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Abstract
The prediction of crack initiation and propagation in ductile failure processes are challenging tasks for the design and
fabrication of metallic materials and structures on a large scale. Numerical aspects of ductile failure dictate a sub-optimal
calibration of plasticity- and fracture-related parameters for a large number of material properties. These parameters enter the
system of partial differential equations as a forward model. Thus, an accurate estimation of the material parameters enables
the precise determination of the material response in different stages, particularly for the post-yielding regime, where crack
initiation and propagation take place. In this work, we develop a Bayesian inversion framework for ductile fracture to provide
accurate knowledge regarding the effective mechanical parameters. To this end, synthetic and experimental observations are
used to estimate the posterior density of the unknowns. To model the ductile failure behavior of solid materials, we rely on
the phase-field approach to fracture, for which we present a unified formulation that allows recovering different models on
a variational basis. In the variational framework, incremental minimization principles for a class of gradient-type dissipative
materials are used to derive the governing equations. The overall formulation is revisited and extended to the case of anisotropic
ductile fracture. Three differentmodels are subsequently recovered by certain choices of parameters and constitutive functions,
which are later assessed through Bayesian inversion techniques. A step-wise Bayesian inversion method is proposed to
determine the posterior density of the material unknowns for a ductile phase-field fracture process. To estimate the posterior
density function of ductile material parameters, three commonMarkov chainMonte Carlo (MCMC) techniques are employed:
(i) the Metropolis–Hastings algorithm, (ii) delayed-rejection adaptive Metropolis, and (iii) ensemble Kalman filter combined
with MCMC. To examine the computational efficiency of the MCMC methods, we employ the R̂−convergence tool. The
resulting framework is algorithmically described in detail and substantiated with numerical examples.
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1 Introduction

Fracture in the formof evolving crack surfaces in ductile solid
materials exhibits dominant plastic deformation. In compari-
son to brittle materials, the crack evolves at a slow rate and is

1 Institute of Continuum Mechanics, Leibniz Universität
Hannover, An der Universität 1, 30823 Garbsen, Germany

2 Institute of Applied Mathematics, Leibniz Universität
Hannover, Welfengarten 1, 30167 Hannover, Germany

3 Department of Civil Engineering, KU Leuven, Kasteelpark
Arenberg 40, 3001 Leuven, Belgium

4 Cluster of Excellence PhoenixD (Photonics, Optics, and
Engineering - Innovation Across Disciplines), Leibniz
Universität Hannover, Hannover, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-021-02054-w&domain=pdf
http://orcid.org/0000-0003-4074-4576


944 Computational Mechanics (2021) 68:943–980

accompanied by significant plastic distortion. The prediction
of such failuremechanisms due to crack initiation and growth
coupled with elastic-plastic deformations is an intriguingly
challenging task and plays an extremely important role in
various engineering applications.

Recently, in the setting of continuum mechanics, a new
perspective was proposed for embedding microscopic mech-
anisms into the macromechanical continuum formulation
based on a multi-field incremental variational framework for
gradient-extended standard dissipative solids [1,2]. Typical
examples are theories of gradient-enhanced damage [3–6],
phase-field models [7–9], and strain gradient plasticity [10–
12]. Such models incorporate non-local effects based on
length scales, which reflect properties of the material micro-
structure sizewith respect to themacro-structure size. In this
context, the term size effects is used to describe the influ-
ence of the macro-structure size on the mechanical response
during inelastic deformations. Thus, micro-structure inter-
action effects are introduced through the so-called local
length-scale, which describes the gradient information of
the quantity of interest within neighboring material points
(e.g., the damage or ductility zones). From a mathemati-
cal point of view, local length-scales resolve the loss of
ellipticity of the governing equations and avoid pathological
mesh-dependence in post-critical ranges, aswell documented
in [13–15]. Within the variational framework for gradient-
extended dissipative phenomena, the modeling challenge is
two-fold.

• First, the derivation of well-posed theoretical formula-
tions for describing the forward model. Hereby, vari-
ational phase-field modeling is considered, which is a
regularized approach to fracture with a strong capabil-
ity to simulate complex failure processes. This includes
crack initiation (also in the absence of a crack tip singu-
larity) [16–18], propagation, coalescence, and branching,
without additional ad-hoc criteria [8,19,20]. Moreover,
the boundary value problem can be solved using stan-
dard finite element approximation spaces. A summary of
multiphysics phase-field fracture models including algo-
rithmic treatments is outlined in [21]. We further note
that, in addition to the finite element method, mesh-
less methods in [22,23], as well as isogeometric analysis
(IGA) in [24] and virtual element method (VEM) in [25]
can be used in phase-field models.

• The second challenge is to elucidate the backward model
in order to estimate the model parameters and other
univariate quantities of interest. A Bayesian estimation
model (as an inverse model) is here used for the ductile
fracture problem to provide accurate knowledge regard-
ing the effective mechanical parameters.

1.1 Ductile phase-field fracture as a forwardmodel

A variety of studies have recently extended the phase-field
approach to fracture towards the ductile case. The essen-
tial idea is to couple the evolution of the crack phase-field
to an elasto-plasticity model. Initial works on this topic
include [14,26–33] (see [34] for an overview). Phase-field
models for ductile fracture were subsequently developed in
the context of cohesive-frictional materials [35,36], porous
plasticity [37] including thermal effects [38], fiber pullout
behavior [39], hydraulic fracture [40–42], degradation of
the fracture toughness [43], multi-surface plasticity [44] and
fatigue [45], among others.

The majority of the ductile phase-field models found in
the literature are based on local plasticity. In this setting,
a strong localization of plastic strains may occur during the
post-critical regime,while the damage gradient, aswell as the
displacement field, suffer jumps [46,47]. These occurrences
are particularly relevant in the case of perfect plasticity due
to the absence of a plastic regularization mechanism. Thus,
from a numerical perspective, the use of local plasticity in
phase-field models does not ensure mesh-objective simula-
tions in the post-critical regime and may lead to non-realistic
localized responses, such as ductile fracture with damage
growth in non-plasticized regions [48]. To address these
problems, phase-field models coupled to gradient-extended
plasticity have been proposed in the literature, which incor-
porate a plastic internal length scale, in the spirit of [49].
The resulting formulation allows for a physically meaning-
ful description of the coupled plasticity-damage evolution
and mesh-objective finite element simulations. Models of
this class were considered in [45,50], where a variation-
ally consistent energetic formulation was adopted to derive
the coupled system of partial differential equations (PDEs)
that governs the gradient-extended elastic-plastic damage
response. This approach is consistent with the models pro-
posed in [51] in a finite-strain setting and the extensions
to micromorphic regularization [14,48,52], where the gov-
erning equations were derived from rate-type variational
principles, namely, the principle of virtual power.

In this study, we present a unified formulation for ductile
phase-field fracture based on variational principles, rooted
in incremental energy minimization for gradient-extended
dissipative solids [2,53]. The coupling of plasticity to the
crack phase-field is achieved by a constitutive work den-
sity function, which is characterized by a degraded stored
elastic energy and the accumulated dissipated energy due
to plasticity and damage. Three different models are sub-
sequently recovered by certain choices of parameters and
constitutive functions. Specifically, two phase-field models
coupled to local plasticity are derived, followed by a model
that considers gradient extended plasticity. The overall for-
mulation is revisited and extended to the case of anisotropic
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ductile fracture. Thereby, at a specific material point, the
stress state relates to the given direction (resembling solids
enhanced with stiff fibers), which entails a deformation-
direction-dependent solid material. Hence, similar to [54], a
stiffness parameter is introduced to enforce the crack phase-
field evolution according to the preferred fiber orientation.

1.2 Bayesian inversion as a backwardmodel

Providing reliable mechanical parameters is essential in
computational mechanics to construct models with accurate
predictive ability.Many of these a priori unknownparameters
cannot be estimated directly through experimental proce-
dures, and a significant effort is oftenneeded toobtain reliable
values. Furthermore, material parameters fluctuate randomly
in space, giving rise to spatial uncertainty through the geom-
etry. Consequently, the development of a sound statistical
framework emerges as an interesting approach to reliably
estimate mechanical properties.

Bayesian inversion is a probabilistic technique used to
identify unknown parameters. Hereby, a forwardmodel (e.g.,
a system of PDEs) obtains a set of given data according to
the prior density (the initial/prior information of the parame-
ters) and gives a response related to the given unknowns. The
output of the inverse problem is the posterior density, which
is related to a reference observation (e.g., from experimental
or synthetic measurements). This distribution provides very
useful information concerning the parameter range, its stan-
dard deviation, and expectation.

Markov Chain Monte Carlo (MCMC) methods are fre-
quently employed to extract the posterior distribution of a
parameter of interest [55]. We propose several candidates
according to the prior density (e.g., uniform/Gaussian) and
determine whether the proposed one is rejected or accepted.
The Metropolis–Hastings algorithm is one of the most com-
mon MCMC techniques due to its efficiency and easiness.
In [56], a Bayesian framework according to this algorithm
was developed to identify the material parameters in brittle
fracture. The method suffers from slow convergence, since
most of the candidates are rejected. To enhance its efficiency,
several techniques have been recently developed, such as
delayed rejection adaptive Metropolis (DRAM) [57], dif-
ferential evolution adaptive Metropolis (DREAM) [58], and
ensemble Kalman filter with MCMC (EnKF-MCMC) [59].
The reader is referred to [56,60–63] for the application of
Bayesian inversion in applied sciences.

A Bayesian approach (as a backward model) to estimate
model parameters for brittle fracture in elastic solids has
recently been proposed in [56]. Specifically, the Metropolis–
Hastings algorithm is devised therein to approximate model
parameters based on synthetic measurements which are
obtained through a sufficiently refined discretization space
as the replacement of experimental observations. Thereafter,

a Bayesian inversion framework for hydraulic phase-field
fracture was designed for transversely isotropic and lay-
ered orthotropic poroelastic materials [64]. Specifically, the
DRAM algorithm was extended for parameter identification.

In this study, we develop a Bayesian inversion framework
to identify the effective mechanical parameters in ductile
fracture. To this end, we first introduce amethodology to esti-
mate the unknowns in different stages, i.e., elastic, plastic,
and fracturing responses for isotropic and anisotropicmateri-
als. Three specificMCMC techniques are used to estimate the
material parameters using synthetic and experimental mea-
sured data. Afterwards, a fair comparison is drawn between
two improved models to determine the better convergence
rate. As previously mentioned, having accurate information
regarding the material parameters will enhance the accu-
racy of the PDE-based model. For instance, in the present
case of ductile fracture, the goal is to predict the dissipative
response in different stages, anticipating crack initiation and
its propagation during time.Wewill thus employ the inferred
parameters in the model equations and compare the response
with the initial knowledge, highlighting the role of the prob-
abilistic approach in improving the model’s performance.

1.3 Physical interpretation of the ductile parameters

In ductile fracture, crack propagation is affected by several
material properties. Figure 1 shows the range of the differ-
ent parameters for a wide variety of materials. The effective
parameters required in the models are introduced below.

• The bulk modulus K indicates how much the solid will
compress as a result of an applied external pressure, and
denotes the relation between a change in pressure and
the resulting decrease/increase in fractional volume com-
pression. See, e.g., [65–68].

• The shearmodulusμ is a positive constant, smaller than
K ,which indicates the response of the solid to shear stress
(the ratio of shear stress to shear strain). Large shearing
stresses give rise to flow and permanent deformation or
fracture. See, e.g., [66,68,69].
The elastic properties of the solid can be alternatively
described in terms of the Young’s modulus and the Pois-
son’s ratio, or any other pair of Lamé’s parameters. In
our previous work [56], it was reported that due to the
boundness of the Poisson’s ratio (−1 < ν < 1

2 ) and

Lamé’s first parameter (λ >
2μ
3 ), the Poisson’s ratio and

Lamé’s first parameter are not appropriate for Bayesian
inference. Hence, for the elasticity identification, K and
μ are selected, where K > 0 and μ > 0.

• TheGriffith’s energy release rate Gc indicates the nec-
essary energy (absolutely positive) to drive crack growth
in elastic media. It measures the amount of energy dis-
sipated in a localized fractured state, and therefore has
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Fig. 1 The range of different effective parameters for different materials (source: [65–77])

units of energy per unit area. The energy rate is directly
related to the toughness, indicating that in tougher mate-
rials, more energy is required to initiate fracture [70–72].

• The hardening modulus H characterizes the resistance
of the material during plastic deformation. Hardening
has an essential impact on crack initiation, specifically
in phase transition zones [73]. See, e.g., [74,75].

• The yield stress σY denotes the stress related to the yield
point (the starting point of plasticity) where the material
starts to deform in the plastic regime [69].

• The critical value αcrit stems from a physical assumption
that fracture evolution is promoted once a threshold value
for the accumulated plastic strain has been reached [72].

• The specific fracture energy ψc characterizes the dis-
sipated energy during a complete damage process in
a homogeneous volume element [76]. This property is
related to Griffith’s energy release rate and can be inter-
preted as the amount of strain energy density (strain on a
unit volume of material) that a given material can absorb
before it fractures [77].

In Sect. 3.4, the role of these quantities in different stages of
the deformation process will be clarified.

The paper is structured as follows.
In Sect. 2, a unified version for ductile phase-field fracture

models is presented in a variational setting, making use of
incremental energy minimization. In Sect. 3, we first intro-
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a b c

Fig. 2 Problem outline and setup of the notation. a Global Cartesian
coordinate system with unit vectors (ex , ey) and local orthogonal prin-
cipal material coordinates corresponding to the first and second families

of fibers (a, g), b solid with a crack inside of a plastic zone and bound-
ary conditions, and c tangential and unit vectors denoted by (nL , nC)

at the crack tip point x

duce the MCMC techniques and explain the three specific
Bayesian estimation methods. Afterwards, a parameter iden-
tification setting for ductile fracture is presented based on
MCMC. Thereafter a review of different possibilities (spe-
cific observations) for the implementation of the Bayesian
inversion framework is introduced. In Sect. 4, we employ
the presented techniques to precisely estimate the effective
parameters in different stages of the deformation process.
This information allows us to enhance the accuracy of the
models, as evidenced by very good agreements between
simulations and experiments, highlighting the noticeable
efficiency of theMCMCtechniques. Furthermore, a fair com-
parison between the proposedmodels is outlined. Finally, the
conclusions are drawn in Sect. 5.

2 Phase-fieldmodeling of ductile fracture in
anisotropic elastic-plastic materials

In this section, we summarize the material models consid-
ered for the phase-field approach to ductile fracture. Three
models found in the literature are revisited and extended
to anisotropic fracture, considering the case of transversely
isotropic materials. To this end, a unified formulation is first
provided in Sects. 2.1–2.3. The three examined models are
then recovered in Sects. 2.4.1–2.4.3. These models will be
analyzed in subsequent sections using Bayesian inversion
techniques, aiming for parameter identification in anisotropic
elastic-plastic fracturing materials.

2.1 Basic continuummechanics

Let B ⊂ R
δ be an arbitrary solid domain, δ ∈ {2, 3}, with a

smooth boundary ∂B (Fig. 2). We assume Dirichlet bound-
ary conditions on ∂DB and Neumann boundary conditions

on ∂NB := 	N ∪ C, where 	N denotes the outer domain
boundary and C ∈ R

δ−1 is the crack boundary, as illustrated
in Fig. 2b.

The response of the fracturing solid at material points x ∈
B and time t ∈ T = [0, T ] is described by the displacement
field u(x, t) and the crack phase-field d(x, t) as

u :
{
B × T → R

δ

(x, t) �→ u(x, t)
and

d :
{
B × T → [0, 1]
(x, t) �→ d(x, t)

with ḋ ≥ 0. (1)

Intact and fully fractured states of the material are character-
ized by d(x, t) = 0 and d(x, t) = 1, respectively. In order
to derive the variational formulation, the following space is
first defined. For an arbitrary A ⊂ R

δ , we set

H1(B, A) := {v : B × T → A : v ∈ H1(A)}. (2)

We also denote the vector valued space H1(B, A) :=[
H1(B, A)

]δ
and define

Wu
u := {u ∈ H1(B, R

δ) : u = u on ∂DB}. (3)

Concerning the crack phase-field, we set

Wd := H1(B) and Wd
dn

:= {d ∈ H1(B, [0, 1]) : d ≥ dn},
(4)

where dn is the damage value in a previous time instant.
Note that Wd

dn
is a non-empty, closed and convex subset of

Wd , and introduces the evolutionary character of the phase-
field, incorporating an irreversibility condition in incremental
form.

123



948 Computational Mechanics (2021) 68:943–980

Focusing on the isochoric setting of von Mises plasticity
theory, we define the plastic strain tensor ε p(x, t) and the
hardening variable α(x, t) as

ε p :
{
B × T → R

δ×δ
dev

(x, t) �→ ε p(x, t)
and

α :
{
B × T → R+
(x, t) �→ α(x, t)

with α̇ ≥ 0, (5)

where R
δ×δ
dev := {e ∈ R

δ×δ : eT = e, tr[e] = 0} is the
set of symmetric second-order tensors with vanishing trace.
The plastic strain tensor is considered as a local internal
variable, while the hardening variable is a possibly non-
local internal variable. In particular, α may be introduced to
incorporate phenomenological hardening responses and/or
non-local effects, for which the evolution equation

α̇ =
√
2

3
|ε̇ p| (6)

is considered. As such, α can be viewed as the equivalent
plastic strain, which starts to evolve from the initial condi-
tion α(x, 0) = 0. Concerning function spaces, we assume
sufficiently regularized plastic responses, i.e., endowed with
hardening and/or non-local effects, for which we assume
ε p ∈ Q := L2(B, R

δ×δ
dev ). Moreover, in view of (6), it follows

that α is irreversible. Assuming in this section the setting of
gradient-extended plasticity, we define the function spaces

Wα
αn , q := {α ∈ Wα : α = αn +√

2/3 |q|, q ∈ Q}, (7)

whereWα = L2(B) for local plasticity, whileWα = H1(B)

for gradient plasticity. The hardening law (6) is thus enforced
in incremental form by setting α ∈ Wα

αn , ε p−ε
p
n
.

The gradient of the displacement field defines the sym-
metric strain tensor of the geometrically linear theory as

ε = ∇su = sym[∇u] := 1

2
[∇u + ∇uT ]. (8)

In viewof the small strain hypothesis and the isochoric nature
of the plastic strains, the strain tensor is additively decom-
posed into an elastic part εe and a plastic part ε p as

ε = εe + ε p with tr[ε] = tr[εe]. (9)

For simplicity, the anisotropic material is assumed to be
strengthened by a single family of fibers, whose direction is
described by a unit vector field a (Fig. 2). Consequently, the
direction-dependent response is characterized by the second-
order structural tensor

M := a ⊗ a. (10)

The introduction of additional preferred directions can be
easily incorporated in future work, following, e.g., [78]. The
solid B is loaded by prescribed deformations and external
tractions on the boundary, defined by time-dependent Dirich-
let conditions and Neumann conditions

u = u on ∂DB and σ · n = τ on ∂NB, (11)

where n is the outward unit normal vector on the surface ∂B.
The stress tensor σ is the thermodynamic dual to ε and τ̄ is
the prescribed traction vector. Finally, the stress equilibrium
is defined as the quasi-static form of the balance of linear
momentum

div σ + f = 0, (12)

where dynamic effects are neglected and f is a given body
force.

2.2 Energy quantities and variational principles

Let C denote the set of constitutive state variables. In the
most general setting considered in this study, one has

C := {ε, ε p, α, d,∇α,∇d}. (13)

A pseudo-energy density per unit volume is then defined
as W := W (C), which is additively decomposed into an
elastic contribution Welas , a plastic contribution Wplas , and
a (regularized) fracture contribution W f rac :

W (C; M) := Welas(ε, ε p, d, α; M)

+Wplas(α, d, ∇α)+W f rac(d,∇d; M). (14)

We note that W is a state function that contains both
energetic and dissipative contributions. With this function at
hand, a pseudo potential energy functional can be written as

E(u, ε p, α, d; M) :=
∫
B
W (C; M) dv − Eext (u), (15)

where Eext denotes the work of external loads:

Eext (u) :=
∫
B

f · u dv +
∫

∂NB
τ · u da. (16)

In variationally consistent models, the governing equa-
tions of the fracturing elasto-plastic solid can be derived
from knowledge of the energy functional (15) by invoking
rate-type variational principles [1,52] in agreement with the
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principle of virtual power [79,80]. In such cases, a global rate
potential of the form


(u̇, ε̇ p, α̇, ḋ; M) := d

dt
E(u, ε p, α, d; M) +

∫
B

�vis(ḋ, α̇) dv,

(17)

is defined, where �vis denotes the dissipative power den-
sity due to viscous resistance forces. In line with previous
works [7], the function

�vis(ḋ, α̇) := η f

2
ḋ 2 + ηp

2
α̇2, (18)

is considered, where η f and ηp are material parameters that
characterize the viscous response of the fracture and plastic-
ity evolutions, respectively. Then, minimization of (17) with
respect to u̇, the plasticity variables (ε̇ p, α̇) subject to the
hardening law (6), and the crack phase-field ḋ subject to the
irreversibility condition ḋ ≥ 0 provide the governing equa-
tions for the elasticity problem, the plasticity problem, and
the fracture problem, respectively. Such a variational struc-
ture results in a convenient numerical implementation based
on incremental energy minimization, for which an algorith-
mic representation of the energy functional (15) is defined
as


τ(u, ε p, α, d; M) := E(u, ε p, α, d; M) − En

+ �t
∫
B

�vis
([d − dn]/�t, [α − αn)/�t

)
dv, (19)

where �t := t − tn denotes the time step. The coupled evo-
lution problem then follows as the incremental minimization
principle

{u, d, ε p, α}
= arg

{
min
u∈Wu

u

min
d∈Wd

dn

min
{ε p,α}∈Q×Wα

αn , εp−ε
p
n


τ(u, ε p, α, d; M)
}
. (20)

Remark 2.1 FromEq. (18), it is clear that the rate-independent
case is recovered by letting η f → 0 and ηp → 0. In this
case, the coupled evolution problem can be equivalently
derived in variational form using the energetic formula-
tion for rate-independent systems [81,82], based on notions
of energy balance and stability. This path is followed, for
instance, in references [30,45,46,50,76,83]. Moreover, the
fact that (14) is a state function implies that the incremen-
tal rate-independent problem exactly recovers the continuous
counterpart.

For the variational formulation setting, it suffices to define
the constitutive energy density functions Welas , Wplas , and
W f rac to establish the multi-field evolution problem in terms
of (20). As we shall recall in the sequel, such a variational
structure is not always present in phase-field models for duc-
tile fracture, resulting in greater flexibility at the cost of a
convenient mathematical structure.

2.2.1 Elastic contribution

The elastic energy density Welas in (14) is expressed in
terms of the effective strain energy density ψe. For trans-
versely isotropic materials, ψe is defined in terms of the
elastic strain tensor εe and the structural tensor M. In our
formulation, in order to preclude fracture in compression,
a decomposition of the effective strain energy density into
damageable and undamageable parts is employed. Thus,
we perform additive decomposition of the strain tensor into
volume-changing (volumetric) and volume-preserving (devi-
atoric) counterparts:

εe(u) = εe,vol(u) + εe,dev(u),

where the volumetric strain is εe,vol(u) := 1
3 (ε

e(u) : I)I
and the deviatoric strain is εe,dev(u) := P : εe. The fourth-
order projection tensor P := I− 1

3 I ⊗ I is introduced to map
the full strain tensor onto its deviatoric component. Therein,
Ii jkl := 1

2

(
δikδ jl + δilδ jk

)
is the fourth-order symmetric

identity tensor.
The effective strain energy density ψe admits the follow-

ing additive decomposition

ψe(ε
e; M) = ψ iso

e

(
I1(ε

e), I2(ε
e)
)+ ψaniso

e

(
I4(ε

e; M)
)
.

(21)

The isotropic strain energy function. The isotropic coun-
terpart admits following additive split:

ψ iso
e

(
I1, I2

) := ψ iso,vol
e (I1) + ψ iso,dev

e (I1, I2), (22)

where

ψ iso,vol
e

(
I1
) = K

2
I 21 = K

2

(
εe,vol : I

)2
,

ψ iso,dev
e

(
I1, I2

)

= μ
( I 21
3

− I2
)

= μεe,dev : εe,dev, (23)

where I1 and I2 denote the invariants

I1 := I1(ε
e) = tr[εe] and I2 := I2(ε

e) = tr[(εe)2]. (24)
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Accordingly, the isotropic strain energy density function
given in (22) is additively decomposed into damageable and
undamageable contributions:

ψ iso
e

(
I1, I2

) = ψ iso,+
e (I1, I2) + ψ iso,−

e (I1, I2), (25)

where

ψ iso,+
e (I1, I2) = H+[I1]ψ iso,vol

e

(
I1
)+ ψ iso,dev

e

(
I1, I2

)
and ψ iso,−

e (I1, I2) = (
1 − H+[I1]

)
ψ iso,vol
e

(
I1
)
. (26)

Therein, H+[I1(εe)] is a positive Heaviside function which
returns one and zero for I1(εe) > 0 and I1(εe) ≤ 0, respec-
tively.

The anisotropic strain energy function.To complete the
formulation, the anisotropic strain energy function reads

ψaniso
e

(
I4(ε

e; M)
) := χa

2
I 24 (εe; M), (27)

where the stiffness parameterχa characterizes the anisotropic
deformation responsewith preferreddirection a. Thepseudo-
invariant I4 is defined as

I4(ε
e; M) = tr[εe · M]. (28)

Extending the anisotropic energy into damageable and
undamageable parts (see also [64]), the function (27) admits
the following split

ψaniso
e

(
I4; M

) = ψaniso,+
e (I+

4 ) + ψaniso,−
e (I−

4 ), (29)

where

I±
4 := 〈I4(εe; M)〉±, (30)

with the Macaulay bracket 〈x〉± := (x ± |x |)/2.
The total elastic strain energy function.The elastic con-

tribution to the pseudo-energy density (14) finally reads

Welas(ε, ε p, d, α; M)

:= ge(d, α)
[
ψ iso,+
e (I1, I2) + ψaniso,+

e (I+
4 )
]

+ ψ iso,−
e (I1, I2) + ψaniso,−

e (I−
4 ), (31)

where ge(d, α) is the elastic degradation function.
Following the Coleman-Noll procedure, the stress tensor

is obtained from the potential Welas in (31) as

σ = ∂Welas

∂εe
= σ iso + σ aniso with

σ iso = ge(d, α)σ̃ iso+ + σ̃ iso− and

σ aniso = ge(d, α)σ̃ aniso+ + σ̃ aniso− , (32)

where σ̃ iso and σ̃ aniso are the effective stress tensors, given
by

σ̃ iso+ := ∂ψ
iso,+
e

∂εe
= K H+[I1](εe : I)I + 2μεe,dev,

σ̃ iso− := ∂ψ
iso,−
e

∂εe
= K

(
1 − H+[I1]

)
(εe : I)I, and

σ̃ aniso± := ∂ψ
aniso,±
e

∂εe
= χa I

±
4 M. (33)

2.2.2 Fracture contribution

The phase-field contribution W f rac is expressed in terms
of the crack surface energy density γl and the fracture
length-scale parameter l f that governs the regularization.
In particular, the sharp-crack surface topology C is regular-
ized by a functional Cl , as outlined in [14,84] and [53]. This
geometrical perspective is in agreement with the framework
of [85], which was conceived as a 	-convergence regular-
ization of the variational approach to Griffith fracture [86].
For the case of isotropic materials, the regularized func-
tional reads

Cl(d) =
∫
B

γl(d,∇d) dv. (34)

In this work, following [54,64,87], anisotropic effects are
introduced bymeans of the structural tensor M. In particular,
we assume that γl admits the additive decomposition

γl(d,∇d; M) = γ iso
l (d,∇d) + γ aniso

l (∇d; M). (35)

In line with standard phase-field models, a general surface
density function for the isotropic part γ iso

l is defined as

γ iso
l (d,∇d) := 1

c f

(
ω(d)

l f
+ l f ∇d · ∇d

)
with

c f := 4
∫ 1

0

√
ω(b) db, (36)

where ω(d) is a monotonic and continuous local fracture
energy function such that ω(0) = 0 and ω(1) = 1. A
variety of suitable choices for ω(d) are available in the liter-
ature [88–90]. Here, the widely adopted linear and quadratic
formulations are considered, which yield, respectively, mod-
els with and without an elastic stage. Specifically, we define

ω(d) :=
{
d ⇒ c f = 8/3 model with an elastic stage,

d2 ⇒ c f = 2 model without an elastic stage.

(37)
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On the other hand, the anisotropic part γ aniso
l reads

γ aniso
l (∇d; M) := χa

l f
c f

∇d · M · ∇d. (38)

Finally, the fracture contribution to the pseudo-energy den-
sity (14) reads

W f rac(d,∇d; M) := g f γl(d,∇d; M), (39)

where g f is a parameter that allows to recover different mod-
els found in the literature, as will become apparent in the
sequel.

2.2.3 Plastic contribution

The plastic contribution Wplas is expressed in terms of an
effective plastic energy density ψp, whose form will depend
on the adopted phenomenological model. In line with previ-
ousworks [45,48,50], let us consider a function in the context
of gradient-extended von Mises plasticity:

ψp(α,∇α) := σY α + H

2
α2 + σY

2
l2p∇α · ∇α, (40)

with the initial yield stress σY , the isotropic hardeningmodu-
lus H and the plastic length-scale lp. The plastic contribution
to the pseudo-energy density (14) then reads

Wplas(α, d,∇α) := gp(d)ψp(α,∇α), (41)

where gp(d) is the plastic degradation function. The mod-
els presented in Sects. 2.4.1 and 2.4.2 are restricted to local
plasticity, for which l p = 0, while the model presented in
Sect. 2.4.3 will include non-local effects, with l p > 0. For a
variational treatment, it is convenient to invoke the energetic-
dissipative decomposition of the plastic energy (41). Thus,
the plastic energy density can be further decomposed as

Wplas(α, d,∇α) = Wener
plas (α, d,∇α)

+ Wdiss
plas (α, d), with

Wener
plas (α,∇α, d) := gp(d)

1

2

(
Hα2 + σY l2p∇α · ∇α

)
and

Wdiss
plas (α, d) := gp(d)σYα. (42)

We note that both the isotropic hardening term and the
non-local term have been assigned to the free energy den-
sityWener

plas , while the term gp(d)σYα is viewed as dissipated
energy. This distinction is made in agreement with the inter-
pretation of the non-local hardening contribution as a defect
energy, as thoroughly discussed in [91]. The role of the
decomposition (42) will become clear in Sect. 2.3.3, where
the plasticity evolution problem is recovered in variational
form.

2.3 Stationarity conditions and governing equations

Let us now derive the variationally consistent equations for
the multi-field coupled problem. To this end, we seek to find
the stationarity conditions for theminimization problem (20).
The models presented in Sects. 2.4.1–2.4.3 shall take the
developments below as canonical forms, and will then devi-
ate from the variationally consistent expressions in favor of
greater flexibility.

2.3.1 Elasticity

The minimization with respect to the displacement field in
the variational principle (20) yields

Eu(u, ε p, α, d; δu) =
∫
B
[
σ : ε(δu) − f · δu

]
dv

−
∫

∂BN

τ · δu da = 0 ∀ δu ∈ Wu
0 ,

(43)

which corresponds to the weak form of the mechanical bal-
ance equations (11), and Wu

0 denotes the function space for
the virtual displacement fields, i.e., with homogeneous kine-
matic boundary conditions.

2.3.2 Fracture

The directional derivative of (15) with respect to the crack
phase-field can be written as

Ed(u, ε p, α, d; δd)

=
∫
B

[(
∂ge
∂d

(d, α)
[
ψ iso,+
e + ψaniso,+

e

]+ g f

c f l f
ω′(d)

+ ∂ I+(d − dn) + g′
p(d)ψp + η f

�t
(d − dn)

)
δd

+ 2
g f

c f
l f
(∇d · ∇(δd) + χa∇d · M · ∇(δd)

)]
dv � 0

∀ δd ∈ Wd , (44)

where the indicator function I+ : R → R ∪ {+∞} has been
introduced to impose the irreversibility condition embedded
in d ∈ Wd

dn
. Let us now define the fracture yield function

fd := −∂ge
∂d

(d, α)
[
ψ iso,+
e +ψaniso,+

e

]−g′
p(d)ψp−g f δdγl .

(45)

The strong form of (44) can then be written as

− fd + η f

�t
(d − dn) + ∂ I+(d − dn) � 0 with
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(I + χaM)∇d · n = 0 on ∂B. (46)

Recalling that

∂ I+(d − dn) =

⎧⎪⎨
⎪⎩

{0} if d > dn,

R− if d = dn,

∅ otherwise,

(47)

the strong form yields, for the rate-dependent case, the evo-
lution equation

η f (d − dn)

�t
= fd ≥ 0 with (I +χaM)∇d ·n = 0 on ∂B.

(48)

On the other hand, for the rate-independent case,weobtain
the KKT conditions

fd ≤ 0, (d − dn) fd = 0 and d − dn ≥ 0, with

(I + χaM)∇d · n = 0 on ∂B. (49)

The main challenge in solving this evolution problem lies
on imposing the irreversibility condition d ≥ dn , which
allows to replace the set-valued expressions (44) or (46)
by equalities. Several alternatives are available in the liter-
ature to tackle this problem, including simple penalization
methods [92], augmented Lagrangian penalization [93], the
primal-dual active set method [94], interior point meth-
ods [95], and the complementary system with Lagrange
multipliers [96]. In thiswork,we employ themaximumcrack-
driving state function method based on the history field, as
outlined in [53,97] and related works.

2.3.3 Plasticity

The three models considered in this study employ von Mises
plasticity in the rate-independent case, such that ηp = 0
in (17). Moreover, as will become clear, the plasticity prob-
lem does not follow from the incremental minimization
problem (20) in all three models. In particular, a varia-
tional formulation for the plasticity problem that is consistent
with the governing equations is only possible if the elas-
tic degradation function introduced in (31) does not depend
on the hardening variable α, that is, ge := ge(d), such
that Welas := Welas(ε, ε p, d; M). Let us now summarize
the variational formulation of such a model in the general
gradient-extended case. A free energy density function for
ductile phase-field fracture can be defined as

W f ree(ε, ε p, d, α; M) := Welas(ε, ε p, d; M)+Wener
plas (α, d, ∇α).

(50)

Applying the Coleman-Noll procedure to the free energy
density function (50) yields the following thermodynamic
conjugate variables:

s p := −∂ε pW f ree = σ and

h p := δαW f ree = gp(d) Hα − σY l2pdiv[gp(d)∇α]. (51)

In agreement with the classical setting of elasto-plasticity,
the yield function is defined as

β(s p, h p; d) := √
3/2 |F p| − h p − gp(d)σY with

F p := dev[s p] = s p − 1

3
tr[s p]I . (52)

With the yield function at hand, the strong form of the evolu-
tion problem follows from the principle of maximum plastic
dissipation

�p(ε̇
p, α̇; d) = sup

{s p,h p}
{sp : ε̇ p −h pα̇ : β(s p, h p; d) ≤ 0},

(53)

where�p is the plastic dissipation potential. TheEuler equa-
tions of the maximization principle (53) follow as the flow
rule and hardening law

ε̇ p = λp ∂β

∂s p
and α̇ = −λp ∂β

∂h p
, (54)

together with the KKT conditions

β ≤ 0, λp ≥ 0, and β λp = 0. (55)

Equations (54) and (55) constitute the so-called dual form
of the elasto-plastic problem in strong form. To arrive at a
primal formulation, the dissipation potential is evaluated for
all ε̇ p ∈ R

δ×δ
dev from (53) as follows (cf. [98,99]):

�p(ε̇
p, α̇; d)

= sup
{s p,h p}

{
s p : ε̇ p − h pα̇ : β(s p, h p; d) ≤ 0

}

= sup
{s p,h p}

{
F p : ε̇ p − h pα̇ : √3/2 |F p|

− h p − gp(d)σY ≤ 0
}

= sup
{s p,h p}

{
|F p| |ε̇ p| − h pα̇ : √3/2 |F p|

≤ h p + gp(d)σY

}

= sup
{s p,h p}

{√
2/3 gp(d)σY |ε̇ p| + h p(α̇ −√

2/3 |ε̇ p|)
}
.

(56)
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Note that in the third line the Cauchy-Schwarz inequality
(the upper bound of the second line) is used. Because the
sign of h p is not a priori specified, the expression inside the
supremum is unbounded for α̇ �= √

2/3 |ε̇ p|. We can thus
write (56) as

�p(ε̇
p, α̇; d) =

{√
2/3 gp(d)σY |ε̇ p| if |ε̇ p| = √

3/2 α̇,

+∞ otherwise.

(57)

Note that by enforcing the hardening law, the time integral
of (57) yields the plastic dissipated energy in (42). The Leg-
endre transformation of �p then reads

�∗
p(s

p, h p; d) = sup
{ε̇ p,α̇}

{s p : ε̇ p − h pα̇ − �p(ε̇
p; d)}, (58)

which yields, as a necessary condition, the primal represen-
tation of the plasticity evolution problem in the form of a
Biot-type equation:

{s p,−h p} ∈ ∂{ε̇ p,α̇} �p(ε̇
p; d). (59)

From standard arguments of convex analysis [98,100], this
expression implies the associative flow relations (54) as well
as the loading/unloading conditions (55).

To derive the above governing equations from the incre-
mental minimization problem (20), we make use of equa-
tions (42) and (57), such that the functional derivative of (19)
with respect to {ε p, α} can be written as

Eα(u, ε p, α, d; δε p, δα)

=
∫
B

[
∂ε pW : δε p + δαWδα

]
dv

=
∫
B

[
∂ε p
(
Welas + �p(ε

p − ε
p
n ; d)

) : δε p

+ δαW
ener
plas δα

]
dv � 0 ∀ δε p ∈ Q, δα ∈ Wα

0, δε p .

(60)

In view of equations (50) and (51), the strong form of (60)
can be written as

{sp, −h p} ∈ ∂{ε p,α} �p(ε
p−ε

p
n ; d), with ∇α·n = 0 on ∂B.

(61)

Equation (61) represents an incremental version of the
compact evolution equation (59) for the plasticity model,
recovered in a variationally consistentmanner from the incre-
mental minimization principle (20). Recall that in the present
formulation, this was achieved by assuming an elastic degra-
dation function that does not depend on the plastic variables.

2.4 Specific models revisited

In this section, three benchmark phase-field models for duc-
tile fracture, hereinafter labeled M1, M2, and M3, are
revisited within the framework elaborated in the previous
sections. The material parameters and constitutive functions
that allow to recover each model from the general formula-
tion are presented in Table 1.

2.4.1 Local plasticity with Gc based fracture criterion: Model
1 (M1)

The first model considered in this study takes the work
from [29] as a point of departure. Therein, an extension of the
model proposed in [28] was considered by further coupling
the fracture process to plasticity through dependence of the
elastic degradation function on the hardening variable α. The
model was subsequently extended to finite strains and pre-
sented with experimental verification in [72]. As discussed
in Sect. 2.3.3, dependence of the elastic degradation function
on α results in lack of variational consistency for the plastic-
ity evolution problem, in favor of greater flexibility. In this
case, consider the

Global Primary Fields : U := {u, d}, (62)

and the

Constitutive State Variables : C := {ε, ε p, α, d,∇d}. (63)

With the constitutive choices shown in Table 1 for M1,
the following specific forms of the governing equations pre-
sented in Sect. 2.3 are obtained.

The strong form of the crack phase-field evolution (46)
takes the form

− 2
α

αcrit
(1 − d)

2 α
αcrit

−1 l f
Gc

(
ψ iso,+
e + ψaniso,+

e

)
+ (

d − l2f div[∇d] − l2f χadiv[∇d · M])

+ l f
Gc

∂ I+(d − dn) � 0 in B,

with (I + χaM)∇d · n = 0 on ∂B. (64)

Herein, αcrit is a threshold material parameter introduced
in [29] to calibrate the softening response. To enforce the
crack irreversibility condition, and, therefore, to cast this
inequality constrained boundary value problem (BVP) as an
equality constrained BVP, the history field

H(x, t) := max
s∈[0,t] D̃

(
C(x, s)

)
with

D̃ := ζ
2 l f
Gc

(
ψ iso,+
e + ψaniso,+

e

)
, (65)
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Table 1 Functions and parameters for the three examined models

Model property M1 M2 M3

Elastic degradation ge (1 − d)2α/αcrit (1 − d)2 (1 − d)2

Fracture constant g f Gc 2 l f c f ψc l f c f w0

Plastic degradation gp 1 (1 − d)2 (1 − d)2

Local fracture energy ω d2 d d

Crack viscosity η f 0 ≥ 0 0

Plastic length-scale l p 0 0 ≥ 0

Driving scaling factor ζ 1 ≥ 0 ≥ 0

is introduced. Here, ζ ≥ 0 is a scaling parameter that intro-
duces further flexibility in the formulation, allowing us to
tune the post-critical range (cf. [14]). Equation (64) is then
restated as

α

αcrit
(1 − d)

2 α
αcrit

−1H

− (
d − l2f div[∇d] − l2f χadiv[∇d · M]) = 0 in B,

with (I + χaM)∇d · n = 0 on ∂B. (66)

With the last expression, and in view of (43), the global pri-
mary fields are found as the solution of the following coupled
problem: find u ∈ Wu

u and d ∈ Wd such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
B
[
σ (ε, ε p, d, α; M) : ε(δu) − f · δu

]
dv

− ∫
∂BN

τ · δu da = 0 ∀ δu ∈ Wu
0 ,

∫
B

[(
α

αcrit
(1 − d)

2 α
αcrit

−1H − d

)
δd

−l2f ∇d · ∇(δd) − l2f χa∇d · M · ∇(δd)

]
dv = 0

∀ δd ∈ Wd .

(M1)

Thus,

M1 := M1(ε, ε p, d, α; M)

= M1(U, δu) + M1(U, δd) = 0

∀ (δu, δd) ∈
(
Wu

0 ,Wd
)
.

Remark 2.2 The introduction of the history field in the
displacement Euler-Lagrange equation (64), finally yield-
ing (M1), results in a loss of variational consistency with
respect to the energy functional (19) due to the filtering of
the maximum history value of D̃ and the scaling factor ζ for
ζ �= 1. The upside of this choice is a convenient numerical

strategy for solving the original inequality-constrained PDE,
and greater flexibility in the model.

Remark 2.3 The role of the parameter ζ , i.e., tuning the post-
critical range by scaling the driving force, is already achieved
in the present model by means of αcrit . Consequently, ζ = 1
is assumed hereafter forM1.

Remark 2.4 At this point, it is worth noting that the crack
driving force in (M1)2, i.e., H, is scaled by the hardening
variable α, such that the crack driving force vanishes for
α → 0. As a consequence, fracture cannot occur outside the
ductility zone, and a response corresponding to elastic dam-
age followed by plastic damage is not possible in this model
due to the strong coupling between damage and plasticity.
For a detailed discussion of different possible elastic-plastic-
damage evolutions, see [30].

Concerning the plasticity evolution problem, a variational
derivation in the sense of (60) is not possible in the present
model due to the dependence of the elastic degradation func-
tion gp on α. In this case, the local evolution of the plasticity
variables {ε p, α} according to equations (54) and (55) (alter-
natively, (59) or the incremental form (61) is postulated in
a non-variational context. For the present model, the yield
function (52) takes the form

β = √
3/2 |F p(ε, ε p, d, α; M)| − (σY + Hα). (67)

2.4.2 Local plasticity withÃc based fracture criteria: Model
2 (M2)

The second model is based on the geometrically conceived
approach to the phase-field modeling of ductile fracture,
conceptually based on the local plasticity theory described
in [53] and considered in subsequentworks [39,40]. The orig-
inal model is constructed within a variationally consistent
framework, in agreement with the incremental energy mini-
mization principle (20). In this case, consider the

Global Primary Fields : U := {u, d}, (68)

and the

Constitutive State Variables : C := {ε, ε p, α, d,∇d}. (69)

With the constitutive choices shown in Table 1 for M2,
the following specific forms of the governing equations
described in Sect. 2.3 are obtained.

Letting ld := √
2 l f (cf. [76]), and after simple manipula-

tions, the strong form of the crack phase-field evolution (46)
can be written as (cf. [14,53]):

123



Computational Mechanics (2021) 68:943–980 955

− 2(1 − d)2ψc

(
ψ

iso,+
e + ψ

aniso,+
e + ψp

ψc
− 1

)

+ 2ψc
(
d − l2ddiv[∇d] − l2dχadiv[∇d · M])

+ η f

�t
(d − dn) + ∂d I+(d − dn) � 0 in B,

with (I + χaM)∇d · n = 0 on ∂B, (70)

where the role ofψc as a specific critical fracture energy den-
sity is clearly reflected. To enforce the crack irreversibility
condition, and, therefore, to cast this inequality constrained
BVP as an equality constrained BVP, the history field

H(x, t) := max
s∈[0,t] D̃

(
C(x, s)

)
with

D̃ := ζ
〈ψ iso,+

e + ψ
aniso,+
e + ψp

ψc
− 1

〉
, (71)

is introduced. Here, the Macaulay bracket denotes the ramp
function 〈x〉 := (x + |x |)/2. Letting ηd := η f /(2ψc), (70)
is restated as

(1 − d)H − (
d − l2ddiv[∇d] − l2dχadiv[∇d · M])

= ηd

�t
(d − dn) in B,

with (I + χaM)∇d · n = 0 on ∂B. (72)

With the last expression, and in view of (43), the global pri-
mary fields are found as the solution of the following coupled
problem: find u ∈ Wu

u and d ∈ Wd , such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
B
[
σ (ε, ε p, d; M) : ε(δu) − f · δu

]
dv

− ∫
∂BN

τ · δu da = 0 ∀ δu ∈ Wu
0 ,

∫
B

[(
(1 − d)H − d + ηd

�t
(d − dn)

)
δd

−l2d∇d · ∇(δd) − l2dχa∇d · M · ∇(δd)

]
dv = 0

∀ δd ∈ Wd .

(M2)

Thus,

M2 := M2(ε, ε p, d, α; M)

= M2(U, δu) + M2(U, δd) = 0

∀ (δu, δd) ∈
(
Wu

0 ,Wd
)
.

Note that, in light of Remark 2.2, the introduction of the
history field and the scaling parameter ζ in (71) results in

a loss of variational consistency with respect to the energy
functional (19) for the fracture problem.

On the other hand, as opposed toM1, the local plasticity
evolution problem in the present model is variationally con-
sistent (see Sect. 2.3.3). The local evolution of the plasticity
variables {ε p, α} according to the evolution equation (61),
which represents an incremental, primal version of equa-
tions (54) and (55), is then a necessary condition of the
minimization principle (20). For the present model, the yield
function (52) takes the form

β = √
3/2 |F p(ε, ε p, d; M)| − (1 − d)2(σY + Hα). (73)

2.4.3 Non-local plasticity withw0 based fracture criteria:
Model 3 (M3)

The third model considered in this study is inspired by the
variational phase-field models coupled to gradient plastic-
ity proposed in [14,53]. The modeling framework adopted
therein and in subsequent studies [37,51,52] is consistent
with the rate-type variational framework of [1]. In the small-
strain rate-independent case, similar models were proposed
in [33,45,50], where a variationally consistent energetic for-
mulation was adopted to derive the governing equations.
Consider, in this case, the

Global Primary Fields : U := {u, d, α}, (74)

and the

Constitutive State Variables : C := {ε, ε p, α, d,∇α,∇d},
(75)

representing a combination of a first-order gradient plasticity
model and a first-order gradient damage model. With the
constitutive choices shown in Table 1 forM3, the following
forms of the governing equations described in Sect. 2.3 are
obtained.

With a slight change of parameters, the fracture problem
in the present model admits the same formulation of M2 in
Sect. 2.4.2. In this case, according to Table 1, the strong form
of the crack phase-field evolution (46) can be written as:

− (1 − d)2w0

(
ψ

iso,+
e + ψ

aniso,+
e + ψp

w0/2
− 1

)

+ w0
(
d − l2ddiv[∇d] − l2dχadiv[∇d · M])

+ ∂d I+(d − dn) � 0 in B,

with (I + χaM)∇d · n = 0 on ∂B, (76)

where w0 is a critical fracture energy density. One can show
the identity of w0 = 2ψc holds for brittle fracture, but in the
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present gradient plasticity model, w0 �= 2ψc due to the non-
local term in ψp. Indeed, the main difference of the present
model with respect to M1 and M2 is that the plastic free
energy ψp, defined in (40), is considered here with l p > 0,
and thus introduces non-local effects in the fracture driving
force. To enforce the crack irreversibility condition,wedefine
the history field

H(x, t) := max
s∈[0,t] D̃

(
C(x, s)

)
with

D̃ := ζ
〈ψ iso,+

e + ψ
aniso,+
e + ψp

w0/2
− 1

〉
. (77)

Thus, (76) is restated as

(1 − d)H − (
d − l2ddiv[∇d] − l2dχadiv[∇d · M]) = 0 in B,

with (I + χaM)∇d · n = 0 on ∂B. (78)

As before, in light of Remark 2.2, the introduction of the
history field and the scaling parameter ζ in (71) results in
a loss of variational consistency with respect to the energy
functional (19) for the fracture problem.

On the other hand, As in M2, the plasticity evolution
problem for the present model is variationally consistent (see
Sect. 2.3.3). Moreover, the problem now includes non-local
effects modulated by the plastic length-scale l p > 0, where
the yield function (52) reads

β = √
3/2 |F p(ε, ε p, d; M)| − (1 − d)2(σY + Hα)

+ σY l2pdiv[(1 − d)2∇α]. (79)

To derive the global PDE governing the evolution of the
non-local field α, we take the weak form (60) as a point
of departure, such that, for |ε p − ε

p
n |>0:

∫
B

[
∂p
(
Welas + �p(ε

p − ε
p
n ; d)

) : δε p + δαW
ener
plas δα

]
dv

=
∫
B

[
− σ (ε, ε p, d; M) : δε p +

√
2

3
(1 − d)2σY n̂ : δε p

+ (1 − d2) Hαδα − σY l2p ÷ [(1 − d)2 ∇α]δα
]
dv

=
∫
B

[
−
√
3

2
|F p(ε, ε p, d; M)| + (1 − d)2σY

+(1 − d2) Hα − σY l2pdiv[(1 − d)2 ∇α]
]
δα dv = 0,

(80)

where n̂ := (ε p−ε
p
n )/|ε p−ε

p
n | is the direction of the plastic

flow. Note that in (80), we have considered virtual fields

δε p = n̂|δε p| =
√
3

2
n̂δα, (81)

such that the direction of the plastic flow is fixed, while the
virtual equivalent plastic strain δα ∈ Wα

0, δε p is allowed to
vary. To solve (80), wemust enforce the constraint embedded
in α ∈ Wα

αn , ε p−ε
p
n
(Equation (7)), such that

α = αn +
√
3

2
|ε p − ε

p
n |. (82)

Recalling that (80) is a weak representation of (61) for |ε p −
ε
p
n | > 0, and that (61) implies the incremental version of the

plastic flow rule (54), a possible way to proceed is to replace
the local field ε p by setting, in agreement with (54),

ε p = ε
p
n+
√
3

2
(α−αn)n̂

tr ial with n̂tr ial = F p,tr ial

|F p,tr ial | = n̂,

(83)

where, from standard arguments of von Mises plasticity,
F p,tr ial := F p(ε, ε

p
n , d; M). With this expression at hand,

(80) may be left as a function of the non-local field α, subject
to the irreversibility condition α ≥ αn .

Finally, the global primary fields are found as the solution
of the following coupled problem: find u ∈ Wu

u , α ∈ Wα ,
and d ∈ Wd , such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
B
[
σ (ε, ε p, d; M) : ε(δu) − f · δu

]
dv

− ∫
∂BN

τ · δu da = 0 ∀ δu ∈ Wu
0 ,

∫
B

[
−
√
3

2
|F p(ε, ε p, d; M)| + (1 − d)2σY

+∂α I+(α − αn) + (1 − d2) Hα

+σY l2p(1 − d)2∇α · ∇(δα)

]
δα dv � 0

∀ δα ∈ Wα,

∫
B

[(
(1 − d)H − d

)
δd − l2d∇d · ∇(δd)

−l2dχa∇d · M · ∇(δd)

]
dv = 0 δd ∈ Wd .

(M3)

Thus,

M3 := M3(ε, ε p, d, α; M)

= M3(U, δu) + M3(U, δα) + M3(U, δd) = 0

∀ (δu, δα, δd) ∈
(
Wu

0 ,Wα,Wd
)
.

Note that in (M3)2, it is assumed that the plastic strain ten-
sor is given as a function of α and the trial direction n̂tr ial . As
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such, the dependence of the deviatoric stress F p on the plas-
tic strains can be eliminated via (83), leaving α as the only
primary unknown in the subproblem. To show the consis-
tency of this equation with the governing equations derived
in Sect. 2.3.3, we first recall that the incremental flow rule has
been enforced bymeans of (83). Then,we note that the strong
formof (M3)2 yieldsβ ∈ ∂d I+(α−αn), withβ given in (79).
In view of (47), it is easy to see that this expression repre-
sents the incremental version of the KKT conditions (55). To
handle the inequality constraint and eliminate the multival-
ued term ∂d I+(α−αn), a constrained optimization technique
is required. For instance, an interior-point method has been
recently proposed in [95].

In the sequel, the phase-field models for ductile fracture
formulated in M1, M2, and M3 will be taken as inputs for
the Bayesian inversion framework described in a detail in
Sect. 3.

3 Parameter estimation based on Bayesian
inference

In this section, we review different parameter estimation
techniques based on MCMC to identify the mechanical
parameters involved in ductile fracture. First, some basic sta-
tistical principals are briefly recalled.

In Bayesian estimation, a parametric forward model (e.g.,
a PDE-based model or a coupled variational inequality sys-
tem) is used to update the available data (considered as
random variables) based on the available information (prior
knowledge). The posterior information is then provided as
output [55,101,102].

Bayes’ formula prescribes the probability of an event
according to related prior information and is given by

P(A|B) = P(B|A)P(A)

P(B)
, (84)

where P(A|B) denotes the conditional probability of event
A happening when B has happened (likewise for P(B|A)),
and P(·) is the probability of observations A and B. Using a
probability density function π , we can rewrite (84) as

π(χ |m) = π(m|χ)π0(χ)

π(m)
. (85)

Here,π0(χ) is the prior distributionwhich indicates the avail-
able information regarding the parameter χ . For the ductile
fracture case, the set of parameters χ is indicated in (108).
Moreover, π(χ |m) denotes the posterior density, i.e., the
probability density of the parameter χ considering the mea-
surementm. The probability of the parameter χ with respect
to the observation/measurement is described by the likeli-
hood function π(m|χ). The denominator π(m) is a constant

normalization factor, such that

π(χ |m) ∝ π(m|χ)π0(χ). (86)

Here, the solution of the inverse problem is the posterior
density giving the distribution of the unknown parameter val-
ues based on the sampled observations. MCMC is a popular
method to calculate this distribution,where aMarkov chain is
constructed whose stationary distribution is the sought pos-
terior distribution in Bayes’ theorem.

In order to identify the unknown parameters, we introduce
the following statistical model:

M = f (x, χ) + ε, (87)

where M is an n-dimensional vector that indicates the
measurement, f denotes the PDE-based model, and χ =
{χ1, χ2 . . . , χk } is a k-dimensional vector denoting themodel
parameters. The model output f (x, χ) is the response quan-
tity of interest, collected in an n-dimensional vector, where
n = nT nC , with nC denoting the number of components of
the response variable and nT denoting the number of time
steps. In the present work, the force-displacement curve is
taken as the response variable f (χ), such that nC = 1. For
the measurement error ε, we employ a Gaussian independent
and identically distributed error ε ∼ N (0, σ 2 I ), where σ 2

is a fidelity parameter, and I is an indentity tensor.
Given a measurement or observation m = obs, the con-

ditional density reads

π(obs) =
∫
Rn

π(obs|χ)π0(χ) dχ �= 0. (88)

The inverse problem in the Bayesian framework can thus be
stated as follows: given a measurement m, find the posterior
density π(χ |m).

To this end, onemakes useofBayes’ theoremof inverse prob-
lems [55], which can be stated as follows:

Proposition 1 (Bayes’ theorem for parameter estimation)
We consider random parameter variables χ and a specific
prior distribution π0(χ), and we consider m to be a real-
ization of the random observation variable (denoting the
measurement). The posterior distribution considering the
measurement m follows as

π(χ |m) = π(m|χ)π0(m)

π(m)
= π(m|χ)π0(χ)∫

Rn
π(m|χ)π0(m)dχ

. (89)

When using the above relation, one implicitly assumes that
observed data is used to construct the posterior density. We
should note that in our problem of interest, in case that an
experimental measurement is not available, a virtual obser-
vation obs resulting from a fine spatial discretization is
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alternatively employed. Obviously, the observation is more
valuable when a real experiment exists.

If we employ the statistical model (87) with the assump-
tion that errors are Gaussian independent and identically
distributed and εi ∼ N (0, σ 2), where σ 2 is fixed, then the
likelihood function is

π(m|χ) = L(χ, σ 2|m) = 1

(2πσ 2)n/2 exp
(
−SSm/2σ 2

)
,

(90)

where

SSm =
n∑
j=1

[m j − f j (x, χ)]2, (91)

is the sum of square errors.
Considering the given likelihood function (90), the poste-

rior distribution has the following form:

π(χ |m) = exp
(−SSm/2σ 2

0

)
∫ ∞

0
exp

(
−SSξ /2σ

2
0

)
dξ

= 1∫ ∞

0
exp

(−(SSξ − SSm)
)
/2σ 2

0 dξ

, (92)

where SSξ is the sum of squares defined by the integration
variable; see (91). From a numerical point of view, we can
approximate the integral as

π(χ |m) ≈ 1
n∑

i=1

exp
(−(SSξ − SSm)

)
/2σ 2

0 wi

, (93)

where the quadrature points and weights are denoted, respec-
tively, by ξ i and wi .

In statistics, MCMC methods comprise a class of algo-
rithms for sampling from a probability distribution. By
constructing a Markov chain with the desired distribution
as its equilibrium distribution, one can obtain a sample of the
desired distribution by observing the chain after a number of
steps. The more steps there are, the more closely the distri-
bution of the sample matches the actual desired distribution.

In Bayesian statistics, the recent development of MCMC
methods has been a key step in making it possible to com-
pute large hierarchical models that require integration over
hundreds or even thousands of unknown parameters. In rare
event sampling, they are also used for generating samples
that gradually populate the rare failure region.

Below, different popular MCMC methods are reviewed.
These methods will be used to identify the parameters in
ductile fracture in Sect. 4. A detailed comparison between

the performance of the methods will be given to clarify their
efficiency.

3.1 Metropolis andMetropolis–Hasting algorithms

The Metropolis–Hastings (MH) algorithm is one of the most
common techniques among the MCMC methods due to its
simplicity for implementation and also its ability to handle
different scientific/engineering problems (specifically when
the parameters are not strongly correlated) [55]. In order to
estimate the posterior distribution, in each iteration, a new
candidate parameter value is proposed based on the current
sample value according to a proposal distribution. Then, the
acceptance ratio is calculated to decidewhether the candidate
value is accepted or rejected. The acceptance ratio points out
how probable the new candidate value is with respect to the
current sample.

The method was first introduced by Metropolis [103]
based on a random walk. The algorithm starts from the ini-
tial guess (the prior value) χ0. Afterwards, according to the
chosen proposal distribution a new candidate χ� is proposed,
which possibly depends on the previous candidates. Having
the new candidate χ�, the acceptance rate is calculated as

λ(χ j−1, χ�) = min

(
1,

π(χ�)

π(χ j−1)

)
. (94)

As the next step, a random variable R ∼ Uniform (0, 1) is
produced. IfR < λ the candidate is accepted; otherwise, we
reject the new proposal and keep the previous candidate in
the chain. We follow this procedure for a sufficiently high
number of replications. As seen, the algorithm is simple and
efficient, specifically when a suitable proposal density is cho-
sen and a large sampling is used. However, an inappropriate
proposal results in a significant decrease in performance. If
the proposal is very large, many of the candidates will be
rejected; therefore, a good convergence to the target density
(posterior distribution) will not be achieved. In contrast, if
the proposal is too narrow, although many of the candidates
are accepted, the chain movement is very slow, and many of
the targets will not be captured.

In theMetropolis algorithm, a symmetric proposal density
φ(χ�|χ j−1) = φ(χ j−1|χ�) is assumed. According to this
condition, a movement towards the proposed candidate from
the current point is equal to a backward movement (from the
current candidate to the proposed point). The use of a non-
symmetric proposal distribution was proposed as an efficient
improvement by Hastings [104]. Considering N number of
samples, the algorithm is summarized in Algorithm 1.

We can draw the following conclusions:
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Algorithm 1 The MH algorithm.

Initialization ( j = 0): Generate the initial parameter χ0 ∼ π(χ0|m).
while j < N

1. Propose the new candidate χ∗ ∼ φ(χ j | χ j−1) (φ is the proposal
distribution).

2. Compute the proposal correction parameter

β(χ∗| χ j−1) = φ(χ j−1| jχ∗)
φ(χ∗| χ j−1))

.

3. Calculate the acceptance/rejection probability

λ(χ∗| χ j−1) = min

(
1,

π(χ∗|m)

π(χ j−1|m)
β

)
.

4. Draw a random number R ∼ Uniform (0, 1).

5. if R < λ then

accept the candidate χ∗ and set χ j = χ∗

else

reject the candidate χ∗ and set χ j = χ j−1

end if

6. Set j = j + 1.

• A proposal χ� that results in π(m|χ�) > π(m|χ j−1)

entails a small sum of squared error and thus leads to
candidate acceptance.

• A proposal χ� that leads to π(m|χ�) < π(m|χ j−1)

entails a higher sum of squared error and the proposal
may be rejected.

Regarding the proposal functions and how they affect the
posterior distribution, if the variance is too large, a large per-
centage of the candidates will be rejected, since they will
have smaller likelihoods, and hence the chain will stagnate
for long periods. The acceptance ratio will be high if the vari-
ance is small, but the algorithm will be slow to explore the
parameter space.

There are different measures to determine if the Markov
chain is efficiently sampling from the posteriori density.
A good criterion is the acceptance rate (the percentage of
accepted candidates). The ratio can be used to tune the pro-
posal density, i.e., reduce its variance. Another efficiency
test is the autocorrelation function. The lag-τ autocorrela-
tion function ACF : N → [−1, 1] is estimated by

ACF(τ ) =
∑N−τ

j=1 (χ j − χ̄)(χ j+τ − χ̄)∑N
j=1

(
χ j − χ̄

)2
= Cov(χ j , χ j+τ )

var(χ j )
≥ 0. (95)

Here, χ j denotes the j-th element of theMarkov chain and χ̄

is the mean value. Note that ACF(τ ) is positive and mono-
tonically decreasing. The interested readers can refer to [56],
where the authors studied the effect of ACF on different
parameters in phase-fieldmodeling of brittle fracture.Amore
advanced convergence analysis such as R̂-statistics can be
implemented when multiple MCMCs with different initial
values are used. In Sect. 4, we will use such a diagnostic tool
to compare the performance of the Bayesian techniques.

3.2 Delayed rejection adaptivemetropolis (DRAM)

At this point, it is worth discussing some improvements in the
MH algorithm based on the proposal distribution. The main
disadvantage of the model is that the covariance of the pro-
posal should be tuned manually. To improve the efficiency,
an alternative to using a fixed proposal distribution in each
iteration is to update the distribution according to the avail-
able samples (adaptive Metropolis). This approach is useful
since the posterior distribution is not sensitive to the proposal
distribution.

To adapt the proposal function according to the obtained
information, Haario et al. [105] proposed a technique where
the current point is chosen as the proposal center and the
covariance function is updated using the estimated data. To
this end, one can use the following proposal estimation

Vj = SpCov
(
χ0, χ1 . . . , χ j−1

)
+ ε I j , (96)

where the parameter ε is chosen very small (close to zero)
and Sp = 2.382

j (as the scaling parameter). The covariance
function is calculated by

COV j = Cov(χ0, χ1, . . . , χ j )

= 1

j

⎛
⎝ j∑

i=0

χ i
(
χ i
)T − (j + 1) χ̂ j

(
χ̂ j
)T⎞⎠ , (97)

where χ̂ j = 1
j+1

∑ j
i=0 χ j [55]. The proposal adaptation

can be done after a specific number of steps (e.g., 1000)
instead of all steps. The efficiency of the algorithm can be
further enhanced by adding a delayed rejection step. Green
andMira [106] proposed that instead of a rejected candidate,
a second stage is used to propose it from another proposal
density. As the first step we propose the new candidate using
the Cholesky decomposition of the covariance function (97):

χ∗ = χ j−1 + COV jU ,

where U ∼ Uniform (0, I j ) and I j is the j-dimensional
identity matrix. The alternative proposal χ∗∗ is chosen using
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the proposal function

φ(χ∗∗|χ j−1, χ∗) = N (χ j−1, γ 2
2 Vj ), (98)

where Vj is the covariance matrix estimated by the adaptive
algorithm [106]. The essential parameter is γ2, which will
be chosen less than one so that the next stage has a narrower
proposal function (normally, γ2 = 1/5 is chosen). We use
the following acceptance ratio:

λ2(χ
∗∗|χ j−1, χ∗) := min

(
1,

π(χ∗∗|m)φ(χ∗|χ∗∗)φ2(χ
j−1|χ∗∗, χ∗)[1 − λ(χ∗|χ∗∗)]

π(χ j−1|m)φ(χ∗|χ j−1)φ2(χ∗∗|χ j−1, χ∗)[1 − λ(χ∗|χ j−1)]
)

= min

(
1,

π(χ∗∗|m)φ(χ∗|χ∗∗)[1 − λ(χ∗|χ∗∗)]
π(χ j−1|m)φ(χ∗|χ j−1)[1 − λ(χ∗|χ j−1)]

)
. (99)

Then, similar to the MH algorithm, we follow the Markov
chain to accept/reject the candidate. A summary of the pro-
cess is given in Algorithm 3.

3.3 MCMCwith ensemble-Kalman filter

As previously mentioned, a good detection of the proposal
density will enhance the Markov chain movement to the
target density. Here, we introduce another proposal distri-
bution detection technique using an ensemble-Kalman filter
to obtain

χ� = χ j−1 + �χ, (100)

where�χ denotes the jump of Kalman-inspired proposal. In
order to update the proposal, we can separate (100) into

�χ = K
(
y j−1 + s j−1

)
. (101)

The first term indicates the so-called Kalman gain, i.e.,

K = CχM (CMM + CM )−1 , (102)

where CχM is the covariance matrix between the inferred
parameters and the PDE-basedmodel, CMM is the covariance
matrix of the PDE response, and CM denotes the measure-
ment noise covariance matrix [107]. In (101), y j−1 is the
residual of candidates with respect to the model. In other
words, considering m̄ an observation/measurement, y j−1 =
m̄ − f (χ j−1) and s j−1 ∼ N (0,R), related to the density of
measurement.

Considering the ductile fracture process, crack propaga-
tion is modeled until full fracture has occurred. To highlight
this procedure, we have added criterion (iv) to Algorithm 3.
For the two other algorithms (MH and DRAM techniques),
the same condition can be considered.

3.4 Bayesian inversion for ductile phase-field
fracture

A proper knowledge about the mechanical parameters that
influence the behavior of fracturing solids is crucial to
observe the model response and precisely predict crack initi-
ation and propagation during different stages of the deforma-
tion process. Bayesian inversion techniques are convenient
tools to monitor the crack behavior using observations (e.g.,

the measured data) and solving the inverse problem consid-
ering the forward model (here M1, M2, and M3). Below,
we review different possibilities for the implementation of
Bayesian inversion in the context of elastic-plastic fractur-
ing solids governed by phase-field models.

• Based on the load-displacement curve: this approach
allows us to observe the crack behavior in all time steps up
to complete failure.At time-stepn, the load-displacement
curve can be computed as

Fn =
∫

∂DB
n · σ · n da, (103)

where n is the outward unit normal on the surface, defined
in (11). Themain advantage of working with this curve is
its easiness, since it involves a one-dimensional parame-
ter. However, it is sensitive to themesh size and the length
scale; therefore, a sufficiently small (and thus more com-
putationally expensive) mesh size is needed.

• Based on the point-wise primary fields: this approach
monitors the crack behavior, the displacement, and the
equivalent plastic strain in the entire geometry. Here, the
Bayesian setting strives to find the inferred parameters
χ� which minimize

‖ū(x) − u(x, χ�) − ε1I‖2 + ‖d̄(x) − d(x, χ�) − ε2I‖2
+ ‖ᾱ(x) − α(x, χ�) − ε3I‖2,

where L2-norm can be used, and ū, d̄, and ᾱ are the
experimental data throughout geometry with respec-
tive measurement errors ε1, ε2, and ε3. This method is
informative and provides precise information since the
displacement and phase-filed in the entire geometry are
considered. However, it is difficult and perhaps even
impossible to obtain themeasured data fromactual exper-
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Algorithm 2 The DRAM algorithm.

Initialization ( j = 0): Generate the initial parameter χ0 ∼ π(χ0|m).

while j < N

1. Propose a new candidate χ∗ = χ j−1 + R jZ j where R j is the
Cholesky decomposition of V j and Z j ∼ Uniform (0, I j ) where I j
denotes the identity matrix.

2. Calculate the acceptance/rejection probability

λ1(χ
∗| χ j−1) = min

(
1,

π(χ∗|m) φ(χ j−1| χ∗)
π(χ j−1|m) φ(χ∗| χ j−1))

)

.
3. Draw a random number R ∼ Uniform (0, 1).

4. if R < λ1 then

accept the candidate χ∗ and set χ j = χ∗

else

(i) Calculate the alternative candidate χ∗∗ = χ j−1 +σ 2R jZ j .

(ii) Calculate the acceptance/rejection probability

λ2(χ
∗∗| χ j−1, χ∗)

= min

(
1,

π(χ∗∗|m) φ(χ∗| χ∗∗) (1 − λ1(χ
∗|χ∗∗))

π(χ j−1|m) φ(χ∗| χ j−1)
(
1 − λ1(χ∗|χ j−1)

)
)

.
(iii) if R < λ2 then

accept the candidate χ∗∗ and set χ j = χ∗∗

else

reject the candidate χ∗∗ and set χ j = χ j−1

end if

end if

5. Update the covariance matrix as V j = Cov(χ0, χ1, . . . , χ j ).

6. Update R j .

7. Set j = j + 1.

iments in a point-wisemanner. Furthermore, a smallmesh
size must be chosen in numerical simulations to guaran-
tee accurate estimations in the whole geometry, further
rendering the method computationally prohibitive.

• Based on the point-wise phase-field propagation: this
approach is less complex than the previous method. Reli-
able experimental values of the crackpath canbeobtained
using X-ray or μ-CT scan in two- or three-dimensional

Algorithm 3 Bayesian inversion with ensemble-Kalman fil-
ter.

Initialization ( j = 0): initiate the samples according to the prior density
χ0

while j < N

1. • set FLAG=true • set n = 0

while FLAG do

(i) Solve the model equations M1, M2, and M3 considering

TOLStag and the proposed candidate χ j−1 and then obtain
f (χ j−1)

(ii) update the Kalman gain

K = CχM (CMM + CM )−1

• CM is the measurement noise covariance matrix

(iii) shift the ensemble

χ� = χ j−1 + K
(
y j−1 + s j−1

)

• y j−1 ∼ N (ε j−1,R) is the residual of the proposed parame-
ters

• s j−1 ∼ N (0,R) relates to the measurment error

(iv) if full fracture is occurred then

• set FLAG=false

else

• set n = n + 1

end if

2. Accept/reject the material approximation.

3. Set j = j + 1.

problems; see, e.g., [108]. However, the computational
issue regarding mesh sensitivity persists.

• Based on snapshots of proper orthogonal decomposition
(POD): this approach employs a reduced order method
(ROM) to reduce the computational complexity. Here,
the snapshots of the solution (using measurements of the
crack phase-field) are used to construct the POD basis
[109]. If an efficient ROM is used, the computational
complexity can be reduced significantly. Similarly, a
Global-Local approach [110] can be employed to reduce
the computational complexity of the forward model.

• Basedon the effective stress-strain response: this approach
explains the relation between ε and σ . It provides use-
ful information regarding different material properties
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such as bulk modulus, hardening, and yield strength.
Therefore, considering the availability of measurements,
it entails an instructive procedure. Nevertheless, the com-
putational costs, i.e., the effect of themesh size and length
scale, must be taken into account.

In this work, we choose the load-displacement curve as the
observation, and sufficiently small mesh sizes are used to
model the crack propagation. Nevertheless, it is worth not-
ing that POD-ROM approaches have significant simulation
advantages (noticeable computational cost reduction), while
methods based on the stress-strain response are very infor-
mative. These procedures will be addressed in future works.

Now, we proceed to establish a Bayesian inversion (BI)
setting to identify the different parameters in ductile fracture.
Let us assume that the response of ductile phase-field frac-
ture is either elastic, followed by elastic-plastic, followed
by elastic-damage (hereafter E-P-D); or elastic, followed
by elastic-plastic, followed elastic-plastic-damage (hereafter
E-P-DP). Next, we aim at determining the candidate χ ∈
(μ, K , H , σY , ψc,Gc, w0, l p) as follows:

(1) To find μ̃ and K̃ , we set H0 → ∞, l0p → 0 (in case of
M3), χ0

a → 0 (in the anisotropic case), and G0
c → ∞

in M1, ψ0
c → ∞ in M2, and w0

0 → ∞ in M3, thus
reflecting an elastic response. We then have

(μ̃, K̃ ) = BI (μ0, K 0, σ 0
Y , H0, l0p,G

0
c, ψ

0
c , w0

0, χ
0
a ).

(104)

(2) To find σ̃Y , we set H0 → 0, l0p → 0 (in case of M3),
χ0
a → 0 (in the anisotropic case), and G0

c → ∞ in M1,
ψ0
c → ∞ in M2, and w0

0 → ∞ in M3, thus reflecting
an ideal plastic response. We then have

σ̃Y = BI (μ̃, K̃ ,Y 0
0 , H0, l0p,G

0
c, ψ

0
c , w0

0, χ
0
a ). (105)

(3) To find ˜l p (in case ofM3) and H̃ , we set χ0
a → 0 (in the

anisotropic case), G0
c → ∞ in M1, ψ0

c → ∞ in M2,
and w0

0 → ∞ in M3, thus reflecting an elastic-plastic
response prior to fracture. We then have

(H̃ , ˜l p) = BI (μ̃, K̃ , σ̃Y , H0, l0p,G
0
c, ψ

0
c , w0

0, χ
0
a ).

(106)

(4) To find χ̃a (in the anisotropic case), G̃c in M1, ψ̃c in
M2, and w̃0 in M3, which reflect a ductile anisotropic
fracture response, we have

(G̃c, ψ̃c, w̃0, χ̃a) = BI
(
μ̃, K̃ , σ̃Y , H̃ , ˜l p,G0

c, ψ
0
c , w0

0, χ
0
a

)
.

(107)

(5) Finally, we obtain the following parameter estimation:

(μ, K , σY , H , l p,Gc, ψc, w0, χa)

= BI
(
μ̃, K̃ , σ̃Y , H̃ , ˜l p, G̃c, ψ̃c, w̃0, χ̃a

)
. (108)

Figure 3 shows the overall procedure, indicating all stages of
the deformation process. Note that, from the implementation
point of view,we set the limit∞ as 108×E , where E refers to
Young’s modulus, while the lower limit is set to 0. From the
statistical point of view, we employ the MCMC techniques
(Algorithms 1–3) to identify the parameters in Step (1); then,
we follow Step (2) to estimate σY and pursue the parameter
identification procedure until we determine the whole set of
material parameters in Step (4).

In a similar manner, if the response is elastic, followed
by elastic-damage, followed by elastic-plastic-damage, i.e.,
E-D-PD (see [30] for a detailed discussion on different
possible evolutions), we first determine the elastic moduli,
followed by the anisotropic fracture properties by assuming
that the response is brittle, and finally, we determine the plas-
tic proprieties in the final dissipative stage.

Regarding parameter correlations, we note that the effec-
tive bulk modulus K = λ + 2μ

3 and the shear modulus μ are
chosen as the elasticity parameters. This relation points out
that μ and K are fully correlated which should be consid-
ered in the posterior density. Moreover, the critical energy
release rate Gc is directly correlated to the specific fracture
energy. These considerations will be taken into account in
the Bayesian inversion.

4 Numerical examples

This section demonstrates the performance of the proposed
Bayesian inversion approaches for parameter estimation
within the ductile phase-field fracture models presented ear-
lier. We investigate four numerical examples. To validate the
numerical method, the last two examples are concerned with
experimental observations, in which the posterior responses
are compared with experimental load-displacement curves.
The material parameters listed in Table 2 are considered,
which are initialized based on [29,72]. In the MCMC the
observational noise σ 2 = 10−3 is used.

Space discretization In the numerical simulations, the
global primary variables are discretized using finite element
basis functions, with bilinear quadrilateral Q1 elements for
the two-dimensional problems and trilinear hexahedral H1

elements for the three-dimensional problems.
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Fig. 3 Step-wise Bayesian inversion method to determine the posterior density of the material unknowns for ductile phase-field fracture models

Solution of the nonlinear problemsA staggered scheme is
used for solving the variational equations resulting from the
ductile phase-field fracture models (Sect. 2.4). For model 1
(M1) and model 2 (M2), we alternately solve for d/u by
fixing u/d until convergence is reached. Accordingly, for
model 3 (M3), we alternately solve for u by fixing (α, d),
and then solve for α by fixing (u, d). Next, we obtain the
plastic strain tensor ε p though the incremental plastic evo-
lution equation (82), and lastly, we find d by fixing (u, α),
repeating the procedure until convergence is reached.

At this point, it is necessary to remark on the convergence
criteria for the staggered scheme. Let n and k represent the
loading time step and iteration counter, respectively. At the
fixed loading time step n, we obtain a converged state if the
following holds:

‖M•(un,k, αn,k, dn,k)‖ ≤ Tolstag.

with • ∈ {1, 2, 3} and Tolstag. ≈ 10−3. (109)

Additionally, an iterative Newton solver is used in which the
individual nonlinear equation systems are solved. The stop-
ping criterion of the single scale and local Newton methods
is TolN-R = 10−10. Specifically, the relative residual norm
is given by Residual : ‖F(xk+1)‖ ≤ TolN-R‖F(xk)‖.
Here, F refers to the residual of the discretized equilibrium
equation of the nonlinear BVPs. The interested reader can
refer to [111–117] for the developed linear/nonlinear solvers
for phase-field fracture.

4.1 Example 1: Asymmetrically I-shaped specimen
under tensile loading

To gain a first insight into the performance of the Bayesian
inversion approach, the following numerical example is con-
cerned with the asymmetrically notched I-shaped specimen
under tension. The configuration is shown inFig. 4a. The geo-
metrical dimensions are set as H1 = 110 mm, H2 = 25 mm,
r1 = 3.625 mm, w1 = 22 mm, and w2 = 14.8 mm, with

Table 2 Material parameters
used in the numerical
experiments. The fixed values in
all examples are mentioned.
Other parameters are inferred
with Bayesian inversion

Parameter Name Unit Value

μ shear modulus MPa BI

K bulk modulus MPa BI

H hardening modulus MPa BI

σY yield stress MPa BI

αcrit hardening critical value – BI

ψc specific fracture energy MPa BI

Gc Griffith’s energy release rate MPa mm BI

w0 specific fracture toughness MPa BI

ζ driving scaling factor – BI

χa stiffness parameter – BI

η f crack viscosity N/m2s 10−9

ηp plasticity viscosity N/m2s 10−9

κ stabilization parameter – 10−8

ld fracture length-scale mm 10−8

l p plastic length-scale mm 10−8

φ fiber rotation degree [30◦, 45◦, 60◦]
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a b

Fig. 4 Geometry and boundary conditions of the I-shaped tensile spec-
imen: a Example 1, and b Example 2

half-circular notches of radius r2 = 2.5mm.The two notches
are placed at a vertical distance from the center of 10 mm.

A monotonic displacement increment �ū y = 2 ×
10−3 mm is applied in the vertical direction at the top bound-
ary of the specimen. The minimum finite element size in the
domain is 0.3 mm, for which the heuristic requirement h <

l/2 inside the localization zone is fulfilled. Consequently,
the I-shaped domain partition contains 21598 elements. The
material and numerical parameters are given in Tables 2 and
3, respectively.

For all three models, the shear modulusμ, the bulk modu-
lus K , the hardening modulus H , and the yield stress σY are

common. First, we study the effect of the common param-
eters on the load-displacement curve. Figure 5 shows the
diagrams whereM1 is used to obtain the solutions. To mon-
itor different critical values αcrit and energy release rates Gc,
as well as fracture energiesψc,M1 andM2 are respectively
employed. Moreover, we usedM3 to observe how the curve
is affected by specific values of w0 and the parameter ζ , as
shown in Fig. 5.

Next,weproceed to identify the effective parameters in the
ductile fracture process using the Metropolis–Hastings algo-
rithm introduced in Section 3.1. The Bayesian framework for
ductile fracture is presented in Section 3.4. We employ a uni-
form distribution to estimate the parameters more accurately,
as listed in Table 3 (the prior densities and the initial values)
and use N = 10 000 number of candidates. Regarding the
reference values, a synthetic measurement is used, using a
total number of degrees of freedom Ndof = 28 380; the rest
of the initial values are summarized in Table 3. The posterior
density of the parameters using the three models is shown
in Fig. 6. The mean values of the posterior distributions are
used to verify the parameter estimation. The inferred infor-
mation is listed in Table 4. To verify the accuracy of the data,
we employ the parameters in all three models and compute
the load-displacement curve until the fracture point. Figure 7
shows the curves resulting from the different models and the
reference observation. An excellent agreement indicates that
the Bayesian inversion framework identified the parameters
correctly, showing a consistent behavior for all three models
in all stages.

The accuracy of the Bayesian inversion for all models
enables us to provide equivalence for the model parame-
ters. As previously mentioned, all models have four common
parameters, but each model is also characterized by its own
features. Here, we strive to find an equivalent value for dif-
ferent fracture energies. This allows us to use M1 and M3

and derive similar quantities in M2, and vice versa. To that
end, we select the diagram estimated byM2 as the reference
observation,where all parameters are chosen according to the
estimated values (see Table 4). However, ψc varies between

Table 3 Example 1: The
uniform prior distribution of the
inferred parameters

Parameter H μ K σY Gc αcrit ψc w0 l p ζ

Min 150 20,000 40,000 275 5 0.05 20 20 0.5 0.25

Max 375 40,000 100,000 400 15 0.2 60 60 2.5 10

Initial 220 25,000 80,000 350 12 0.12 30 25 1.2 2

Table 4 Example 1: the mean
value of posterior density of the
model parameters for the three
models

Model H μ K σY Gc αcrit ψc w0 l p ζ

M1 240 27212 71527 335 10.5 0.11 – – – –

M2 241 27120 71245 330 – – 41 – 0.98

M3 248 26699 74500 328 – – – 38 1.25 1.02
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Fig. 5 Example 1: the effect of all studied parameters on the load-displacement curve. Here, we depict the curves obtained by M1 for μ, K , H ,
σY , αcrit , Gc (the first and the second row). In the third row, we depict the effect of ψc (M2) as well as ζ and w0 (M3)

25 and 65. We again use the MH algorithm to identify the
equivalence of ψc inM1 (i.e, Gc and αcrit) andM3 (i.e., l p
andw0). The estimated quantities are summarized in Table 5.
Figure 8 presents the results obtained by the inferred values,
where, again, Bayesian inversion provides a very good agree-
ment.

The resulting equivalent plastic strain (α) and crack phase-
field (d) at complete failure are shown in Fig. 9. The solutions
are based on the posterior density of the material param-
eters for different models, which are given in Table 4.
Accordingly, the fracture path initiates within the maximum
equivalent plastic regions, which appear near the notches.
Next, the crack propagates in the plastic localization band,
in which two cracks merge at the specimen center. It can
be observed that even though the load-displacement curves
shown are practically identical in all models, the correspond-
ing phase-field profiles, and thus, hardening profiles, are
not; see Fig. 9. This can be explained, first of all, by the
solution non-uniqueness of the phase-field fracture problem,
and, secondly, by the fact that the different phase-field mod-
els in fact provide only the approximation of the fracture
problem. Thus, the necessity of comparing the results with
an experimental observation is crucial. Hereby, based on

the experimental test provided in [72] (second experiment),
a sharp crack transition between two notches is expected.
Thus M2 and M3 seem to yield a more accurate fracture
pattern.

4.2 Example 2: I-shaped tensile specimen for
anisotropic ductile fracture

The main objective of this example is the adoption of
Bayesian inversion for an anisotropic ductile phase-field
fracture process. The BVP depicted in Fig. 4b consists of
an I-shaped specimen with a circular void in the center of
the domain. The geometrical dimensions in Fig. 4b are set
as H1 = 110 mm, H2 = 28.6 mm, w1 = 22 mm, and
w2 = 14.8 mm, with the central void located in (x, y) =
(H1/2, w1/2), with a radius of r = 2.5 mm.

Herein, we assume that the material constituents are not
distributed uniformly through the continuum domain, and
thus, the material is divided into several phases. Hence, het-
erogeneity in strength from one area of the domain to another
one is expected.Note, however, that bymeans of theBayesian
inversion framework, we aim at determining the effective
mechanical parameters. So, in our Bayesian inversion cal-

123



966 Computational Mechanics (2021) 68:943–980

Fig. 6 Example 1: the posterior distribution of the effective parameters using M1, M2, and M3

Fig. 7 Load-displacement curve
computed using the inferred
values, employing M1, M2,
and M3. The reference values
are depicted as well. Here,
Tables 4 and 7 are used for
Example 1 (left) and Example 2
(right)

Fig. 8 Example 1: the load-displacement curve for the inferred equiv-
alent values ψc, with ψc varying between 25 and 65

culation a homogeneous response is considered. Here, we
consider the parameters as a random field (with given mean
and variation). Figure 10 illustrates the fluctuation of dif-
ferent material parameters (on the element-wise basis) with
spatial correlation where a 10% variation is included. For
instance, for the parameter K , the expectation is assumed
as K=75,000MPa, with a variation between 71,700MPa
and 78,800MPa. This fluctuation will be used to provide
the reference observation. Specifically, we will replicate 500
simulations (with a specific mesh size) to estimate the refer-
ence observation considering the mentioned variation. The
distribution of the parameters on the geometry is shown in
Fig. 10.

The numerical example is performed by applying amono-
tonic displacement increment �ū y = 2 × 10−3 mm in the
vertical direction at the top boundary of the specimen (Fig. 4).
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Fig. 9 Example 1: approximated solution obtained through the pos-
terior density of the material parameters at complete failure. The
hardening value α and the crack phase-field d are shown for different
models

Table 5 Example 1: using Bayesian inversion to estimate the equiva-
lence of ψc (M2) with αcrit and Gc (M1) as well as w0 and l p (M3)

ψc 25 35 45 55 65

αcrit 0.065 0.092 0.12 0.136 0.15

Gc 8.25 10.1 12 15 18

w0 20.8 29.1 38 48 55

l p 1.05 1.11 1.25 1.4 1.6

The bottom edge is fixed in the x − y directions. The min-
imum finite element size is 0.45 mm. The two-dimensional
I-shaped domain partition contains 17038 elements.

In this example, to determine the effective mechani-
cal parameters, the DRAM algorithm is used. Due to the
anisotropic structure of the solid, in addition to the iden-
tified parameters in Example 1, the stiffness parameter
χa must be estimated. Here, we select a fiber orienta-
tion φ = 45o for the parameter identification and propose
N = 10 000 candidates. A synthetic reference value using
Ndof = 26 870 is employed as the reference observation con-
sidering the alreadymentionedparameter variation. Theprior
(uniform) densities of the parameters are listed in Table 6.
For each parameter, the inferred values by different mod-
els are relatively similar, which highlights the robustness of
the Bayesian setting. The posterior distributions are depicted
in Fig. 11. The mean values of the posterior distributions
are given in Table 7 using M1, M2, and M3. Again, we
solve the model equations employing the identified parame-
ters to verify the effectiveness of the Bayesian framework, as
shown in Fig. 7 (right). All diagrams show that implementing
the DRAM algorithm gives rise to a reasonable agreement
between the models and also with respect to the reference
observation.

For further investigation of the sensitivity of the inferred
parameters obtained through theDRAMalgorithm, two addi-
tional preferential fiber directions, namely φ = 30o and
φ = 60o, are employed. Again, Fig. 12 illustrates the robust-
ness of the Bayesian setting, showing for all models and
different orientations a consistent behavior in the in elas-
tic, plastic, and fracture stages. Figure 13 illustrates the
crack phase-field solution at complete failure for φ = 30o,
φ = 45o, and φ = 60o. Note that the solutions are based on
the posterior density of the material parameters, which are
given in Table 9. An important observation is that both the
equivalent plastic strain and the crack phase-field evolve in
the direction of the preferred fiber orientation.
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Fig. 10 Example 2: material
parameters distribution (prior
density) on each element of the
domain B. Note that here, to
avoid a strong deviation of the
surrounding points due to the
random normal distribution of
the material properties, one
could use an additional random
distribution length-scale to
achieve mesh objectivity, that is,
the so-called heterogeneity
length-scale; see [118]. In this
study, we have not used a
heterogeneity length-scale since
we have assumed that the
material distribution provides
the synthetic observations

Table 6 Example 2: The
uniform prior distribution of the
inferred parameters

Parameter H μ K σY Gc αcrit ψc w0 l p ζ χa

min 150 20000 40000 275 5 0.01 10 10 0.5 0.25 10

max 375 40000 100000 400 15 0.2 60 60 10 10 100

Table 7 Example 2: the mean
value of posterior density of the
model parameters for the three
models

Model H μ K σY Gc αcrit ψc w0 l p ζ χa

M1 265 26050 94010 355 11.6 0.038 – – – – 50

M2 245 26100 92100 354 – – 25.25 – 1.01 52

M3 220 26300 88950 340 – – – 22 8.29 1.6 55
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Fig. 11 Example 2: the posterior distribution of the effective parameters using M1, M2, and M3

4.3 Example 3: Flat I-shaped Al-5005 test under
tensile loading

While synthetic observations have been used so far, the last
two examples are concerned with experimental observations
to estimate the posterior density of the material unknowns.
The following example considers an I-shaped specimen for
Al-5005 material under tensile loading. We aim at repro-
ducing the experimentally observed ductile fracture process
of the tensile test through the proposed Bayesian inversion
framework. The BVP is shown in Fig. 14a. The experimental
observations of necking and fracture are shown in Fig. 14c.
The geometrical dimensions are set as H1 = 144 mm,
H2 = 27 mm, H3 = 22 mm, w1 = 20 mm, w2 = 12 mm,
and r1 = 14 mm. The specimen domain has a 3 mm thick-
ness, as shown in Fig. 14b.

The numerical example is performed by applying amono-
tonic displacement increment�ū y = 0.02mm in the vertical
direction at the top boundary of the specimen for 300 time

steps. The minimum finite element size is 1.5 mm. The flat
I-shaped domain partition contains 3230 hexahedron linear
elements.

Both DRAM and ensemble-Kalman filter (EKF) are effi-
cientMCMC techniques and have shown their computational
performance reasonably. However, a fair comparison can
determine which method will be more advantageous in duc-
tile fracture.

4.3.1 Convergence performance of the MCMCmethods

In the already mentioned examples, the MCMC techniques
have been used to identify the mechanical parameters. The
main advantage of theMH algorithm is its ease of implemen-
tation. However, it suffers from slow convergence, and the
starting value may affect the convergence status. The DRAM
and EKF variants, as more advanced techniques, show more
a productive performance. In this part, we strive to study their
efficiency in the context of ductile fracture.
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Table 8 Example 3: The
uniform prior distribution of the
inferred parameters

Parameter H μ K σY Gc αcrit ψc w0 l p ζ

Min 10 20000 40000 50 100 0.001 5 5 0.001 1

Max 50 40000 100000 200 300 0.1 25 25 10 20

Table 9 Example 3: the mean
value of posterior density of the
model parameters for the three
models

Model H μ K σY Gc αcrit ψc w0 l p ζ

M1 30 26500 73500 115 248 0.0142 – – – –

M2 15 26200 73700 116 – – 13.4 – 2

M3 15 30100 75050 112 – – – 10.3 0.0018 15

Fig. 12 Example 2: the load-displacement curve obtained by the esti-
mated values for φ = 30o and φ = 60o and all three models

Convergence diagnostics is essential in MCMC methods
since it determines the accuracy of the parameter, and with
how many iterations the chain converges to the target distri-
bution. Here, we usemultiple chainswith different initialized
values, expecting that a significantly large number ofMarkov
chains give rise to the same results. In other words, the candi-
date distribution fromchains should be similar usingmultiple
initial starting values.

R̂-convergence diagnostics [119,120] is an efficient tool
to monitor the convergence of the MCMC by comparing the
between andwithin chain estimates formodel parameters and
other univariate quantities of interest. Assuming m parallel
chains, we determine the variance between the chain means
B/N and calculate the average of the within chain variances
W . The target variance is given by

S2 =
(
1 − 1

N

)
W + B

N
, (110)

where N is the length of the chain. Then, we calculate the
potential scale reduction factor, or PSRF (also called R̂-

statistics) by

R̂ = m + 1

m

S2

W
− N − 1

m
. (111)

If the MCMCmethod converges appropriately, the chains
are not affected by the starting point, and R̂ reduces to 1.
In other words, we can conclude that all chains are close to
the target distribution [119]. In order to verify the method
efficiency, a threshold can be defined, e.g., values less than
1.5 or 1.2 indicating a good convergence performance.

In the I-shaped example, in order to draw a compari-
son between DRAM and EKF algorithms, we study their
convergence to conclude which model shows a faster con-
vergence taking all inferred parameters into account. We use
N = 1 000 and five parallel MCMCs (m = 5) with a uni-
form distribution indicated in Table 8. Using M2, Fig. 15
shows that by employing EKF in all parameters, fewer can-
didates are necessary to converge to the posterior density.
Indeed, for all parameters excluding K , after 1 500 sam-
ples, R̂- converges to 1, showing a high level of accuracy.
The performance of the DRAM is acceptable, since most
of the variables after 2 500 samples are below the thresh-
old, although again, the bulk modulus shows more variation
(probably due to the large chosen prior density).

According to the above-mentioned discussion, we choose
the EKF technique for the rest of the examples. We use five
parallel MCMCs with 2 000 samples. For the observation,
we use experimental data taken from [72]. Figure 16 shows
the posterior density of the estimated parameters, and the
mean values are summarized in Table 9. We then employ
the identified quantities in all three models. Figure 17 shows
a comparison between the load-displacement curve obtained
by themodels and the experiments. Interestingly, by employ-
ing the Bayesian framework, all crack propagation stages
(until fracture reaches the boundary) are modeled accurately.

Next, we investigate the ductile failure response employ-
ing the posterior density of the material parameters given in
Table 9. The evolution of the crack phase-field d is provided
in Fig. 17 at three deformation stages up to complete failure.
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Fig. 13 Example 2: the crack
phase-field at complete failure
for all three models. Different
preferential fiber directions are
considered in the transversely
isotropic setting: a φ = 30o, b
φ = 45o, and c φ = 60o

b

Additionally, the equivalent plastic strain α at final failure is
shown. It can be grasped that, regardless of the formulations,
fracture initiation appears at the center of the specimen, and
then evolves towards the two edges of the specimen until
complete failure. The first important observation is that the
simulation results are in good agreement with the experi-
mental failure pattern shown in Fig. 14c. Another important
observation is that the crack phase-field in M2 and M3 is
more diffuse than M1. The main reason for this is that the
crack driving force of M1 is scaled by α; thus, the phase-
field diffusivity is strongly coupled to the ductile response;
see Remark 2.4.

4.4 Example 4: Sandia fracture challenge

The last example aims at estimating the posterior density of
the unknown material properties for a specimen frequently
used in the literature, namely, a Sandia fracture challenge
[121]. The 2014 fracture challenge problem launched by
the Sandia National Lab [121] has provided an ideal plat-
form to assess the computational capability and limitations
of each participating team [122]. Specifically, this challenge
aims at evaluating the computational ability to predict crack
initiation and propagation of ductile fracture with respect
to experimental observations. A recent comparative liter-
ature overview was conducted in [123]. As reported in
[72], standard phase-field formulations without estimating
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Fig. 14 Example 3: flat I-shaped Al-5005 test under tensile loading. a Geometry of specimen with boundary conditions, b three-dimensional
perspective, and c experimental observation taken from [72]

accurate ductile material properties quantitatively overesti-
mate the post-yielding load-displacement response, which
can be improved by performing an accurate calibration of
the plasticity and phase-field parameters. Hence, we aim
at reproducing the experimentally observed Sandia fracture
challenge through the proposed Bayesian inversion frame-
work.

The experiments are based on the material Al-5052 H34,
which experimentally induces a complex failure mode; see
[70,72]. The configuration is shown in Fig. 18a, while the
experimental observations are shown in Fig. 18c. The geo-
metrical configuration includes two pins. The top pin is
displaced vertically, while the lower pin is fixed in all direc-
tions. The two pins are considered to be rigid (here taken
10 times stiffer than the rest of the domain). The geomet-
rical dimensions are set as H1 = 80 mm, H2 = 35 mm,
H3 = 15 mm, H4 = 6.5 mm, w1 = 62.5 mm, w2 = 36 mm,
and w3 = 12.5 mm. The pins have an identical radius of
r1 = 6 mm, while the horizontal notch is rounded with
a radius of r5 = 3.25 mm. The specimen includes three
voids with centers and radii c2 = (x2, y2) = (27, 32) mm
and r2 = 3 mm, c3 = (x3, y3) = (24, 45) mm and
r3 = 1.75 mm, and c4 = (x4, y4) = (22, 38) mm and
r4 = 1.75 mm, respectively. The specimen domain has a
2 mm thickness, as shown in Fig. 18b.

The numerical example is performed by applying amono-
tonic displacement increment�ū y = 0.02mm in the vertical
direction at the top pin for 400 time steps. Theminimumfinite

element size is 0.32 mm. Consequently, the Sandia specimen
domain partition contains 17980 hexahedron linear elements.

Due to its efficiency, the EKF technique is again consid-
ered for this example to identify the parameters. We use four
parallel MCMCs with 2 500 samples. The experimental data
(reference observation) is taken from [72] and the prior den-
sities are indicated in Table 10. The posterior distributions
are shown in Fig. 19, while the mean values are summarized
in Table 11. Finally, once again, we solveM1,M2, andM3

using the inferred values, and compare the results with those
obtained in [72]. As shown in Fig. 20, by employing the
proposed Bayesian inversion framework, the parameters are
estimated accurately, showing very good agreement between
the simulated data in all models and the experiments. This
implementation also enhanced the computational capabili-
ties ofM1, showing an improved model accuracy compared
to the results obtained in [72].

For a better insight into the fracture process in all models,
the evolution of the crack phase-field d is provided in Fig. 21
at three deformation stages up to complete failure. Addition-
ally, the equivalent plastic strain α at final failure is shown.
Note that the solutions are based on the posterior density of
the material parameters, which are given in Table 11.

It can be grasped that, for all threemodels, the fracture path
first initiates at the void located in themiddle of the specimen,
and afterwards, evolves towards the right edge of the domain.
In addition, a secondary crack initiates from the central void,
but this time from its left side, and then propagates towards
the left edge of the specimen until complete failure. Note
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Fig. 15 The R̂-statistics test for
the convergence of all effective
mechanical parameters of the
I-shaped example. Here, the
DRAM algorithm (left) is
compared with EKF (right)
using M2. The red dashed line
shows a threshold of 1.2

Fig. 16 Example 3: the posterior distribution of the effective parameter using M1, M2, and M3

Table 10 Example 4: the
uniform distribution of the
inferred parameters in the
Sandia example

Parameter H μ K σY Gc αcrit ψc w0 l p ζ

Min 5 20,000 40,000 150 100 0.001 10 10 5 1

Max 20 40,000 100,000 300 400 0.3 50 50 30 20

Table 11 Example 4: the mean
value of posterior density of the
model parameters for the three
models

Model H μ K σY Gc αcrit ψc w0 l p ζ

M1 9.8 25,500 67,500 195 360 0.2 – – – –

M2 10 26,200 67,200 194 – – 35 – 8

M3 10.1 25,900 67,800 195 – – – 28 9.64 15
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Fig. 17 Example 3: a) the
equivalent plastic strain at
complete failure, and b the
evolution of the crack
phase-field for different
deformation stages up to final
failure at ū y = 6 mm

123



Computational Mechanics (2021) 68:943–980 975

a b c

Fig. 18 Example 4: Sandia fracture challenge. a Geometry of specimen with boundary conditions, b three-dimensional perspective, and c experi-
mental observation taken from [72]

Fig. 19 Example 4: the posterior distribution of the effective parameters using M1, M2, and M3

Fig. 20 Load-displacement
curve computed using the
inferred values, employing M1,
M2, and M3. The experimental
data are depicted with red. Here,
Tables 9 and 11 are used for
Example 3 (left) and Example 4
(right). The results are also
compared with the simulation
results of [72]
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a b

Fig. 21 Example 4 a The equivalent plastic strain at complete failure, and b the evolution of the crack phase-field for different deformation stages
up to final failure at ūx = 8 mm. The final fracture stage was not captured with model 2 due to lack of convergence

further that the simulation results are in good agreement-
agreement with the experimental failure pattern shown in
Fig. 18c.

Based on our numerical result, it is worth noting that the
stage of the secondary crack was no longer predicted by
model 2. To estimate the posterior density of the material
parameters through Bayesian inversion, several candidates
are required. Thus, a stable forward method is crucial. Oth-

erwise, deviating material properties will result in unstable
solutions. In this context, we highlight that model 3 provides
themost stable solutions, at the cost of an additional PDE that
must be solved to obtain the plastic response (as opposed to
local plasticity in model 1 and model 2).
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5 Conclusion

In this work, we have proposed a robust and efficient step-
wiseBayesian inversionmethod for ductile fracture problems
using phase-field models. In particular, a Bayesian inver-
sion framework (the as a probabilistic technique) based on
MCMC is developed the to identify unknown ductile frac-
ture parameters. Three common MCMC methods, namely
the MH algorithm, the DRAM algorithm, and EKF-MCMC
have been used to estimate the effective parameters in duc-
tile fracture. The posterior density results from the inverse
problem are evaluated with synthetic measurements (for the
first two examples) as well as experimental observations (for
the last two examples). To approximate ductile failure, a
phase-field fracture formulation is used for a ductile material
exhibiting J2-plasticity in a quasi-static kinematically linear
regime. To do so, we have presented a unified formulation
for phase-fieldmodeling of ductile fracture,which is resolved
through an incremental energy minimization approach. The
overall formulation is revisited and extended to the case of
anisotropic ductile fracture. Three different specific models
are subsequently recovered by certain choices of parameters
and constitutive functions.

In the first numerical example, the equivalence of the
parameters in the different models is provided. In the sec-
ond example (anisotropic ductile fracture), we investigate the
evolution of the failure response through the posterior den-
sity function obtained by the proposed step-wise Bayesian
inversion method. We have shown that the equivalent plastic
strain α as well as the crack phase-field d evolve in the direc-
tion of the preferred fiber orientation. The last two examples
are concerned with the experimental observations to esti-
mate the posterior density of the material unknowns. We
observed that, although the MH algorithm can be imple-
mented easily, it is sensitive to the initial guess, leading to
slow convergence, and may depend on the prior density. As
more advanced techniques, we compared the convergence
of the DRAM and EKF-MCMC methods by employing a
reliable convergence diagnostic tool, namely R̂-convergence.
Using the Kalman filter improves considerably the conver-
gence of differentMCMCs, i.e., fewer iterations are needed to
obtain a high level of accuracy.We conclude that this method
is more efficient compared to the DRAM algorithm.

Through our findings, the coupling scheme between the
step-wise Bayesian inversion framework and ductile fracture
simulations results in accurate and a reliable information
related to the model parameters. As a consequence, an
excellent agreement was obtained between the results of all
examined models and experimental observations.
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