
Computational Mechanics (2021) 68:25–49
https://doi.org/10.1007/s00466-021-02016-2

ORIG INAL PAPER

Amesh-independent framework for crack tracking in elastodamaging
materials through the regularized extended finite element method

Elena Benvenuti1 · Nicola Orlando1

Received: 20 October 2020 / Accepted: 2 April 2021 / Published online: 14 May 2021
© The Author(s) 2021

Abstract
Wepropose a formulation for tracking general crack paths in elastodamagingmaterialswithoutmesh adaptivity and broadening
of the damage band. The idea is to treat in a unified way both the damaging process and the development of displacement
discontinuities by means of the regularized finite element method. With respect to previous authors’ contributions, a novel
damage evolution law and an original crack tracking framework are proposed. We face the issue of mesh objectivity through
several two-dimensional tests, obtaining smooth crack paths and reliable structural results.
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1 Introduction

We devise a methodology where mesh and crack geometry
are unrelated, for the crack path is embedded within the finite
elements through the extended finite element method, so that
neither strict mesh refinement in the crack front nor coars-
ening behind the crack tip are required. The present crack
tracking approach captures the onset of diffused damage and
its subsequent transition to a crack through a unified approach
in the framework of the regularized extended finite element
technology that has been developed by the authors for the last
decade. Both the concepts of damage band and discontinuity
are already inherent in the structure of the approach.We thor-
oughly assess the robustness of the method with respect to
size, type and bias of the mesh in terms of load–displacement
profiles and crack paths.

State-of-the-art models for brittle fracture have been
grouped into two main categories: discrete models, such as
interface and cohesive zonemodels [38,50,78], extended and
generalized finite elements [8,39], and continuum models,
including smeared crack [34,53,72], nonlocal [17,18,69,70],
and phase-field models [26,59]. However, recently, a great
deal of effort has been spent in providing a bridge between
continuum and discrete formulations. In this introduction,
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we mainly consider the phase-field method and the extended
finite elementmethod for their relevance to the present devel-
opments.

In computational fracture mechanics, the variational for-
mulation of phase-field models mainly descends from the
theory of free-discontinuity problems and, particularly, from
Ambrosio and Tortorelli’s regularized energy functional,
whose key role in computational fracture mechanics was first
recognized by Francfort and Marigo [42] and then numeri-
cally assessed by Bourdin et al. [25] andMiehe et al. [59,60].
Phase-field models outperform nonlocal integral and gradi-
ent models, as they rule out the marked broadening tendency
of the process zone during the late stages of the cracking
process. In fact, phase-field models can be regarded as smart
versions of damage gradient models [58], the only differ-
ence lying in that the damage driving force vanishes for
increasing values of the damage [36]. Furthermore, it has
been shown [57] that, using certain gradient damage degra-
dation functions [56], phase-field models can be constructed
that consistently approximate the structural results. Another
advantage is that cracking patterns naturally emerge from
energy minimization and, thus, crack tracking algorithms are
not necessary [2,47,55].However, phase-fieldmodels usually
require severe mesh refinement to satisfactorily converge,
unless mesh adaptivity is used [64]. Among the most rele-
vant transitioning approaches sharing some similarities with
phase field models, we mention the thick level set method,
where the undamaged zone is separated from the damaged
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zone bymeans of levels sets and the damage growth is driven
by a nonlocal configurational force [24,62].

The extended finite element method allows to capture
cracks and discontinuities without mesh adaptivity. Like the
generalized finite element method [39], the extended finite
element method is a Partition of Unity Method [5] that
enriches the space of standard partition-of-unity shape func-
tions with functions featuring the exact or the expectedmath-
ematical structure of the searched solution [8,61,74]. Well
known examples are the Heaviside function to reproduce
displacement discontinuities, and Westergaard’s solution to
capture crack-tip singularities, while material discontinu-
ities are captured by means of appropriate C0 functions
[10,44]. The extendedfinite elementmethod has significantly
progressed in the field of crack propagation [75]. More-
over, several authors have devised successful procedures for
transitioning to a discontinuous description of the crack-
ing process based on the extended finite element method
[45,76,77,81]. For instance, Geelen et al. [46] have pro-
posed an optimization-based approach to bridge phase-field
models and the extended finite element method. The use of
crack tracking algorithms in extended finite element models
is a rather natural choice and has been thoroughly assessed
[32,40,79].

The problem of how to perform a proper continuous-
discontinuous transition in elastodamaging materials is
long-standing in computational mechanics, the earliest con-
tributions being traceable back to twenty years ago [53,54].
Noteworthy, the finite element modelling of the continuous-
discontinuous transition in elastodamaging materials is
affected by pathological effects, such as mesh-size depen-
dence and proneness to produce biased crack paths [52,63].
In particular, the connection betweenmeshdirectionality bias
and crack tracking approaches has been assessed by several
research groups [29–31]. In brief, crack-path uniqueness and
objectivitywith respect tomeshbias and size are key to devise
reliable crack tracking approaches for elastodamaging mate-
rials.

Unlike the aforementionedmodels transitioning fromcon-
tinuous to discontinuous settings, the current regularized
extended finite element model tackles the diffused damage
stage and the discontinuous regime through a unified compu-
tational framework [12,14,16,19]. Particularly, the transition
to the discontinuous formulation is activated at the early
stages of the damaging process, while local constitutive laws
are used up to the transition. The use of a regularized kine-
matics in the extended finite element method was originally
proposed by Patzák and Jirásek [68] and later originally elab-
orated by the authors [12,14,15]. The early crack tracking
strategy, however,workedonly for predetermined crackpaths
[13,16]. Moreover, it was not possible to transition from a
process zone several finite elements wide to a process zone
as wide as one finite element.

The present contribution proposes a reliable regular-
ized extended finite element approach for tracking general
crack patterns that overcomes the limitations of the previous
approach [16]. In light of the structure of the displacement
field, for the construction of the energy functional, we draw
inspiration from the theory of free-discontinuity problems
[4,27]. For the sake of simplicity, we omit crack tip enrich-
ment and bimaterial cracks, and focus on cases where crack
branching does not occur. Interestingly, the present varia-
tional formulation incorporates some aspects of phase-field
models, such as a crack density function evolving with the
damage, and shares with nonlocal models the use of a reg-
ularization length that acts as a strain localization limiter.
Furthermore, the present formulation lacks of the damage
broadening effect typical of nonlocal models. The proposed
crack tracking strategy revisits the procedures for smeared
cracks proposed by Cervera [30], Cervera et al. [29], and
makes use of the concept of nonlocal stress criterion [82].
However, besides the obvious differences inherent in the
kinematics and the variational formulation, the resulting
framework can be regarded as a unique and original con-
tribution owing to the flexible handling of the width of the
process zone based on the damage level.

The remainder of the paper is organized as follows. In
Sect. 2, we borrow some mathematical arguments from the
theory of free-discontinuity problems applied to fields with
jumps. In Sect. 3, a regularized kinematics is formulated. We
accordingly introduce the energy functional, derive the con-
stitutive laws, and formulate the variational formulation. In
Sect. 4, we present the crack tracking algorithm and describe
various strategies for the choice of the crack direction and
inception. Section 5 illustrates the performance of the pro-
posed technique in terms of mesh independence, accuracy of
the load–displacement results and crack paths. Finally, we
critically review the obtained results in Sect. 6.

2 Basic statements of the formulation

In this section, we show the mathematical aspects typical
of a discontinuous discrete kinematics. The final goal is to
develop an extended finite element method, where the dis-
placement field is approximated as the sum of a continuous
term plus a jump. For this purpose, we will make a step back
with respect to the usual starting point of extended finite
element methods, namely the discrete expression of the dis-
placement field [8,9].

We first introduce the problem in Sect. 2.1 and provide the
main mathematical preliminaries in Sect. 2.1.1.

Functionals are indicated with a thin notation, while a
bold notation is used for vectors and tensors. Application of
a tensor A to a vector a is indicated by Aa, and a · b denotes
the scalar product between vectors a and b [51].
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Fig. 1 Problem to be solved

2.1 The problem of a cracked body

We define the displacement field u over the domain Ω ⊂ R3

with boundary ∂Ω . Let ū be the displacement on ∂Ωd ⊂ ∂Ω .
Furthermore, u exhibits a jump �u� = u+ − u−across the
crack Γ , u+ and u− being the traces of u on the opposite
sides of Γ . We postulate the existence of a stress field σ

and allow the exchange of cohesive forces σn = fs across a
certain portion Γs in front of the crack line Γ , while tractions
are not transmitted across Γc, being Γ = Γc ∪ Γs . Here, n
denotes the field of the relevant normal versor. We aim to
solve the problem of the equilibrium of the cracked body Ω

subjected to appropriate boundary conditions and write the
equations representative of the problem at hand as:

divσ = 0 in Ω\Γ , (1a)

σn = p̄ in ∂Ωp\Γ , (1b)

σn = fs on Γs, (1c)

σn = 0 on Γc, (1d)

u = ū on ∂Ωu\Γ . (1e)

A qualitative representation of the problem to be solved is in
Fig. 1.

We reckon that the variational space such a discontinuous
displacement field belongs to should be carefully chosen and
that the appropriate variational formulation should descend
from the theory of free-discontinuity problems formulated
for fields with jumps [3].

2.1.1 Energies for fields with jumps

An extensive and erudite study about variational formula-
tions for solids with cracks can be found in the essay [26].
We provide hereafter a synthetic description of the concepts
relevant to the developments that will be presented in the next
sections.

We focus the attention on a class of problems that require
the formulation of energy functionals depending both on a
field u that displays a jump �u� across the surfaceΓ ⊂ R

m−1

of normal n, and on Γ itself [42]. Free-discontinuity prob-
lems are based on the minimization of functionals of the type
[3]

F(u, Γ ) =
∫

Ω\Γ
F(x, u,∇u)dx+

∫
Γ

Fs(x, �u�, n)dHm−1(x),

(2)

where Ω ⊂ R
m is an open bounded set, Hm−1(x) is the

Hausdorffm−1-dimensional measure, Γ varies in a class of
sufficiently regular closed sets ofΩ , u varies inW 1,2(Ω\Γ ).
Problems that involve the minimization of the class of func-
tionals (2) are referred to as free discontinuity problems. The
most known example is the minimization problem of the
Mumford-Shah functional for image segmentation [65]

G(u, Γ ) =
∫

Ω\Γ
[|∇u|2 + β(u − g)2

]
dx + αHm−1(Γ ),

(3)

where u ∈ W 1,2(Ω\Γ ), Γ closed in Ω , α and β are fixed
positive parameters, and g ∈ L∞(Ω) [4,27,35]. The exis-
tence of minimizers for the Mumford-Shah functional has
been proved by De Giorgi et al. [37] through the definition
of the functional

Ḡ(u, Γ ) =
∫

Ω

[|∇u|2 + β(u − g)2
]
dx + αHm−1(Γ ), (4)

where Γ stands for the discontinuity set of u in an approxi-
mate sense, and u varies in a special class of functions of
bounded variation, denoted by SBV. SBV consists of all
functions of bounded variation such that the distributional
derivative is absolutely continuous with respect to Lebesgue
measure plus a m − 1-dimensional measure. In other words,
a function u belongs to SBV if and only if its distributional
derivative Du is a bounded measure that can be split into a
bulk and a surface term, i.e. the Cantor part of the derivative
vanishes. In particular, a function u belongs to SBV if the
approximate gradient ∇u exists a.e. on Ω , and its distribu-
tional derivative Du can be defined as [27]

Du = ε + (�u� ⊗ n)Hm−1(Γ ). (5)
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Noteworthy, in Eq. (5), ε denotes the approximate gradient of
u with respect to the Lebesgue measure. It could be regarded
as the total variation without the term with the jump.

In fracture mechanics, worth noting results have been
achieved by using regularized functionals that have the prop-
erty of Γ −converging to the Mumford-Shah functional.
Perhaps the most known regularized energy functional of
this kind is the Ambrosio-Tortorelli functional [4,25,48]

Gε(u, v) =
∫

Ω

v2|∇u|2dx+
1

2

∫
Ω

[
ε|∇v|2 + 1

ε
(1 − v)2

]
dx,

(6)

defined on functions u, v such that (u, v) ∈ (H1(Ω,Rm) ×
H1(Ω)), and ε ≤ v ≤ 1 [41]. Here, the variable v is chosen
to tend to take the value 1 almost everywhere and the value 0
on Γ . Noteworthy, the second integral converges to a surface
energy concentrating on the jump set Γ . It is this property
that allows the development of consistent variational formu-
lations for fractured bodies based on functional (6).

Remark It can be observed [33] that the proper functional
space for linear elasticity is not SBV but SBD, the set of
special functions of bounded deformation characterized by
the fact that the symmetric part of the distributional gradient
Eu = 1

2 (Du + DuT ) is a bounded Radon measure in the
space of bounded deformation (BD). SBD constitutes the
natural setting for the study of plasticity, damage and fracture
models in a geometrically linear framework. However, is was
shown that SBD⊃ SBV [33], and, usually, the specialized
literature restricts to SBV.

3 Regularized formulation of the problem of
a cracked body

We reformulate here problem (1) starting from a regularized
version of the kinematics. In the forthcoming developments,
we adopt a bold vector notation to mark the change from
the analytical view point adopted in the previous section to
the current approximated computational approach, where the
relevant fields are approximated with vector valued quanti-
ties.

3.1 A regularised approximation of cracks within an
elastodamaging body

One aspect of free discontinuity functionals that is particu-
larly useful for the present developments is that they treat in a
different way the bounded and the singular parts of the defor-
mation function. Based on this distinction, we are allowed to
define a displacement field whose total variation contains a

bounded and a singular term. For this reason, we seek a dis-
continuous solution of problem (1) among the set of vector
functions of the type:

u = v + H�u�, (7)

where H is the Heaviside function defined as:

H(s(x)) =
{
1 x ∈ Γ ,

0 x 
= Γ
. (8)

The signed distance function of x with respect to the crack
line Γ is computed as

s(x) = ‖x − x̄‖S(x − x̄), (9)

where x̄ is the closest point projection of x onto Γ and S is
a Boolean that takes values ±1.

We can recognize that u in Eq. (7) descends from the fields
belonging to space SBV, as its first variation can be cast as

Du = ∇v + H∇�u� + δΓ

(
�u� ⊗s n

)
, (10)

where the derivative of H is a distributional function, the
Dirac delta function δΓ . To overcome numerical issues
induced by the presence of singular fields, we approximate
u through a regularized differentiable function uρ that con-
verges to u for vanishing ρ. For this purpose, we replace
the Heaviside function H with a regularized Heaviside func-
tion Hρ . Thus the regularised displacement field uρ takes the
form

uρ(u, v) = v + Hρj , lim
ρ→0

uρ = u. (11)

For instance, Hρ can be expressed as

Hρ(s(x)) = 1

Vρ

∫ s(x)

0
Wρ(ξ)dξ, (12)

where Wρ represents a weight function centered at Γ and
Vρ = ∫

Ω
Wρ(ξ)dξ . In particular, we have adopted the fol-

lowing weight function [12]

Wρ(ξ) = e− |ξ |
ρ . (13)

The process zone resulting from the assumed displacement
field is illustrated in Fig. 2a; the displacement profile tends
to a jump in the back of Γ , where a strong discontinuity, or a
macro-crack, is expected, and to a regularised profile in the
frontal portion of Γ , denoting the emergence of a cohesive
zone.
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The variation of uρ is

Duρ = ∇v + Hρ∇j + δρ(n ⊗s j), (14)

where the term δρ = ‖∇Hρ‖ denotes the norm of the deriva-
tive of Hρ . δρ is localized within a crack band whose width
corresponds to the support of the regularization. Since we
consider linear elasticity, in the previous equation, we restrict
the approximate gradients to their symmetric part. For this
reason, n ⊗s j denotes the symmetric part of tensor n ⊗ j .

Function δρ can be recognized as the crack field density
and plays a role analogous to the crack density of phase-field
models [49]. Hence, it will also be referred to as the crack
density function in the following sections. A pictorial view
of δρ for variable ρ is shown in Fig. 2b.
Width of the regularized damage band The crack-density
δρ has a support whose width is expected to shrink as the
damaging process advances [16]. This effect is reached by
modulating the regularization length according to the dam-
age level as follows.

We define two regularization lengths, ρm and ρM , which
represent the minumum and the maximum value that ρ can
take, respectively. The value of ρ is assumed being a function
decreasing with the value of the damage dρ according to the
following law:

ρ =

⎧⎪⎨
⎪⎩

ρM dρ = dm,

αdρ + β dm ≤ d ≤ dM ,

ρm dρ ≥ dM ,

(15)

where

α = ρm − ρM

dM − dm
, β = dMρM − dmρm

dM − dm
. (16)

Remarkably, law (15) describes a three-stage evolution of
ρ, starting from a maximal value ρM , linearly decreasing
between dm and dM , with dm ≤ dM , up to assuming the
minimum value ρm for d > dM .

Being the support of δρ noncompact, it is necessary to
introduce a truncation length beyond which δρ is not evalu-
ated. The approximation issues related to the choice of the
truncation length were investigated in [20]. In particular, it
was found that a truncated support length of 40ρ provides
a satisfying compromise between computational burden and
accuracy, at least for the present Hρ . In the following devel-
opments, the lengths ρ,M and ρ,m indicate the width of the
truncated supports of δρ for ρ = ρM and ρ = ρm , respec-
tively.

3.2 Constitutive equations

We express Duρ (14) as the sum of a bounded bulk term ε

and a localized terms ερ defined as:

ε = ∇v + Hρ∇j , (17a)

ερ = δρ(n ⊗s j), (17b)

in the following way:

Duρ = ε + ερ. (18)

Let the material associated with the bulk and the zone
around the crack display an isotropic elastodamaging behav-
ior. The set of the state variables includes the strain fields
ε and ερ , and the scalar damage variables d and dρ , that
take any value in the range [0, 1] from sound to completely
damaged materials.

The idea we pursue here is that the expression of the
free energy functional should be reminiscent of the structure
of regularised free discontinuity energy (6), in particu-
lar, it should contain a bulk contribution and a distinct
ρ−regularized energy term that tends to a surface energy
for vanishing ρ. We previously referred to this latter term
to as a cohesive-like term [12]. In particular, we define the
following energy density:

ψ(ε, ερ, d, dρ) = ψ̂(ε, d) + ψc(ερ, dρ). (19)

At the r.h.s of Eq. (19), the first term is written as

ψ̂(ε, d) = 1

2
ε · (1 − d)C ε. (20)

It denotes the energy associated with the standard elasto-
damaging energy of a bulk whose elasticity matrix is C. The
second term related to the cohesive-like contribution is set as

ψc(ερ, dρ) = 1

2
δρ(1 − dρ)(n ⊗s j) · C̄(n ⊗s j), (21)

where C̄ indicates C/t , t being a unit length to be introduced
for dimensional consistency [14]. Finally, the following reg-
ularized energy functional is defined:

Eρ(ε, ερ, d, dρ) =∫
Ω

ψ̂(ε, d)dV +
∫

Ω

ψc(ερ, dρ)dV .
(22)

Remark on the fracture energy recovery The model is natu-
rally endowed with a crack density function δρ analogous to
the crack density potential of phase-field models [60]. It is
δρ that makes it possible to spread the cracking process over
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Fig. 2 The regularized displacement jump (a) and the crack-density (b) evolve along the fracture process zone depending on the advancement of
the damage localization process and on the value of the regularization length ρ

a zone whose width shrinks for increasing damage through
a smooth continuous-discontinuous transition.

While in phase-field models the fracture energy density
gc is a model parameter, here, we recover the total sur-
face energy Gc in the limit. More precisely, in phase-field
models, the global constitutive dissipation functional for
a rate-independent fracture process is defined through an
expression of the type [60]:

D(d, ḋ) =
∫

Ω

gc f (d,∇d)dV (23)

contains gc a parameter related to the fracture energy density.
In the present case, it has been proved that [19]

∫
Ω
2ψcdV

converges to the surface work carried out by the traction t
across Γ to open a discontinuity �u�, namely to the critical
cohesive fracture energy Gc as follows:

lim
ρ→0

∫
Ω

2ψcdV =
∫

Γ

t · �u�dS = Gc. (24)

Therefore, the two-terms structure of functionEρ (22)mirrors
the form of the regularized free-energy functionals for phase-
fieldmodels based onAmbrosio andTortorelli functional (6).

3.3 Constitutive laws

The first thermodynamics principle

σ · ε̇ + σ ρ · ε̇ρ − ψ̇ ≥ 0 (25)

makes it possible to deduce the constitutive equations

σ = ∂ψ̂

∂ε
= (1 − d)C(∇v + Hρ∇j), (26a)

σ ρ = ∂ψc

∂ερ

= (1 − dρ)C̄(n ⊗s j). (26b)

Here, σ and σ ρ are the stress fields that are work-conjugated
to ε and ερ , respectively.

3.3.1 Damage evolution

First, we define an appropriate effective stress σ̃ for the evo-
lution of d and associate another one with the evolution dρ

as

σ̃ = C∇v, (27)

and

σ̃ ρ = wρ(s(x))C̄(n ⊗s j), (28)

respectively. In Eq. (28), wρ plays the role of a weight func-
tion of the signed distance s(x) and is cast as

wρ(s(x)) =
{
1 s(x) ≤ ρ,m/2,

δρ s(x) > ρ,m/2,
(29)

where ρ,m denotes the truncated support of δρ,m . The adop-
tion of wρ makes it possible to carry out the transition from
a thick to a thin process zone, and overcomes a previous lim-
itation [16]. A plot of wρ for variable values of ρ is shown
in Fig. 3b.

We assume an isotropic damageRankinemodel and define
the following damage activation functions

g = τ − κ, gρ = τρ − κ, (30)

τ and τρ being equivalent stress scalars defined as:

τ = 〈max(eig(σ̃ )〉, τρ = 〈max(eig(σ̃ ρ)〉, (31)

where theMacaulay brackets 〈·〉 are such that 〈x〉 is the ramp
function.
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Fig. 3 Plot of the crack density
function δρ (a) and the weight
function wρ (b) for variable ρ;
the continuous line has been
obtained with ρM , the dashed
line refers to ρm < ρ < ρM , and
the dotted line to ρ = ρm

(a) (b)

The evolution of the damage variable d and dρ stems from
the loading–unloading conditions

g ≤ 0, ḋg = 0, ḋ ≥ 0,

ḋ > 0 if g = 0,
(32)

and

gρ ≤ 0, ḋρgρ = 0, ḋρ ≥ 0,

ḋρ > 0 if gρ = 0,
(33)

respectively. The damage variables increase monotonically
with the equivalent stress, and thus, with the current damage
threshold κ and κρ . In particular, given the values computed
at the previous instant d̂ and d̂ρ , the damage variables evolve
as non-decreasing functions of the associated damage thresh-
olds through the relationships [11]

d = max{d̂,G(κ)}, dρ = max{d̂ρ,G(κρ)}. (34)

We adopt the following exponential law [28]

G(κ̃) = 1 − κ̃0

κ̃
eh(κ̃), h(κ̃) = −2H

κ̃ − κ̃0

κ̃0
, (35)

where H is a hardening modulus, κ̃ is the current threshold
and κ̃0 is an initial threshold that is a material parameter.

Because the laws of damage evolution are non-associative,
their deduction from an energy-based variational principle is
not as straightforward as in the case of associative damage.
For this purpose, we deduce the rate form of the varia-
tional principle following the strain-driven damage approach
described in [11]. Basically, the thresholds κ and κρ turn
out being non decreasing functions of the strain field, and,
therefore, the damage variables too can be regarded as non
decreasing functions of the current strain of the type

d = G̃(ε), dρ = G̃(ερ). (36)

The strain-driven damage assumptionwill be exploited in the
forthcoming section.

3.4 Variational formulation

We compute the rate form of the energy functional as

Ėρ(ε̇, ε̇ρ, ḋ, ḋρ) =∫
Ω

(
σ · ε̇ + σ ρ · ε̇ρ − Y ḋ − Yρ ḋρ

)
dV ,

(37)

where the constitutive laws (26) have been replaced.
For the present strain-driven damage process, after assum-

ing the dissipation potential [11]

D(ε̇, ε̇ρ) =∫
Ω

[(1
2

∂d

∂ε
⊗ Cε

)
ε̇ + (1

2

∂dρ

∂ερ

⊗ Cερ

)
ε̇ρ

]
dV ,

(38)

the rate form of the total potential is cast as:

P(v̇, ε̇, ε̇ρ, ḋ, ḋρ) =
Ėρ(ε̇, ε̇ρ, ḋ, ḋρ) + D(ε̇, ε̇ρ) − Pext (v̇),

(39)

where Pext (v̇) denotes the external work contributed by the
surface forces applied on the boundary ∂Ωp. Finally, the
following variational principle governs the problem at hand:

Find {v̇, ε̇, ε̇ρ, ḋ, ḋρ} thatmake functionalP(v̇, ε̇, ε̇ρ, ḋ, ḋρ)

stationary, given the assumptions d = G̃(ε), dρ =
G̃(ερ) and the boundary condition σ · n = p̄ on
∂Ωp\Γ .

We consider the first variation of functionalP with respect
to any admissible variation ofε,ερ andv such that δv̇ satisfies
homogeneous boundary conditions on ∂Ωu . The condition
that the first variation vanishes for any admissible variation
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of the field variables is equivalent to impose that

∫
Ω

σ · δε̇dV +
∫

Ω

σ ρ · δε̇ρdV −
∫

∂Ωp\Γ
p̄ · δv̇dS = 0

(40)

for abitrary δε̇, δε̇ρ and δv̇.
After replacing the strain expressions into the rate form of

the variational principle (40), we write the first variation of
P with respect to δv̇ and δj̇ as:

∫
Ω

σ · (∇sδv̇ + Hρ∇sδj̇)dV+
∫

Ω

σ ρ · δρ(n ⊗s δj̇)dV −
∫

∂Ωp\Γ
p̄ · δv̇dS = 0,

(41)

for any admissible variation δv̇ and δj̇ . To preserve the con-
vergence of the regularized formulation to the cohesive-like
formulation for vanishing regularization [12,19], the stress σ

is mechanically decoupled from the Dirac-like term contain-
ing δρ , while the stress σ ρ is not work-conjugated with ε,
the standard part of the strain. Consequently, the following
Euler-Lagrange equations are obtained [12]

∫
Ω

divσ · δv̇dV = 0, (42a)
∫

Ω

(
σ · ∇sδj̇ + σ ρ · δρ(n ⊗s δj̇)

)
dV = 0, (42b)

∫
∂Ωp

(σn − p̄) · δv̇dV = 0, (42c)

for any admissible virtual variation δv̇ and δj̇ .

3.5 Space discretization

We adopt the extended finite element method [8,61], and
approximate the displacement in the enriched elements by
means of the shifted basis approach as [80]:

uh(x) =
∑
I∈N

NI (x)v I

+
∑

I∈Nenr

NI (x)
(
Hρ(s(x)) − Hρ,I

)
j I ,

(43)

where Nenr denotes the number of enriched nodes, Hρ,I =
Hρ(s(x I )), and v I and j I are the nodal vector variables of
the standard part of the displacement and the enrichment,
respectively. For the sake of simplicity, we have here chosen
the same shape functions N for both the standard degrees of
freedom inN and the enriched degrees of freedomassociated
with Nenr . In general, any partition of unity could be used
as enrichment function [5]. The final picture emerging from
the approximation (43) displays a set of enriched elements

that are crossed by the crack line, and another set of enriched
elements whose distance from the crack line is smaller or
equal to the semi-diameter ρ/2 but are not crossed by the
crack line. The remaining elements are not enriched and are
governed by a standard finite element approximation.

Let V and J be the vectors collecting the nodal degrees
of freedom, and B and N̄ denote the compatibility matrices.
Then the discrete form of the strain and stress fields can be
written in the compact form

εh(x) = B(x)V + H̃ρ(s(x))B(x)J, (44a)

ερ,h(x) = δρ(x)Ñ(x)J, (44b)

and

σ h(x) = B(x)Cd
(
V + H̃ρ(s(x))J

)
, (45a)

σ ρ,h(x) = Cρ N̄(x)J, (45b)

where the positions

Cd = (1 − d)C, Cρ = (1 − dρ)C̄ (46)

have been set for the sake of conciseness of notation. Finally,
the solving equations can be obtained after replacement of the
previous expressions in the Euler-Lagrange equations (42)
[12].

3.6 Time discrete formulation

Let the loading history from instant t0 to instant t N be
subdivided into N non-overlapping intervals, [t0, t N ] =⋃

n=1,N [tn−1, tn]. Given εn−1 and εn−1
ρ at instant tn−1, so

that dn−1 and dn−1
ρ are known, after a new load step during

the interval [tn−1, tn], we compute V n and Jn and update the
values of the damage, dn and dnρ , following the classic Back-
ward Euler integration scheme [73]. In particular, at each
Gauß point, the loading functions at the current instant tn

read

gn = τ(εn) − κn, gnρ = τρ(εnρ) − κn
ρ , (47)

where thresholds κn and κn
ρ are the maximum values that

equivalent stress scalars have ever reached during the loading
history up to the current instant tn as follows

κn(εn) = sup
i∈[0,n]

{τ(εi )}, κn
ρ (εnρ) = sup

i∈[0,n]
{τρ(εiρ)}. (48)

Since κ and κρ are non-decreasing functions of the strain
fields, the rate form of the loading unloading conditions can
be integrated over the time.
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We formulate the following damage evolution laws

dn =
⎧⎨
⎩
dn−1 if κn < κn−1,

G(κn) if κn ≥ κn−1 and G(κn) ≤ dm,

dm if G(κn) > dm,

(49)

and

dnρ =
⎧⎨
⎩
dm if G(κn

ρ ) < dm,

dn−1
ρ if κn

ρ < κn−1
ρ ,

G(κn
ρ ) if κn ≥ κn−1

ρ .

(50)

Whenever d = dm , the transition from the continuous to
the discontinuous setting becomes possible, though not auto-
matic as it will be clarified in the next sections.

Finally, the space-time discrete form of the work principle
is cast as [12]:

∫
Ω

Cn
dB(V n + Hρ Jn) · B(Ṽ

n + Hρ J̃
n
)dV+

+
∫

Ω

δρ N̄ Jn · Cn
ρ N̄ J̃

n
dV =

∫
∂Ωp\Γ

Fn · NṼ
n
dS, (51)

where Ṽ
n
and J̃

n
are arbitrary and the damage variables

are computed by means of the loading-unloading conditions
(50). In virtue of the arbitrariness of Ṽ

n
and J̃

n
, a solving sys-

temof equations is obtained and subsequently solved through
a Newton-Raphson procedure, the loading increments being
applied via an arc-length algorithm with indirect control of
purposely selectedmonotonically increasing degrees of free-
dom.

4 Crack tracking algorithm

The level set method is the traditional tool that allows the
extended finite element to track the surfaces of discontinu-
ities and singularities [67], but it has been also exploited to
develop continuous-discontinuousmodels where the damage
is an explicit function of the level set [62]. In the present case,
the crack surface evolves by incrementally adding crack seg-
ments to the crack path crystallized at the previous time step.
Hence, the crack level set and the geometry of the consoli-
dated crack path have to be stored in the crossed elements.
The vector level set method [80] allows to easily store the
geometric data describing the evolution of the crack line in
two-dimensions as a 3 × 1 vector consisting of the sign of
the signed distance from the crack line and the coordinates
of the closest point projection vector. In particular, the vector
level set s̃ρ is defined as a compound object s̃(x) made of s
and the boolean S:

s̃ρ(x) = {x − x̄, S(x − x̄)} , (52)

Fig. 4 The picture shows how the function δρ is used asweight function
in the nonlocal direction tracking criterion

to be defined at the Gauß points that belong to the enriched
elements that are either crossed by the regularized crack axis
Γρ or located within the regularized domain Ωρ .

4.1 Crack evolution

At instant tn−1, let Γ n−1
ρ and Ωn−1

ρ be the crack line and
the associated regularised crack domain, respectively. After
a time interval �t = tn−1 − tn , the set of the enriched nodes
will change, as new elements are being enriched and new
crack segments are going to stem. In addition, the process
zone width will change according to the ρ−evolution laws.

For each critical element e, the set of the enriched ele-
ments is updated based on three actions: verify the existence
of pre-consolidated cracks within a certain radius from the
barycenter of e, check whether some of them are adjacent to
the current critical element, and compute the crack direction.
In the following section, time dependence is dropped out for
the sake of brevity of notation.

4.1.1 Critical damage condition

The criterion of initiation is based on the evaluation of the
damage variable d at the Gauß points of the finite element.
As soon as the damage exceeds a critical damage value dm in
an element, the element is a candidate for being enriched as
a master element crossed by the crack line. Let Iρ denote the
set of elements where at least one of the Gauß points exceeds
the first critical damage threshold dm . The initiation criterion
is not sufficient to decide which of the finite elements in Iρ

will be newly enriched. This aspect pertains to the updating
stage addressed in Sect. 4.1.3.

4.1.2 Direction-tracking strategy

A threefold strategy is adopted to compute the direction of
the crack: a local strategy, a nonlocal one and a local-nonlocal
switch direction strategy.
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Fig. 5 The element in yellow satisfies the crack tracking condition, thus
it is enriched and a new crack segment is added, in red in the figure. The
green element is not enriched; however, there, the damage of the bulk
is frozen. Here, the nodes marked with a blue square are the enriched
nodes of the elements crossed by the crack line; the nodes marked with
a red circle are enriched either and belong to the enriched elements that
are within the regularization volume but are not crossed by the crack
line. (Color figure online)

Local criterion For each finite element e, we compute
the principal direction of the maximum tensile principal
stress of the averaged elemental stress

σ̄ e = 1

Ne
g

∑
i∈N e

g

σ e(xeg,i ), (53)

where N e
g is the set of Gauß points xeg,i of element e.

Nonlocal criterion The nonlocal criterion is adopted to
eliminate pathological dependence of the results onmesh
directionality and to smooth the crack path. It essentially
eliminates the unwanted deviations of the direction of the
crack path induced by zero average fluctuations of the
stress components within the damaged zone. The direc-
tion of the newcrack segment is computed as the principal
direction of the following maximum principal nonlocal
stress:

σ̄ NL(x) =
∫
V

δρ,M (x, y)σ ( y)dV ( y). (54)

In Eq. (54), the crack-density function δρ,M plays the role
of weighting function as shown in Fig. 4.

Local-nonlocal switch. First,we compute the directionwith
the local and the nonlocal direction tracking criterion.

Then, we require that the direction of the new crack
segment is the one that ensures the least deviation with
respect to the path of the existing crack line. Hence, the
algorithm switches from the local to the nonlocal direc-
tion tracking criterion at each load step, so to minimize
the deviation w.r.t the crack path consolidated at the pre-
vious load step.

Remarks on the direction tracking criterion In Eq. (54), δρ,M

is computed in terms of ρM , so that the interaction radius
equals ρ,M/2, corresponding to averaging over a volume of
width 40ρM . We have heuristically verified that ρM provides
a satisfying compromise between computational burden and
accuracy [20]. Remarkably, both the local stress (53) and the
nonlocal stress (54) are computable in any element whether
enriched or not, and this is useful when the element under
consideration has not yet been enriched.

The choice of the direction tracking criterion depends on
the stress state. Relevant aspects are deemed to be the pres-
ence of symmetry axes, the type of loading and which of the
components of the stress state are involved in crack propaga-
tion. In particular, the nonlocal direction tracking strategy is
useful in those caseswhere the strain localization band devel-
ops as a consequence of the establishment of a stress state
clearly dominated by a specific stress component, such as in
pure mode I and pure mode II. Examples are the double edge
notched (DEN) specimen under tensile loading, that will be
considered in Sect. 5.1.1, and the single edge notched (SEN)
specimen under tensile and shearing loading, whose results
will be illustrated in Sects. 5.1.3 and 5.1.4. On the other
hand, the local-nonlocal switch strategy is helpful when we
expect the deviation of the new crack line with respect to
the previous one not to exceed a certain amount of degrees
and, furthermore, we do not want to give up to the nonlo-
cal stress direction tracking criterion in certain stages of the
cracking process. This is the case of the three point bending
test, where the crack first develops within a zone beneath the
neutral axis with dominant tensile stresses, and eventually
proceeds towards the beam’s top where a compressive stress
state emerges.

4.1.3 Update

We decide which of the candidate elements in Iρ should host
the new crack line increment. For each element e ∈ Iρ , we
perform the following steps.

Check of crack proximity For each candidate element that
has met the critical damage condition, we check whether
there are cracked elements in the circle of diameter ρ,M

around element e.

123



Computational Mechanics (2021) 68:25–49 35

If there are cracked elements in the circle of diameter
ρ,M , the algorithm verifieswhether the crack tip belongs
to the set Ee of the edges of element e.

The crack tip belongs to Ee. Element e transitions from the
continuous to the discontinuous setting and is enriched.
A new crack segment is added by imposition of the crack
line continuity, so that the new crack segment starts at
the intersection point of the previous crack line with the
relevant edgeof e. This is the case of the element in yellow
in Fig. 5, where the newly formed segment is highlighted
in red.

The crack tip does not belong to Ee. This is the case of the
element in green in Fig. 5. The element is not enriched;
however, the value of the damage d in e is frozen at d =
dm . Usually, such an element may be integrated within
the influence zone of an adjacent crack segment centered
at an element distinct from e but close to it.

No cracked elements in the circle of diameter ρ,M . Ele-
ment e is enriched and a new crack line nucleates there;
e hosts the first crack segment of the newly formed inde-
pendent crack. The transition of e from the standard
continuum setting to the status of enriched element is
activated.

End of the check of crack proximity The loop finishes
as soon as each element e ∈ Iρ has been scrutinized to
assess whether it can nucleate a new crack or it just orbits
within the influence area of an existing one.

Box 1 displays a synthesis of the steps undertaken in the
present crack tracking procedure. The direction of the crack
results from the direction tracking criterion.

For e =1 : Ne, Compute d(xeg) and dρ(xeg)
If d(xeg) ≥ dm then check distance |x̄e − xct |

If |x̄e − xct | > ρ,M/2 then e is enriched
elseif |x̄e − xct | ≤ ρ,M/2

If xct ∈ Ee Then e is enriched and a new seg-
ment is added to the crack path is added
based on
Continuity enforcement
Direction-tracking criterion

Else e is not enriched and the damage value
d(xeg) is frozen.

End of the loop on e

Box 1 Symbol xeg denotes the Gauß point of element e of
centroid x̄e, xct is the coordinate of the crack tip, Ee indicates
the set of the edges of element e.

The width of support ρ,M of the crack density function
δρ,M for ρ = ρM plays a duplex role of the diameter of the
nonlocal zone for the nonlocal direction tracking criterion,
and the minimal distance between two adjacent cracks.

The set of enriched nodes There are two types of enriched
nodes. InFig. 5, the nodesmarkedwith blue squares belong to
the elements crossed by the crack line, while red circles indi-
cate the enriched nodes that belong to the elements that are
not cut by the crack line. All the elements in the regularized
discontinuity zone are fully enriched. We emphasize that the
use of the regularized Heaviside and delta functions allows
to automatically handle blending between fully enriched and
non enriched finite elements.While sign and Heaviside func-
tions do not raise issues, other types of enrichment functions,
such as crack-tip enrichment functions, preclude the partition
of unity property in partially enriched elements, unless the
enrichment functions are properly modified, for instance by
multiplying them by the ramp function [43]. In the present
formulation, the actual blending elements are made of ele-
ments that are not crossed from the crack line though they
are fully enriched, such as the elements having red and blue
nodes in Fig. 5. The final effect of using the regularized func-
tions Hρ and δρ is the same as that of ramp functions to
handle blending elements in standard extended finite element
method.The regularized delta function is such that it is almost
zero in the standard elements, except for the truncation error
[20], and satisfies the partition of unit finite element property
in fully enriched elements, while decaying continuously to
zero in the blending elements. Analogously, the regularized
Heaviside tends to a constant profile in the blending elements.
Usually, the presence of a constant enrichment function can
imply the ill-conditioning of the solving system of equations.
In the present case, the presence of the additional stiffness
term containing the regularized crack density δρ makes it
possible to rule out this type of ill conditioning.

5 Numerical results

In Sect. 5.1, we present the results computed by means of the
crack tracking algorithm presented in Sect. 4 with a focus on
mesh size and type objectivity. Moreover, in Sect. 5.2, the
sensitivity of the results to the regularization length ρ and to
the damage parameters is assessed, while, in Sect. 5.3, we
show the evolution of the crack-density function δρ .

5.1 Mesh independence

Weaim topoint out the sensitivity of theproposed regularized-
crack tracking algorithm with respect to directional mesh
bias, and the objectivity with respect to mesh type and size.
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Fig. 6 Geometry and loading of the double edge notched specimen
(DEN); dimensions are in mm

In all the examples discussed hereafter, three-noded triangles
and four-noded quadrilaterals have been used.

5.1.1 The tensile double edge notched specimen

In the present section, we discuss the case of the double edge
notched specimen, denoted as DEN hereafter. The geometry
is indicated in Fig. 6. Here, mesh bias sensitivity is expected
[28], that makes the DEN test particularly troublesome from
the computational point of view despite the fact that the plate
is symmetric and a horizontal crack is expected.

Following [28],we have set theYoungmodulus E = 2000
MPa, the Poisson coefficient ν = 0.2, while the harden-
ing modulus H = 0.002 MPa and threshold stress κ0 = 1
MPa have been used. For comparison purpose with avail-
able numerical results, we have adopted the regularization
length parameters ρm = 0.08mm and ρM = 1mm. Finally,
the damage parameters dm = 0.6 and dM = 0.9 trigger the
transition from the diffused damage band to the localized
one.

We have considered the four meshes in Fig. 7, the first and
second meshes are structured and are made of triangles (a)
and squares (b), respectively; the third triangular mesh (c)
is affected from directional bias; the fourth mesh is random
triangular (d).

The load versus displacement results obtained with the
meshes in Fig. 7 are displayed in Fig. 8. Here, we show
the results obtained with the nonlocal direction tracking
criterion. However, we had previously verified that the load–
displacement results were not influenced by the choice of the
direction tracking criterion.

The performance of the local direction tracking algorithm
has been assessed in terms of the computed damage profiles
for the considered meshes. Figure 9 shows that, whereas the
structured meshes capture the proper cracking patterns, the
map of dρ in mesh c) is not reliable, as expected. Here, the
crack path has been indicated with a green dashed line.

On the other hand, Fig. 10 shows that the use of the nonlo-
cal direction tracking criterion allows to recover the expected
cracking pattern in the biasedmesh and further improves such
a pattern in both the structured and unstructured meshes. The
impact of the choice of the direction tracking strategy can be
appreciated in Fig. 11 displaying the full opening at failure
of the plate.

5.1.2 The three-point bending test

We study mesh-directionality bias in a three-point bending
test [29,57]. In this case, a vertical crack line along the sym-
metry axis is expected. The test geometry has been taken
from [71] and is shown in Fig. 12; the beam is made of
a material whose elastic constants are the Young modulus
E = 20,000MPa and the Poisson coefficients ν = 0.2,while
the hardening modulus H = 0.0013 MPa and the threshold
stress κ0 = 2.4 MPa. Finally, we have set the regulariza-
tion length parameters ρm = 0.1mm and ρM = 1mm, and
the damage parameters dm = 0.6 and dM = 0.8. The ratio-
nale behind this choice of ρM is that it leads to a process
zone of 4 cm, that is consistent with the width of the frac-
ture process zone expected in a concrete like material such
as the one used in the current three point bending test. On
the other hand, ρm = 0.1mm is the smallest possible value
that could be resolved with the current coarsest mesh. The
meshes shown in Fig. 13 have been used. Particularly, we
have adopted unstructured meshes made of triangles such
as the one shown in Fig. 13a, triangular meshes with struc-
tured quadrilateral elements along the symmetry axis like
the one shown in Fig. 13b, and, finally, the fine biased mesh
made of triangles in Fig. 13c. In all the meshes displayed in
Fig. 13, the minimal mesh size is h = 1.66mm, these being
the finest meshes ever considered in the present case. The
load–displacement results displayed in Fig. 14 satisfactorily
fit with the experimental data [71]. They have been obtained
for triangular and quadrilateral meshes of variable size, h
being the size of the finest element. In particular, the mesh-
types shown in Fig. 13 have been adopted. Both the peaks
and post-peak profiles aremesh-size andmesh-type indepen-
dent. Figure 15 displays the contour plots of the damage dρ

plotted in the deformed meshes shown in Fig. 13 using the
local direction tracking and the local-nonlocal switch crite-
ria. In particular, the case of the biased mesh is illustrated in
Fig. 15c, d, showing the superior performance of the local-
nonlocal switch criterion in the present three point bending
test.
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Fig. 7 DEN: three type of meshes have been adopted, in particular, the structured triangular mesh (a), the structured quad mesh (b), the biased
mesh (c) and the random triangular mesh (d)

Fig. 8 DEN: Load–displacement results obtained for the meshes of
Fig. 7 with the nonlocal direction tracking criterion; ρM = 1.0mm,
ρm = 0.1mm

These results are confirmed in Fig. 16 by the correspond-
ing crack paths obtained with the aforementioned direction
tracking criteria.

5.1.3 The single edge notched plate under tensile loading

The single edge plate subjected to tensile and shearing load-
ing is a typical benchmark for phase-field models [2,46,
47,60]. The geometry of the single edge specimen and the
corresponding boundary conditions are shown in Fig. 17a.
Following [60], the set of material parameters includes the

Young modulus E = 210000 MPa, the Poisson coefficients
ν = 0.2, the hardening modulus H = 0.0026 MPa and the
threshold stress κ0 = 17 MPa. Additionally, the regulariza-
tion length parameters ρm = 0.007mm and ρM = 0.03mm,
and the damage parameters dm = 0.6 and dM = 0.95
have been adopted. In the lack of analytical and experi-
mental results, these parameters allow us to obtain results
comparable with those of the available numerical solutions.
Nevertheless, the adopted values of ρm and ρM are adequate
to a material with a very brittle behavior.

To investigate mesh type and mesh size independence, we
have performed an intensive set of tests using triangular and
quadrilateral finite elements for decreasing the mesh size. In
particular, we have considered meshes whose characteristic
size is 1/25, 1/50 and 1/100 of the specimen edge L = 1mm,
thesemeshes being quite coarsewhen compared to the degree
of refinement necessary in phase field models. Furthermore,
both the local and the nonlocal direction tracking algorithms
have been used to compare the homologous results.

The load versus displacement profiles obtained with the
local and the nonlocal direction tracking criterion in Figs.
18 and 19, respectively. It can be drawn that we get fully
objective results with respect to both mesh-type and -size,
irrespective of the adopted crack direction tracking algo-
rithm. The damage evolution along the crack direction is
displayed for both the local direction tracking criterion, in
Fig. 20, and the nonlocal direction tracking algorithm, in
Fig. 21. The profiles of both crack and process zone are
smoother and less sensitive to the geometry of the triangular
elements in the latter case.

123



38 Computational Mechanics (2021) 68:25–49

Fig. 9 DEN: damage evolution in the enriched zone obtained with the local criterion for the three meshes of Fig. 7 at step C in Fig. 8

Fig. 10 DEN: damage evolution in the enriched zone obtained with the nonlocal criterion for the meshes of Fig. 7 at step C in Fig. 8

5.1.4 The single edge notched plate under shear loading

Let the single edge notched plate studied in the previous sec-
tion be subjected to a shearing displacement on the top, as
shown inFig. 17b. The same set ofmaterial and length param-
eters used for the tensile SEN plate have been adopted. We
have also used the samemeshes. The structural results shown
in Figs. 22 and 23 have been obtained exploiting the local
and the nonlocal direction tracking criterion, respectively,
and making use of triangular and quadrilateral meshes.

Analogously to the case of tensile loading, we report in
Figs. 24 and 25 the contour plots of the damage dρ obtained
with both the local and nonlocal direction tracking algo-

rithms, respectively. We can infer from Fig. 26 that the crack
paths obtained bymeans of triangles and quads are close each
other. Moreover, the crack paths obtained with the nonlocal
direction tracking criterion are smoother.
Remarks on the choice of the direction tracking criterion
From the obtained results for the tensile and shearing SEN,
the load–displacement results do not depend on mesh type
and size irrespective of the crack direction tracking criterion.
However, in the shearing SEN, we can observe a discrep-
ancy of the 7% between the peaks and a different slope of
the rising post-peak paths computed with the local and the
nonlocal direction tracking algorithms. An accurate check of
the crack paths reveals that the adoption of the nonlocal direc-
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Fig. 11 DEN: Final damage pattern and deformed shape obtained in
the biased mesh with the local direction tracking criterion (a) and with
the nonlocal direction tracking criterion (b); the magnification factor of
the deformed shape is 300

Fig. 12 Geometry of the three point bending test [28]; dimensions are
in mm

tion cracking strategy smooths the crack paths and makes the
regularized zone surrounding the final part of the crack path
larger than the local one, and this eventually interferes with
the boundary effect induced the constraint at the right-bottom
corner of the plate. It should be precised that certain phase
field formulations do not even capture the aforementioned
rising post-peak branch [6,46] and that no experimental data
or analytical solutions are available for the sake of a com-
parison. Therefore, it is not possible to establish which one
of the local and the nonlocal direction strategy criterion is
more physically consistent for the shearing SEN test. Nev-
ertheless, the nonlocal one seems to lead to smoother crack
patterns.

5.2 Sensitivity to� and damage parameters

In this section, we present a sensitivity analysis for vari-
able regularization length and damage parameters. We recall

that the transition from the continuous to the discontinuous
description occurs at dm with a regularization length ρM . On
the other hand, the final transition to a discontinuous kine-
matics is activated at dM and is governed by ρm . For instance,
we report hereafter the results obtained for the 3P bending
test using quadrilateral elements with h = 1.66mm. The rea-
son is that they ensure the smoothest crack paths. Figure 27
displays the influence on the structural results associatedwith
a change of the minimum value of the regularization length
ρm (a) and the maximum value of the regularization length
ρM (b). The larger ρm and ρM and the higher the peak of the
load–displacement profiles. The effect induced by decreas-
ing dm is that the transition is anticipated and the structural
profiles are more brittle but do not change their shape. On
the contrary, larger values of dM posticipate the transition
and lead to higher peaks and more brittle post-peak laws.
Analogously, Fig. 28 shows that a change of both the mini-
mum and maximum values of the critical damage dm (a) and
dM (b) influences the peak load and the post-peak branch. In
synthesis, we can observe that the effects of ρm and dM on
the structural response are similar. The same applies to ρM

and dm .
Choice of the regularization lengths The appropriate values
of ρm and ρM , the minimum and maximum values of ρ, are
chosen as follows. The value of ρM is in primis dictated by
the width of the process zone typical of the material degra-
dation process to be simulated, while the value taken by ρm
depends on the degree of resolution that themesh allows. The
connection between the accuracy of the results, the choice
of the minimum ρm and the adoption of Gauß quadrature
was assessed in previous contributions [13,20]. As for ρM ,
it strictly depends on the expected width of the process zone
accompanying the early stages of the dissipation process.

From this standpoint, the regularized extended finite ele-
ment method is a very versatile tool in several circumstances.
For instance, it makes it possible to capture cracking pro-
cesses in concrete-like materials [16], and delamination
processes in FRP-reinforced beams [15,21]. In the former
case, the process zone is almost three times the width of the
grain with maximum diameter [7], and the width of the sup-
port of ρM equals the width of the process zone. In the latter
case, ρM and ρm coincide and their support-width turns out
being equal to the few millimeters thickness of the adhesive
layer bonding the reinforcement plates and the beam.

In brief, the user can control the values of the regular-
ization lengths depending on the physical phenomenon to
be modeled. However, in the SEN and DEN tests, due to
a lack of experimental data, the values of ρM and ρm have
been obtained based on the numerical data available from
simulations performed by other researchers with different
formulations.
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Fig. 13 Three point bending.
Plot of the finest considered
meshes: triangular unstructured
(a), structured with quads at the
center (b), and triangular biased
(c)

(a) (b)

Fig. 14 Three point bending: Load versus displacement results obtained with triangles (a) and quads (b) for variable mesh size
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Fig. 15 Three point bending:
Deformed shape and damage dρ

at step D in Fig. 14 for the
non-structured triangles mesh
(a), the structured (b) and the
biased mesh with the local (c)
and the local-nonlocal switch
direction tracking criterion (d).
A magnification factor 5 has
been used

Fig. 16 Three point bending: Crack path obtained with the local direc-
tion tracking criterion in mesh 3PAwith h = 1.66mm (blue continuous
line), and mesh 3PB with h = 1.66mm (green dashed line) and the

local-nonlocal switch direction tracking criterion for the biased mesh
3PC with h = 1.66mm (red dotted line). (Color figure online)

Fig. 17 Geometries of the SEN
under tensile (a) and shearing
loading (b); dimensions are in
mm

5.3 Evolution of the crack density function

A remarkable feature of the proposed formulation is that
the crack density function closely follows the evolution of
the cracking process and realistically reproduces inception,
development and eventual coalescence into a macrocrack of
the diffused-damage zone. In particular, we show here the
evolution of δρ obtained with triangular meshes in the ten-
sile SEN test in both the cases of local direction tracking
criterion and nonlocal direction tracking criterion in Fig. 29

and Fig. 30, respectively. We also report the homologous fig-
ures for the SEN test under shearing displacement in Fig.
31 and 32. In the latter case, quadrilateral meshes have been
used.

It can be drawn that, in the case of pure tension and pure
shear, the use of the nonlocal direction cracking criterion
smooths the profiles of δρ with respect to the homologous
results obtained with the local direction tracking algorithm.
The cohesive zone in front of the crack line is also better
resolved with the nonlocal direction tracking criterion.
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(a) (b)

Fig. 18 Tensile SEN: Load–displacement results obtained with the local direction tracking criterion

(a) (b)

Fig. 19 Tensile SEN: Load–displacement results obtained with the nonlocal direction tracking criterion

Fig. 20 Tensile SEN: Contour plots of the enriched damage dρ plotted at steps A, B, C, D of Fig. 18 in the deformed mesh of quads with
representative size h = L/100, L = 1mm, using the local direction tracking criterion; the magnification factor of the deformed shape is 300
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Fig. 21 Tensile SEN: Contour plots of the enriched damage dρ plotted at the load levels A, B, C, D indicated in Fig. 19 in the deformed mesh
of triangles with representative size h = L/100, L = 1mm, using the nonlocal crack tracking criterion; the magnification factor of the deformed
shape is 300

(a) (b)

Fig. 22 SEN under shear: load–displacement results obtained with the local direction tracking criterion and with meshes made of three-noded
triangles (a) and four-noded squares (b)

(a) (b)

Fig. 23 SEN under shear: load–displacement results obtained with the nonlocal direction tracking criterion and with meshes made of three-noded
triangles (a) and four-noded squares (b)
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Fig. 24 SEN under shear: Contour plots of the enriched damage dρ plotted at the load steps A, B, C, D indicated in Fig. 22 in the deformed mesh
of 4-noded elements with representative size h = L/100, L = 1mm, using the local criterion; the magnification factor of the deformed shape is
300

Fig. 25 SEN under shear: Contour plots of the enriched damage dρ

plotted plotted at the load steps A, B, C, D indicated in Fig. 23 in the
deformed mesh of quads with representative size h = L/100, L =

1mm, using the principal direction of the maximum eigenvalue of the
nonlocal stress; the magnification factor of the deformed shape is 300

T3 local Q4 local T3 nonlocal Q4 nonlocal(a) (b) (c) (d)

Fig. 26 SENunder shear: Crack path obtained for variablemesh size by
tracking the path with the local direction tracking criterion with triangle
and quads using the local (a, b) and the nonlocal (c, d) crack-direction

algorithm; the black continuous, red dashed and blue dotted lines refer
to h = 0.04, 0.02, 0.01mm, corresponding to L/25, L/50, L/100,
respectively. (Color figure online)

The same behavior can be observed in the case of the SEN
plate subjected to shearing displacement. We have reported
in Fig.32 only the δρ contour plots obtained in the case of the
nonlocal direction tracking algorithm using quads.
Evolution of the crack path during the loading history The
crack path evolves smoothly during the loading history. To
highlight this aspect, the length of the crack path as been
detected at each load step in the case of the tensile SEN.
In particular, Fig. 33 displays the length of the crack path
evaluated over the elements enriched with the discontinu-

ous kinematics. The crack path is shown for both the local
direction tracking algorithm, indicated in the figure with the
acronymLDT, and the nonlocal direction tracking algorithm,
there referred to as NLDT. Here, the medium and fine ran-
dom triangular meshes with h = 0.02 mm and h = 0.01
mm have been employed. We infer that the local and nonlo-
cal direction tracking algorithms are comparable as for the
rate of evolution of the discontinuity line. Furthermore, the
obtained crack lengths are quite independent of the mesh
size, as expected from the load–displacement profiles.
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(a) (b)

Fig. 27 3P bending: load–displacement results obtained with the local criterion for variable values of ρm (a) and ρM (b). Quads with minimum
mesh size h = 1.66mm have been used. We have set in Fig. a) ρM = 0.6mm, dm = 0.6, dM = 0.8, while, in Fig. b), ρm = 0.04mm, dm = 0.6,
and dM = 0.8

(a) (b)

Fig. 28 3P bending: load–displacement results obtained for the structured quads with h 1.66 mm with the local criterion for variable values of dm
(a) and dM (b). In figure (a), we have set dM = 0.8 mm, ρm = 0.04 mm and ρM = 0.6 mm; in figure (b), we have used dm = 0.6 mm, ρm = 0.04
mm and ρM = 0.6 mm

Fig. 29 Tensile SEN: Evolution of the crack density function δρ with the local direction tracking algorithm and using a triangular mesh
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Fig. 30 Tensile SEN: Evolution of the crack density function δρ with the nonlocal direction tracking algorithm obtained with triangular elements

Fig. 31 SEN under shear: Evolution of the crack density function δρ with the local direction tracking algorithm; quad elements have been used

Fig. 32 SEN under shear: Evolution of the crack density function δρ with the nonlocal direction tracking algorithm with quad elements

6 Discussion of the results

The ingredients of the proposed crack tracking strategy
are a flexible direction tracking criterion, crack-continuity
enforcement, and a minimal distance among cracks. The
crack tracking strategy leads to results displaying mesh size
andmesh type independence in all the investigated examples.
In particular, the use of the nonlocal direction tracking algo-
rithm smooths and makes reliable the crack paths in mode I
and mode II cracking. On the other hand, it can lead to crack
path deviations in the case of cracks induced from bend-
ing. Like in the three-point bending test, where mesh bias is

neutralized by means of a newly developed local-nonlocal-
switch direction tracking algorithm, that allows to switch
from a local to a nonlocal direction tracking criterion based
on the minimal deviation from the crack path established
during the previous load step.

Finally, it can be argued that, while phase-field models
explicitly contain the fracture energy Gc as a model parame-
ter, in the regularized XFEM the fracture energy is recovered
as the limit for vanishing ρ of the traction-separation energy
smeared over the regularized zone. On the other hand, the
choice of the length scale of phase-field models that allows
to recover the correct crack path often leads to brittle load–
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Fig. 33 Crack length versus load steps in the tensile SEN obtained with
the local direction tracking (LDT) and the nonlocal direction tracking
(NLDT) algorithms; the crack length has been computed based on the
elements transitioning from the continuous to the discontinuous regime

displacement results that, generally, do not match with the
experimental profiles, unless unrealistic values of the length
scale are chosen [83]. To alleviate this effect, specific types of
gradient functions can be used thatmake it possible to capture
cohesive-cracks [56–58]. Furthermore, although phase-field
models have been recently devised for elasto-plastic [1] and
anisotropic solids [66], a generalization to anisotropic dam-
age laws seems not so straightforward. On the contrary, the
regularized XFEM can accommodate any constitutive law.
For instance, it has been recently applied to elastodamaging
plastic constitutive laws with anisotropic damage and multi-
surface failure functions [22,23].

7 Conclusions

We have devised a new strategy to track general crack paths
independently of size, type and directionality of the adopted
meshes. This study should be regarded as a new develop-
ment of the regularized extended finite element method.
As illustrated by means of a widespread set of tests, the
proposed strategy makes it possible to obtain consistent
load–displacement profiles and crack paths. Our formula-
tion naturally introduces a regularization length and a crack
density function, hence suggesting certain similarities with
nonlocal and phase-field models, except that damage broad-
ening and mesh adaptivity are not an issue for the present
formulation. For the sake of simplicity, crack branching has
not been considered and is being left for future develop-
ments. For the assessed cases, we can draw that the proposed

framework is a viable alternative to available continuous-
discontinuous procedures.
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