. [46] presented an approach to determine the
maximal offset distance to avoid self-intersections.

To sum up, using offset curves for the construction of
the conformal layer Ωc may imply that the parameterization
from the target curve Γ̃ does not match with the one from the
interface Γ , especially when d is large. In this case, Ωc may
be constructed as a loft surface between Γ and Γ̃ , where a
superset of the knot vectors of Γ and Γ̃ define the resulting
parameterization.A loft surface is created byfitting a series of
given curves,with the control over the tangents of the surface.
The related function is available in many CAD systems such
as Rhinoceros [47].

This approach has some disadvantages: First, the final
parameterization of Ωc is partly determined by the off-
set curve scheme, and second, C0-continuities may be
introduced when the offset curve has additional cusps or self-
intersections that have been trimmed away.

Fortunately, we are very flexible in the definition of the
target curve Γ̃ in terms of the distance d and its shape, as
will be shown in Sect. 4. Hence, we suggest the following
procedure for the construction of Ωc:

1. Define Γ̃ either by an offset curve or any other curve that
does not intersect Γ and is at least as smooth as Γ .

2. Project the Greville points of Γ onto Γ̃ .
3. Use the projected Greville points to construct an approx-

imation of Γ̃ that has the same knots and degree as Γ .

Greville points are defined as follows. We consider a degree-
p NURBS curve whose knot vector is {ξ1, ξ2, . . . , ξn+p+1},
where n is the number of control points. The Greville abscis-
sae are defined as an average of certain knots: gi = (ξi+1 +
· · · + ξi+p)/p, i = 1, . . . , n. Letting C(ξ) be the geomet-
ric mapping of the NURBS curve, we call C(gi ) its Greville
points.

This Greville point projection allows a straightforward
realization of the conformal layer Ωc as a parameterization-
consistent extrusion of Γ . Note that the knot vector of the
boundary or interface Γ determines the continuity of the
final approximation of Γ̃ , which may be less smooth than
the target curve Γ̃ . In general, this does not lead to any com-
plications in the construction. However, for sharp features of
Γ such as cusps, it is beneficial to incorporate the present
C0 continuity already in the target curve. To do so, an offset
with a relatively small distance d can be employed to capture
the corresponding portion of Γ̃ .

Remark 5 When the target curve Γ̃ is given by an offset
curve, we first check if it has additional cusps or regions
with high curvature. If so, we replace them with rounded
fillets to avoid that projected Greville points coincide.

Remark 6 The proposed construction of the conformal layer
Ωc does not guarantee that the resulting parameterization
is bijective. Thus, we check if the Jacobian determinant is
greater than zero at the integration points. If this is not the
case, Ωc may be reconstructed either by simply decreasing
the offset distance d or usingmore advanced techniques such
as elliptic grid generation [48], the introduction of internal
guiding curves [49] or integer-gridmaps [50]. It is pointed out
that all examples in this paper do not need any correction of
the conformal layer because the parameterizations obtained
are bijective; see Sect. 4.

3.3 Boolean operations in IBCM

Recall that the geometric construction of IBCM involves
trimming and union. Trimming applies to the background
B-spline mesh, where we follow Sect. 2.2 to reparameterize
cut elements for numerical integration. Note that the geomet-
ric mapping of the background patch is usually an identity
map, which eliminates the need to find an approximate trim-
ming loop in the parametric domain through the inversion
algorithm.

In the union operation, part of the trimmed background
mesh is coupled with the conformal layer using Nitsche’s
method. From the overlapping perspective, the background
patch lies on the bottom whereas the conformal layer is on
top. We follow Sect. 2.3 to generate an interface quadrature
mesh.Moreover, as discussed in Sect. 2.4, with the one-sided
flux from the (non-trimmed) conformal layer, Nitsche’s for-
mulation is stable and needs no further treatment. To this end,
Boolean operations are properly handled in IBCM such that
it can be readily applied to linear elliptic problems.

Remark 7 Asweak coupling depends on the problemof inter-
est, extending the method to other problems, such as shells,
nonlinear elasticity, and Stokes or Navier-Stokes problems,
requires further investigation particularly in the analysis side.
A different coupling method may also be needed when it
is too cumbersome to use Nitsche’s formulation. There are
indeed many challenging problems for IBCM to accommo-
date a larger class of problems. Among them, our priority lies
in extending the method to 3D, which needs robust imple-
mentation to support trimming, union and extrusion.

4 Numerical examples

In this section, we first study several 2D benchmark prob-
lems to evaluate the accuracy and convergence of the
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Fig. 7 Problem settings of the plate-with-a-hole example. Tx is the
applied traction at infinity in the x direction

proposedmethod. They include problems concerning bound-
ary features as well as modeling interfaces between different
materials. The former includes examples of a plate with a
hole, an L-shaped domain, and a flower geometry, whereas
the latter studies a bimaterial disk. Moreover, we present two
examples to show the capability of IBCM in representing
complex geometric features, which includes a spanner model
and a fiber-reinforced composite. In the end, we push a step
forward to apply IBCM to an advection–diffusion problem,
where wewill observe that IBCMcan help efficiently resolve
the boundary-layer phenomenon in an intuitive manner. In
all the tests, biquadratic spline bases are used. In addition,
Dirichlet boundary conditions are always strongly imposed
except for the advection–diffusion problem, but as splines are
not interpolatory, non-homogeneous Dirichlet data needs to
be projected to the involved spline spaces.

4.1 Plate with a hole

We start with the plate-with-a-hole test. It is a linear elasticity
problem where an infinite plate with a circular hole is under
constant in-plane tension. A finite portionwith the hole being
at the center is taken for the numerical test; see Fig. 7 for the
problem settings.

Clearly, the hole is a boundary geometric feature of inter-
est. We study two kinds of geometric constructions for
comparison, trimming versus IBCM; see Fig. 8. In the trim-
ming construction, the hole is represented by a NURBS
curve, which is also the trimming loop of the background
mesh. In this case, we only need to reparameterize cut ele-
ments for numerical integration. Alternatively in an IBCM
construction, we observe that a conformal layer (marked in
red), represented by a NURBS patch, is an annulus sitting
on top of the background mesh. The geometric feature is
represented by a conformal discretization in the computa-
tion domain. The conformal layer is then coupled with the
cut backgroundmesh through the union operation.Moreover,

Fig. 8 Initial Bézier meshes of the plate-with-a-hole problem via trim-
ming (a) and IBCM (b). In b, an extra annulus is added around the
hole as the conformal layer. In the background mesh, integration cells
of trimmed elements are used for visualization

Fig. 9 Different thicknesses of the conformal layer. The color map
represents numerical solution of σxx on the initial mesh. The exact max-
imum σxx is 30. In the background mesh, integration cells of trimmed
elements are used for visualization

the trimming loop of the backgroundmesh becomes the outer
circle of the annulus, which, as opposed to the trimming con-
struction, is no longer the geometric feature itself.

We also study the influence of the thickness t of the con-
formal layer.We consider t = 0.2R, t = 0.6R and t = 1.0R,
with R being the radius of the hole. In each case, the confor-
mal layer (i.e., the annulus) is represented by a 8 × 2 mesh;
see Fig. 9.

As a reference, we further take a conformal discretization
for thewhole geometry,which in this case is easy to obtain via
a single biquadratic NURBS patch; see the input Béziermesh
in Fig. 10. The element size around the hole is comparable
to that of IBCM with t = 0.6R.

We summarize the convergence plots in Fig. 11, with
respect to both the element size indicator h and the square
root of degrees of freedom DOF1/2. We observe that com-
pared to the trimming construction, all IBCM constructions
yields much more accurate results. As expected, the case
of t = 0.2R has the smallest error because its conformal
layer has the smallest element size around the hole. The
other two cases (t = 0.6R and t = 1.0R), on the other
hand, also achieve comparable accuracy and still improve
a lot compared to the trimming construction. This implies
that the solution may not be sensitive to the thickness of the
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Fig. 10 Conformal discretization for the whole plate-with-a-hole
geometry. The color map represents numerical solution of σxx on the
initial mesh. The exact maximum σxx is 30. (Color figure online)

conformal layer, which, however, needs further study to con-
clude. We also notice in Fig. 11b that the result of the full
conformal discretization is very close to that of IBCM with
t = 0.6R, which is expected because they have a compa-
rable element size around the hole. In other words, IBCM
can achieve the same level of accuracy as a full conformal
discretization when critical geometric features are resolved
similarly.

4.2 L-shaped domain

This example is aimed to show how IBCM improves solution
accuracy when the solution has a local feature, such as a
large gradient or even singularity. Such local phenomena are
often closely related to geometric features. For example, the
solution gradient may exhibit singularity at certain corners.
The key idea is to add a layer of mesh to where local features
of the solution are expected. This indeed needs “rough” a
priori knowledge about the solution field.

As an example, we solve the Laplace equation on a L-
shaped domain, where the solution at the reentrant corner
exhibits a singularity in its first order derivative. As a result,
the convergence rates are governed by the solution regularity
rather than the degree of the basis, which are expected to be
4
3 and 2

3 for L2- and H1-norm errors, respectively. As a ref-
erence test shown in Fig. 12a, the domain is represented by
a single B-spline patch that is globally C0-continuous due to
sharp corners. Alternatively, we put an extra layer of mesh
(three quarters of a disk) on top of the B-spline patch; see Fig.
12b. The extra layer is represented by a degenerated NURBS
patch. Note that such a construction is merely a union of
overlapping patches rather than an IBCM construction, but
the idea coincides with IBCM in the spirit of better captur-
ing local geometry/solution features by adding extra layers.
Therefore, we treat it as a special case of IBCM.We compare
and summarize the convergence plots of the two geometric

(a)

(b)

Fig. 11 Convergence plots with respect to h (a) and DOF1/2 (b) in the
plate-with-a-hole problem

Fig. 12 Initial Bézier meshes of the L-shaped domain by a single B-
spline patch (a) and via IBCM(b). Inb, a conformal layer (shaded red) is
added on top of the interior material to yield a conformal discretization
around the material interface

constructions in Fig. 13. We observe that both constructions
eventually yield the same convergence rates but IBCM, as
expected, greatly improves accuracy with the same DOF (or
mesh size).
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(a)

(b)

Fig. 13 Convergence plots with respect to h (a) and DOF1/2 (b) in
the L-shaped domain problem. In the background mesh of (b), integra-
tion cells of trimmed elements are used for visualization. (Color figure
online)

On the other hand, it is worth mentioning that adaptive
mesh refinement is usually the method of choice to recover
optimal convergence for problems with irregular solutions.
In IGA, T-splines [51–54], hierarchical B-splines [55–59],
and locally-refinable B-splines [60,61] are typical examples
in this family of methods.

4.3 Flower

Next,we solvePoisson’s equation on aflower-shapeddomain
to test how the shape of a conformal layer influences the
numerical solution.The input is aB-spline curveΓ represent-
ing theflower boundary.We study twodifferent constructions
for the target curve Γ̃ : (1) Γ̃ is constructed as an offset curve;
and (2) Γ̃ is simply a circle; see Fig. 14. In Case 1, the offset
curve has a similar shape to Γ , but it generally has a different
knot vector from Γ . Therefore, a loft surface is constructed

Fig. 14 Conformal layers obtained through an offset curve (a) and a
circular target curve (b)

Fig. 15 Solutions on the initial Bézier mesh that has an offset-based
conformal layer (a), and on the mesh that has a circle-based conformal
layer (b). In the backgroundmesh, integration cells of trimmed elements
are used for visualization

as the conformal layer Ωc. As a result, its knot vector is a
superset of those of bothΓ and Γ̃ , leading to a dense mesh in
Ωc. Moreover, C0 continuities may be introduced to Ωc due
to the presence of cusps and removal of self-intersections in
Γ̃ .

On the other hand, due to the flexibility of Case 2, Γ̃ can
maintain the same knot vector as Γ through Greville point
projection. Thus, Ωc is constructed simply as ruled surface
between Γ and Γ̃ . This way, the mesh resolution of Ωc is
controlled by the input boundary curve.

With the conformal layers, we construct their correspond-
ing IBCM representations and perform a convergence study
using the following manufactured solution,

u(x, y) = sin
(πx

R

)
sin

(π y

R

)
, (24)

where R is a constant related to the “radius” of the flower.
The Dirichlet boundary condition is strongly imposed on the
entire boundary. The solutions on the initial Bézier meshes
are shown in Fig. 15, where we have refined the conformal
layers to make them have a similar mesh resolution. More-
over, we summarize the convergence plots in Fig. 16. We
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Fig. 16 Convergence plots with respect to DOF1/2 in the flower exam-
ple. Note that “offset” indicates the results using the offset target curve,
whereas “circle” corresponds to results using the circular target curve

Fig. 17 A disk composed of two domains with different materials Ω1

and Ω2, where Γ (the red circle) is the material interface. (Color figure
online)

observe that the results are almost identical in both geometric
representations. In other words, numerical results are almost
not influenced by the shape of the target curve, although fur-
ther study is needed to come to a conclusion. Nonetheless,
it indicates that we are not restricted to a specific choice for
the target curve, which in turn provides further flexibility to
the IBCM construction.

4.4 Bimaterial disk

This test is motivated by [62] and is aimed to test how
IBCM resolves interface features when modeling multiple
materials. We solve the linear elasticity problem on a disk
composed of two different materials, the interior material
Ω1 and the exterior material Ω2; see Fig. 17. Their corre-
spondingmaterial properties are given as E1 = 1, ν1 = 0.25,

and E2 = 10, ν2 = 0.3, respectively. The Lamé constants
(λ1, μ1 and λ2, μ2) are obtained according to Eq. (18). The
exact solutions are given in polar coordinates (r , θ). The dis-
placement field is written as

ur (r) =
⎧
⎨

⎩

[(
1 − b2

a2

)
α + b2

a2

]
r , 0 ≤ r ≤ a,(

r − b2
r

)
α + b2

r , a < r ≤ b,

uθ = 0,

(25)

where a and b are the radius of Ω1 and the outer radius of
Ω2, respectively, and

α = (λ1 + μ1 + μ2)b2

(λ2 + μ2)a2 + (λ1 + μ1)(b2 − a2) + μ2b2
. (26)

We set a = 0.4 and b = 2.0 in the test. The radial (εrr ) and
hoop (εθθ ) strains are given by

εrr (r) =
⎧
⎨

⎩

(
1 − b2

a2

)
α + b2

a2
, 0 ≤ r ≤ a,(

1 + b2

r2

)
α − b2

r2
, a < r ≤ b,

(27)

and

εθθ (r) =
⎧
⎨

⎩

(
1 − b2

a2

)
α + b2

a2
, 0 ≤ r ≤ a,(

1 − b2

r2

)
α + b2

r2
, a < r ≤ b.

(28)

The radial (σrr ) and hoop (σθθ ) stresses are

σrr (r) = λ(εrr + εθθ ) + 2μεrr ,

σθθ (r) = λ(εrr + εθθ ) + 2μεθθ ,
(29)

where (λ, μ) ∈ {(λ1, μ1), (λ2, μ2)}. The shear stress is zero
everywhere. All solutions are axisymmetric in the sense that
they are independent of θ . We observe that in Eqs. (25, 27,
28), ur and εθθ are continuous across the material interface,
but εrr experiences a discontinuity. Moreover, both stresses
(σrr and σθθ ) are discontinuous due to different material
parameters.

Two geometric constructions are studied: a union of two
overlappingpatches (as in [1]) and an IBCMconstruction; see
Fig. 18. In the union construction, the grey annulus sits on top
of the yellow background patch, which represent the mate-
rial domains Ω2 and Ω1, respectively. On the other hand,
the interior material Ω1 in an IBCM representation is rep-
resented by two patches, the green conformal layer and the
yellow backgroundmesh. Themesh ofΩ2 remains the same.
According to Eq. (25), the exact displacement, ur (b) = b, is
applied on the outer boundary ΓD; see Fig. 17. We summa-
rize the convergence plots in Fig. 19. Again, we observe the
same expected convergence rates but improved accuracy per
DOF in IBCM.
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Fig. 18 Initial Bézier meshes of the bimaterial disk via union (a) and
IBCM (b), where each patch is represented by a different color. Par-
ticularly in b, the interior material Ω1 is represented by two patches:
the green annulus and the yellow background mesh. In the background
mesh, integration cells of trimmed elements are used for visualization.
(Color figure online)

(a)

(b)

Fig. 19 Convergence plots with respect to h (a) and DOF1/2 (b) in the
bimaterial disk test

Fig. 20 The input B-rep of spanner (a), the corresponding IBCM rep-
resentation (b), and boundary conditions (c). In the background mesh
of b, integration cells of trimmed elements are used for visualization.
In c, stress singularities are expected in the red-spotted regions due
to the sudden change from the clamped displacement condition to the
traction-free condition

4.5 Spanner

We next present a spanner model to demonstrate how to
use IBCM to represent complex geometries. We will also
show that it is flexible for IBCM to deal with Dirichlet
boundary conditions as well as to control the mesh resolu-
tion around areas of interest. As shown in Fig. 20a, the input
B-rep of the spanner is composed of two loops, each repre-
sented by a set of NURBS curves. A detailed description of
the geometry data is given in [63]. We first generate an off-
set curve for each loop, which, in this particular case, has a
nearly identical parameterization as the input loop. The con-
formal layer is then immediately available as a loft surface;
see Fig. 20b. The remaining procedure of IBCM follows the
boundary-type construction.

We proceed to solve the linear elasticity problem on the
IBCM representation, with material constants E = 105 and
ν = 0.3. As shown in Fig. 20c, we clamp part of the jaw
(u = 0 on ΓD), and we apply traction downwards on the
lower half of the handle with a magnitude of 1.0. All the
remaining part of the boundary is traction free, i.e., homoge-
neous Neumann boundary condition. This way, singularities
(in stresses) are expected in the transition regions from the
clamped displacement condition to the traction-free con-
dition; see the red-spotted regions in Fig. 20c. We further
“locally” refine the mesh to capture such features. The von
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(a) (b)

Fig. 21 Results of the spanner model. a The von-Mises stress on the
IBCM representation of the spanner, and b the convergence plot of the
maximum downwards displacement (−y direction). In a, the mesh res-
olution is (manually) adapted to large stresses. In the zoomed-in figure

of a, some part of the mesh in the conformal layer is not conformal. In
the background mesh of a, integration cells of trimmed elements are
used for visualization

Mises stress is shown in Fig. 21a. We observe that with the
conformal layer, we can easily adapt the mesh resolution to
the solution features. Moreover, when a conformal layer has
a multi-patch representation, meshes in different patches do
not need to be conformal across patch interfaces; see the
zoomed picture in Fig. 21a. Non-conformal patch interfaces
are coupled with Nitsche’s method and are treated as a spe-
cial case of the general overlapping construction. This way,
mesh refinement is localized to the patch level.

Moreover, we check the convergence of the maximum
downwards displacement (the−y direction), or min uy , with
a series of globally refined meshes. The convergence plot is
shown in Fig. 21b with respect to DOF, where we observe a
convergent result.Herewe study the convergence in displace-
ments rather than stresses because in this example, stresses
exhibit singularity due to the boundary conditions, which we
do on purpose to show how IBCM can be used to flexibly
capture such a solution feature.

4.6 Fiber-reinforced composite

Inspired by [64], we perform stress analysis on a fiber-
reinforced composite. The test is mainly aimed to show
the capability of IBCM to represent complex material inter-
faces with conformal discretizations. A typical cross section
is studied under the plane strain assumption; see Fig. 22.
The matrix material is modeled as a square that occupies the
domain [−5, 5] × [−5, 5]. Then multiple circular fibers of
unit radii are randomly positioned in the matrix, provided
that none of them overlaps with another. For each circular
material interface, a pair of conformal annuli is obtained fol-
lowing the interface-type construction, where one has the

material property of fibers and the other has the property of
thematrix. Every fiber has an independent backgroundmesh,
whereas the background mesh of the matrix is cut by multi-
ple annuli. Combining all the annuli and the active parts of
background meshes yields the IBCM representation for the
fiber-reinforced composite.

We solve the linear elasticity problem on the resulting
geometric model. Uniform tension Tx = 100 is imposed
on the right boundary of the matrix, whereas ux = 0 and
uy = 0 are imposed on the left and bottom boundaries,
respectively. Homogeneous Neumann boundary conditions
are applied elsewhere. Material constants are given as fol-
lows: Efiber = 100, νfiber = 0.33, and Ematrix = 1,
νmatrix = 0.3. As a result of discontinuous material data,
stress discontinuities are expected across material interfaces.

Starting from the input mesh in Fig. 22, we obtain a series
of globally refined meshes for a convergence study. The dis-
tribution of the stress σxx is shown in Fig. 23a, which is
computed with the mesh after one refinement. As expected,
large stresses occur in fibers as well as in the narrow bands
between fibers. The convergence plot is shown in Fig. 23b. In
each mesh, we compute the maximum σxx (the x − x stress)
among all the sampled points, and we check the convergence
of this quantity. A relative error is evaluated using an overkill
solution, which is obtained with the mesh after five times of
refinement. We observe that the error converges roughly at
an expected rate of two.

4.7 Advection–diffusion problem

As the last example, we push a step forward to study IBCM
beyond the elliptic problems. It is motivated by the singu-
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Fig. 22 The initial IBCM representation of the fiber-reinforced com-
posite, where the circular fibers are randomly positioned and different
patches are represented by different colors. In the background mesh,
integration cells of trimmed elements are used for visualization

larly perturbed model problem [65], but here we will adopt
a simplified boundary condition. The underlying partial dif-
ferential equation (PDE) is an advection–diffusion equation,
which is fundamentally different from those in the previous
examples because of the advection term. It states as follows.
Given f : Ω → R and gD : ΓD → R, find u : Ω → R

such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− εΔu + a · ∇u = f in Ω = Ω t ∪ Ωb
a ,

ut − ub = 0 on Γ = ∂Ω t ∩ Ωb,

∇ut · nt + ∇ub · nb = 0 on Γ = ∂Ω t ∩ Ωb,

u = gD on ΓD ≡ ∂Ω,

(30)

where ε ∈ R and a ∈ R
2 are a diffusivity constant and

a velocity constant, respectively, and the other notations
(including those in the following) are the same as those in
Eq. (8). Note that we only consider the Dirichlet boundary
condition in this problem.

We follow [66] to obtain the correspondingweak formula-
tion. ∂Ω is divided into the outflow boundary ∂Ω+ = {x ∈
∂Ω : a · n ≥ 0} and the inflow boundary ∂Ω− = {x ∈
∂Ω : a · n < 0}, where n is the outward normal of ∂Ω . The
discrete weak formulation states as follows: Find uh ∈ VgD

h
such that

ah(uh, vh) = l(vh), ∀vh ∈ V0
h , (31)

(a)

(b)

Fig. 23 Results of the fiber-reinforced composite. a The stress σxx
computed on the mesh after one refinement, and b the convergence
plot of σxx . In the background mesh of a, integration cells of trimmed
elements are used for visualization

where

ah(uh, vh) = ε

∫

Ω

∇uh · ∇vh −
∫

Ω

uh a · ∇vh

− ε

∫

Γ

〈∇uh · nt 〉[vh] − ε

∫

Γ

〈∇vh · nt 〉[uh]

+ εβ(h−1
t + h−1

b )

∫

Γ

[uh][vh],

+
∫

Γ

up(uh) [vh] a · nt

+
∫

∂Ω+
uh vh a · n + εβh−1

∫

∂Ω

uh vh

(32)

and

l(vh) =
∫

Ω

f vh + εβh−1
∫

∂Ω

gD vh −
∫

∂Ω−
gD vh a · n,

(33)
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Fig. 24 The geometry and problem setting for the advection–diffusion
problem

Fig. 25 The initial Bézier meshes of the plate with a hole via trimming
(a) and IBCM (b). In the backgroundmesh, integration cells of trimmed
elements are used for visualization

where

h(x) =
{
ht if x ∈ ∂Ω ∩ ∂Ω t ,

hb if x ∈ ∂Ω ∩ ∂Ωb,
(34)

and

up(uh(x)) =
{
ut (x) if a · nt(x) ≥ 0,

ub(x) otherwise.
(35)

Eq. (35) represents anupwind scheme that takes certain quan-
tity of interest from the upwind side. Note that the normal
of the interface Γ is nt , i.e., the outward normal of the top
domain Ω t .

Fig. 26 Simulation results of the advection–diffusion problem using
trimming. In the background meshes of (e, f), integration cells of
trimmed elements are used for visualization

As shown in Fig. 24, the geometry of interest is a plate
with a hole. The plate has the dimension L × H where L =
H = 15. The hole is centered at (L/5, H/2) with a radius
of R = 1. The diffusivity is set to be ε = 0.1 to make
the problem advection-dominated, and a constant rightward
velocity of a = (1, 0) is adopted. According to Eq. (32),
we weakly impose the Dirichlet boundary condition on all
the boundaries. More specifically, we impose gD = 1 on the
hole and gD = 0 on the other boundaries. The boundary-
layer phenomenon is expected around the hole and the right
boundary, where dense meshes are needed to resolve it. It
is straightforward to “locally” refine the mesh near the right
boundary by adding more knot lines. Therefore, we focus on
the treatment of the hole, where we compare the performance
of trimming and IBCM.

We first study the geometric representation obtained via
trimming. The initial Béziermesh is shown in Fig. 25a,where
a dense mesh of width w = 0.05L (see Fig. 24) is adopted
near the right boundary. We solve the advection–diffusion
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Fig. 27 Simulation results of the advection–diffusion problem using
IBCM. In the background meshes of (c, d), integration cells of trimmed
elements are used for visualization

Fig. 28 The solution u over the horizontal line y = H/2. The region
[2, 4] represents the hole

problem on a series of globally refined meshes. The results
are shown in Fig. 26. We observe that the high-quality solu-
tion is obtained only when the mesh size is sufficiently small
with respect to the boundary layer; see Fig. 26f.

On other other hand, we can add a conformal layer around
the hole to enhance the solution. The initial Bézier mesh is
shown in Fig. 25b, where the thickness of the conformal layer
is 1.As the conformal layer alignswith the hole,we can easily
control the mesh resolution around the hole. Even though
the background mesh is the same as that in Fig. 25a, the
solution is significantly improved; see Fig. 27a. Moreover,

with the background mesh globally refined just once and
the conformal layer unchanged, the solution using IBCM is
already comparable to the best result using trimming; see
Figs. 27b and 26d. In other words, with IBCM, we can use
much fewer DOF (< 1/10) to resolve the boundary-layer
phenomenon.

Moreover, we plot the solution field along a horizontal line
y = H/2; see Fig. 28. Note that the region [2, 4] represents
the hole. Fig. 28 shows three results: trimming with Mesh 1
(Fig. 26b), trimming withMesh 3 (Fig. 26d), and IBCMwith
Mesh 1 (Fig. 27b).We thus quantitatively confirm that IBCM
with Mesh 1 achieves a very similar result to trimming with
Mesh 3, whereas trimming with Mesh 1 exhibits oscillation
near the hole as the mesh resolution is not fine enough.

5 Conclusions and future work

In this paper, we have presented an immersed boundary-
conformal method (IBCM) to leverage advantages of both
conformal discretization and immersed methods. This is
enabled by analysis-aware treatment of trimming and union
operations as well as sophisticated construction of conformal
layers. To efficiently and robustly deal with cut elements,
we present an enhanced decomposition method to reduce
the number of quadrature cells needed for a cut element.
The union operation weakly couples independent domains
through Nitsche’s method. With the one-sided flux from the
non-trimmed conformal layer, no further treatment is needed
regarding stabilization.

On the other hand, the key to constructing a conformal
layer lies largely in creating a target curve for an input bound-
ary curve. The target curve can be constructed either as an
offset curve or as a curve that has a very different shape
from the input. Offset curves seem to be a natural choice, but
very often they end up with cusps and self-intersections, and
moreover, the parameterization is generally different from
the input. Therefore, it requires further repairing and lofting
to be able to construct a desired conformal layer. Fortunately,
it is flexible for IBCM to choose the shape of the target curve,
and there is numerical evidence that the shape does not play a
significant role in the solution accuracy. With this flexibility,
a target curve that has the same parameterization as the input
can be constructed, and thus the conformal layer is readily
available.

Two types of geometric constructions with IBCM are pre-
sented: a boundary type and an interface type. Both types
can be used to represent complex geometric and/or solu-
tion features. In a boundary-type IBCM representation, as
it features a conformal discretization near the boundary,
many benefits are carried over from boundary-fitted meth-
ods, such as the intuitive control of mesh resolution and
the ability to strongly impose Dirichlet boundary conditions.
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In an interface-type representation, kinematic constraints on
the interface are automatically satisfied. Various benchmark
problems are present to show the improved accuracy of
IBCM compared to other means of geometric representa-
tions, such as solely trimming or union. There also exists
evidence that the results are not sensitive to the thickness
and shape of a conformal layer, but further study is needed
to conclude. Moreover, two examples with complex geomet-
ric features are presented to show the flexibility of IBCM in
representing complex geometries, strongly imposing Dirich-
let boundary conditions, as well as easy adaptation of mesh
resolution to solution features. In the end, we push a step for-
ward to study an advection–diffusion problem with IBCM,
where we have shown that IBCM can efficiently resolve the
boundary-layer phenomenon near general geometric features
in an intuitive manner.

In the future, on top of all potential directions is the exten-
sion to 3D. This is indeed challenging as it requires a robust
analysis-aware treatment for trimming and union. Construct-
ing conformal layers for surfaces also becomes much more
involving. On the other hand, extending IBCM to other prob-
lems is also promising, such as the Stokes problem, nonlinear
problems, and shell/plate problems, where coming up with
stabilized formulations poses as the most challenging prob-
lem.
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