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Abstract
The deformation of crystalline materials by dislocation motion takes place in discrete amounts determined by the Burgers
vector. Dislocations may move individually or in bundles, potentially giving rise to intermittent slip. This confers plastic
deformation with a certain degree of variability that can be interpreted as being caused by stochastic fluctuations in dislo-
cation behavior. However, crystal plasticity (CP) models are almost always formulated in a continuum sense, assuming that
fluctuations average out over large material volumes and/or cancel out due to multi-slip contributions. Nevertheless, plastic
fluctuations are known to be important in confined volumes at or below the micron scale, at high temperatures, and under low
strain rate/stress deformation conditions. Here, we develop a stochastic solver for CPmodels based on the residence-time algo-
rithm that naturally captures plastic fluctuations by sampling among the set of active slip systems in the crystal. The method
solves the evolution equations of explicit CP formulations, which are recast as stochastic ordinary differential equations and
integrated discretely in time. The stochastic CP model is numerically stable by design and naturally breaks the symmetry of
plastic slip by sampling among the active plastic shear rates with the correct probability. This can lead to phenomena such
as intermittent slip or plastic localization without adding external symmetry-breaking operations to the model. The method
is applied to body-centered cubic tungsten single crystals under a variety of temperatures, loading orientations, and imposed
strain rates.

Keywords Stochastic crystal plasticity · Residence time algorithm · Rate dependent plasticity · Kinetic Monte Carlo ·
Body-centered cubic crystals · Tungsten · Plastic bursts

1 Introduction

Plastic deformation in single crystals can generally be con-
strued as a process in which slip on a set of well-defined
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crystallographic planes results in irreversible shape changes
in a material [1,2]. Through its various forms, the crys-
tal plasticity method (CP) has proven extremely successful
in predicting crystalline materials deformation thanks to (i)
the existence of a robust mathematical theory [1,3–5], (ii) a
strong connection between the physics of slip and the geom-
etry of deformation [6], and (iii) the development of accurate
and efficient integration algorithms [7–10].While some chal-
lenges still remain, such as the indetermination of the active
slip systems under a prescribed set of conditions [11], or the
distinction between stored and geometrically-necessary dis-
location density evolutions [12,13], suitable approximations
exist that are generally valid and give accurate results in most
applications.

However, the standard implementation in CP models
of crystallographic slip as a linear combination of plas-
tic shear on a finite set of slip systems assumes that these
slip systems are independent of each other [14–16]. Such
notion is generally grounded on an adiabatic interpretation
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of dislocation-mediated shear1, which is often questionable
and leads to an homogeneous plastic response even in cases
where valid localized deformation pathways exist [12,17].
Such homogenization is mathematically not problematic, as
the underlying constitutive models intrinsically ensure sta-
bility in the solutions. However, it is often at odds physically
with the observed material response [18–20] in which sym-
metry in the evolution of plastic slip can naturally break
and lead to a non-homogeneous distribution of plastic shear.
Accounting for symmetry-breaking modalities in the slip
response has typically been done by adding external prob-
abilistic descriptors of certain internal variables [21–25].
Alternatively, stochasticity can be introduced intrinsically,
via the integration algorithm itself, a practice widely used for
integrating differential equation systems [26–29]. As such,
stochastic fluctuations are an intrinsic part of the solution, not
just an externally added variable. When suitably adapted for
CP models, such solvers could lead to fluctuations in plastic
shear that can numerically break the symmetry in slip sys-
tems with identical Schmid factors. These fluctuations can
also be regarded as reflecting the natural intrinsic variabil-
ity of certain internal variables, i.e., they can be justified as
‘physical’ in many cases.

The main objective of this paper is to develop a stochastic
solver based on the residence time algorithm [30,31] for stan-
dard single crystal plasticity problems. Under our approach,
the mathematical formulation of the CP problem remains
unchanged, which makes the algorithm completely general
and independent of the constitutive framework and mate-
rial model chosen. For proof of principle, here we focus
on single-point material cases with no associated boundary-
value problem. The paper is organized as follows. First, in
Sect. 2we provide an essential review of the theory andmeth-
ods used here, including brief descriptions of the residence
time algorithm and crystal plasticity approach. In Sect. 3,
we present results of CP simulations of uniaxial deforma-
tion in single crystal tungsten using the proposed stochastic
algorithm under a variety of different scenarios. Section 4
contains a detailed discussion of the main results as well
as of the potential uses of the method. We finalize with the
conclusions and acknowledgements.

2 Theory andmethods

2.1 The residence time algorithm

The starting point is a (continuous) transition function Pi j (t)
representing the probability that a random variable ξ1(t)

1 The process is adiabatic in the sense that, during a small time interval,
slip in a given slip system is assumed to evolve without being affected
by slip in the remaining slip systems, i.e., the time step is sufficiently
short to justify a lack of interaction among the operative slip systems.

describing the state of a continuous-time Markov chain is
X j at time t having originated from an initial state Xi at time
t = 0, i.e.2:

Pi j (t) = Pr
(
ξ1(t) = X j | ξ(0) = Xi

)

As such, all the pi (t) = ∑
j �=i Pi j (t) conform a vector p

of probabilities of dimension N equal to the total number
of states accessible to the system. A square positive-definite
N × N matrix Q = {qi j } satisfying ∑

j �=i qi j = ri (where
ri is the exit rate from state Xi ) gives the transition rates
connecting all states Xi with all states X j (qi j = 0 when
i = j). To preserve the Markovian structure of the process,
all the coefficients qi j are considered to be time-invariant.

The continuous-time master equation associated with p
and Q is [32–34]:

dpi (t)

dt
=

∑

j �=i

[
q ji p j (t) − qi j pi (t)

]
(1)

The Markov chain representing this process generates a
sequence of state transitions Xi → X j with probabilities
Pi j = 0 (if i = j) or Pi j = qi j/ri (if i �= j). Time
reversibility of Eq. (1) results in the detailed balance condi-
tion: qi j p j = q ji pi (in matrix form, QpT = QTp), which
allow us to express the above equation in matrix form as:

ṗ = (Q − R)p (2)

where Ri j = riδi j is a diagonal matrix (as a matter of nota-
tion, here summation is explicitly indicated by the symbol
‘
∑

’ and the corresponding indices).
The residence time in state Xi , δti can be shown to follow

an exponential distribution with mean 1/ri [26,35], which
allows us to define a probability Pr (δti > t |ξ1(0) = Xi ) =
ri exp{−riδti } fromwhich to sample the residence time using
a uniform random variable ξ2: δti = r−1

i log(1 − ξ2).
Solving the master equation (1) (or 2) fully characterizes

the evolution of the system in time. However, in most appli-
cations of interest the total number N of states accessible to
the system (dimension of the Markov space) is not known,
resulting in undetermined Q matrices and thus precluding
the use of analytical or deterministic methods to solve the
master equation. In such cases, the problem is character-
ized by a discrete Markov chain with infinite dimension, and
approximate methods must be used. When the following two
conditions are met, discrete event methods can be used to
solve the master equation: (i) the probability of each event

2 Weuse the standard notation Pr(ξ1 = X) to denote the probability that
a random variable ξ assumes a particular value X . Pr(ξ1 = X |ξ1 = Y )

represents the (conditional) probability of finding the system in state X
provided that it originated from state Y earlier in time.
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depends only on the state reached in the previous event (i.e.,
the system is defined by a 1st order Markov process), and (ii)
the system remains unchanged during a transition between
two states (i.e., the time spent during a transition is negligible
compared to the residence time).

This is where the utility of the residence-time algorithm
(also known as the kinetic Monte Carlo (kMC) method)
resides. In particular, in rejection-free kMC (also known as
‘BKL’ after its original proponents [30]), once a transition
between two states n → m is selected with the corre-
sponding probability qnm/

∑
m qnm , it is executed and time

is advanced by an amount equal to either 1/
∑

m qnm or
obtained by sampling a uniform random number χ ∈ (0, 1]
as δtn = − log(1 − χ)/

∑
m qnm . In this fashion, the sys-

tem evolves in discrete time increments as the state space
{X} is sampled, leading to a significant computational gain
over standard Monte Carlo methods. The reader is referred
to recent reviews for more information on the topic [34,36].

2.2 Crystal plasticity model

2.2.1 Kinematics

For a deformable body occupying a volume Ω0 bounded by
a surface ∂Ω0, a one-to-one mapping x (X, t) is assumed to
exist between the position of material points in their refer-
ence positionX and their current position x. The deformation
gradient of this mapping, F = ∂x/∂X is typically decom-
posed multiplicatively into plastic and elastic contributions,
FP and FE as [37]:

F = FEFP = I + ∇ ⊗ u (3)

where u is the displacement vector. The rate of change of F
can be written as:

Ḟ = ∂ ẋ
∂X

= ∂ ẋ
∂x

∂x
∂X

= LF (4)

where L is the velocity gradient. L additively decomposes
into:

L = Ḟ
E
FE−1 + FE

(
Ḟ
P
FP−1

)
FE−1 = LE + LP (5)

where LE and LP are the elastic and plastic velocity gradi-
ents, respectively. In the small deformation limit (linearized
kinematics),

∇ ⊗ u = HE + HP (6)

where HE and HP are the elastic and plastic distortions, i.e.,

LE = Ḣ
E
and LP = Ḣ

P
. If the only mechanism of plas-

tic deformation at the crystal level is dislocation slip along

specific crystallographic directions, then we can write [38]:

Ḣ
P =

∑

α

γ̇ αsα ⊗ nα (7)

where γ̇ α denotes the plastic slip rate of slip system α, and
sα and nα represent the corresponding slip and plane normal
directions (expressed in the original frame of reference). The
tensor (sα ⊗ nα) is known as the Schmid tensor.

Under linear elasticity, the Cauchy stress can be obtained
as a function of the elastic strain as,

σ = C : HE = C : εE (8)

where C is the stiffness tensor of the crystal. For isotropic
elastic systems, this second-order tensor can be written as a
symmetric matrixC := (κ − 2μ/3) I⊗ I+2μ1, where κ and
μ are the bulk and shear modulus, and I and 1 are the second
and fourth order identitymatrices. The symmetricity ofσ and
C renders HE symmetric as well, which going forward we
represent as εE. Assuming an instantaneous elastic response,
the rate form of Eq. (8) is:

σ̇ = C : ε̇E (9)

The system evolves in time subjected to the kinematic bound-
ary condition:

L = ε̇0, in Ω0

which combinedwithEq. (9) results in the following relation,

ε̇E = ε̇0 − Ḣ
P

(10)

where ε̇0 is a prescribed strain rate tensor.

2.2.2 Flow rule

ThepresentCPmodel is rate dependent through the definition
of ε̇P in Eq. (7). The shear rates γ̇ α are computed according
to Orowan’s equation:

γ̇ α = ραbαvα (11)

where ρα , bα and vα are the dislocation density, Burger’s
vector modulus, and velocity in slip system α. Here, we con-
sider bcc metals with only 1/2〈111〉 screw dislocations, i.e.,
b is unique and equal to a0

√
3/2, with a0 the lattice param-

eter. In this work we are interested in low and intermediate
homologous temperatures (< 0.3Tm , where Tm is themelting
point), where thermally activated screw dislocation motion
is represented by the following expression [39,40]:

vα =

⎧
⎪⎨

⎪⎩

ν0h
(
λα − w

)

b
exp

(
−ΔH0

kT

[
1 −

(
Δτα

σP

)p]q)
, λα > w

0, λα ≤ w

(12)
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where ν0, h, λα , w, and ΔH0 are, respectively, the attempt
frequency, the distance between Peierls valleys in the bcc
lattice, the mean dislocation segment length for slip system
α, the kink-pair width, and the kink-pair formation energy.
Δτα is the excess stress, obtained as the difference between
the resolved shear stress (RSS) and the slip resistance, gα .
The RSS is obtained from the Cauchy stress as:

τα
RSS = σ : (

sα ⊗ nα
)

(13)

which is also known as the Schmid stress3, while gα includes
all athermal sources of stress opposing dislocation motion.
σP is the Peierls stress.

The time evolution of the dislocation density is modeled
using a rate equation of the type:

ρ̇α = ρ̇α
mult − ρ̇α

ann (14)

where ρα
mult and ρα

ann represent the net sources and sinks of
dislocation line length. Each of these terms can be defined
using a standard Kocks-Mecking model [39,42]:

ρ̇α
mult = |γ̇ α|

bλα
(15)

ρ̇α
ann = 2dedge

b
ρα|γ̇ α| ≈ 2ρα|γ̇ α| (16)

where it has been assumed that dislocation annihilation
occurs spontaneously when dipoles meet within a critical
spacing dedge ≈ b. λα is the available dislocation segment
length, which is generally expressed as:

1

λα
= 1

dg
+

√
ρα
f (17)

where dg is the grain size and ρα
f is the forest dislocation

density, which is obtained for each slip system α from con-
tributions of all other systems β [43]:

ρα
f =

∑

β �=α

ρβ |sβ · nα| (18)

The constitutive nature of ρα comes via its dependence on
γ̇ α , which depends on the stress through the dislocation
velocity. This is an implicit dependence that will have numer-
ical implications as will be discussed below.

To close themodel, an expression for gα must be provided.
In the present case, we consider self and latent hardening

3 Although present in bcc materials [41], for the sake of simplicity here
we ignore non-Schmid effects.

only, both embodied in a term τα
h , i.e., g

α ≡ τα
h , where:

τα
h = μb

√∑

β �=α

ξαβρ
β
f + ξααρα (19)

The first term inside the square root on the r.h.s. of the
above equation represents the forest hardening, while the
second one reflects the amount of self-hardening. ξαβ are the
elements of the hardening coefficient matrix, ξ [39,44,45],
whose values, as well as the glide systems considered in the
work, are given in Appendices A and B .

2.3 Casting the crystal plasticity model as a
stochastic process

The Markov chain representing the process described by the
master equation (1), (2) evolves the system forward in time by
following a sequence of transitionswhose rates depend solely
on the initial and final states. As such, Eq. (1) is akin to an
explicit time discretization of the crystal plasticity model, in
which the properties of the system at time t +δt are obtained
solely as a function of those at time t . With this, Eq. (9) can
be recast as:

σ̇ = C :
(
ε̇0 − Ḣ

P
)

(20)

The constitutive framework for the explicit form of themodel
remains unchanged. Additionally, the unknowns of the crys-
tal plasticity problem remain the same. However, instead of
solving iteratively for the ensemble of slip rates, the shear
rates are determined in a sequential manner. The evaluation
at time t+δt is based on the calculation of the available glide
stress τα

RSS and the dislocation velocities at time t [46–48].
By analogy with (2), the above equation can be trivially

written as a stochastic equation:

ε̇E = ε̇0 − Ḣ
P

(21)

In essence, this equation yields the time rate of the probability
of finding the system under a given stress state. In the r.h.s. of
the equation, ε̇0 can be regarded as an external source term

that is independent of the current stress state,while Ḣ
P
acts as

a stress absorber through conversion to plastic deformation.
From Eqs. (11) and (20), Eq. (21) can be expanded to:

ε̇E = ε̇0 −
∑

α

ραbαvα
(
sα ⊗ nα

)
(22)

While this equation is not strictly a master equation, i.e., one
of the type ṗ = Q′p, as in Eq. (2), a set of event rates can
be extracted from Eq. (22) that govern the evolution of the
elastic strain in time. The total rate to ‘exit’ a given stress
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Fig. 1 Sampling array of event rates in the SCP algorithm. The total
rate r is partitioned between the prescribed applied strain rate ε̇0 and the
total plastic distortion HP. In turn, HP is composed of N independent
shear rates γ α . As such, there are always N +1 different possible event
rates to sample from, contained in an array whose index k runs from
0 to N . Note that, in general, the value of each shear rate γ α may be
different to the rest of the shear rates during each time step. The dashed
section refers to the possibility of using null events, discussed in Sect.
4.1

state defined by a total elastic strain εE at time tn can be
written as:

rn =
N∑

α=1

qnα + q0 (23)

with q0 = ∑
i
∑

j (ε̇0)i j , qα = ραbαvα , and N is the num-
ber of independent slip systems.

In rejection-free kMC, the next event to be executed is
selected as the kth process that satisfies:

qnk−1 < ξ1r
n < qnk (24)

where k = 0, . . . , N . If the event selected corresponds to the
rate q0, further sampling is carried out among the different
nonzero components of ε̇0 to determine which deformation
to impose. The total time is then advanced as:

tn+1 = tn + δtn (25)

δtn = − log ξ2

rn
(26)

where ξ1 and ξ2 are uniform random numbers in (0, 1]. Once
an event is executed, the elastic strain is updated and, with
it, the stress state. From the new stress state, resolved shear
stresses are calculated, from which in turn plastic slip rates
and dislocation densities are updated, thus closing the cycle.

A schematic diagram showing the sampling of event rates
and the total rate is given in Fig. 1. A complete algorithm
suitable for solving Eq. (22) based on the above procedure is
provided next.

2.4 A residence-time algorithm for
elasto-viscoplastic CP problems

The crystal is defined by its dislocation density content, ρα ,
in each of its N slip systems α and the grain size dg . Defor-
mation conditions are given by the applied strain rate (tensor)
ε̇0, the temperature T and the loading orientation o (gener-
ally aligned with a given crystal axis corresponding to the z
direction). Thus our simulations are carried out with only one
nonzero component of the imposed strain rate tensor, such
that q0 ≡ (ε0)zz . The algorithm proceeds as a standard crys-
tal plasticity algorithm until the calculation of the slip rates
is completed. The stochastic part of the algorithm that serves
as integrator is captured in lines 30 to 32. For comparison,
the equivalent deterministic (explicit) algorithm is given in
algorithm 2 in “Appendix C”.

2.5 Physical bounds on problem time scale

Figure 2 shows the raw time step distributions sampled from
three independent SCP runs at three different strain rates for
[100] loading at 500 K. The averages of the distributions are
4500, 517, and 52 s for ε̇0 = 10−4, 10−3, and 10−2 s−1,
respectively. These results illustrate the absolute time scales
that emanate from the direct sampling of Eq. (22). Strictly
speaking, the time increments shown in the figure represent
the maximum time steps compatible with the rate equation
being solved. However, onemay use an arbitrarily smaller set
of δt without sacrificing the numerical validity of themethod,
which may be advantageous when, e.g., there are other con-
straints on the time scales of the problem besides purely
numerical ones. Indeed, such is the case here,where deforma-
tion tests performed at quasistatic strain rates (10−5 ∼ 10−2

s−1) result in total strains that are almost always < 1, and

Fig. 2 Time step distributions sampled from Eq. (23) for crystal plas-
ticity simulations at 500 K under [100] loading at three different strain
rates of 10−4, 10−3, and 10−2 s−1. The averages of the distributions
are 4500, 517, and 52 s, respectively. All three histograms are given in
arbitrary units
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Algorithm 1 Residence-time algorithm for crystal plasticity
models
1: Initialize: ε̇0, T , TOL, maxiter, N , tTOT, t = 0, {ρα} = ρ0,

q(0, . . . , N )

2: while (t < tTOT) do
3: Calculate: stress (tensor) increment Δσ = C : ΔεE

4: Update: stress tensor σ = σ + Δσ

5: Initialize: q0 = ε̇0
6: Get: random numbers ξ1, ξ2 ∈ (0, 1]
7: for α = 1, N do
8: Calculate: modulus: b = ‖bα‖
9: Get: slip direction sα = b−1bα , plane normal nα

10: Calculate: resolved shear stress τα
RSS = sα · σ · nα

11: Initialize: rt = ε̇0
12: for β = 1, N do
13: Calculate: forest dislocation densityρα

f = ρα
f +ρβ |sβ ·nα |.

14: Calculate: forest dislocation hardening gα = gα +
ξαβρβ |sβ · nα |

15: end for
16: Get: dislocation hardening τα

h = μb
√
gα + ξααρα

17: Calculate: λα =
(√

ρα
f + 1

dg

)−1

18: Calculate velocity:
19: if

(
(λα − w > 0) and

(
τα
RSS − τα

h > 0
))

then

20: vα
0 = sgn(τα

RSS)ν0
h
b (λα − w)

21: vα = vα
0 exp

{
−ΔH0

kT

(
1 −

∣
∣∣
τα
RSS−τα

h
σP

∣
∣∣
p)q}

22: else
23: vα = 0
24: end if
25: Calculate: qα = ραbvα

26: Calculate: rt = rt + qα

27: end for
28: Calculate: δt = − log ξ2

rt

29: Update: t = t + δt
30: Select: event k such that qk < ξ1rt < qk+1, k = 0, . . . , N
31: Initialize: ΔεP = Δεtot = 0

32: if
(
ξ1 <

q0
rt

)
then

33: Calculate: Δεtot = ε̇0δt
34: Update: εtot = εtot + Δεtot
35: else
36: for α = 1, N do
37: Update: dislocation density ρα = ρα +

|qα |
λα (1 − 2bλαρα) δt

b
38: Calculate: ΔεP = ΔεP + qα (sα ⊗ nα) δt
39: end for
40: end if
41: Calculate: ΔεE = Δεtot − ΔεP

42: end while

which are thus reached inmuch shorter times than those indi-
cated in Fig. 2 .

Onewayof establishingmeaningful boundaries for δt may
be by considering the physical validity range of the present

algorithm,which is set by the condition
(

τα
RSS−τα

h
σP

)
< 1 (from

Eq. (12)), i.e.:

τα
RSS < τα

h + σP (27)

Taking time increments, the above expression becomes (σP
is constant):

dτα
RSS

dt
<

dτα
h

dt
(28)

Implicit in this relation there is a time step condition thatmust
be satisfied such that the time scale of the problem is reflective
of the physical processes that participate in the evolution of
the deformation of thematerial. As shown inAlg. 1, τα

RSS dis-
plays a linear dependence on δt , while τh scales asO(δt1/2)

(through its dependence on the term
√∑

β ρβ, β = 1 . . . N ).

As such, one can rewrite the above inequality generically as:

d (C1δt)
dt

<
d

(C2δt1/2
)

dt

which results in the condition:

C1 <
C2

2δt1/2

or

δt <

( C2
2C1

)2

(29)

where C1 and C2 are constants representing, respectively, the
(elastic) stress rate, C1 ≈ E

(
ε̇0 − γ̇p

)
and the forest hard-

ening rate C2 ≈ μ
√

γ̇p, where γ̇p is again a generic plastic
shear rate, i.e.:

δt <

[
μ

√
γ̇p

E
(
ε̇0 − γ̇p

)

]2

(30)

where E = 9κμ
3κ+μ

is the Young’s modulus. For simplicity,
it is assumed that the shear rates are well captured by the
term ρ0bv, where v is a temperature dependent dislocation
velocity, set by Eq. (12). With this, the above expression
becomes:

δt <

[
μ

√
ρ0bv

E (ε̇0 − ρ0bv)

]2
=

(μ

E

)2 ρ0bv

(ε̇0 − ρ0bv)2
= δt∗ (31)

This expression is fundamentally equivalent to that derived
by Van der Giessen et al. [49] using a slightly different con-
stitutive model. In the present model, for the 300-to-1000-K
temperature range, v varies between 10−7 and 10−3 m·s−1.
By way of example, using material constants from Table 1,
this results in critical time steps δt∗ between 0.05 to 100 s
when ε̇0 = 10−3 s−1.

As such, the physical time scale symbolized by δt∗ and
the results from Fig. 2 (defined by the value 1/rn) must be
reconciled. While there are rigorous ways to connect both
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Table 1 Values for the material parameters employed in this work

Property Symbol Value Unit

Burgers vector’s modulus b
√
3/2 a0

Lattice parameter a0 3.16 Å

Bulk modulus κ 310 GPa

Shear modulus μ 160 GPa

Young’s modulus E 409 GPa

Peierls stress σP 2.0 GPa

Initial dislocation density ρ0 8.3 × 1012 m−2

(discussed in Sect. 4), here we adopt the practical approach
of defining a normalization factor Δε∗ � 1, which is used
to scale Eq. (26):

δtn = − log ξ2

(
Δε∗

rn

)

The impact of the choice ofΔε∗ will be evaluated in the next
section.

3 Results

3.1 Verification of algorithm capabilities

In this section, we verify that the stochastic solver in Algo-
rithm 1 is capable of reproducing the results of deterministic
CP calculations under generic loading and temperature con-
ditions. We first consider uniaxial loading along the [001]
crystal orientation at 500 K and 10−3 s−1. [001] loading
results in eight active slip systems each with a Schmid factor
of 0.409 and four inactive ones. As such, it is representa-
tive of multi-slip conditions conducive to latent hardening.
In this work we consider single crystal deformation only,
i.e., 1/dg ≈ 0. Values for the material parameters used in the
calculations are given in Table 1.

3.1.1 Stress-strain response

Figure 3 shows stress-strain curves for several Δε∗. The
shaded area represents the reference deterministic result (for-
ward Euler method with dt = 0.1 s) for comparison. A
prescribed strain rate of (ε̇0)zz ≡ ε̇0 = 10−3 s−1 was used.
As the figure shows, the value of Δε∗ determines the mag-
nitude of the stochastic oscillations, but not its steady state
value, which is seen to consistently reproduce the determin-
istic solution. In particular, the hardeningmodulus –assumed
to remain constant during plastic flow– is seen to be virtu-
ally identical in all cases, 0.96 GPa, irrespective of the value
of Δε∗. The average yield strength, σ̄Y, obtained from all

Fig. 3 Stress-strain response at 500 K under [001] axial loading. The
shaded area represents the reference deterministic result (forward Euler
method with dt = 0.1 s). Results for several Δε∗ inside the stability
range are given for comparison

Fig. 4 Total dislocation density evolution as a function of axial strain
at 500 K under [001] loading. The shaded area represents the reference
deterministic result (forward Euler method with dt = 0.1 s). Results
for several Δε∗ inside the stability range are given for comparison
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Fig. 5 Evolution of the
normalized shear slip rate with
plastic strain for several values
of Δε∗ at 500 K under axial
loading along the [001]
direction. Results are given as
averages and standard
deviations for all active systems
under these loading conditions
(8 out of 12, all with an identical
Schmid factor of 0.4091). The
shaded area in the background
corresponds to the reference
deterministic result (forward
Euler method with dt = 0.1 s)

(a) (b)

(c) (d)

(e) (f)

the different Δε∗ cases is seen to slightly exceed the deter-
ministic value, 1.9 vs. 1.8 GPa, respectively. The standard
deviation of σ̄Y scales linearly with Δε∗, with a proportion-
ality constant on the order of the Young’s modulus E . This
is consistent with having elastic strain increments that may
‘overshoot’ the true (deterministic) yield stress, which is then
immediately followed by a plastic event.

3.1.2 Dislocation densities and fluxes

Figure 4 shows the evolution of the total dislocation density
with strain corresponding to the cases shown in Fig. 3. The
values shown in the curves are normalized to the initial dislo-
cation density value ρ0 (cf. Table 1). The dislocation density
is seen to evolve in bursts of a magnitude commensurate with
the value ofΔε∗. Although a small drift at high strains can be

appreciated for the two cases with the largest scaling factor,
the steady state value of ρtot is in excellent agreement with
the solution furnished by the deterministic solver.

ρtot is an integrated measure of the overall performance
of the algorithm during plastic deformation. However, it is
also of interest to look at the evolution at the level of the slip
systems. Figure 5 shows results for the average shear rates
under [001] axial loading at 500 K, defined as:

¯̇γ = 1

Nact

Nact∑

α

γ̇ α

where Nact < N is the number of slip systems with nonzero
Schmid factor (8 out of 12, all with an identical Schmid factor
of 0.409 under these conditions). The average shear plastic
rates shown in the figure are normalized to ε̇0. The error bars
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Fig. 6 Axial stress-strain curves as a function of temperature under
ε̇0 = 10−2 s−1 and [001] loading. All curves are forΔε∗ = 5.0×10−5.
The inset gives the temperature dependence of the yield stress (0.2%-
strain offset stress)

Fig. 7 Axial stress-strain curves as a function of strain rate at 500 K
and [001] loading. All curves are forΔε∗ = 5.0×10−5. The inset gives
the strain rate sensitivity (SRS) of the yield stress (0.2%-strain offset
stress). The SRS exponent is m = 0.059

shown represent the standard deviation associated with the
stochastic sampling. As in Figs. 3 and 4 , the deterministic
solution is shown in the background as a shaded area. Clearly,
the values associated with largerΔε∗ showmuch larger aver-
age plastic shear rates and more pronounced deviations from
the mean value.

3.1.3 Exploring the parametric space

For generalization purposes, next we apply the method
changing the three external variables in the simulations, i.e.,
temperature, strain rate, and loading orientation. Figure 6
shows a set of stress-strain curves at temperatures ranging
from 300 to 800 K at ε̇0 = 10−2 s−1 under [001] load-
ing. All curves are for Δε∗ = 5.0 × 10−5. The temperature
dependence of the yield strength (obtained as the 0.2%-offset
stress) is given in the inset to the figure.

Figure 7 shows the stress-strain response of the system as
a function of ε̇0 at 500 K under [001] loading. All curves
are for Δε∗ = 5.0 × 10−5. The inset shows the strain-rate
sensitivity (SRS) of the yield strength (obtained as in Fig. 6),
including the SRS exponent m from the fit σY = C ε̇m0 . The
fit (dashed line in the inset) yields values of C = 2.83 GPa
and m = 0.059.

Finally, we explore several different loading orientations
with T = 500K, ε̇0 = 10−2 s−1, andΔε∗ = 5.0×10−5. Fig-
ure 8 shows stress-strain curves for several loading directions
in the standard triangle, shown on the right. The deterministic
solutions for each case are shown as black dashed lines.

3.2 Natural evolution of slip under heterogeneous
conditions

The above subsections unequivocally show that the stochas-
tic crystal plasticity (SCP) algorithm is capable of solving
the samemathematical problem as standard crystal plasticity.
However, as indicated in the introduction, this is not the main
point of SCP. Stochasticity represents an intrinsic numeri-

Fig. 8 Axial stress-strain curves
as a function of loading direction
at 500 K and [001] loading and
10−2 s−1. All curves are for
Δε∗ = 5.0 × 10−5. The
corresponding deterministic
solutions are provided as black
dashed lines. The loading
directions are marked in the
stereographic triangle for
reference
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Fig. 9 Axial stress-strain curves as a function of loading orientation
at 500 K and 10−2 s−1 using two methods that break the symmetry of
slip: the stochastic algorithmevolving shear one event at each time (solid
lines) and the explicit method by Kuchnicki et al. [46] (discontinuous
lines with like colors). The SCP curves are for Δε∗ = 5.0 × 10−5

cal element that can promote plastic shear heterogeneously
across different slip systems, i.e., SCP can capture natural
fluctuations in the underlying plastic rates without the need
for ad-hoc probabilistic treatments.

To showcase this feature of the model, here we study
again uniaxial tests at 500 K, 10−2 s−1, and several orienta-
tions using the SCP method sampling one single slip event
per time step. Our curves are compared to results obtained
using the CP explicit solver by Kuchnicki et al. [46], which
is also designed to induce asymmetric plastic flow by using a
sequential cycle that prioritizes slip in systems with the high-
est excess stress (i.e., what the quantityΔτα used in Eq. (12)
represents here).

To demonstrate slip anisotropy,we take the [101] direction
as representative of multislip conditions (four slip systems
with a Schmid factor of 0.408 and eight inactive slip systems)
to compare the deterministic approachbyKuchnicki et al. and
the SCP method. In Fig. 10 we plot the plastic shear rates in
all 12 slip systems for the [101] loading case shown in Fig. 9.
As shown, the plastic slip that leads to the stress-strain curves
for the [101] loading orientation in Fig. 9 is carried by a single
slip system (α = 7 in Table 2) in the SCP case, and by two of
them (α = 6, 9) in the deterministic case.Wehave confirmed
that in each SCP simulation the probability that any one of
the four active slip systems is activated is indeed the same
(25%).

3.3 Computational performance

In general terms, the efficiency of the residence time algo-
rithm is tied to the event search encoded inEq. (24).When the
dimension, n, of the sampling array is large, binary searches
with a O(log(n)) nominal overhead are more efficient than

simple O(n) linear searches. However, this is not a factor
in the present calculations, where, at most, n = N + 2 with
N = 12. Instead, the computational overheadmay be defined
as the CPU time invested in advancing a CP simulation by
some amount of strain. Figure 11a shows the CPU cost per
1% strain4 for the implementation ofAlg. 1 on a 1.4GHz Intel
Core i5 processor tested as a function ofΔε∗ for a number of
SCP simulations at 500 K under [101] loading at 10−3 s−1.
As the figure clearly shows, an inverse correlation between
the CPU time and Δε∗ is found. For the results shown in the
figure, tCPU = 3.43 × 10−5x−0.97 [s per 1% strain]. This is
not unexpected, since, as we showed above, there is a direct
equivalence between Δε∗ and the effective time step used
in the simulations. Using such correlations can be helpful in
estimating the a priori CPU overhead of a SCP simulation.

For its part, Fig. 11b gives the samemetric as a function of
applied strain rate for a fixed value of Δε∗ = 10−4. A sharp
drop is observed between ε̇0 = 10−3 and 10−2 s−1, although
this is likely to be somewhat dependent on the value of Δε∗
chosen in each case.

4 Discussion

In essence, the present method provides a new approach for
time integration of crystal plasticity models. The solver itself
is the well-known residence time algorithm, which relies on
stochastic sampling of a set of transition rates that deter-
mine the evolution of the system through a sequence of states
with the correct probability. KMC methods require concur-
rent sampling of all event rates, and thus the method is suited
for explicit time discretizations of the crystal plasticity equa-
tions (when ε̇0 and the different γ̇α are strictly independent
of one another). However, this is more a technicality in the
definition than a limitation in the computational sense, as
the SCP approach is not constrained by the same stability
considerations of standard (deterministic) methods.

The discrete nature of the method naturally leads to oscil-
lations in the plastic response of the system. It is worth
emphasizing that, while numerical in origin, these oscil-
lations are physical and can be ultimately linked to the
discreteness of dislocation slip at the lattice level, by way
of integer Burgers vector amounts. The magnitude of the
oscillations is encoded in a parameter Δε∗, which here is
user-defined under certain physical restrictions (Sect. 2.5).
A way to quantitatively interpret these oscillations may be
by considering Δε∗ to scale with the ratio b/L , where b and
L are the Burgers vector’s modulus and a generic specimen’s
dimension, respectively. In bulkmaterials, this ratio becomes

4 It should be noted that, while the CPU cost of the SCP method in the
elastic and plastic regions is virtually identical, this is not the case for
a deterministic integrator, where the initial buildup in elastic strain is
practically instantaneous compared to the plastic flow region.
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Fig. 10 Normalized plastic
shear rates as a function of
plastic strain for
symmetry-breaking slip
evolution modes of the SCP
algorithm and an explicit
deterministic model [46]

(a) (b)

Fig. 11 Computational cost of
SCP simulations at 500 K under
[101] loading. (a) CPU time per
1% strain for at 10−3 s−1 as a
function of Δε∗. A power law fit
to the data is shown as a dashed
line, represented by the
expression
tCPU = 3.43 × 10−5x−0.97. (b)
CPU time per 1% strain for
Δε∗ = 10−4 as a function of
strain rate. In both cases, the
error bars correspond to the
variability of the results from 10
independent runs

(a) (b)

extremely small, leading to smooth stress-strain responses as
shown in Figs. 3 and 7 , while for higher values of Δε∗, a
highly oscillatory behavior is seen, in accordance with what
is seen in small-scale specimens such as free-standing nano-
pillars or cantilever nano-beams [50–53].

This, and other features of the model, including several
potential advantages over standard explicit CP approaches,
are further elaborated on below.

4.1 Physical time scale defined through1"∗

In Sect. 2.5, a parameterΔε∗ is introduced to restrict the time
steps that would naturally emanate fromEq. (23), graphically
represented in Fig. 2. However, a formal connection between
Δε∗ and δt∗, in Eq. (31), was not established at the time.

A rigorous way to demonstrate this connection can be by
adding an extra rate to rn in Eq. (23) to extend the exit rate
of the system with an event that does not alter its state at a
given time. This ‘null’ event process, which has been applied
successfully in the context of parallel kMC algorithms [28,
54], is characterized by a rate rnull that can be used at will
to ‘slow’ down the evolution of the system while preserving

the correct kinetics. Mathematically:

1

rn + rnull
< δt∗ (32)

which leads to the condition: rnull > 1
δt∗ − rn . The pictorial

representation of rnull is shown in Fig. 1 as an extra entry
(dashed gray line) in the array. It is trivial to show that the
relationship among Δε∗, rn , and rnull is:

Δε∗ = rn

rn + rnull

or, alternatively,Δε∗/rn < δt∗, i.e.,Δε∗, rnull, and δt∗ can be
thought of as being interchangeable parameters. In any case,
these relationships show that one can rigorously connect the
mathematical representation of the system’s kinetics to the
physical time evolution under deformation.
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Fig. 12 Computational overhead of a reference crystal plasticity sim-
ulation ([101] loading direction at ε̇0 = 10−3 s−1) as a function of
temperature for both the SCP model and a standard CP model using
an explicit forward Euler integrator (deterministic). The numbers asso-
ciated with each data point of the deterministic calculations (in blue)
indicate the maximum dt attainable to maintain numerical stability

4.2 Potential advantages of the present method
over deterministic integrators

4.2.1 Asymmetry in slip rates with identical orientation

It iswell known that fromapurely geometric point view, there
is a redundancy in establishing the number of active slip sys-
tems that contribute to deformation under highly-symmetric
loading conditions. Mathematically, this problem of slip
indeterminacy is intrinsically found in rate-independent
CP formulations, and can be partially addressed by, e.g.,
imposing additional constraints on the internal variables
or the stress space of the system [13,55,56]. While the
non-uniqueness of the solution is no longer an issue in
viscoplastic (rate-dependent) crystal plasticity models, the
plastic response still displays symmetries in slip that are not
observed in real materials’ deformation [57–59].

The SCP model presented here offers the potential to
introduce variability in the solution in a natural way, thus
intrinsically enabling the possibility for non-symmetric acti-
vation of slip systems according to just the Schmid criterion.
This symmetry-breaking capability emanates directly from
the solver, i.e., without the need to add it externally, which
means that it can lead to inhomogeneous plastic deforma-
tion naturally. This inhomogeneity emerges from the inherent
stochastic treatment of the plastic shear rates, and thus may

Table 2 Slip systems considered in this simulation [39]

α Slip system sα nα

1 [11̄1](011) [11̄1] [011]
2 [1̄1̄1](011) [1̄1̄1] [011]
3 [111](01̄1) [111] [01̄1]
4 [1̄11](01̄1) [1̄11] [01̄1]
5 [1̄11](101) [1̄11] [101]
6 [1̄1̄1](101) [1̄1̄1] [101]
7 [111](1̄01) [111] [1̄01]
8 [11̄1](1̄01) [11̄1] [1̄01]
9 [1̄11](110) [1̄11] [110]
10 [1̄11̄](110) [1̄11̄] [110]
11 [111](1̄10) [111] [1̄10]
12 [111̄](1̄10) [111̄] [1̄10]

be seen as having a direct correlation to real deformation
situations.

From a thermodynamic standpoint, several works have
established a link between the heterogeneity of plastic
deformation and the system’s entropy production based
on maximum-dissipation criteria [60,61]. Indeed, stochastic
approaches have the potential to access an increased num-
ber of states. While beyond the scope of the present work, it
would be of interest to augment the current model by intro-
ducing quantitative metrics of entropy production directly
connected to the stochastic variability and the symmetry-
breaking features of the SCP model.

4.2.2 Numerical stability and computational cost

While the computational overhead of the SCP method has
been assessed in Sect. 2.2 and Fig. 11, any meaningful dis-
cussion of the CPU cost of the SCP method must necessarily
involve a comparisonwith a standard explicit (forward Euler)
integrator for CP problems in equivalent conditions. Fig-
ure 12 shows the computational cost (in seconds per 1%
strain) of a reference crystal plasticity problem ([101] load-
ing direction at ε̇0 = 10−3 s−1) as a function of temperature
simulated both with the SCP model using several values of
Δε∗ and a standard deterministic CP model based on a for-
ward Euler integrator. The numbers associatedwith each data
point of the deterministic calculations (in blue) indicate the
maximum dt attainable to maintain numerical stability5.

There are several remarkable features that emerge from
the analysis presented in the figure. We start by noting that
the SCP method is intrinsically stable under all conditions,

5 Here stability is guaranteed by limiting the deviation of the solution
using a given time step compared to the solution using dt = 10−5 s to
no more than 10%.
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a virtue of the residence-time algorithm, while the numeri-
cal stability of the deterministic solver is highly dependent
on temperature and strain rate. Second, the CPU cost of
the stochastic algorithm is practically independent of tem-
perature. Third, and most important for the purposes of
this discussion, the deterministic solver’s numerical stability
requires increasingly smaller time steps (labeled as ‘δtmax’
in the figure) as the temperature increases. For this reason, at
600 K we see a sharp upturn in the CPU cost, which drives
its computational overhead far above that of the SCP model.
The fact that the algorithm samples one event per time step
helps stabilize the numerical solution and allows for longer
time steps at high temperature compared to a standard for-
ward Euler approach. While it is common practice to add
modifications to the Euler method to improve its stability
[9,49], we consider this a very attractive potential advantage
of SCP over standard explicit solvers.

We close Sect. 4.2 reiterating the potential advantages
of SCP over deterministic (both explicit and implicit)
approaches. One obvious advantage of using our method at
all temperatures (including room temperature and below) is
the added benefit of capturing plastic fluctuations naturally.
Thus, in cases where those are of interest (cf. Sect. 4.2.1),
our approach is useful from a physical point of view. Numer-
ically, at low temperatures our method is consistent with the
behavior of kinetic Monte Carlo models versus deterministic
solvers in other fields of physics [62–64]. Rather than being
attributable to stochastic solvers being slow, the advantages
of deterministic solvers have to do more with their ability
to be stable using large time steps. In general, the consen-
sus is that for simple models (with low physical complexity)
deterministicmodelswill always outperform stochastic ones.
However, as the physical model (so-called ‘material model’
in crystal plasticity) grows in complexity, stochastic solvers
become relatively more efficient. Note that such complex-
ity may be introduced also via the external conditions, as is
the case in this work, when thermally activated mechanisms
become dominant at higher temperatures.

5 Conclusions

We conclude this paper with a list of our most important
findings:

– We have developed a stochastic solver for crystal plas-
ticity models based on the residence-time algorithm. The
method strictly works for explicit problems, when the
total strain rate and the individual plastic shear rates can
be considered independent from one another.

– The SCP model is intrinsically numerically stable with-
out the need of any extra procedures. Changes in the
values of the external variables manifest themselves in
terms of the magnitude of the oscillations of the solution,
not on its stability.

– The SCP model naturally breaks the symmetry of plastic
slip by sampling among the active plastic shear rates with
the correct probability. This can lead to phenomena such
as plastic localization without needing to add any ad hoc
treatments to the model.

– All variables kept the same, the computational over-
head of the SCP method scales inversely with Δε∗ (as
∼ 1/Δε∗) and ε̇0. The CPU cost is insensitive to temper-
ature for the crystal plasticity model employed here.

– For a fixed prescribed total strain rate and loading direc-
tion, the SCP model becomes more efficient than a
standard forward Euler approach at T > 600 K. It is
expected that similar transitions exist for other crystal
orientations and strain rates.
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A Crystallographic slip systems for bcc
lattices

B Latent hardening coefficients

See Tables 3 and 4.
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Table 3 Interaction coefficients
ξαβ for the 12 slip systems listed
in Table 2

α 1 2 3 4 5 6 7 8 9 10 11 12

1 A

2 CP A

3 S S A

4 S S CP A

5 G O O CL A

6 O CL G O CP A

7 O G CL O S S A

8 CL O O G S S CP A

9 O G O CL CL O G O A

10 CL O G O O G O CL CP A

11 G O CL O G O CL O S S A

12 O CL O G O CL O G S S CP A

The letter coding indicates ‘A’ : self; ‘CP’ coplanar; ‘CL’: collinear; ‘O’:orthogonal; ‘G’: glissile; ‘S’: sessile

Table 4 Values of ξαβ for latent hardening in bcc crystals [65]

Self Coplanar Collinear Orthogonal Glissile Sessile

0.009 0.009 0.72 0.05 0.09 0.06

C Explicit deterministic algorithm

The reference deterministic solver for the explicit crystal
plasticity model used here is given below. It is based on
a simple forward Euler method without any modifications
to improve its convergence behavior (first order accuracy,
O(δt2)).

Algorithm 2
1: Initialize: ε̇0, T , TOL, maxiter, N , tTOT, t = 0, δt , {ρα} = ρ0, dg
2: Initialize: ΔεE = ε̇0δt
3: while (t < tTOT) do
4: Calculate: stress (tensor) increment Δσ = C : ΔεE

5: Update: stress tensor σ = σ + Δσ

6: Initialize: ΔεP = 0
7: for α = 1, N do
8: Initialize: ρα

f = 0
9: Calculate: modulus: b = ‖bα‖
10: Get: slip direction sα = b−1bα , plane normal nα

11: Calculate: resolved shear stress τα
RSS = sα · σ · nα

12: for β = 1, N do
13: Calculate: forest dislocation density ρα

f = ρα
f +ξαβρβ |sβ ·

nα |
14: Calculate: forest dislocation hardening gα = gα +

ξαβρβ |sβ · nα |
15: end for
16: Get: dislocation hardening τα

h = μb
√
gα + ξααρα

17: Calculate: λα =
(√

ρα
f + 1

dg

)−1

18: if
(
(λα − w > 0) and

(
τα
RSS − τα

h > 0
))

then

19: vα
0 = sgn(τα

RSS)ν0
h
b (λα − w)

20: vα = vα
0 exp

{
−ΔH0

kT

(
1 −

∣∣
∣
τα
RSS−τα

h
σP

∣∣
∣
p)q}

21: else
22: vα = 0
23: end if
24: Calculate: ΔεP = ΔεP + ραbvα (sα ⊗ nα) δt
25: end for
26: Update: t = t + δt
27: Update: ΔεE = (

ε̇0δt − ΔεP
)

28: Update: εtot = εtot + ε̇0δt
29: for β = 1, N do

30: Update: ρβ = ρβ +
∣∣γ̇ β

∣∣

λβ

(
1 − 2bλβρβ

)
δt
b

31: end for
32: end while
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