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Abstract
This paper presents an unified mathematical and computational framework for mechanics-coupled “anomalous” transport
phenomena in porous media. The anomalous diffusion is mainly due to variable fluid flow rates caused by spatially and
temporally varying permeability. This type of behaviour is described by a fractional pore pressure diffusion equation. The
diffusion transient phenomena is significantly affected by the order of the fractional operators. In order to solve 3D consol-
idation problems of large scale structures, the fractional pore pressure diffusion equation is implemented in a finite element
framework adopting the discretised formulation of fractional derivatives given by Grunwald–Letnikov (GL). Here the frac-
tional pore pressure diffusion equation is implemented in the commercial software Abaqus through an open-source UMATHT
subroutine. The similarity between pore pressure, heat and hydrogen transport is also discussed in order to show that it is
possible to use the coupled thermal-stress analysis to solve fractional consolidation problems.

Keywords Complex porous media · Fractional pore pressure diffusion · Finite element implementation · Comparison with
analytical solutions

1 Introduction

This paper introduces a unified formalism for coupled
anomalous diffusion processes in porous media as well as a
simple open-source implementation in FE commercial code.
It was noticed that in soft tissue hydrated with water such
as articular cartilage [1] and meniscus [2–6] the interstitial
water pressurizes when the tissue is loaded. The fluid pres-
surization has been hypothesized to be a major factor in the
load-support mechanism and in the response to friction of
these types of tissues [1]. When the physiological load is
applied, this load is shared between the solid skeleton and
the interstitial fluid. Theoretical studies have demonstrated
that the interstitial fluid (i.e. pore pressure) may sustain up
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to 90% or more of the total applied load particularly in the
initial phases of loading [1,7,8].

Experimental studies have revealed that the time-varying
response of pore pressure diffusion is anomalous and it is
mainly due to variable fluid flow rates which are, in turn,
caused by spatially and temporally varying permeability [2].
This is mainly due to the fact that the permeability, hence the
rate of fluid flow, often depends on the porosity [9] which
varies throughout the tissue [2]. Variations in permeability
occur, for example, when the fluid flow impacts the geome-
try or the micro-structural features such as the configuration
of the pores. Experiments on water flow in building materi-
als, sand and zeolite among other minerals, highlighted that
the permeability changes during the water flow process as a
result of the microstructural rearrangement of grains/pores.
Iaffaldano at al. [10] hinted that during compaction of sand,
permeability might decrease due to the fact that the fluid
carries solid particles which then close some of the pores.
Essentially the configuration of the medium, in particular
the ratio between closed/open pores, changes during the pro-
cess. Fluid might be trapped in the medium leading to a
slower fluid flow rate. On the contrary, if during the water
diffusion process some of the pores open creating conduc-
tive microchannels, permeability might increase. Therefore,
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water can be transported for large distances in a reduced
time determining a faster diffusion process. These types of
phenomena are well captured by a form of Darcy’s law in
which fractional operators are involved in the rate of fluid
flow [11,12].

It is then fundamental to be able to understand and model
the time-varying interstitial fluid pressurization, the order of
the fractional operators and its role in load bearing of soft
hydrated tissues. It is shown that a commonmathematical for-
mulation is able to describe both stress-driven anomalous dif-
fusion, biomechanical processes in soft tissues and a number
of multiphysics problems. Coupled models of transient flux
(temperature, mass, pore pressure) with deformable solids
rely on appropriately considering the interaction among sep-
arate physical fields. The physics refers to common types of
physical processes, e.g., heat transfer (thermo-), porewater or
pore pressure movement (hydro/poro-), concentration field
(concentro or diffuso/convecto/advecto-), stress and strain
(mechano-), dynamics (dyno-), chemical reactions (chemo-
or chemico-), electrostatics (electro-), and magnetostatics
(magneto-). The mathematics of these phenomena is simi-
lar. The differences lay mainly on the coupling terms, and
how they are modelled, as they are dictated by the physics
of the problem. It is clear that in the case of thermoelasticity
and poroelasticity the coupling stress-diffusion in the trans-
port equation is confined to a source/sink term. Different is
the case of hydrogen diffusion-mechanics in which the cou-
pling is both in the flux (as there is a term which is related to
the gradient of hydrostatic stress) and in a sink term (related
to the role of plastic strain).

Here the focus of the paper is to present an unified
mathematical and computational framework for mechanics-
coupled “anomalous” transport phenomena in porous media
and provide the link how the procedure can be applied in
a number of multiphysics problems. The anomalous pore
pressure diffusion which contain a fractional Darcy’s law
is derived and implemented in the finite element frame-
work using the discretised formulation given by Grunwald–
Letnikov (GL). The coupled poro-mechanics problem is
then, for the first time, implemented in Abaqus, through a
UMATHT routine, in order to adopt the coupled temperature-
displacement procedure available in Abaqus to effectively
solve diffusion-mechanics problems. The same approach
has been used when coupling hydrogen diffusion mechanics
problems to highlight some material deterioration phenom-
ena. For example the coupled elasto-plastic response with
models of diffusional hydrogen transport provided new
insights into a number of hydrogen embrittlement mecha-
nisms [13–15].

It is also important to know when a given coupled prob-
lem can be solved in an uncoupled manner. The strength
of coupling is discussed in terms of deriving dimension-
less parameters for thermoelasticity/poroelasticity in the

same fashion as [16]. Dimensionless parameters are also
here derived for the first time for hydrogen diffusion-elasto-
plasticity. Summarizing the main novelties of the paper are:

• Numerical implementation of the anomalous pore pres-
sure diffusion equation in a finite element framework.

• Details of the Abaqus implementation in UMATHT sub-
routine and comparison with analytical solutions of a
fractional boundary value problems.

• Derivation of dimensioneless parameters to evaluate the
strength of coupling for diffusion mechanics problems

Thepaper is structured as follows. First the coupled transport-
mechanics problem is porous solid is introduced within
the context of poroelasticity. The anomalous pore pressure
diffusion equation, needed to solve the poroelastic set of
equations, is subsequently derived. The strength of cou-
pling in diffusion-mechanics problem is then discussed in
Sect. 3. Section 4 focuses on the numerical implementation
of the pore pressure diffusion equation, the similarities with
heat and hydrogen transport are clearly identified. Numerical
results including uncoupled and fully coupled poromechan-
ics such as consolidation problems are presented in Sect. 5.

2 Fully coupled transport andmechanical
behaviour in deformable porous solids

In the following we recap the main equations needed to
solve coupled pore pressure diffusion with mechanics in
the context of the theory of poroelasticity. For the sake of
simplicity we limit the discussion to linear elastic solid. In
appendix (“AppendixA”) parallelismswith thermo-elasticity
and hydrogen diffusion mechanics are reported.

The classical linear model of transient flow and deforma-
tion of a homogeneous fully saturated elastic porous medium
depends on an appropriate coupling of the fluid pressure and
solid stress [17,18]. A change in applied stress produces a
change in fluid pressure or fluid mass and a change in fluid
pressure or fluid mass is responsible for a change in the vol-
ume of the porous material. The coupling term affects only
the hydrostatic part of the stress tensor. Considering that
stresses are positive when they are tensile and pressure is
positive when it is compressive (i.e. tr(σ ) = −3p, where p
is the pore pressure), the stress tensor is written as follows:

σ = 2Gε + λtr(ε)I − α pI (1)

where λ = K − 2
3G is the Lamé constant, G, K are the shear

and bulk modulus, respectively, p is the pore pressure and
α is the Biot coefficient. It is useful to express the linear
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poroelastic constitutive equations in terms of strain:

ε = σ

2G
− ν

2G(1 + ν)
tr(σ )I − α

3K
pI (2)

With ν being the Poisson’s ratio. It is also important for the
following to derive an expression for the volumetric strain or
dilatation εd by taking the trace of both sides of Eq. 2:

εd = tr(ε) = tr(σ )

2G
− 3ν

2G(1 + ν)
tr(σ ) − α

K
p (3)

Equation 3 can also be written as follows:

εd = σH

K
− α

K
p (4)

εd being the volumetric/dilatation strain and σH = σi i/3 the
hydrostatic component of stress.

Equations 1, A.1 and B.1 in “Appendices A and B”
respectively have the same structure. These equations govern
coupled stress-diffusion phenomena. The diffusion equations
of the pore pressure p, temperature θ and hydrogen concen-
tration cL are derived from the same set of equations (i.e.
conservation of pore fluid, energy, mass along with the con-
stitutive equations relating fluxes with gradient of p, θ, cL
(i.e. Darcy’s, Fourier’s or modified Fick’s laws).

2.1 Anomalous pore pressure diffusion equation

The anomalous pore pressure is controlled by a governing
diffusion equation. This equation is found by considering
conservation of mass for the pore fluid ζ , along with a con-
stitutive equation that relates the fluid flux jp to the pore
pressure gradient through non integer order operators. Mass
conservation states that the rate of change of the total mass
in a volume 	 is equal to the flux jp through the surface ∂	

which, in absence of sources or sinks, reads as follows:

∂

∂t

∫

	

ζd	 +
∫

∂	

(jp · n)d∂	 = 0 (5)

where n is the outward normal to ∂	. In the following the lin-
ear kinematic/small deformation theory is taken into account.
Nonlinear kinematic terms in small deformation regime is
often associated with partially saturated conditions (Skemp-
ton coefficient B<1), which the theory presented in the paper
is not suited for. Considering that the theory presented here
is limited to the linear kinematic case and applying the diver-
gence theorem on the surface integral, the following equation
is derived:

∂

∂t

∫

	

(ζ + ∇ · jp)d	 = 0 (6)

For Eq. 5 to be true for any region 	, the integrand must
vanish, i.e.

∂ζ

∂t
+ ∇ · jp = 0 . (7)

Equation 7 represents conservation ofmass for the pore fluid.
The relationship between the fluid-flux vector jp and the pore
pressure p is given by a modified version of Darcy’s law
involving fractional operators, which in the isotropic case
and without inertia’s term takes the form [11,12]:

jp = − k
μ
Dβ
0 (∇p) (8)

where k is the permeability and μ the dynamic viscosity.
In the following k

μ
will be indicated as λβ . D

β
0 indicates

the Caputo’s fractional time derivative [19]. The Caputo’s
fractional derivative of order β of the function ∇p is defined
as:

(aD
β
t ∇p)(t) = 1

�(n − β)

∫ t

a

∇pn(τ )

(t − τ)β+1−n
dτ (9)

The expression is valid for n − 1 < β < n, and � is the
Euler’s Gamma function. One of the advantage of using the
definition of Caputo fractional derivative is that initial condi-
tions in terms of integer order derivatives are obtained. This
is important for applications in real physical problems. If
α → n the Caputo’s derivative is reduced to classical integer
order derivatives; moreover the Caputo fractional derivative
of a constant is zero as integer order derivative. Given that in
the cases considered in this paper the lower bond of integra-
tion a = 0, Caputo’s fractional derivative of order β aD

β
t is

indicated as Dβ
0 .

The fractional derivative method offers the possibility
to model with reduced number of parameters all of the
anomalous diffusion behaviours by changing the order of the
derivative. The drawback is that it is difficult to link the order
of the derivatives with microstructural features. In order to
understand if the choice of a macroscopic fractional model
is sensible,recently approaches based on Bayesian model
selection have been developed [20–22] and the error in the
parameters estimation quantified [20–24].

It is generally assumed that the variation of the pore fluid
content ζ depends linearly on the hydrostatic component of
stress σH (shear stresses have no influence) and on the pore
pressure. Hence ζ can be expressed as follows [16]:

ζ = α

k
σH + α

K B
p (10)

where B is the Skempton coefficient which essentially gives
indication of the increase in fluid pressure of an elastic
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isotropic porous material subjected to undrained loading. B
is related to the drain/undrained bulk moduli: K and Ku and
the Biot coefficient α as follows:

B = Ku − K

αKu
(11)

The value of B is always between 0 and 1. When B is 1,
the hydrostatic stress or the dilatation strain is completely
transferred into changing pore pressure. When B equals to
0 indicates no change in pore pressure after applying the
volumetric stress or strain field. Laboratory studies indicate
the value of B depends upon the fluid saturated pore volume
of the sample [25]. A value of B < 1 indicates a partially
saturated media. The theory here considers saturated solid
for which B is close to 1. The variation of fluid content with
time takes the following form:

∂ζ

∂t
= α

k

∂σH

∂t
+ α

K B

∂ p

∂t
(12)

Substituting Eqs. 12 and 8 into Eq. 7 and we obtain the fol-
lowing fractional partial differential equation:

∂ p

∂t
= K B

α
λβD

β
0 ∇2 p − B

∂σH

∂t
(13)

In here the following rule of fractional derivatives is implied
[19]:

∇ · Dβ
0 ∇ p = Dβ

0 ∇2 p (14)

It is important to note that, in case of β = 0, λβ = k
μ
with

dimension of [L]4
[F][T ] . In the case of β �= 0, λβ has dimension

of [L]4
[F][T ]1−β . The pore pressure diffusion equation can also

be written in terms of strains. In order to do so we start by
combining Eqs. 10, 11 and 4 in order to have an expression
relating the variation of fluid content depending on dilatation
and pore pressure:

ζ = α2

Ku − K
p + αεd (15)

Differentiating Eq. 15 with respect to time we obtain:

∂ζ

∂t
= α2

Ku − K

∂ p

∂t
+ α

∂εd

∂t
(16)

Substituting Eqs. 16 and 8 into Eq. 7 we obtain the following
fractional partial differential equation in terms of strain:

∂ p

∂t
= Ku − K

α2 λβD
β
0 ∇2 p − Ku − K

α

∂εd

∂t
(17)

3 The strength of coupling in diffusion
mechanics problems

When dealing with coupled models of transient flux (tem-
perature, mass, pore pressure) with deformable solids it is
important to highlight when these problems can be treated
in an uncoupled manner. In other words, it is important to
quantify when is appropriate to compute stress/strain fields
ignoring the transient flux and viceversa. For this purpose
in the following dimensionless parameters are identified for
the case of poroleasticity, thermoelasticity and hydrogen
diffusion-elasto plasticity.

3.1 Poroelastic coupling

Equations 1 and 2 show that the influence of the pore pressure
on the volumetric part of the stress or strain tensor is governed
by the Biot coefficient α. If α = 0 pore pressure would have
no influence on the stress/strain tensor. The Biot coefficient
is the fluid volume change induced by bulk volume changes
in the drained condition. It is shown that, for a large class of
porous media, the value of the Biot coefficient α is signif-
icantly greater than zero therefore stresses/strain cannot be
computed without computing the pore pressure [16]. Equa-
tions 13 and 17 show that the pore pressure is governed by
a diffusion-type equation containing an additional coupling
term that serves as a source-sink:

∂ p

∂t
+ K B

α
∇ · jp + rp = 0 (18)

with rp being a source term. From Eq. 17:

Source : rp = Ku − K

α

∂εd

∂t
= BK

∂εd

∂t
(19)

or from Eq. 13

Source : rp = B
∂σH

∂t
(20)

These source terms in Eqs. 19 and 20 are the coupling terms
relating the pore pressure increment to the increment of the
volumetric part of either the stress or strain tensor through
the Skempton coefficient B. This effect can be viewed as a
transient Skempton-type effect, in the sense that either the
change in time of hydrostatic stress or of dilatation strain
(i.e. changing in volume) gives rise to a local increase in
the pore pressure. Equation 4 relates the dilation strain with
hydrostatic stress and pore pressure:

∂εd

∂t
= 1

K

∂σH

∂t
− α

K

∂ p

∂t
(21)
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Now let us consider two cases:

(a) Constant hydrostatic stress: ∂σH
∂t = 0. This reduces

Eq. 21 to:

∂εd

∂t
= − α

K

∂ p

∂t
(22)

In the case of constant hydrostatic state of stress, a pos-
itive change in pore pressure contributes to lowering the
dilation strain rate. Substituting this into Eq. 19we obtain
that the magnitude of source terms becomes:

MagnitudeSource : Ku − K

α

∂εd

∂t
= αB

∂ p

∂t
(23)

(b) Constant bulk strain: ∂εd
∂t = 0. This reduces Eq. 21 to:

∂σH

∂t
= α

∂ p

∂t
(24)

Equation 24 shows that a positive increment of pore pressure
causes an increase of the rate of hydrostatic stress. Substitut-
ing this into Eq. 20 we obtain that the magnitude of source
terms becomes:

MagnitudeSource : Bα
∂ p

∂t
(25)

From Eqs. 23 and 25 the strength of coupling is given by Bα.
If Bα << 1 then it is possible to ignore the source terms in
the pore pressure diffusion equation written in term of stress
Eq. 13 or strain Eq. 17.

It is important to note that substituting Eq. 25 into Eq. 13
we obtain

∂ p

∂t
= K B

α
λβD

β
0 ∇2 p − αB

∂ p

∂t
(26)

Therefore ifαB << 1 then is it possible to ignoremechanical
effects. The pore pressure field can then be calculated by
solving the standard uncoupled diffusion equation:

∂ p

∂t
= K B

α
λβD

β
0 ∇2 p (27)

3.2 Thermoelastic coupling

The temperature diffusion is governed by a diffusion-type
equation given below which contains an additional coupling
term that serves as a sink (more details in “Appendix C”, i.e.
Eqs. C.5 and C.6) :

∂θ

∂t
+ 1

ρcv + 9Kγ 2∇ · jθ − rθ = 0 (28)

with rθ being a sink term

Sink : rθ = 3γ K θ

ρcv

∂εd

∂t
(29)

and

Sink : rθ = 3γ θ

ρcv + 9Kγ 2θ

∂σH

∂t
(30)

It is clear that the influence of the temperature on volu-
metric part of the stress or strain tensor is governed by the
thermal expansion coefficient γ as stated by Eqs. A.1) and
A.2. If γ = 0 temperature would have no influence on the
stress/strain tensor. The coefficient of thermal expansion γ

describes how the size of an object changes with a change in
temperature. Specifically, itmeasures the fractional change in
size per degree change in temperature at a constant pressure.
It is shown that for a wide range of material γ is signifi-
cantly greater than zero, therefore stresses/strain cannot be
computed without computing the temperature [16].

It is possible to relate the dilation strain with hydrostatic
stress and temperature (see Eq. A.4 in “Appendix A”):

∂εd

∂t
= 1

K

∂σH

∂t
+ 3γ

∂θ

∂t
(31)

As done in the poroelastic coupling section we can consider
two cases:

(a) Constant hydrostatic stress: ∂σH
∂t = 0. This would mean

from Eq. 31 that:

∂εd

∂t
= 3γ

∂θ

∂t
(32)

Equation 32 indicates that a positive increment in tem-
perature generates a positive increment in dilation strain,
therefore a change in volumeof the solid, as it is expected.
Substituting this into Eq. 29we obtain that themagnitude
of source terms becomes:

Magnitude Sink : 9Kγ 2θ

ρCv

∂θ

∂t
(33)

(b) Constant bulk strain: ∂εd
∂t = 0. This would mean from

Eq. 31 that:

∂σH

∂t
= −3Kγ

∂θ

∂t
(34)

Equation 34 shows that, when the volumetric strain is
constant, an increase in temperature is compensated by a
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decrease in hydrostatic stress. Substituting this into Eq. 30
we obtain that the magnitude of source terms becomes:

Magnitude Sink : 9Kγ 2θ

ρCv + 9Kγ 2θ

∂θ

∂t
= 9Kγ 2θ/ρCv

1 + 9Kγ 2θ/ρCv

∂θ

∂t

(35)

From Eqs. 33 and 35 the strength of coupling is given by
9Kγ 2θ
ρCv

. If 9Kγ 2θ
ρCv

<< 1 then it is possible to ignore the sink
terms in the temperature diffusion equation.

It is important to note that substituting Eq. 33 into Eq. C.5
we obtain:

∂θ

∂t
= Kt

ρcv + 9Kγ 2θ
∇2θ

+3γ θ

ρcv

+ 9Kγ 2θ/ρCv

1 + 9Kγ 2θ/ρCv

∂θ

∂t
(36)

Therefore, if 9Kβ2θ
ρCv

<< 1 then the temperature field can be
calculated by solving the uncoupled diffusion equation for
temperature:

∂θ

∂t
= Kt

ρcv

∇2θ (37)

3.3 Hydrogen diffusion-mechanics coupling

Hydrogen atoms in metals reside either at normal interstitial
sites (NILs) or at trapping sites such as dislocations, grain
boundaries, carbide/matrix interfaces, microvoids and other
defects. We denote the hydrogen concentration in the lattice
as cL (number of H atoms per unit volume) and use cX to
denote the concentration associated with the hydrogen in the
traps. The total concentration of hydrogen is given by: cT =
cL + cX . The hydrogen diffusion equation reads as follows
(“Appendix D”, Eq. D.8):

∂cL
∂t

+ ∇ · Def f

DL
jc + rc = 0 (38)

with rc being a source term, cL hydrogen concentration at
the lattice sites, jc = − DLcL

RT ∇μ hydrogen flux. μ = μ0 +
RT ln cL−σHVH is the chemical potential. The source terms
is expressed as below:

Source : rc = Def f

DL

∂cX
∂NX

dNX

dε p

dε p

dt
(39)

where NX is the density of trapswhich increaseswith increas-
ing plastic strain.

Hydrogen concentration influences both (a) the volumetric
part of the stress/strain tensor and (b) plastic deformation.

(a) The influence of hydrogen concentration on the volumet-
ric part of the stress or strain tensor is ruled by Eqs. B.1
and B.2 reported in “Appendix B”. It can be noted that
if VHcL = 0 hydrogen concentration would have no
influence on the stress/strain tensor. The partial molar
volume of hydrogen VH is related to the occupancy
of available hydrogen sites. If there are no sites to be
occupied by hydrogen atoms then hydrogen concentra-
tion has no influence on the stress tensor. Summarizing,
the dependence on hydrostatic stress can be neglected if
VHcL << 1. VHcL is an adimensional parameter that
can be used to quantify the coupling with the elastic
stress.

(b) The influence of plastic strain in H-diffusion process can
be neglected if the source term in Eq. 39 is negligible.
This happens if ∂cX

∂NX
<< 1 when traps binding energy

is high as ∂cX
∂NX

= KccL
βNL+KccL

and Kc = exp(−Wβ

RT ) with
Wβ being the binding energy.

So if − RT
Wβ

<< 1 then dependence of plastic strain on H-
transport can be neglected. The adimensional parameter that
can be used to quantify the coupling with the plastic strain
is: − RT

Wβ
.

If both terms: VHcL and − RT
Wβ

are close to zero then the
hydrogen diffusion equation to be solved is as follow:

∂cL
∂t

(1 + ∂cX
∂cL

) − ∇ · (DL∇cL) = 0 (40)

4 Analogy between coupled transport
equations and numerical implementation

The form of the transport equations in Eqs. 18, 28 and 38 is
similar and they can be summarized here below in a generic
form:

∂X

∂t
+ Y∇ · J + R = 0 (41)

where X is the degree of freedom which is θ for the the heat
diffusion, cL for hydrogen transport and p for pore pressure
diffusion equations. The similarities of these equations are
summarized in Table 1.

The transport equation in Eq. 41 in the frame of finite
element method (FEM) is solved step by step with numerical
integration following an implicit scheme (Newton-Raphson
algorithm). Considering that:

∂X

∂t
= Ẋ = Xt+�t − Xt

�t
(42)
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Table 1 Analogy of variables between heat transfer, mass diffusion and pore pressure diffusion

∂X
∂t − Y∇ · J + R = 0

Coupled Heat equation Mass diffusion equation Pore pressure diffusion equation

Degree of freedom X : temperature θ Degree of freedom X : lattice H concentration cL Degree of freedom X : pore pressure p.

Heat flux: J = j` = −Kt∇ · θ Hydrogen flux: J = jc = DLcL VH
RT ∇σH − DL∇cL Fluid flux: J = jp = −λβ D

β
0 ∇p

Y= 1
ρcv+9Kγ 2 Y=

Def f
DL

Y= K B
α

Heat sink: R = rθ = −(
3γ θ

ρcv+9Kγ 2θ

∂σH
∂t ) Hydrogen source: R = rc = Def f

DL

∂cX
∂ N̄X

d N̄X
dε p

dε p

dt Pore pressure source: R = rp = B ∂σH
∂t

density: 1 Unity 1 Unity 1 Unity

strength of coupling : 9Kγ 2θ
ρCv

strength of coupling : VHcL , − RT
Wβ

strength of coupling Bα

Equation 41 reads as follow:

∫

	

Ẋd	 = −
∫

�

Y (J · n)d� +
∫

	

Rd	 = 0 (43)

Applying the divergence theorem and writing the weak
form Eq. 43 becomes:

∫

	

δX Ẋd	 = −
∫

	

Y δX(∇ · J)d	 +
∫

	

δXRd	 = 0 (44)

δX is an arbitrary variational field. Considering that:

∫

	

Y δ(∇ · XJ)d	 =
∫

�

Y δ(XJ · n)d� (45)

and

q = −J · n (46)

Equation 44 becomes:

∫

	

δX Ẋd	 =
∫

	

Y δ(∇X · J)d	 +
∫

�

Y δX(q)d�

+
∫

	

Y δXRd	 = 0 (47)

Substituting Eq. 42 into Eq. 47 the following relation is
derived:
∫

	

δX
Xt+�t − Xt

�t
d	 =

∫

	

Y δ(∇X · J)d	

+
∫

�

Y δX(q)d� +
∫

	

δXRd	 = 0 (48)

Now we indicate with U : :

U = ∂X

∂�t
= U (X , t,∇X , Si ) (49)

Si state variables.

J = J (X , t,∇X , Si ) (50)

and source/sink

R = R(X , t,∇X , Si ) (51)

4.1 Numerical Implementation of the fractional
pore pressure diffusion equation in the UMATHT
subroutine

The pore pressure diffusion equation (Eq. 18) can be solved
by substituting X = p, J = jp, R = rp,U = Up,Y = K B

α

in Eq. 48 to obtain:

∫

	

Up(pt+�t − pt )d	 =
∫

	

δ∇ p · Jpd	 +
∫

�

δ p(q)d�

+
∫

	

δprpd	 = 0 (52)

A list of the terms to be coded in UMATHT routine are given
below:

Up:
Up:

Up(t + �t ) = Up(t) + ∂Up

∂ p
dp + ∂rp

∂σH
dσH (53)

where:

∂Up

∂ p
= 1 (54)

∂Up

∂∇ p
= 0 (55)

• Source:

∂rp
∂σH

dσH (56)
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where:

∂rp
∂σH

= −B (57)

• Flux:
Theflux term inEq. 8 contains a fractional derivative. The
fractional derivativesmust be discretized. To this purpose
theGrunwald–Letnikov (GL) fractional derivative is used
[19]:

(
GL
0 Dβ

t ∇ p
)

(t) =
(
GL
0 Dβ

t ∇ p
)

(k�t )

= lim
�t→0

�t−β
k+1∑
j=1

λ
(ρ)
j ∇ p(k− j+1) (58a)

λ
(β)
j+1 = j − 1 − β

j
λ j ; λ1 = 1 (58b)

where j (k− j+1)
p = jp[(k − j + 1)�t ]. For sufficiently

small �t the GL fractional derivative coalesces with the
Caputo’s fractional derivative.

j kp = −K B

α
λβ�

−β
t

k∑
j=1

c j∇ pk− j+1 (59)

∂ jp
∂∇ p

= −K B

α
λβ�

−β
t (60)

• Jacobian:

1

�t

∫

	

δ p
∂Up

∂ p
· dpd	 + 1

�t

∫

	

δ p
∂Up

∂∇ p
· dpd	

−
∫

	

δ∇ p · ∂ jp
∂ p

dpd	

−
∫

	

δ∇ p · ∂ jp
∂∇ p

d∇ pd	 −
∫

	

δ p
∂rp
∂ p

· dpd	

−
∫

�

δ p
∂q

∂ p
· dpd� = 0 (61)

Usually FE codes that use an implicit Newton-Raphson
integration schemeallow the time increment to be determined
automatically to optimize the run time. The GL formula
for evaluating of the fractional derivatives has been derived
assuming a constant increment (i.e. the time) and, to the best
of our knowledge, a corresponding formulation for a variable
increment is not available in the literature; furthermore, the
automatic time increment requires the definition of a toler-
ance criterion, that is difficult to define without knowledge of
the elastic and inelastic parts of the strain. For these two rea-
sons we have currently limited ourselves to using this model

with a fixed time increment. In order to evaluate the GL
derivative the history of strain at each Gauss Point must be
stored leading possibly to a considerable amount of memory
when analysing large FE models. A number of strategies to
overcome this problem have been explored and are discussed
in [26].

5 Numerical results

5.1 Uncoupled problem and comparison with
analytical solutions

The numerical solution of a simple 1D pore pressure diffu-
sion problem can compare with the analytical solution. A bar
made of porous material of length l=50 mm subjected to an
initial pore pressure p = 0Pa throughout the bar. At time
t=0, the pressure at one end is increased to p = 100Pa. The
governing fractional pore pressure diffusion equation Eq. 13
(σH = 0) and the boundary conditions are written below:

∂ p

∂t
= K B

α
λβD

β
0 ∇2 p (62)

p(x, 0) = 0; 0 < x < l (63)

p(0, t) = p0 = 0; p(l, t) = pl = 100Pa (64)

The analytical solution was also found (see “Appendix E”)
and it reads as follow:

p(x, t) = p0 + x

l
(pl − p0) +

∞∑
n=1

E1−β,1

[(
−n2π2λ̄t1−β

l2

)]
cn sin

nπx

l
(65)

and

cn = 2

nπ
[−1n(pl − p0)] (66)

Note that in Eq. 65 in the case of β = 0 the Mittag Leffler
function E1−β,1 become E1,1 = exp, the exponential func-
tion. In this case the solution in Eq. 65 is identical to the
classical Fick’s diffusion solution [13]:

p(x, t) = p0 + x

l
(pl − p0) +

∞∑
n=1

exp

[(
−n2π2λ̄t1−β

l2

)]
cn sin

nπx

l
(67)

where λ̄ = K B
α

λβ . The material parameters used in the sim-
ulations are: K = 13 × 109 Pa, B = 0.88, α = 0.65, λβ =
8.33 × 10−8 m2

Pa s . The transient solution is affected by the
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Fig. 1 Characteristic time for diffusion, i.e. time necessary for pore
pressure to diffuse along the bar

value of β. This phenomenon can be appreciated by consid-
ering the characteristic time for diffusion i.e. time necessary
for the pore pressure to diffuse along the bar. This is calcu-
lated from the third term in Eq. 65 being equal to zero:∑∞

n=1 E1−β,1[
(
− n2π2λ̄t1−β

l2

)
]cn sin nπx

l = 0. This equal-

ity is reached when the characteristic time t̄ is equal to

t̄ = ( l
2

λ̄
)

1
1−β .

The steady state solution reads: p(x, t) = p0+ x
l (pl−p0).

Figure 1 shows the evolution of the characteristic time

t̄ = ( l
2

λ̄
)

1
1−β with β. In the case of β = 0 the character-

istic time of the standard diffusion case is recovered, i.e.
t̄ = ( l

2

λ̄
). Increasing β (with 0 < β < 1) the characteristic

time decreases which means that the transient diffusion phe-
nomenon is faster, therefore is it important to consider the
time step to adopt when solving the mathematical problem.
In order to capture the transient phenomenon when increas-
ing the value of β, the time step will need to be reduced.

Figure 2 shows the evolution of the pore pressure along the
bar for β = 0, 0.1, 0.3, 0.5. The Abaqus simulations were
conducted using quadratic continuum coupled temperature-
displacements hybrid element CPE8HT. It can be seen that
the full transient solutions for the case of β = 0, 0.1, 0.3, 0.5
at different times are in perfect agreement. The input files and
the UMATHT subroutine are attached as electronic supple-
ment material.

5.2 Fractional consolidation: comparison with
analytical solutions

We solve here a fully coupled poromechanics problem. Let
us consider a confined consolidation experiment in which

we apply a compressive stress on a cylinder made of porous
material saturated with water as pictured in Fig. 3. The cylin-
der is insulated except at the base through which water can
flow out. During the deformation process the applied load
is sustained by both the pore pressure and the solid skele-
ton. As for the Terzaghi’s solution, the applied load is firstly
sustained by the pore pressure. As fluid flows out of the sam-
ple the pore pressure decreases and the solid skeleton starts
deforming.We are interested here tomodel the transient pore
pressure diffusion phenomenon and to understand the effect
of the order of the fractional derivative β.

The test is modelled through the 1D uniaxial strain poroe-
lastic problem. Considering that there is variation of field
quantities only in z-direction, the equilibrium equation is
given by ∂σzz

∂z = 0, recalling Eq. 1 adapted for the 1D case
in which the only non zero component of strain is εzz , we
obtain:
(
K + 4G

3

)
∂εzz

∂z
− α

∂ p

∂z
= 0 (68)

Equation 68 is then coupled with the pore pressure diffusion
equation in Eq. 17 adapted for the 1D uniaxial strain version
below:

∂ p

∂t
= Ku − K

α2 λβD
β
0 ∇2 p − Ku − K

α

∂εzz

∂t
(69)

Combining Eqs. 68 and 69 we obtain the following pore
pressure diffusion equation:

∂ p

∂t
= λ̄Dβ

0
∂2 p

∂z2
(70)

where λ̄ = λβ
(4G+3K )(Ku−K )

α2
(
4G+3Ku

) . The boundary conditions are

those shown in Fig. 3:

∂ p

∂z z=0
= 0, (71)

p(z = h, t) = 0, (72)

u(z = h, t) = 0. (73)

A constant compressive stress in the z-direction is applied to
the cylinder at z = 0:

σzz(0, t) = −PA (74)

where−PA is the applied compressive stress. The initial pore
pressure is derived for undrained conditions i.e.:

p(z, 0) = PA
3(Ku − K )

α (4G + 3Ku)
(75)

The analytical solution in terms of pore pressure reads as
follows:
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Fig. 2 Transient evolution of
pore pressure: comparison
between analytic solutions
(continuous line) and
simulations (dotted lines). a
β = 0, time step
dt = 1.7 × 10−9, total time
t = 1.7 × 10−7s, b β = 0.1,
time step dt = 1.7 × 10−10,
total time t = 1.7 × 10−8s, c
β = 0.3, time step
dt = 1.7 × 10−11, total time
t = 1.7 × 10−9s and d β = 0.5,
time step dt = 1.7 × 10−14,
total time t = 1.7 × 10−12s

Fig. 3 a Schematic representation of the consolidation test in which a
compressive force is applied to a saturated sample of height z=3mm.
All boundaries are impermeable except at the base through which the
fluid flows out. b Detail of the discretized domain

p(z, t) = PAγ

∞∑
n=1,3

E1−β,1

(
−n2π2λ̄t1−β

4h2

)
cn cos

nπ z

2h

(76)

where:

γ = 3 (Ku − K )

α (4G + 3Ku)
(77)

cn = 4

nπ
(−h)

n−1
2 (78)

where E1−β,1 is the Mittag–Leffler function. In the case
of β = 0 the solution identical to the classical Terza-
ghi’s solution in which E1−β,1 = exp. As done in the
previous section, it is interesting to observe that the char-
acteristic time for diffusion for this problem is equal to

t̄ = ( 4h
2

λ̄
)

1
1−β . This is calculated as the time needed for the

transient diffusionprocess tofinish i.e. the third term inEq. 76∑∞
n=1,3 E1−β,1

(
− n2π2λ̄t1−β

4h2

)
= 0.
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Fig. 4 Characteristic time for the pore pressure diffusion in the case of
a consolidation problem

Table 2 Material parameters used to solve the consolidation problem

Bulk modulus K=1.6×105 Pa

shear modulus G=76923Pa (E = 0.2 × 106 Pa, ν = 0.3)

Skempton coefficient B=0.88

Biot coefficient α = 0.65

Undrained bulk modulus Ku = K/1 − α B

It is possible to understand the role of the order of the
fractional derivative β in the transient solution by observ-
ing Fig. 4 in which the variation of the characteristic time t̄
with β is shown. It can be noted that, as in the pure diffu-
sion case, the transient phenomenon is faster when the order
of the fractional derivative β increases, i.e. the characteris-
tic time decreases. However, compared to the pure diffusion
case in Fig. 1, the rate of the decrease in the duration of
the transient phenomenon with increasing β is slower in the
consolidation problem. Figure 5 shows the evolution of the
pore pressure along the cylinder for β = 0, 0.1, 0.5. The
Abaqus simulations were conducted using quadratic con-
tinuum coupled temperature-displacements hybrid element
CPE8HT. The material parameters used in the simulations
are summarized in Table 2. In this case we keep the time
step and the total time constant (dt = 4.8× 10−6, total time
t = 4.8 × 10−4) for the three simulations with the value of
β = 0, 0.1, 0.5. Figure 5a–c show that the rate of pore pres-
sure diffusion increases with increasing order of fractional
derivative β. This also implies that the rate at which the fluid
flows out of the sample during the consolidation problem is
higher when the value of β increases.

6 Conclusions

This paper presents a unified formalism for coupled anoma-
lous diffusion processes in porous media as well as a
simple open-source implementation within FE software.
Here the anomalous pore pressure diffusion, which con-
tains a Darcy’s law involving non-integer order operators,
is derived and implemented in the finite element frame-
work using the discretised formulation given by Grunwald–
Letnikov (GL). The coupled poro-mechanics problem is
then, for the first time, implemented in a UMATHT rou-
tine in the commercial software ABAQUS. The similarity
of the formalism between coupled temperature-displacement
and pore pressure- displacement procedures is used. The
unified framework presented here is adaptable for other mul-
tiphysics problems ruled by the same set of PDEs such
as thermoelasticity and hydrogen diffusion mechanics. The
differences among multiphysics problems lay on how the
coupling terms are modelled as these are associated with the
specific physics of the phenomena. Here we have summa-
rized the fundamental equations for coupling, implementing
and solving diffusion equations involved in fractional poroe-
lasticity/thermoelasticty and hydrogen diffusion-mechanics
highlighting how the coupling between stress-strain and
transport differs in these three cases and the strength of the
coupling terms. We have derived dimensionless parameters
that allow to understand when is appropriate to simplify and
uncouple the problem, i.e. solving the diffusion equation
without consider the stress state and viceversa. Numerical
simulations of uncoupled and coupled poromechanics prob-
lems are successfully compared with analytical solutions of
fractional boundary value problems whose details are also
given in the appendix.
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Fig. 5 Transient evolution of
pore pressure:comparison
between analytic solutions
(continuous line) and
simulations (dotted lines). a
β = 0, b β = 0.1, c β = 0.5,
time step dt = 4.8 × 10−6, total
time t = 4.8 × 10−4s

Appendix A: Thermoelasticity

The classical linearmodel of heat transfer and deformation of
a homogeneous elastic material depends on an appropriate
coupling of the temperature and solid stress. A change in
applied stress produces a change in temperature field and
change in temperature is responsible for deforming the solid.
The coupling term affects only the hydrostatic part of the
stress tensor. We indicate with θ = [K ] the temperature rise
from T0 to T , θ = T0 − T .

σ = 2Gε + λtr(ε)I − 3γ K θI (A.1)

γ = [1]/[K ] is the coefficient of (linear) thermal expansion.
It is also useful to express the linear thermoelastic constitutive
equations in terms of strain:

ε = σ

2G
− ν

2G(1 + ν)
tr(σ )I + γ θI (A.2)

It is also important for the following to derive an expression
for the volumetric strain or dilatation εd by taking the trace

of both side of Eq. A.2:

εd = tr(ε) = tr(σ )

2G
− ν

2G(1 + ν)
tr(σ ) + 3γ θ (A.3)

Equation A.3 can also be written as follows:

εd = σH

K
+ 3γ θ (A.4)

εd being the volumetric/dialation strain.
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Appendix B: Hydrogen diffusion—elastic–
plastic model

It is quite well known that hydrogen being the smallest
element diuses more easily through metals than any other
element. Even at low concentration hydrogen often leads
to the embrittlement of metals for reasons that are not yet
well understood but are certainly related to the speed at
which it can diuse to highly stressed regions.Hydrogen atoms
move through the metals by normal interstitial site (NILS)
diusion or dislocation transport. A build up of hydrogen is
responsible for volumetric change of the material (swelling)
and a gradient of hydrostatic stress drives hydrogen diffu-
sion. Moreover, the plastic properties of metals (i.e. yield
strength) are affected by the presence of hydrogen. Here we
consider the hydrogen induced material softening which has
been linked to the experimental observations of the effect of
hydrogen in enhancing dislocationmobility.We indicatewith
cL = [mol]/[m3] the hydrogen concentration in the normal
interstitial site (NILS) and assume that this is responsible for
the swelling of the material.

Thehydrogendiffusion- elasticity equation canbe expressed
as:

σ = 2Gε + λtr(ε)I − KVHcLI (B.1)

VH = [m3]/[mol] is the hydrogen molar volume

ε = σ

2G
− ν

2G(1 + ν)
tr(σ )I + 1

3
VHcLI (B.2)

It is also important for the following to derive an expression
for the volumetric strain or dilatation εd by taking the trace
of both side of Eq. A.2:

εd = tr(ε) = tr(σ )

2G
− ν

2G(1 + ν)
tr(σ ) + VHcL (B.3)

Equation B.3 can also be written as follows:

εd = σH

K
+ VHcL (B.4)

εd being the volumetric/dilation strain.

• Hydrogen diffusion-plasticity. Following [27] we con-
sider an isotropicVonMises plasticitymodel inwhich the
flow stress is a function of the hydrogen content. In par-
ticular wemodel the effect of hydrogen-induced material
softening, this is to be viewed as an attempt to describe
the experimental observations of the effect of hydrogen
on dislocation mobility.
The yield condition can be expressed as:

g = σe − σy (B.5)

σe being the Von Mises stress and σy = f (εp, cL) the
yield stress which is function of hydrogen concentration
as:

σy = σ H
0

(
1 + ε p

ε0

) 1
n

(B.6)

σ H
0 = � (cL) σ0 (B.7)

where σ H
0 is the initial yield strength in the presence of

hydrogen that decreases with increasing hydrogen con-

centration. ε0 = σ H
0
E , E is the Young modulus. � (cL)

is a monotonically decreasing function of hydrogen con-
centration at NILS.

Appendix C: Heat transport equation

The temperature diffusion equation is controlled by a govern-
ing diffusion equation. This equation is found by considering
conservation of internal energy ρU , along with a constitu-
tive equation that relates the heat flux j` to the temperature
gradient (Fourier’s law).

Energy conservation states that the rate of change of the
total internal energy in a volume 	 is equal to the flux j`
through the surface ∂	 assuming no sources or sinks:

∂

∂t

∫

	

(ρU )d	 +
∫

∂	

(j` · n)d∂	 = 0 (C.1)

where n is the outward normal to ∂	. Applying the diver-
gence theorem on the surface integral, we obtain:

∂

∂t

∫

	

(ρU + ∇ · j`)d	 = 0 (C.2)

For Eq. C.2 to be true for any region 	, the integrand must
vanish, i.e.

∂ρU

∂t
+ ∇ · j` = 0 (C.3)

The relationship between the heat -flux vector j` and the tem-
perature gradient is given by Fourier’s law:

j` = −Kt∇ · θ (C.4)

Kt being conductivity. The internal energy per unit mass
U [J/Kg] is given by the sum of the hydrostatic stress -
dependent and the temperature-dependent part. It can be
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shown that the following partial differential equation holds
[16]:

∂θ

∂t
= Kt

ρcv + 9Kγ 2θ
∇2θ + 3γ θ

ρcv + 9Kγ 2θ

∂σH

∂t
(C.5)

where cv[J/KgK ] is the specific heat at constant strain.
Equation C.5 can be written in terms of dilation strain [16]:

∂θ

∂t
= Kt

ρcv

∇2θ + 3γ K θ

ρcv

∂εd

∂t
(C.6)

Appendix D: Hydrogen transport equation

Hydrogen atoms move through a metal by normal intersti-
tial site (NILS) diffusion or dislocation transport. Hydrogen
atoms reside either at NILS or at trapping sites such as
dislocations, grain boundaries, carbide/matrix interfaces,
microvoids and other defects. The vast majority of sites are
the NILS and the minor fraction of sites are the traps. We
denote the hydrogen concentration in the lattice as cL (num-
ber of H atoms per unit volume) and use cX to denote the
concentration associated with the hydrogen in the traps. The
total concentration of hydrogen is given by: cT = cL + cX .

Mass conservation states that the rate of change of the total
hydrogen concentration in a volume 	 is equal to the flux jc
(mol m−2s−1 ) through the surface ∂	:

∂

∂t

∫

	

(cL + cX ) d	 +
∫

∂	

jc · ndS = 0 (D.1)

where n is the outward normal to ∂	. The driving force for
diffusion is the chemical potential gradient, the flux jc can
be expressed as follows:

jc = −DLcL
RT

∇μ (D.2)

where DL is the diffusion coefficient for hydrogen. μ is the
chemical potential defined as follows:

μ = μ0 + RT ln cL + μσ (D.3)

μ0 represents the chemical potential at standard condition,
μσ = −σHVH where σH is the hydrostatic stress and VH

the partial molar volume of hydrogen. Substituting (D.2) and
(D.3) into (D.1) we obtain:

∂

∂t

∫

	

(cL + cX ) d	 +
∫

∂	

(
DLVHcL

RT
∇σH − DL∇cL

)

·ndS = 0 (D.4)

Applying the divergence theorem, we obtain:

∂(cL + cX )

∂t
+ ∇ ·

(
DLVHcL

RT
∇σH

)
− ∇ · (DL∇cL) = 0

(D.5)

In Eq. (D.5) there are two unknowns: cL and cX . However
following Oriani’s theory the H concentration in the lattice
is in equilibrium with the concentration in the traps. This
means that once we know the concentration in the lattice we
can calculate the concentration in the traps. Also the concen-
tration in the traps cX is a function of the density of trapping
sites NX which increases with ε p:

∂cX
∂t

= ∂cX
∂ c̄L

∂cL
∂t

+ ∂cX
∂NX

dNX

dε p

dε p

dt
(D.6)

Substituting (D.6) in (D.5) we obtain:

∂cL
∂t

(1 + ∂cX
∂cL

) − ∇ · (DL∇cL) + ∇ ·
(
DLcLVH

RT
∇σH

)
+

∂cX
∂ N̄X

dNX

dε p

dε p

dt
= 0 (D.7)

(1 + ∂cX
∂cL

) = DL
Def f

where Def f is the effective diffusivity.
Equation D.7 can then be arranged as follows:

∂cL
∂t

+ ∇ · Def f

DL
jc + rc = 0 (D.8)

where rc = Def f
DL

∂cX
∂NX

dNX
dε p

dε p

dt

Appendix E: Analytical solution of the frac-
tional diffusion equation

TheboundaryvalueproblemEq. 64discussed inSec. 5.1with
the governing fractional pore pressure diffusion Eq. 13 in the
case of σH = 0 together with Dirichlet boundary conditions
is reported below:

∂ p

∂t
= λ̄Dβ

0 ∇2 p (E.1)

p(x, 0) = 0; 0 < x < l (E.2)

p(0, t) = p0; p(l, t) = pl (E.3)

with λ̄ = K B
α

λβ Substitute the variable p = v + PE , the
solution of Eq. E.3 is of the type:

p = v + PE (E.4)

v = v(x, t); (E.5)
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PE = PE (x) (E.6)

Which can be summarized in two sets of problems:

∂v

∂t
= K B

α
λβ∇2Dβ

0 v (E.7)

v(x, 0) = f (x) − PE (x); (E.8)

v(0, t) = v(l, t) = 0 (E.9)

and

∇2PE = 0 (E.10)

PE (x = 0) = p0; (E.11)

PE (x = l) = pl (E.12)

The solution of Eq. E.12 is of the type:

PE (x) = p0 + pl − p0
l

x (E.13)

Regarding Eq. E.9, let’s substitute v = D−β
0 u in Eq. E.9:

D1−β
0 u = ∂

∂t
D−β
0 u = λ̄∇2Dβ

0 D
−β
0 u = λ̄∇2u (E.14)

Hence we can write that:

D1−β
0 u = λ̄∇2u = λ̄

∂2u

∂x2
(E.15)

We can now solve Eq. E.15 with separation of variables:
u = u(x, t) = �(t)�(x).
Equation E.15 then becomes:

(D1−β
0 �)� = λ̄�(

∂2�

∂x2
) (E.16)

We need then to find a solution for the following equations:

(D1−β
0 �) = −λ2� (E.17)

λ̄(
∂2�

∂x2
) = −λ2� (E.18)

Let’s first analyze λ̄( ∂2�
∂x2

) = −λ2� which can be written as:

(
∂2�

∂x2
) = −(

λ√
λ̄

)2� (E.19)

From which we derive that:

nπ

l
= λn = λ√

λ̄
⇒ λ = nπ

l

√
λ̄ (E.20)

Let us consider now D1−β
0 � = −λ2� which considering

Eq. E.20 becomes:

D1−β
0 � = −λ2� = −n2π2

l2
λ̄� (E.21)

Solution of Eq. E.19 is found imposing the following bound-
ary conditions:

�(0) = �(l) = 0 (E.22)

�n(x) = cn sin(
nπ

l
x) (E.23)

To solve Eq. E.21 we apply the following conditions:

D1−β
0 �n = −n2π2

l2
λ̄�n (E.24)

[D1−β
0 �n]t=0 = 1 (E.25)

Solution of Eq. E.25 are of the type [19]:

�n(t) = t−βE1−β,1−β(−n2π2

l2
λ̄t1−β) (E.26)

where E is theMittag–Leffler function.Nowwe can compute
u = u(x, t) = �(t)�(x):

u = u(x, t) = �(t)�(x)

=
∞∑
n=1

= t−βE1−β,1−β

(
−n2π2

l2
λ̄t1−β

)
cn sin

nπ

l
x

(E.27)

Considering our original variable v = D−β
0 u:

v =
∞∑
n=1

D−β
0 t−βE1−β,1−β(−n2π2

l2
λ̄t1−β)cn sin

nπ

l
x

(E.28)

From [19]:

D−β
0 t−βE1−β,1−β

(
−n2π2

l2
λ̄t1−β

)
=

t0E1−β,1

(
−n2π2

l2
λ̄t1−β

)
(E.29)

Therefore substituting Eq. E.29 into Eq. E.28 we obtain:

v =
∞∑
n=1

E1−β,1

(
−n2π2

l2
λ̄t1−β

)
cn

sin
nπ

l
x (E.30)
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The solution to BVP in Eq. E.3 considering Eq. E.6, i.e.
p = v + PE is as follows:

v = p0 + p0 − pl
l

x +
∞∑
n=1

E1−β,1

(
−n2π2

l2
λ̄t1−β

)
cn sin

nπ

l
x

(E.31)
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