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Abstract
TheNakajima test is awell-knownmaterial test from the steel andmetal industry to determine the forming limit of sheetmetal.
It is demonstrated how FE2TI, our highly parallel scalable implementation of the computational homogenization method FE2,
can be used for the simulation of the Nakajima test. In this test, a sample sheet geometry is clamped between a blank holder
and a die. Then, a hemispherical punch is driven into the specimen until material failure occurs. For the simulation of the
Nakajima test, our software package FE2TI has been enhanced with a frictionless contact formulation on the macroscopic
level using the penalty method. The appropriate choice of suitable boundary conditions as well as the influence of symmetry
assumptions regarding the symmetric test setup are discussed. In order to be able to solve larger macroscopic problems more
efficiently, the balancing domain decomposition by constraints (BDDC) approach has been implemented on the macroscopic
level as an alternative to a sparse direct solver. To improve the computational efficiency of FE2TI even further, additionally, an
adaptive load step approach has been implemented and different extrapolation strategies are compared. Both strategies yield
a significant reduction of the overall computing time. Furthermore, a strategy to dynamically increase the penalty parameter
is presented which allows to resolve the contact conditions more accurately without increasing the overall computing time
too much. Numerically computed forming limit diagrams based on virtual Nakajima tests are presented.

Keywords Nakajima test · Computational homogenization · FE2 · Finite elements · Frictionless contact · Penalty method ·
Multiscale · Domain decomposition · Iterative solvers

1 Introduction

In this article, we consider the numerical simulation of
the Nakajima test on high-performance computers using
our highly scalable software package FE2TI [26], which
combines an implementation of the computational homog-
enization approach FE2 [17,39,45,54,56] with different
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domain decomposition approaches such as BDDC (Balanc-
ingDomainDecomposition byConstraints) [10,13,41,43,44]
and FETI-DP (Finite Element Tearing and Interconnecting-
Dual Primal) [15,16,34–37]. It makes use of software pack-
ages such as BoomerAMG [21] (see [2] for the scalability
of BoomerAMG for elasticity) from the hypre library [14]
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and sparse direct solver packages such as PARDISO [52],
MUMPS [1], and UMFPACK [11].

The Nakajima test is a well-known material test from the
steel and metal industry which can be used to determine the
forming limits of sheet metals of different materials. Some
examples are aluminum, copper, magnesium, and different
types of steel. To perform the Nakajima test, a sheet metal is
first clamped between a blank holder and a die. Subsequently,
a hemispherical punch is driven into the specimen until a
crack occurs; see Fig. 1 (middle). The top surface of the
sheet metal is equipped with a grid or a pattern, and the
deformation is recorded by cameras. Friction between the
sample sheet and the rigid punch has to be avoided as much
as possible by introducing a tribological system. For further
details regarding the test setup of the Nakajima test, we refer
to the ISO Norm [47].

In this article, we consider the simulation of the Nakajima
test for a dual-phase (DP) steel. More precisely, we con-
sider a DP600 grade of steel. DP steels belong to the class
of advanced high strength steels and combine strength and
ductility.AllDP steels have a ferritic-martensiticmicrostruc-
ture consisting of martensitic inclusions (hard phase) in a
ferriticmatrix (soft phase). The favorablemacroscopic prop-
erties of DP steels are strength and ductility, resulting from
the microscopic heterogeneities obtained by a complex heat
treatment during the rolling process; see, e.g., [58]. Thus, the

incorporation of information on the microstructure into the
simulation is necessary to obtain accurate simulation results.

Since the characteristic length scales of the micro- and the
macroscale differ by 4 to 6 orders of magnitude, a brute force
approach using a finite element discretization down to the
microscale, is not feasible, even on the largest supercomput-
ers available today. Moreover, a brute force simulationwould
require full knowledge of the microscale for the complete
macroscopic structure and would also produce more detailed
results thannecessary.Thismotivates the use of homogeniza-
tion methods. Here, the FE2 computational homogenization
method was chosen; see also our earlier publications [26,32]
on the use of FE2 within the EXASTEEL project, which
was part of the DFG priority program 1648 “Software for
Exascale Computing” (SPPEXA, [12]); see Sect. 2 and the
acknowledgements.

In practice, the Nakajima test is used to generate form-
ing limit diagrams (FLDs) and corresponding forming limit
curves (FLCs); see Fig. 1 (top right). An FLD is a Cartesian
coordinate system with the major true strains on the y-axis
and the minor true strains on the x-axis, and an FLC is a
regression curve between pairs of major and minor strains.
It describes the transition from admissible to impermissible
loads and thus provides information on the extent to which
the material can be deformed without failure, under cer-
tain deformation conditions. The different Nakajima sample
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Fig. 1 Experimental setup of the Nakajima test and derivation of a forming limit diagram (FLD) using the Nakajima test. Image composed from [60,
Fig. 1; Fig. 2.4]
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geometries (see Fig. 1 top left) cover the range from uniaxial
to equi-biaxial tension.

Note that material failure is typically indicated by local
necking in thickness direction before a crack occurs. In phys-
ical experiments, to reconstruct the state immediately before
material failure, images of the top surface of the sample sheet
are recorded by one or more camera(s). In the algorithmic
approach given in the present paper, we instead use a mod-
ified Cockcroft–Latham criterion to predict material failure;
see Sect. 3. Hence,we do not have to compute the evolvement
of a crack.

For a description how the experiment is evaluated to obtain
a point in the FLD,we refer to the normed evaluation strategy
based on cross sections [47] and to the evaluation strategy
based on thinning rates [61]. For the implementation of both
strategies and the resulting virtual FLDs and FLCs, we refer
to [60, Sec. 2.8, Sec. 2.9, Fig. 3.5-3.7].

In this paper, we will describe the software enhance-
ments that were necessary to perform the simulation of the
Nakajima test using our FE2TI software package [26]. This
includes the implementation of a frictionless contact formu-
lation on the macroscopic level using a penalty method,
the incorporation of the blank holder and the die into the
simulation to approximate the real test setup as good as
possible, and the choice of suitable boundary conditions.
Furthermore, we highlight the effects of improved initial
guesses for each load step using an extrapolation strategy
as well as using an adaptive load step strategy. Our fur-
ther advances, compared to [26] and [32] include a parallel
Newton–Krylov–BDDC (NK-BDDC) approach (based on
[27]) applied to the macroscopic problem, which replaces
Newton–Krylov–BoomerAMG used earlier.

The incorporation ofNK-BDDCas a parallel solver on the
macroscopic level enables us to perform larger simulations
without relying on symmetry or with finer discretizations,
for example in thickness direction. Moreover, it allows us,
for the first time, to perform simulations considering the
full geometries corresponding to the quarter geometries that
were used for the derivation of the virtual FLDs in [32,60].
As a consequence, we are now able to analyze the effect of
mirroring the solution of a quarter geometry to obtain an
approximation of the overall solution. We obtain the full
geometry that corresponds to a specific quarter geometry by
vertically and horizontally mirroring the mesh of a quarter
geometry; see Sect. 5.

Moreover, we show the effect of second-order extrap-
olation for computing the initial value of each load step.
We also introduce a strategy to increase the penalty param-
eter at the end of the macroscopic contact simulation in
order to improve the accuracy without increasing the com-
puting time too much. Note that while achieving efficiency
and parallel scalability to millions of MPI ranks was in the
focus of our previous works [26,32]. Here, we report on

production computations using 4000 to 15,000 cores of the
JUWELS supercomputer [25]. Since limited computing time
was available on JUWELS for this project, we have used the
following computational setup: All our computations are
two-scale finite element simulationswherewe solve indepen-
dent microscopic problems for each macroscopic integration
point. We consider comparably small microscopic prob-
lems with 7191 degrees of freedom resulting from the
discretization of the unit cube with P2 finite elements. Each
microscopic problem is solved independently on its ownMPI
rank and, given its small size, we use the sparse direct solver
PARDISO to solve the resulting system of equations. The
macroscopic sample sheets are discretized with triquadratic
Q2 finite elements. We also show results using an identical
setup on about 6000 cores of the magnitUDE supercom-
puter. Note that we use two MPI ranks for each compute
core. Similar to our previous works (e.g. [26,32]), we mark
macroscopic quantities with an overline to distinguish them
frommicroscopic quantities. For example, we write u for the
macroscopic displacement and u for the microscopic one.

2 The Software Package FE2TI

For all our simulations presented in this article, we have used
our highly scalable software packageFE2TI [26]. The core of
the FE2TI package is a C/C++ implementation of the compu-
tational homogenization approach FE2 [17,39,45,54,56] (see
Sect. 2.1), which enables the incorporation of themicrostruc-
ture into the simulation without the need for a brute force
finite element discretization. We extensively use the PETSc
library [3–5] and distributed memory parallelization based
on message passing (MPI).

The FE2TI package interfaces different solvers for the
solution of the resulting linear and nonlinear systems of
equations on both scales. For small linear systems, the direct
solver libraries PARDISO [52] (or MKL-PARDISO), UMF-
PACK [11], andMUMPS [1] are used. Here, PARDISO [52]
is our preferred sparse direct solver, which we can also use in
shared-memory parallel mode [30]; see also [62]. Through-
out this paper, each microscopic boundary value problem is
solved independently on its own compute core.

In order to handle also larger problem sizes efficiently,
the software package also gives the possibility to use a
domain decomposition approach or (algebraic) multigrid
for the parallel iterative solution of the resulting problem.
Larger microscopic boundary value problems, i.e., repre-
sentative volume elements (RVEs) with a large number
of degrees of freedom, can be tackled by using parallel
domain decomposition methods based on Newton–Krylov–
FETI–DP (NK–FETI–DP) [27,40,49] or the more recent
Nonlinear-FETI-DP approaches [27,31]. Here, each RVE
is decomposed into subdomains, where each subdomain is
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handled by its own compute core. Accordingly, each micro-
scopic boundary value problem is solved on more than one
compute core, depending on the number of subdomains into
which the RVE has been split.

As an alternative to domain decomposition, we can also
use the highly scalable multigrid implementation Boomer-
AMG [21] from the hypre package [14] for the parallel
solution of the microscopic problem as well as of the
macroscopic problems. Here, the extensions of Boomer-
AMG for elasticity should be used; see [2] for the scalability
of BoomerAMG in this case.

Various simulations of tension tests for a DP600 steel
have been performed using different aspects of the software
package. In 2015, the FE2TI package scaled to the complete
JUQUEEN [24] and became a member of the High-Q club
[29]. The combination of NK-FETI-DP on the microscale
and BoomerAMG on the macroscale has been considerably
successful; see SIAM Review [50, p. 736].

While usingBoomerAMGon themacroscopic levelworks
very well for the FE2 simulation of different tension tests
[26,28,29], its performance suffered in our FE2 simulation
of the Nakajima test, which seems to be challenging for
AMG methods. Therefore, we have recently incorporated
a second domain decomposition approach, the NK-BDDC
method (see, e.g., [27,40]), in order to solve comparably large
macroscopic problems efficiently.

In addition to the NK-BDDC approach, in the second
phase of the EXASTEEL project, we further extended our
software package to simulate the Nakajima test. This
included frictionless contact (on themacroscopic level) using
a penalty formulation (see Sect. 2.4), an adaptive load step
strategy (see Sect. 2.2) and first- or second-order extrapola-
tion (see Sect. 2.3) to improve initial guesses for Newton’s
method. We have also integrated a Checkpoint/Restart (CR)
strategy into our software. Here, we use the CRAFT library
[55], whichwas developed in the second phase of the ESSEX
project, also part of SPPEXA [12]. We use two different
checkpoint objects, one for themacroscopic level and one for
the microscopic level including the history for each micro-
scopic boundary value problem.

Even for small problem sizes, which can be solved effi-
ciently by using a sparse direct solver, the finite element
assembly process may be computationally expensive. There-
fore, we have parallelized the assembly process of the
macroscopic problem using a small number of cores, even if
we use a sparse direct solver.

Using the FE2 two-scale homogenization approach, we
only have to provide a constitutivematerial law on themicro-
scopic level. We use an implementation [38] of a J2 elasto-
plasticity model with multiplicative decomposition of the
deformation gradient, which is implemented in FEAP [59]
and can be called via an interface provided by our software

package. The material parameters are fitted to the main com-
ponents of a DP steel, namely ferrite and martensite; see [8].

2.1 The FE2 Method

The FE2 method [17,39,45,54,56] requires scale separation,
i.e., the characteristic length L of the macroscale is much
larger than the characteristic length l of themicroscale, com-
monly denoted by L � l. For a DP steel, L is a factor of 104

to 106 larger than the microscopic unit length. Hence, we
can assume that scale separation is given.

In the FE2 method, both scales are discretized inde-
pendently of each other by using finite elements. Accord-
ingly, the macroscopic sample sheet geometry is discretized
using comparably large finite elements without taking the
microstructure into account, i.e., we consider a homoge-
neous material from the macroscopic point of view. In
each macroscopic integration point (Gauss point), we solve
a microscopic boundary value problem. The microscopic
boundary value problem is defined on a cuboid with a side
length of the order of l, which contains a representative
fraction of the overall microstructure and is therefore called
representative volume element (RVE). Note, that we use the
same RVE for each macroscopic Gauss point.

The microstructure of a DP steel can be obtained by using
electron backscatter diffraction (EBSD); see [8]. To reduce
the problem size, we make use of the statistically similar
RVE (SSRVE) approach, see [7,53], which can approximate
the true mechanical behavior accurately. In contrast to the
small martensitic islands in a realistic microstructure of a DP
steel, the martensitic volume fraction is distributed to only a
few and, therefore, larger inclusions with predefined, simple
shapes, e.g., ellipsoids. The number of inclusions is prede-
fined, and the final shape of the inclusions is obtained after an
optimization process. In this article, we consider an SSRVE
with two ellipsoidal inclusions; see Fig. 2. Our SSRVE was
obtained by following the optimization process described in

Fig. 2 Position of ellipsoidal inclusions in the SSRVE considered in all
computations throughout this article. Image from [60, Fig. 3.8 (middle)]
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Macroscopic Newton Iteration i of Load Step k

Convergence within 20 (mi-
croscopic) Newton iterations

No reduction of norm in a microscopic New-
ton iteration after the 6th Newton iteration

No Convergence within 20
(microscopic) Newton iterations

Compute stresses and tan-
gent moduli and give them
to the macroscopic level

Give information of no convergence to the
macroscopic level, reduce load increment
loadk by 50%, and restart load step k

Continue with next macroscopic
Newton iteration i + 1 of load step k

Fig. 3 Impact of microscopic events on the load step size. Image from [60, Fig. 4.2]

[8] and subsequently we modified the discretization. We use
periodic boundary conditions.

In the FE2 method, the macroscopic constitutive law is
replaced by a micro-to-macro coupling procedure (see, e.g.,
[18,54] for the consistent tangent), making use of volumetric
averages of microscopic stresses; see [54] for further details
regarding the FE2 approach and [6,26] for the incorporation
of the FE2 method into our software package.

2.2 Adaptive Load Step Strategy

In our simulations of the Nakajima test, the rigid punch has
to cover a significant distance until a critical valueWC (see
Sect. 3) is reached for at least one finite element node on the
top surface of the sample sheet. To be able to simulate the
corresponding distance, we use a load step strategy on the
macroscopic level.

We have implemented a simple adaptive load step strat-
egy, which decides, based on microscopic as well as
macroscopic events, whether the load increment may be
increased (by a factor of 2), decreased (by a factor of 1/2),
or if it remains constant.

On the microscopic level, if we reach convergence within
20 Newton iterations, i.e., in a macroscopic Newton iteration
i of load step k, the volumetric averages of the stresses as
well as the consistent tangent moduli are transferred to the
macroscopic level. Otherwise, we pass the information that
there is stagnation; seeFig. 3. In this case,wehave to decrease
the load step size and repeat the current load step. Note that
we refer to stagnation not only ifwe do not reach convergence
within 20Newton iterations, but also if the residual normdoes

not decrease sufficiently after the sixth microscopic Newton
iteration; see Fig. 3.

We also use an upper bound of 20 macroscopic Newton
iterations per load step. Ifwe do not reach convergencewithin
this range, we decrease the load step size. However, if the
residual norm r at the end of the 20th iteration is close to the
stopping criterion θ , i.e., r ≤ tol · θ , where the tolerance
tol can be chosen by the user, we spend five more Newton
iterations in the current load step. If we reach convergence
within these five additional iterations, we continue with the
next load step, otherwise, we have to repeat the current load
step.

To decide whether the load increment has to be increased
or not, we compare the number of Newton iterations of the
current load step with the corresponding number of the pre-
vious load step. If it is at most as large as 50% of the previous
load step, the load increment for the next load step is doubled.
Otherwise, the load increment remains unchanged.

We increase the load increment whenever we reach con-
vergence within a single Newton iteration. For a diagram
similar to Fig. 3, we refer to [60, Fig. 4.3] and [32, Fig. 6].

To highlight the advantages of our adaptive load step
approach, we present a comparison using different constant
load step sizes and the adaptive load step strategy choosing
the same initial load increments. We consider a sample sheet
geometry with a parallel shaft width of 50 mm; see Table 1
for the results; see Fig. 1 and Sect. 4 for the description of
the general shape of the sample sheet geometries. We apply
the same three initial load increments for both constant load
step sizes and our adaptive load step strategy.

Let us first consider constant loads. For the smallest load
increment of 3.125 · 10−3 mm, the final computation time
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Table 1 Comparison of some
characteristic quantities for the
first 2 mm covered by the rigid
punch using different constant
load step sizes as well as the
adaptive load step strategy with
different initial load step sizes;
computed on the JUWELS
supercomputer [25]; using a
quarter geometry of the sample
sheet with a shaft width of 50
mm; two finite elements in
thickness direction

Sample sheet 50
computed on JUWELS; 2 MPI ranks per core

Constant load step size Adaptive load step strategy

Load Load Load Load Load Load
0.003125 0.1 0.2 0.003125 0.1 0.2

Cov. Dist. 2 2 term. 2 2 2

Punch [mm]

Load steps 640 20 after 86 20 11

Newton its. 970 130 one 328 130 91

ø Load step size [mm] 0.003125 0.1 load 0.0233 0.1 0.18

ø Newton Its. per load step 1.52 6.50 step 3.81 6.50 8.45

Runtime [s] 7 204.58 1 048.61 2 415.89 1070.00 808.01

ø Time per load step [s] 11.26 52.43 28.09 53.50 73.46

ø Time per Newton It. [s] 7.43 8.07 7.37 8.23 8.88

We have used first-order extrapolation and 2MPI ranks per core. We consider the computation time as well as
the number of macroscopic load steps and Newton iterations. Average quantities are marked with the symbol
ø, e.g., “ø Load Step Size” means the average load step size per load step. Table from [60, Table 4.1]

is about seven times higher than for a load increment of
0.1 mm. This can be explained by the increased number of
macroscopic Newton iterations. Even if the load increment
is much smaller the time for a single Newton iteration only
decreases slightly. To demonstrate the case of a too large load
step, which causes stagnation at some point, we have chosen
a load increment of 0.2 mm. Here, the simulation terminates
within the second load step since at least one microscopic
boundary value problem does not reach the stopping crite-
rion.

As we learn from Tables 1, 2, the adaptive load step strat-
egy is, in our context, also robust with respect to large initial
load step sizes, as, e.g., 0.2mm. Additionally, the adaptive
load step algorithm delivers small computing times indepen-
dent of the initial load step. For instance, for the smallest
initial load increment, the dynamic load step strategy detects
several times that the load step size can be increased. As a
result, the average load step size is about ten times larger than
the initial load increment. Compared to the constant load, we
need only a third of the macroscopic Newton iterations, and
we get the same factor also for the computing time.

The fastest computing time is achieved using an initial
load increment of 0.2 mm. Even if we have to repeat the
second load step with a reduced load increment, the load
increment is again increased to 0.2 mm later on. As a result,
the average load step size is close to 0.2 mm. This is different
for a sample sheet geometry with a parallel shaft width of 70
mm. In this case, the load step strategy never increases the
load increment back to 0.2mm. Consequently, the average
load increment is close to 0.1 mm and the computing time
is slightly higher compared to the case where an initial load
step size of 0.1 mm was used, since some load steps are
repeated; see Table 2.

For both sample sheet geometries considered here, the
initial load step size of 0.1 mm seems to be optimal, since
the adaptive load step strategy does not change the load step
size within the first two millimeters. However, if we push the
rigid tool further into the sample sheet geometry as it is done
to obtain an FLD, the load increment is decreased several
times for both geometries by the adaptive load step strategy;
see [32, Table 3.1]; note that the average load step size can
be computed from the number of load steps.

At the onset of material failure, typically small load steps
are needed. We indeed use 10 consecutive load steps, using
a load increment smaller than 10−4 multiplied by the initial
load increment, as an indicator for material failure.

Furthermore, we also terminate the simulation if the load
increment has to be reduced seven times within a single load
step.

2.3 Improved Initial Values by First- and
Second-Order Extrapolation

As we have learned from Tables 1, 2 in the previous section,
the overall computing time strongly depends on the num-
ber of macroscopic Newton iterations. Therefore, in order to
reduce the computing time, we are interested in reducing the
number of macroscopic Newton iterations in each load step
by using better initial guesses from extrapolation.

We are thus interested in predicting the macroscopic dis-
placement at the end of the following load step depending
on the accumulated load. For simplicity, we assume that we
have just finished load step k, i.e., the accumulated loads
li = ∑i

j=1 l j , where l j is the load increment of load step j ,
as well as the converged solutions ui , i = 1, . . . , k, of the
macroscopic displacements in load step i are known. Further-
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Table 2 Comparison of some
characteristic quantities for the
first 2 mm covered by the rigid
punch using different constant
load step sizes as well as the
adaptive load step strategy with
different initial load step sizes;
computed on magnitUDE;
using a quarter geometry of a
sample sheet with a shaft width
of 70mm; two finite elements in
thickness direction

Sample sheet 70
Computed on magnitUDE
2 MPI ranks per core

Constant load Adaptive load
Step size Step strategy

Load Load Load Load
0.1 0.2 0.1 0.2

Cov. Dist. 2 term. 2 2

Punch [mm]

Load steps 20 after 20 19

Newton its. 136 one 136 138

ø Load step size [mm] 0.1 load 0.1 0.105

ø Newton Its. per load step 6.8 step 6.8 7.26

Runtime [s] 1 175.58 1 186.06 1 200.59

ø Time per load step [s] 58.78 59.30 63.19

ø Time per Newton It. [s] 8.64 8.72 8.70

We have used first-order extrapolation and 2MPI ranks per core. We consider the computation time as well as
the number of macroscopic load steps and Newton iterations. Average quantities are marked with the symbol
ø, e.g., “ø Load Step Size” means the average load step size per load step. Table based on [60, Table 4.2]

more, the load increment lk+1 has already been determined
by the adaptive load step strategy, i.e., the expected accu-
mulated load lk+1 = ∑k+1

j=1 l j of the next load step is also
known. In case of stagnation in load step k + 1, the load
increment lk+1 changes, which also causes a change in lk+1.
Accordingly, the interpolation polynomial has to be evalu-
ated at a different point. As a result, the initial value of the
repeated load step changes.

To derive an interpolation polynomial of the order n,
which can be used to predict the solution of load step k+1,we
need the macroscopic displacements u and the accumulated
loads l of the current load step k as well as of the previous
load steps k−n, . . . , k−1. Of course, this is only applicable
if k − n corresponds to an existing load step, i.e., k − n ≥ 1.
Note that the accumulated loads of different load steps differ,
since each load step makes a small load increment. If we find
a polynomial pn of order n, which satisfies

pn
(
l j

)
= pn

⎛

⎝
j∑

m=1

lm

⎞

⎠ = u j ∀ j = k − n, . . . , k, (1)

then the interpolation polynomial is unique.
In case of a first-order interpolation polynomial, which

was already successfully used for the simulation of a tension
test with constant load increments (see [26]), we only need
the accumulated loads andmacroscopic displacements of the
load steps k and k−1.Weobtain the interpolation polynomial

p1(l) = uk−1 + l − lk−1

lk − lk−1
· (uk − uk−1) ,

which satisfies Equation (1). As a result, the predicted solu-
tion of load step k + 1, which is subsequently used as initial
value u(0)

k+1 is derived by

u(0)
k+1 = p1(lk+1) = uk−1 + lk+1 + lk

lk
· (uk − uk−1) ,

which differs from the presentation in [26] due to the variable
load increments.

All in all this is an extrapolation strategy, since we use the
interpolation polynomial to predict the solution of load step
k + 1, where lk+1 is not included in the interval [lk−1, lk].
Since p1 is a polynomial of order 1, the use of p1 for
predicting initial values of the following load step is called
first-order extrapolation. This strategy has been successfully
applied to compute an FLD (see [32,60]) and has also been
used to compare constant and dynamic load increments in
Sect. 2.2.

As we learn from Table 3, first-order extrapolation
reduces the number ofmacroscopic Newton iterations signif-
icantly, which also causes a reduction in computing times.
Let us remark that, for the test setup with an initial load
step size of 0.1 mm, the adaptive load step strategy does not
change the load step size if used in combination with the
first-order extrapolation approach. Therefore, the results for
the first-order extrapolation with and without adaptive load
stepping are identical in Table 3. For similar results using a
sample sheet geometry with a smaller shaft width and using
a quarter geometry, we refer to [60, Tab. 4.3].

Wealso consider a second-order interpolation polynomial,
i.e., we require the accumulated loads and macroscopic dis-
placements of the load steps k − 2, . . . , k. The second-order
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Table 3 Comparison of first-
and second-order extrapolation
for the first 4 mm covered by the
rigid punch with and without
using an adaptive load step
strategy (see Sect. 2.2); initial
load step size of 0.1 mm;
computed on magnitUDE;
using a full geometry of a
sample sheet with a shaft width
of 90 mm; two MPI ranks per
core; one finite element in
thickness direction

Sample sheet 90
computed on magnitUDE; 2 MPI ranks per core

Constant load step size Adaptive load step strategy

No 1st-order. 2nd-order No 1st-order 2nd-order
Extra. Extra. Extra. Extra. Extra. Extra.

Cov. Dist. 4 4 4 4 4 4

Punch [mm]

1. Load step using extra − 3 4 − 3 4

Load steps 40 40 40 40 40 34

Newton its. 445 332 286 445 332 262

ø Load step 0.1 0.1 0.1 0.1 0.1 0.12

Size [mm]

ø Newt. Its. per load step 11.13 8.3 7.15 11.13 8.3 7.71

Runtime [s] 3 623.05 2 684.55 2 326.75 3 623.05 2 672.15 2 157.91

ø Time per load step [s] 90.58 67.11 58.17 90.58 66.80 63.47

ø Time per Newt. It. [s] 8.14 8.09 8.14 8.14 8.05 8.24

Average quantities are marked with the symbol ø, e.g., “ø Load Step Size” means the average load step size
per load step. Table from [60, Table 4.4]

polynomial p2 can be formulated in terms of the Lagrange
polynomials

L j (l) =
k∏

m=k−2
m �= j

(
l − lm

)

(
l j − lm

) .

Finally, p2 writes

p2(l) =
k∑

i=k−2

ui · Li (l);

see, e.g., [48]. Obviously, we have

Lk(lk) = lk − lk−2

lk − lk−2
· lk − lk−1

lk − lk−1
= 1. (2)

Furthermore, we have Lk(lk−1) = Lk(lk−2) = 0, since the
first or second part in Equation (2) becomes zero ifwe replace
lk in the numerators by lk−1 or lk−2. In general, for each three
consecutive load steps m, . . . ,m + 2, we have L j (li ) = δi j ,
i, j ∈ {m,m + 1,m + 2}. Accordingly, the second-order
polynomial p2 satisfies Equation (1).

If we now use p2 to extrapolate the solution of load step
k + 1 to determine an initial value u(0)

k+1 for load step k + 1,
we obtain

u(0)
k+1 = p2(lk+1) = (lk+1 + lk)lk+1

lk−1(lk + lk−1)
uk−2

− (lk+1 + lk + lk−1)lk+1

lk−1lk
uk−1

+ (lk+1 + lk + lk−1)(lk+1 + lk)

(lk + lk−1)lk
uk

by replacing li , i = k − 2, . . . , k + 1, by
∑i

j=1 l j and can-
celling out all possible terms.

As we learn from Table 3, second-order extrapolation
is useful in our context since it reduces the number of iter-
ations even more than first-order extrapolation – without
significant additional computational cost; see [60, Tab. 4.3]
for comparable results using a quarter geometry of a sam-
ple sheet geometry with a smaller shaft width. Consequently,
second-order extrapolation should be preferred to first-order
extrapolation, as long as the available memory allows to
store the additional macroscopic solution values. This might
lead to some difficulties considering very large macroscopic
problems.

A final remark on the contact constraints: Without apply-
ing an extrapolation strategy, the deformation is exclusively
driven by the contact constraints. However, if we use the pre-
dicted solution of a load step as initial value, the initial value
already contains some deformations which are not caused by
the contact constraints. In this case, the contact constraints
have to check the predicted deformation and correct it if nec-
essary.

2.4 Frictionless Contact Using a Penalty Formulation

In the Nakajima test, the deformation of the sample sheet
is completely driven by the hemispherical punch. Moreover,
the deformation is restricted by the blank holder and the die.
Consequently, the simulation of the Nakajima test requires a
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contact formulation on the macroscopic level. As mentioned
before, friction between the rigid punch and the sample sheet
has to be avoided as much as possible in the experiments by
using a lubrication system.Accordingly, in an ideal test setup,
which is assumed in our simulations, there will be no friction
between the rigid punch and the sample sheet, and we can
consider frictionless contact.

We have to incorporate the physical condition of non-
penetration into our simulation. Therefore, let us consider an
arbitrary rigid tool T and a deformable body B, where only
the deformable body B is discretized by finite elements. The
contact surface of the rigid tool is represented by an analytical
function. We further assume that exclusively one face Γ B of
the deformable body may be in contact with the rigid tool.
For each finite element node xB ∈ Γ B we have to compute
the corresponding point xT on the rigid tool surface with
minimum distance, i.e., ‖xB − xT ‖ = miny∈T ‖xB − y‖.
Subsequently, we can compute the outward normal nxT of
the rigid tool surface at the minimum distance point xT . To
ensure that no finite element node on the contact surface of
the deformable body penetrates into the rigid tool, we can
formulate the condition
(
xΓ B

− xT
)

· nxT ≥ 0 ∀xΓ B
∈ Γ B, (3)

which is themathematical formulation of the non-penetration
condition. For a more detailed discussion regarding the more
general case of contact between two deformable bodies, we
refer to [63].

As it is standard practice in finite element simula-
tions of continuum mechanical problems, we are interested
in minimizing an energy functional. Due to the contact
problem and the corresponding non-penetration condition
(see Equation (3)) we have to consider minimization with
constraints. For this purpose, different approaches such as
the Lagrange multiplier method [42,46] or the (quadratic)
penalty method [42,46] are known and both approaches are
widely used in the context of contact problems; see, e.g.,
[63]. While the Lagrange multiplier method solves the con-
strained minimization problem exactly, the penalty method
only approximates the exact solution depending on a real pos-
itive number ηN > 0, which is called penalty parameter. For
ηN → ∞, the solution of the penalty method is identical to
that of the Lagrange multiplier method, but the resulting sys-
tem of equations becomes ill-conditioned for large penalty
parameters. Nonetheless, we choose the penalty method in
our simulations, since this approachdoes not change thenum-
ber of unknowns in our system and can be easily incorporated
into the software. The idea of the penaltymethod is to solve an
unconstrainedminimization problem,where the violations of
the constraint(s) are weighted by the penalty term which is
added to the objective function of the originally constrained
minimization problem. In the context of contact problems,

each finite element node that penetrates the rigid body adds
an additional term to the energy functional. Therefore, we
have to compute the amount of penetration by

gN (x) =
{(

x − xT
) ·nxT , if

(
x − xT

) ·nxT < 0
0, otherwise;

see Equation (3).
Let us introduce the set Γ C as the collection of all finite

element nodes that violate the non-penetration condition, i.e.,

Γ C = {
x ∈ Γ B

∣
∣ gN (x) < 0

}
.

Then, the penalty term, which is added to the energy func-
tional, writes
∫

Γ C

ηN

2
· g2N dA.

Due to the additional penalty term in the energy func-
tional, we also obtain additional terms in the right-hand side
as well as in the stiffness matrix of our resulting system,
which are obtained by derivation and linearization, respec-
tively. Following [22], the contact part of the stiffness matrix
can be divided into three parts, where only the main part is
independent of the amount of penetration. Since we have
small load steps and therefore small penetrations, here, we
neglect the remaining two parts in our implementation; see
also [60].

Let us further explain the numerical realization of the con-
tact problem using a simple example. We assume that the
deformable body in its reference configuration is in perfect
contactwith a rigid tool. In a first step, the rigid surfacemoves
by a small increment, so that some finite element nodes of the
discretized body penetrate into the rigid body. Accordingly,
we build the corresponding system of equations including the
additional contact terms and compute the update of the defor-
mation. Afterwards, we check penetration for the deformed
(intermediate) configuration and repeat until convergence is
reached.

As mentioned before, the choice of the penalty parameter
is crucial for the accuracy of the final solution. As you can see
in Fig. 4, the number of penetrated finite element nodes at the
end of the simulation decreases with an increasing penalty
parameter. Moreover, also the maximum amount of pene-
tration decreases as you can see in Table 4. Accordingly, a
higher penalty parameter is desirable to obtain accurate sim-
ulation results. On the other hand, we also observe that a
higher penalty parameter leads to significantly larger com-
puting times; see Table 4; see also [60, Sec. 3.3] for a similar
discussion using a sample sheet geometry with a shaft width
of 40 mm.

As a further improvement, we have recently implemented
a strategy where a small penalty parameter is increased up
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Fig. 4 Penetrated finite element nodes after reaching a total tool move-
ment of 10 mm for the different penalty parameters ηN = 50,000
(green), ηN = 5000 ( green + blue), ηN = 500 ( green + blue +
orange), and ηN = 50 ( green + blue + orange + red); two finite
elements in thickness direction; quarter geometry of a sample sheet
geometry with a parallel shaft width of 50 mm (see Fig. 1 (top left));
computed on the JUWELS supercomputer [25]. For further informa-
tion; see Table 4

to a user- defined value if a certain tool movement is reached.
Here, significant computing time can be saved in the begin-
ning of the simulation. To distinguish between simulation
results obtained with constant and increased penalty param-
eters, we introduce the notation η

↗
N = n, n ∈ N, which

indicates that we have increased the penalty parameter to n.
We show simulation results starting with different initial

penalty parameters and increasing the penalty parameter to
η

↗
N = 50,000 after reaching a total toolmovement of 10mm.

As we can see in Table 4, the overall computing time after
reaching the final penalty parameter η

↗
N = 50,000 is always

below the computing time for a constant penalty parameter
ηN = 50,000. While we save a significant amount of com-
puting time for the initial penalty parameters of 500 and5000,
the savings for an initial penalty parameter of 50 are negli-
gible. This is related to a large number of additional Newton
iterations and repeated load steps to reach the desired penalty
parameter η

↗
N = 50,000 in the end.

We have to ensure that we still obtain an accurate solution.
Therefore, we compare the final solutions, i.e., after reach-
ing the desired penalty parameter η

↗
N = 50,000, with the

solution obtained when using a constant penalty parameter
of 50,000. Here, we focus on the comparison with an initial
penalty parameter of 500, since we obtain qualitatively simi-
lar results for the other penalty parameters; see the appendix
in Sect. 7.

As we can see in Fig. 5, the maximum deviation in the dis-
placement is below 1 % in relation to the maximum absolute
value of both solutions. Also for the major strains and the

modified Cockcroft & Latham failure value (see Sect. 3),
we obtain a maximum deviation of about 5 %, which is
satisfactory. Only for the von Mises stresses, we obtain a
maximum difference of more than 10 %. Surprisingly, the
maximum difference in the von Mises stresses is lower if we
compare the final solutions obtained with constant penalty
parameters of 500 and 50,000; see Fig. 6 (bottom middle).
This might be explained by the penetrated FE nodes. Com-
paring the results obtained from constant penalty parameters
ηN = 500 and ηN = 50,000 with the result obtained after
increasing the penalty parameter from 500 to 50,000, the
maximum difference is located in the same area, where both
solutions have some penetrated FE nodes that are not pen-
etrated in 500 → 50,000; see Figs. 6 and 7. Note that this
effect is visible also for other discretizations of the same
sample sheet geometry; see Fig. 8. Nonetheless, our strat-
egy yields convincing results with a significantly reduced
overall computing time.

For our simulations of the Nakajima test, we increase
the penalty parameter based on the failure criterion since
increasing the penalty parameter leads to additional defor-
mations - without movement of the rigid punch. As a
consequence, it is possible to reach the critical value while
remaining in the same load step. To guarantee that the criti-
cal value is reached for all simulations for the first time with
the same penalty parameter, there must be a gap between the
critical value that is associated with material failure and the
threshold used for increasing the penalty parameter.

2.5 Newton-Krylov-BDDC on theMacroscopic Level

We have recently incorporated the NK-BDDC approach into
our software package in order to solve large macroscopic
problems efficiently.

Of course, good scalability of the overall application can
only be achieved if the NK-BDDC approach scales well.
Therefore, the choice of a suitable coarse space is essential.
A very simple coarse space contains all subdomain vertices.
Due to the thin sample sheet geometry, it is expected that we
have too few constraints by choosing only the subdomain ver-
tices. Therefore, we choose an additional finite element node
along each edge across the subdomain interface in which the
primal subassembly process is performed. In addition, we
also choose constraints for each face across the subdomain
interface following the suggestions in the frugal approach
[20]. For the definition of vertices, edges, and faces in the
context of domain decomposition, we refer to the literature;
see, e.g., [33–35].

The incorporation of the NK-BDDC approach allows us
to use larger macroscopic problems in our simulations. For
example, we can use discretizations with finer resolution in
thickness direction while maintaining the resolution in the x-
and y-directions. Additionally, we are now able to consider
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Fig. 5 Comparison of final simulation results obtained with a constant
penalty parameter of 50,000 and after increasing the penalty parameter
from 500 to 50,000. Top: Difference in relevant data as well as mini-
mum and maximum values of both configurations; 50,000 (L) and 500
→ 50,000 (S). Bottom: Comparison of penetrated FE nodes as well as
amount of penetration for the final solutions obtained with a constant

penalty parameter of 50,000 (bottom) and after increasing the penalty
parameter from 500 to 50,000 (top). Red dots show penetrated FE nodes
and black dots represent FE nodes that are not penetrated but are pene-
trated in the other solution; sample sheet geometry with a parallel shaft
width of 50 mm; quarter geometry; two finite elements in thickness
direction; computed on the JUWELS supercomputer [25]

full geometries corresponding to the quarter geometries used
for the derivation of virtual FLDs in [32,60]. As mentioned
before, the mesh of such a full geometry was obtained by
vertically and horizontally mirroring the mesh of a quarter
geometry and, accordingly, consists of four times as many
finite elements.

For a simulation of a full geometry using BDDC on
the macroscopic level, we find that the number of Krylov
iterations in each macroscopic Newton iteration is in a

reasonable range (see [60, Fig. 3.15 (left)]) and BDDC is
robust with respect to the thin geometries and also irregular
METIS decompositions thereof. Furthermore, the difference
between minimum and maximum number of Krylov iter-
ations is not too large and the average number of Krylov
iterations in each macroscopic Newton iteration is closer
to the minimum. Accordingly, the performance of the NK-
BDDC approach is quite robust and seems to be independent
of the number of macroscopic finite elements belonging to
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Fig. 6 Cross-comparison of penetrated nodes and von Mises stresses
for final solutions obtained with constant penalty parameters 500 and
50,000 as well as after increasing the penalty parameter from 500 to

50,000 for a sample sheet geometry with a parallel shaft width of 50
mm; quarter geometry; two finite elements in thickness direction; com-
puted on the JUWELS supercomputer [25]

Fig. 7 Penetration of FE nodes
that are penetrated in the final
solution obtained with a
constant penalty parameter of
50,000 but that are not
penetrated in the final solution
after increasing the penalty
parameter from 500 to 50,000
(left) and vice versa (right);
sample sheet geometry with a
shaft width of 50 mm; quarter
geometry; two finite elements in
thickness direction; computed
on the JUWELS
supercomputer [25]

the plastic regime, i.e., macroscopic finite elementswith inte-
gration points belonging to RVEs in the plastic regime. In our
simulations, we always use GMRES (Generalized Minimal
Residual) [19,51] as Krylov subspace method. In all New-
ton iterations, we always choose the same relative stopping

tolerance, which is 1e−8.We additionally introduce an abso-
lute stopping tolerance in all but the first Newton iteration of
each load step, which is the maximum of 1e − 16 and the
residual norm of the linear solver in the first Newton iteration
multiplied with 1e − 2.
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Fig. 8 Cross-comparison of penetrated nodes and von Mises stresses
for final solutions obtained with constant penalty parameters 500 and
50,000 as well as after increasing the penalty parameter from 500 to

50,000 with a finer mesh for a sample sheet geometry with a paral-
lel shaft width of 50 mm; quarter geometry; two finite elements in
thickness direction; computed on the JUWELS supercomputer [25]

3 Failure Detection - a Modified Cockcroft &
Latham Criterion

Asmentioned earlier, in the physicalNakajima test, the hemi-
spherical punch is pressed further upwards until a crack can
be observed on the upper surface of the sample sheet. Once
the Nakajima test is completed, the sample sheet can be
evaluated so that the result can be written into the FLD.
In experiments, the evaluation process is based on the last
recorded image of the sample sheet surface before the crack
occurred. In our simulations, we do not end up with a crack
since our software does not include the computation of
the evolvement of a crack. Instead, we have implemented a

phenomenological failure criterion, where exceeding a pre-
scribed critical value is associated with material failure.

We use a modified version of the Cockcroft & Latham
criterion, which was originally presented in 1968; see [9].
In its original version, it depends on the macroscopic equiv-
alent plastic strain ε p and the maximum positive principal
stress σ I at time tk , where the stress depends on the overall
macroscopic strain ε(tk). It was successfully used in [57] for
a DP800 grade of steel. Note that the maximum principal
stress is the maximum eigenvalue of the stress tensor, which
can be represented by a symmetric 3 × 3 matrix.

Since we use load stepping, the (pseudo-) time tk at the
end of load step k computes as accumulation over all time
increments up to load step k and, therefore, the evaluation
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of all quantities at time tk is equivalent to the evaluation at
the end of load step k. Thus, we write εk and ε

p
k instead of

ε(tk) and ε p(tk), respectively. With this notation, the original
Cockcroft & Latham criterion is defined as

W̃k = W̃
(
ε p(tk)

) = W̃
(
ε
p
k

) =
∫ ε

p
k

0
max (σ I (εk), 0) dε p;

see [9].
During the simulation, we compute the failure value W̃ in

each macroscopic integration point at the end of each load
step, i.e., after convergence. Subsequently, we interpolate the
failure values from the integration points to the finite element
nodes. With numerical integration, we obtain

W̃k ≈
k∑

i=1

max (σ I (εi ), 0) · (
ε
p
i − ε

p
i−1

)

= W̃k−1 + max (σ I (εk), 0) · (
ε
p
k − ε

p
k−1

)
,

i.e., the failure value W̃k in a single integration point is simply
the accumulated sum over all load steps up to load step k. The
values W̃0 as well as ε

p
0 are set to zero and

(
ε
p
k − ε

p
k−1

)
rep-

resents the increment in the macroscopic equivalent plastic
strain from load step k − 1 to load step k.

When the failure value exceeds a prescribed critical value
WC in at least onefinite element node on the top surface of the
sample sheet, we assume that failure occurs. Accordingly, the
simulation has to continue until this condition is fulfilled and
the load step that is associated with material failure strongly
depends on the choice of the critical value WC .

Using the FE2 method, we do not have a constitutivemate-
rial law on the macroscopic level. Consequently, we cannot
use themacroscopic equivalent plastic strain ε p as suggested
in the original Cockcroft & Latham criterion. Instead, we
replace the macroscopic equivalent plastic strain ε p by the
volumetric average ε̃ p = 〈ε p〉 of the microscopic equivalent
plastic strain ε p, which is denoted asmodified Cockcroft &
Latham criterion. Accordingly, the modified failure value
Wk computes as

Wk = W̃ (ε̃
p
k ) = Wk−1 + max (σ I (εk), 0) · (

ε̃
p
k − ε̃

p
k−1

)
.

As in the originally proposed Cockcroft & Latham criterion
(see [9]), we prescribe a critical value WC . As mentioned
before, the choice of the critical value is crucial for the time
at which failure is detected. Unfortunately, to the best of our
knowledge, there is no such value provided in the literature
for a DP600 grade of steel. Moreover, we do not have exper-
imental data to calibrate WC by comparing our simulation
results with the experiment. Throughout this article, we have
chosen a critical value WC = 450 MPa. This is motivated
by the choice of WC = 590− 610 MPa in [57], considering

the original criterion, for a DP800 grade of steel and the fact
that a DP600 steel is less robust compared to a DP800 steel.

4 Sample Sheet Geometries and Appropriate
Boundary Conditions

All necessary information regarding the Nakajima test is
collected in DIN EN ISO 12004-2:2008 [47], including the
description of the sample sheet geometries as well as the
specification of the rigid tools. The recommended sample
sheet geometries all have a central parallel shaft and an outer
circular shape; see Fig. 1 (top left). On both sides of the
central parallel shaft, there is a circular section with a given
radius, which is called fillet radius; see also Fig. 1 (top left). If
the circular section forms a quarter circlewithout intersecting
the outer circular boundary of the sample sheet, there is a
connection from the end of the quarter of the circle to the
outer circular boundary that is parallel to the shaft; see Fig. 1
(top left).

We consider sample sheet geometries with a length of
the parallel shaft of 25 mm and a fillet radius of 30 mm
(see Fig. 1 (top left)), which both fit to the normed range in
[47]. Moreover, the chosen specifications of the rigid tools
also fit to the normed range in [47] ; see Fig. 1 (middle). In
addition to the recommended sample sheet geometries with a
central parallel shaft, we also consider a completely circular
sample sheet. We choose Dirichlet boundary conditions for
all material points on the outer circle.

Asmentioned before, the incorporation of the blank holder
and the die are necessary to rebuild the real test conditions
as good as possible, since these tools are responsible for the
final shape of the sample sheet.

By integrating the blank holder and the die into the simula-
tion process, not only the number of contact points increases,
but also the number of possible contact points grows, since,
for example, material points on the top surface of the sam-
ple sheet can come into contact with a rigid tool (the die).
Accordingly, the determination of all contact points takes
longer and the problem becomes more complex, since more
finite element nodes add an additional contact term. In order
to keep the number of contact points as small as possible, we
tested different strategies to incorporate blank holder and die
by prescribing a zero displacement in some material points.

For sample sheet geometries with a comparably small par-
allel shaft width as well as for the completely circular sample
sheet, we fix all finite element nodes between blank holder
and die. This is associated with a blank holder force that is
high enough that material movement between blank holder
and die is prohibited. Of course, in this case, it is sufficient to
exclusively consider the remaining part of the sample sheet
and to choose Dirichlet boundary conditions for all finite
element nodes on the outer circle of the remaining part. This
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strategy works well for all sample sheet geometries with
a parallel shaft width of at least 90 mm as well as for the
completely circular specimen. For sample sheet geometries
with a wider parallel shaft and prohibitedmaterial movement
between blank holder and die, the failure zone is located at
the fillet radius. This phenomenon is also described in [23]
and it is related to the prohibitedmaterial movement between
blank holder and die. As a result, we have to adapt the strat-
egy for all sample sheets with a shaft width of more than 90
mm. Otherwise, the simulation of the Nakajima test would
provide invalid results, since the position of the failure zone
may not deviate by more than 15 % of the punch diameter
from the center of the punch; see [47].

Following [23], material movement is now only prohib-
ited for all material points between blank holder and die that
have a distance of at most 50 mm to the horizontal center
line of the sample sheet. Accordingly, material movement is
allowed next to the fillet radius, which results in failure zones
along or close to the vertical center line; see Fig. 9.

Following to the specifications of the rigid tools (see Fig. 1
(middle)), for sample sheets with a parallel shaft width of at
most 90 mm as well as for the fully circular specimen, we
choose Dirichlet boundary conditions for all material points

p = [
px , py, pz

]
with

√
p2x + p2y = 65 mm. For sample

sheet geometrieswithwider parallel shaft widths, allmaterial

points with
√
p2x + p2y = 86.5 mm belong to the Dirichlet

boundary and we prescribe a zero displacement for all mate-

rial points with
√
p2x + p2y ≥ 65 mm and |py | ≤ 50 mm.

5 Symmetry Assumption

From a macroscopic point of view, under ideal conditions,
the experimental test setup of the Nakajima test is perfectly
symmetric. Accordingly, to save computing time, we have
decided to make use of the symmetric test setup, i.e., using
the quarter geometry, in most of our simulations including
the computation of a virtual FLD (see [32,60]). Note that
our SSRVE, however, does not fulfill the same symmetry
conditions; see the discussion below.

For us, exploiting symmetry means to consider only a
quarter of the overall sample sheet and to rebuild the com-
plete solution by mirroring of the solution using the quarter
geometry. Continuity of the final solution is guaranteed by
additional partial Dirichlet boundary conditions along the
boundaries of the quarter geometry that belong to the hor-
izontal and vertical center line of the overall sample sheet.
Along the vertical center line, displacement in x-direction
is set to zero (ux = 0). Similarly, the displacement in
y-direction is set to zero along the horizontal center line
(uy = 0).

Fig. 9 Comparison of the distribution of the value W of the modified
Cockcroft &Latham criterion (see Sect. 3) for an overall tool movement
of 29.303 mm with prescribed zero displacement for different material
points. Computation using a quarter geometry of a specimen with a
width of 90 mm (see also Fig. 1 (left)); two finite elements in thick-
ness direction.Left:Dirichlet boundary conditions completely prohibit
material flow between the blank holder and the die. Part of the speci-
men between the blank holder and the die is in dark grey; computed on
magnitUDE.Right: The usage of adapted boundary conditions enables
material flow between the blank holder and the die in the cutoff area.
Here, we have to simulate the part of the specimen between the blank
holder and the die; computed on the JUWELS supercomputer. Image
from [60, Fig. 2.5]

By mirroring the solution obtained for the quarter
geometry, we also mirror the considered microstructure (see
Fig. 10), which is represented by an SSRVE. In case of
an asymmetric structure of the SSRVE, i.e., the position of
the martensitic inclusions changes by mirroring, the overall
solution violates the condition of a periodic unit cell, since
the martensitic inclusions are positioned differently for each
quadrant. Consequently, the final solution is only an approxi-
mation to the simulation of the complete sample sheet, where
the condition of a periodic unit cell is satisfied.

For the derivation of a virtual FLD (see [32,60]), we have
simulated theNakajima test for several different sample sheet
geometries using quarter geometries. As expected, we have
observed that the failure zone evolves along the vertical cen-
ter line for all sample sheet geometries with a parallel shaft
width of at least 90 mm. For a parallel shaft width of 100
mm or more, the failure zone does not evolve along the ver-
tical center line but parallel to it. If this happens, rebuilding
the solution by mirroring leads to the occurrence of a second
failure zone (see [32, Fig. 3.5]). This is not consistent with
observations in experiments.

Due to the unexpected position of the failure zone for
sample sheet geometries with a shaft width of at least 100
mm, we have performed some tests using full geometries.
More precisely, we have used different meshes of the full
geometry of a sample sheet with a shaft width of 100 mm.
In order to not increase the overall number of macroscopic
finite elements compared to the simulation using a quarter
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geometry, we have first tested a very coarse mesh for the
full geometry with one finite element in thickness direc-
tion. During the simulation, we observe the evolution of two
different areas with localized effects, which evolve parallel
to the vertical center line and are positioned symmetrically
to it. After a while, further localization only takes place in
one of these two areas (see Fig. 11), which is in accordance
with reality. As a result, we obtain an off-centered failure
zone, which somehow confirms the off-centered failure zone
obtained from the simulations using quarter geometries.

However, to provide a better comparison, we have also
tested corresponding meshes obtained for the full and the
quarter geometry. Therefore, we consider the discretization
of the quarter geometry that was used for the derivation of the
virtual FLD (see [32]) with one, two, and four finite elements
in thickness direction. Since two finite elements in thickness
direction were used for the derivation of the virtual FLD, we
already know that we obtain an off-centered failure zone for
the quarter geometry. This is also true if we consider one or
four finite elements in thickness direction. As we can see in
Fig. 13, the final results for the quarter geometry with one
and two finite elements in thickness direction are quite simi-
lar. The only difference is that the punch can move about half
a millimeter further for one finite element in thickness direc-
tion. In contrast to that, considering the full geometry with

one finite element in thickness direction, the critical value
of 450 MPa is reached more than one millimeter earlier in
comparison to both simulations using quarter geometries.
Moreover, as we can see in Fig. 13, the final failure zone
evolves along the vertical center line. Comparing the sim-
ulation results considering quarter geometries with two and
four finite elements in thickness direction yields quite sim-
ilar results to the comparison between one and two finite
elements; see Fig. 14. In this case, we compare the simula-
tion results immediately after reachingW = 400MPa on the
top surface of the sample sheet since the simulation with four
finite elements terminated due to seven load step reductions
within a single load step before reaching WC = 450 MPa.
It turns out that the hemispherical punch has to be pushed a
little further (about 0.2 mm) for the discretization with four
finite elements in thickness direction to reachW = 400MPa.

As we learn from Fig. 12, varying the number of finite
elements in thickness direction seems to have only a slight
impact on the final evaluation points in the FLD since the
points belonging to the corresponding simulations consider-
ing a quarter geometry of a sample sheet geometry with a
parallel shaft width of 100 mm are very close together. Let
us note that we have evaluated the final load step of the sim-
ulation with four finite elements in thickness direction since
seven reductions of the load step sizewithin a single load step

Fig. 10 Left: Quarter geometry
(light grey) of the overall sample
sheet that is used for the
simulations. Right:Microscopic
orientation change of an
asymmetric SSRVE resulting
from mirroring the solution
using a quarter geometry to
rebuild the overall solution. The
light grey quarter is the
computational domain. Figure
and caption from [60, Fig. 2.6]

Fig. 11 Evolution of the
modified Cockcroft & Latham
criterion for a coarse mesh of
the full geometry of the
complete sample sheet with a
parallel shaft width of 100 mm;
one finite element in thickness
direction; computed on
magnitUDE
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Fig. 12 Impact of quarter (1, 2, and 4 FE in thickness direction) and
full geometries (1 FE in thickness direction) for a sample sheet with
a shaft width of 100 mm on the FLD and the FLC. For similar results
without the focus on the different simulations for a sample sheet with
a shaft width of 100 mm; see [32, Fig. 12] and [60, Fig. 3.5]. Major
and minor strains are derived with the cross section method; see [47]

and [60, Sec. 2.1 and 2.8]. For the sample sheet geometry with a shaft
width of 100 mm discretized with 4 FE in thickness direction, we have
evaluated the major andminor strains at the end of the simulation which
corresponds to a critical value of WC = 425 MPa. For all other sample
sheet geometries, we have evaluated the last load step before exceeding
WC = 450 MPa on the top surface

Quarter geometry
2 FE in thickness direction
Cov. dist. punch: 30.986 mm
Load step 785

Quarter geometry
1 FE in thickness direction
Cov. dist. punch: 31.382 mm
Load step 822

Full geometry
1 FE in thickness direction
Cov. dist. punch: 29.717 mm
Load step 1 090

Fig. 13 Comparison of the failure values W of the modified Cockcroft
& Latham criterion for the simulation results immediately after reach-
ing the critical value WC = 450 MPa in finite element nodes on the
top surface of the sample sheet. We consider quarter geometries with
one and two finite elements in thickness direction as well as the corre-
sponding full geometry of the complete sample sheet with one finite
element in thickness direction for a sample sheet with a parallel shaft
width of 100 mm. Different heights of the sample sheets result from

different tool movements. Even if we present the upper left quarter for
the quarter geometry with two finite elements in thickness direction,
we have computed the same quarter as mentioned in Fig. 10. All three
simulations were performed on JUWELS [25], and we have used the
NK-BDDC approach for the parallel solution of the macroscopic prob-
lem for the simulation using the full geometry. Figure and caption
from [60, Fig. 3.12]

can be associated with material failure due to very small load
increments. The corresponding evaluation points belong to
exceeding WC = 425 MPa. It also turns out that consid-

ering a quarter or a full geometry only has a slight impact
on the final evaluation points defining the FLCs in the FLD.
Although there are slight differences, the resulting FLCs are
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Quarter geometry
2 FE in thickness direction
Cov. dist. punch: 30.654 mm
Load step 742

Quarter geometry
4 FE in thickness direction
Cov. dist. punch: 30.868 mm
Load step 1 106

Fig. 14 Comparison of the failure values W of the modified Cock-
croft & Latham criterion for the simulation results immediately after
reaching the value W = 400 MPa in finite element nodes on the top
surface of the sample sheet. We consider quarter geometries with two
and four finite elements in thickness direction for a sample sheet with a
parallel shaft width of 100 mm. Different heights of the sample sheets
results from different tool movements. Even if we present the upper left

quarter for the quarter geometry with two finite elements in thickness
direction, we have computed the same quarter as mentioned in Fig. 10.
Both simulations were performed on JUWELS [25], and we have used
the NK-BDDC approach for the parallel solution of the macroscopic
problem for the simulation using four finite elements in thickness direc-
tion

nearly the same nomatter which discretization of the sample
sheet geometry with a shaft width of 100 mm is considered.

6 Conclusion

Our software package FE2TI is a highly scalable implemen-
tation of the computational homogenization approach FE2

based on PETSc. In the present work, we have presented
the extension of FE2TI to be able to perform simulations
of the Nakajima test. It has been our main goal to demon-
strate that these simulations, which also take into account
the microstructure, can now be used to obtain virtual form-
ing limit diagrams (FLDs). As an example, we have shown
results for a DP600 grade of steel, where we used a J2 elasto-
plasticity model on the microscale. In all our simulations, we
used PARDISO as an RVE solver on the microscopic level.
On the macroscopic level, the choice of solver depends on
the size of the macroscopic problem. For small problems,
we also used PARDISO, and for larger problems, we have
implemented and applied an MPI-parallel BDDC method.
The main computational results in this article were obtained
using up to 15,000 cores on the JUWELS supercomputer at
JSC Jülich and 6000 cores of themagnitUDE supercomputer
at Universität Duisburg-Essen.

As a goal for future work, the FE2TI software package
should be used to derive virtual FLDs of other types of steel
and the obtained results should be compared to those obtained

from experiments. In this context, it would also be of interest
to introduce an approach to control the load step size such that
the change of the equivalent plastic strain in two successive
load steps does not exceed a given value in order to improve
the estimation quality of internal quantities.
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7 Appendix

For additional simulation results, which are quite similar to
those discussed in Section 2–4, see Figs. 15, 16, 17, 18, and
19.

Fig. 15 Comparison of final simulation results obtainedwith a constant
penalty parameter of 50,000 and after increasing the penalty parameter
from 50 to 50,000. Top: Difference in relevant data as well as mini-
mum and maximum values of both configurations; 50,000 (L) and 50
→ 50,000 (S). Bottom: Comparison of penetrated FE nodes as well as
amount of penetration for the final solutions obtained with a constant

penalty parameter of 50,000 (bottom) and after increasing the penalty
parameter from 50 to 50,000 (top). Red dots show penetrated FE nodes
and black dots represent FE nodes that are not penetrated but are pene-
trated in the other solution; sample sheet geometry with a parallel shaft
width of 50 mm; quarter geometry; two finite elements in thickness
direction; computed on the JUWELS supercomputer [25]
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Fig. 16 Cross-comparison of penetrated nodes and von Mises stresses
for final solutions obtained with constant penalty parameters 50 and
50,000 as well as after increasing the penalty parameter from 50 to

50,000 for a sample sheet geometry with a parallel shaft width of 50
mm; quarter geometry; two finite elements in thickness direction; com-
puted on the JUWELS supercomputer [25]
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Fig. 17 Comparison of final simulation results obtainedwith a constant
penalty parameter of 50,000 and after increasing the penalty parame-
ter from 5000 to 50,000. Top: Difference in relevant data as well as
minimum and maximum values of both configurations; 50,000 (L) and
5000 → 50,000 (S). Bottom: Comparison of penetrated FE nodes as
well as amount of penetration for the final solutions obtained with a

constant penalty parameter of 50,000 (bottom) and after increasing the
penalty parameter from 5000 to 50,000 (top). Red dots show penetrated
FE nodes and black dots represent FE nodes that are not penetrated
but are penetrated in the other solution; sample sheet geometry with a
parallel shaft width of 50 mm; quarter geometry; two finite elements
in thickness direction; computed on the JUWELS supercomputer [25]
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Fig. 18 Cross-comparison of penetrated nodes and von Mises stresses
for final solutions obtained with constant penalty parameters 5000 and
50,000 as well as after increasing the penalty parameter from 5000 to

50,000 for a sample sheet geometrywith a parallel shaftwidth of 50mm;
quarter geometry; two finite elements in thickness direction; computed
on the JUWELS supercomputer [25]
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Fig. 19 Comparison of final simulation results obtainedwith a constant
penalty parameter of 50,000 and after increasing the penalty parameter
from 500 to 50,000 using a finer mesh. Top:Difference in relevant data
aswell asminimumandmaximumvalues of both configurations; 50,000
(L) and 500→ 50,000 (S).Bottom:Comparison of penetrated FEnodes
as well as amount of penetration for the final solutions obtained with a

constant penalty parameter of 50,000 (bottom) and after increasing the
penalty parameter from 500 to 50,000 (top). Red dots show penetrated
FE nodes and black dots represent FE nodes that are not penetrated
but are penetrated in the other solution; sample sheet geometry with a
parallel shaft width of 50 mm; quarter geometry; two finite elements
in thickness direction; computed on the JUWELS supercomputer [25]
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