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Abstract
Formingof tires duringproduction is a challengingprocess forLagrangian solidmechanics due to large changes in the geometry
and material properties of the rubber layers. This paper extends the Arbitrary Lagrangian–Eulerian (ALE) formulation to
thermomechanical inelastic material models with special consideration of rubber. The ALE approach based on tracking the
material and spatialmeshes is used, and an operator-split is employedwhich splits up the solutionwithin a time step into amesh
smoothing step, a history remapping step and a Lagrangian step. Mesh distortion is reduced in the smoothing step by solving
a boundary value problem. History variables are subsequently remapped to the new mesh with a particle tracking scheme.
Within the Lagrangian steps, a fully coupled thermomechanical problem is solved. An advanced two-phase rubber model
is incorporated into the ALE approach, which can describe green rubber, cured rubber and the transition process. Several
numerical examples demonstrate the superior behavior of the developed formulation in comparison to purely Lagrangian
finite elements.

Keywords ALE · Rubber · Forming · Curing · Tire

1 Introduction

Numerical simulation of the tire production process involves
the irreversible change in material properties due to its trans-
formation from the green state to the cured state. This process
requiresmolding the green rubber under pressure loading and
the application of high temperature to induce the vulcaniza-
tion reaction. Molding typically leads to large geometrical
changes of the tire profile to achieve the desired final shape.
The description of rubber in its green and cured phases as
well as the transition between the two phases as a single
material model has been recently proposed in [1,10]. In these
works, material models are formulated using finite strain the-
ory and utilizing the multiplicative split of the deformation
gradient, which allows the use of advanced inelastic rubber
models. However, the potential of these models in finite ele-
ment tire manufacturing simulations cannot be fully realized
due to the large distortions encountered during molding of
rubber using standard Lagrangian finite element codes. It is,
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thus, beneficial to enhance the standard Lagrangian formula-
tion with a remeshing technique. In this context, one can use
general adaptive remeshing methods, which change the data
structure and require remapping the whole description and
its solutions. A special kind of adaptive remeshing can alter-
natively be achieved by the Arbitrary Lagrangian–Eulerian
(ALE) formulation, which does not change the number of
finite elements or their connectivity, but only the location of
the nodes.

The conventional approach to solve finite element equa-
tions in solid mechanics is to attach the material points to
the spatial mesh. This pure Lagrangian description remark-
ably simplifies the solution algorithms as well as enables
a direct tracking of material boundaries. Moreover, history
variables required for inelastic materials can be assigned to
a unique reference point, which does not change through-
out the incremental solution. An obvious limitation of this
method is, however, that severemesh distortion and entangle-
ment can occur in case of large strains and localized inelastic
deformations. In contrast, material in the Eulerian descrip-
tion is free to move with respect to a fixed spatial mesh.
This means that no distortion in the mesh can occur, but
tracking the boundaries and the material history becomes
complex. The weaknesses of the two aforementioned meth-
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ods in large deformation analysis motivated the development
of the ALE description, which seeks to combine the best of
both approaches. In this formulation, the finite element mesh
is not attached to the material or kept fixed in space. Rather,
it partially follows the material while at the same time it is
continuouslymoved relative to thematerial in order to reduce
element distortions. Thus, theALEdescription has the poten-
tial for solving a variety of complex problems dealing with
large deformation, especially in forming and molding simu-
lations [14,15].

Though originally developed for fluid mechanics [16],
ALE formulations have quickly found their way into solid
mechanics [9,17,29]. However, early developments have
avoided the use of material laws based on hyperelasticity
and the multiplicative split of deformation gradient, opting
for rate models and hypoelastic relations. The reason for this
restriction is the absence of thematerial configuration in these
formulations, where they are usually described by velocity
based variables. Thus, it becomes difficult to obtain a total
deformation gradient, which is crucial for the analysis of
hyperelastic materials such as rubber. Two approaches have
been proposed to solve this limitation. The first, introduced
in [26], is similar to the conventional ALE formulations,
where it introduces an incremental deformation gradient and
requires the transportation of the elastic strains in addition to
the plastic history variables. The second method, proposed
in [30] for hyperelasticity and developed in [2,21] for multi-
plicative plasticity, introduces the material configuration as
a part of the formulation. This fact enables the evaluation of
the total deformation gradient, without the need of remap-
ping any of the elastic variables. Moreover, it allows the use
of amaterial particle tracking scheme for the inelastic history
variables.

An essential part in the ALE approach is the mesh
improvement scheme. To this end, several remeshing tech-
niques can be found such as, arbitrary user-defined motion,
volume-weighted smoothing, Laplacian smoothing and
equipotential smoothing [5]. More advanced approaches
such as adaptive rezoning for fluid-structure interaction [22]
and optimization-based mesh motion [4] have also been pro-
posed. In this work, the smoothing follows the approach in
[2,30] by solving a boundary value problem based on a fic-
titious elastic model to optimize the material and the spatial
meshes at the same time.

ALEequations can be solved as amonolithic fully coupled
problem as proposed by [3,30] for elasticity and [8,12] for
inelasticity.However, the staggered stepwise solution ismore
common, because it minimizes the computational time for
ALE calculations and enables the use of the already available
Lagrangian formulation as a substep of the new approach.

In order to account for the relative velocity between the
material particles and the spatial mesh, a proper history
remapping algorithm is also required. The most widely used

approaches in this context are explicit methods [25], such as
the Lax–Wendroff scheme, which requires the computation
of a smooth gradient of the advected variables. Alternatively,
Godunov’s scheme avoids the need for averaging to obtain
smooth spatial gradients. However, in both cases, the advec-
tion needs to be performed for each component of the history
variable, which make them expensive for material models
with a high number of history variables. Moreover, these
advection methods can lead to inadmissible values of the
history such as a negative equivalent plastic strain. The ALE
approach used in this work, by the incorporation of the mate-
rial mesh in the calculations, offers an alternative way for the
remapping of history through tracking of the material par-
ticles. This means that the location of a particle before and
after the smoothing step is exactly known, and can be used to
reassign the history variables regardless their number. Thus,
this method is well-suited for the large number of history
variables as involved in rubber curing models.

In this paper, an ALE finite element formulation for the
analysis of the general case of thermomechanical finite strain
models will be presented. It starts with the description of the
ALE kinematics and the staggered solution approach. Next,
a mesh smoothing approach is introduced and the history
remapping algorithm is explained. In Sect. 3, the thermome-
chanically coupled rubber vulcanization model is described.
Finally, numerical examples to demonstrate the capabilities
of the developed approach as well as rubber molding and
curing simulations are carried out.

2 Arbitrary Lagrangian–Eulerian formulation

2.1 ALE kinematics

The deformation mapping in the Lagrangian description is
constructed by defining the motion with respect to the mate-
rial configuration, which is fixed at the initial configuration.
The material and the initial configuration are in this case
equivalent and are used as the reference configuration. The
ALE description, on the other hand, introduces a reference
configuration, which is independent of both the material and
spatial configuration. If the reference configuration is fixed
at the initial configuration, see Fig. 1, a special formulation
is achieved, where the position of the material and the spatial
coordinates for a reference point m at a time t can be defined
in terms of the material mapping X and the spatial mapping
ψ as follows

Xt = X (m, t) , xt = ψ (m, t) . (1)

The physical deformation can then be calculated by the com-
posite mapping ϕ as
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Fig. 1 ALE kinematics with the initial configuration as the reference
configuration

ϕ = ψ ◦ X−1. (2)

The deformation gradients corresponding to the above map-
pings, then, can be calculated as follows

F = ∇mψ = ∂x
∂m

, (3)

FX = ∇mX = ∂X
∂m

, (4)

where ∇m = Gradm is the gradient operator with respect to
the reference configuration. The physical deformation gradi-
ent is then calculated from the previous expressions as

F = FψF−1
X . (5)

The material and the spatial displacements can also be
defined as

uX = X (m, t) − m , uψ = ψ (m, t) − m. (6)

Furthermore, the boundary conditions on the material con-
figuration B should be imposed in such a way (to preserve
the material character), that the material motion should not
cause any in- or outflow of material through the boundary,
which implies the condition

VX · N = 0 on ∂B = ∂M , (7)

where VX = ∂X/∂t is the material velocity and N is the
unit vector normal to the boundaries ∂B = ∂M . This con-
dition simply enforces zero material motion normal to the
boundary, while the tangential motion is still permitted. It
is worth noting that for a straight segment of the boundary,
the normal vector N is same for the whole segment, and,

thus, N corresponding to a material point moving along this
segment will not change over time, which allows the integra-
tion of the boundary condition over time as

∫
t (VX · N) dt =∫

t VX dt · N = uX · N. This allows the above boundary con-
dition to be simplified for straight segments of the boundary
as follows

uX · N = 0 on ∂M , (8)

which may not always be possible to apply if the external
boundary of the initial problem is complex. This can be
circumvented by defining the ALE domain in uniform seg-
ments of the geometry, because, inmost cases, high distortion
occurs in specific locations.

2.2 Staggered ALE algorithm

The material degrees of freedom introduced in the previous
section can be solved in a fully coupled simultaneousmanner
along with the spatial degrees of freedom. Such a solution,
however, will be computationally inefficient. The alternative,
more common strategy to solve ALE formulations is the use
of staggered schemes. The global solution in this case can
be outlined in the following three steps. First, a smoothing
step is performed to calculate uX holding uψ fixed in order
to minimize a certain mesh distortion measure. In the second
step, the history is remapped for the modified mesh. Finally,
a Lagrangian step to calculate uψ while holding uX fixed is
performed to solve the governing balance equations of the
problem at hand. In this way, the ALE calculation reduces to
solving the same size of the problem as the Lagrangian case,
but with the addition of several iterations for the smoothing
phase. As suggested in [2], the Lagrangian step is solved at
the end of the time step and not at the beginning in order to
ensure that the governing equations are satisfied.Moreover, it
is in general not required to perform smoothing at every time
step, rather it can be performed after several pure Lagrangian
steps. Each phase will be described in detail in the following
sections. An example of how the staggered ALE algorithm
can be executed with ns as the total number of time incre-
ments and na the number of ALE smoothing steps is outlined
in Algorithm 1.

2.3 Mesh smoothing

Themain aimofALE formulations is to limit the distortion of
the spatial mesh. The method proposed in [2] achieves this
goal by choosing a material displacement field ũX̃ , which
minimizes both the spatial mesh distortion as well as the
materialmeshdistortionbasedon the followingminimization
problem

123



1546 Computational Mechanics (2021) 67:1543–1557

Algorithm 1 Staggered ALE algorithm with ns time incre-
ments and na ALE smoothing steps.
1. Loop over the number of ALE smoothing steps na

(a) Advance time tn+1 = tn + Δt
(b) Solve for material degrees of freedom X (smoothing step)
(c) Remap history variables, see Algorithm 2
(d) Solve for spatial degrees of freedom ψ (Lagrangian step)
(e) Loop over the remaining number of Lagrangian steps

(ns/na) − 1
i. Advance time tn+1 = tn + Δt
ii. Solve for spatial degrees of freedomψ (Lagrangian step)

2. End of ALE loop

ũX̃ = arg min
ũX̃

[
Πsm

(
ũX̃

)]
, (9)

for a fixed physical deformation Fn , where the functional
Πsm defines the distortion of the meshes by the scalar poten-
tial function Wsm as

Πsm
(
ũX̃

):=
∫

M
Wsm

(
Fψ̃ , FX̃

)
dM

=
∫

M
Wsm

(
F̄nFX̃ , FX̃

)
dM , (10)

where definitions for Wsm will be discussed later in the sec-
tion and the function

F̄n = f (Fn) (11)

is used to allow the consideration of certain components of
the deformation for smoothing. If it is simply taken as F̄n =
Fn , then, the smoothing is applied to the three displacement
components. The variation of the functional in Eq. (10) with
respect to the material deformations provides the boundary
value problem to solve the minimization problem as follows

δΠsm = Gsm

=
∫

M

[
FX̃ Sψ̃ + FX̃ SX̃

]
: Gradm (δX ) dM , (12)

whereSX̃ andSψ̃ are second PiolaKirchhoff pseudo-stresses
given as

SX̃ = 2
∂Wsm

∂CX̃

∣
∣
∣
∣
∣
F

ψ̃

and Sψ̃ = 2
∂Wsm

∂Cψ̃

∣
∣
∣
∣
∣
FX̃

. (13)

Thefixedphysical deformation gradient is calculated asFn =
FψnF−1

X n, using deformation gradients FX n and Fψn of the
previous time step, considering that n + 1 is the current time
step. This leads to the spatial deformation gradient in terms
of the material mapping as follows

Fψ̃ = F̄nFX̃ . (14)

Distortion measures for FE meshes have been studied in the
context of automatic mesh generation [13,20,23]. In [23], a
distortion metric for isoparametric elements has been pro-
posed drawing the analogy between element distortion and
strain, where the deviation of an element from an ideal shape
is considered similar to bodies experiencing strains. Thus,
any invariant scalar energy function may be used to measure
mesh distortion, where the only condition is that it should be
purely deviatoric, since volumetric changes do not indicate
distortion. The following function is used

Wsm = 1

2
μψ

(
ĪC

(
F̄nFX̃

) − 3
) + 1

2
μX

(
ĪC

(
FX̃

) − 3
)
,

(15)

where ĪC is the first invariant of the isochoric part of C,
defined as

ĪC (F) = J− 2
3 tr(C),with J = det (F) , (16)

andC = FT F is the right Cauchy–Green deformation tensor.
As can be seen, the utilized smoothing potential is simi-
lar to energy functions used in hyperelasticity. Furthermore,
the parameters μX and μψ control the smoothing process
through the ratio μX /μψ , while their absolute value is not
relevant. It is worth noting that reducing the distortion in
the two meshes are competing objectives, when solving Eq.
(12), where μX /μψ = ∞ retrieves the Lagrangian formula-
tion while μX /μψ = 0 means maximum smoothing of the
spatial mesh on the expense of the material mesh. A value of
μX /μψ = 0 is, however, not the optimum choice, because it
causes excessive distortion and entanglement in the material
mesh, what may lead to failure in history remapping algo-
rithms.

The solution of Eq. (12) follows the same procedures used
in the linearization of finite strain equations in the reference
configuration, see “Appendix A”. The potential function def-
inition in Eq. (15) leads to the following pseudo stresses

SX̃ = μX J
− 2

3

X̃

(

1 − 1

3
tr(CX̃ )C−1

X̃

)

, (17)

Sψ̃ = μψ J
− 2

3

ψ̃

(

1 − 1

3
tr(Cψ̃ )C−1

ψ̃

)

. (18)

Pseudo tangents CX̃ and Cψ̃ can then be obtained in a stan-
dard way as

C = 2
∂S
∂C

= −2

3
μJ− 2

3

[
C−1 ⊗ 1 + 1 ⊗ C−1

− 1

3
tr(C)C−1 ⊗ C−1 + tr(C)

∂C−1

∂C

]

, (19)
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Fig. 2 History remapping by material particle tracking

where the derivative of the inverse of the symmetric tensor
C reads

∂C−1
i j

∂Ckl
= −1

2

(
C−1
ik C−1

jl + C−1
il C−1

jk

)
. (20)

2.4 History remapping

TheALE approach discussed in the previous sections already
includes the material configuration. This means that the dis-
placement field uX represents the motion of the material
particleXwith respect to the fixed referencemesh coordinate
m. Thus, and as shown in Fig. 2, it is possible to backtrack
location m̃ (m) after a smoothing step by solving the follow-
ing equation

X̃ (m) = X (m̃) , (21)

which can be rewritten in terms of the reference coordinates
and material displacements as

m + ũX̃ (m) = m̃ + uX (m̃) . (22)

This equation, if written in the following residual form,

r (m̃) = [
m̃ + uX (m̃)

] − [
m + ũX̃ (m)

]
(23)

can be solved by the Newton Raphson iteration as follows

m̃k+1 = m̃k −
[

∂r
∂m̃k

]−1

· r
(

m̃k
)

, (24)

Fig. 3 Algorithm to determine if a node lies inside or outside a given
hexahedral element

which requires evaluating the derivative at every iteration as

∂r
∂m̃

= 1 + ∂uX (m̃)

∂m̃
= FX (m̃) , (25)

where FX (m̃) is the material deformation gradient before
the last smoothing step, and not FX̃ (m̃). The above particle
tracking equation may require looking for m̃ and its corre-
sponding displacementuX (m̃) outside of the element,which
needs an element search algorithm to determine the location
of the iterative values m̃k . Such an algorithm entails looping
over all elements and checking if the point m̃k is inside the
element. An algorithm for hexahedral elements based on the
normal to element faces is shown in Fig. 3. Moreover, it is
more efficient to check closer elements first, rather than to
loop over the whole list of elements with no specific order.
In most cases, the motion of the material is not very far from
the original element.

After the element is located, it is then necessary to find the
natural coordinates ξ̃ of the point m̃, using an inverse isopara-
metric mapping [31] solved again by the Newton method as
follows

ξ̃ i+1 = ξ̃ i + J−1
ξ

[
m̃ − m̂

(
ξ̃ i

)]
= 0, (26)

Jξ =
nnode∑

A

∂NA

∂ξ

(
ξ̃ i

)
mA. (27)

It is, however, unlikely that the determined coordinates ξ̃

will coincide with any integration point. Thus, one has to
approximate where to assign the projected values. One possi-
bility is to interpolate for the history variables at the element
level. Alternatively, it is possible to use a simple discon-
tinuous approximation, where every point ξ̃ is assigned to
one quadrature point by dividing each element into domains
where the history is considered constant. A hexahedral ele-
ment with eight integration points can be divided into eight
domains, where the quadrature point ξ1, for example, cor-
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responds to the domain [−1, 0],[−1, 0],[−1, 0] in terms of
the natural coordinates. If ξ̃ is then located in domain 1, the
history is assigned to the quadrature point ξ1. This piecewise
transfer ensures with no extra constraints the physical nature
of the history variables. Finally, the projection follows by
reassigning the history in the computer memory

φprojected (m) = φunprojected (m̃) . (28)

A summary of the history projection process by particle
tracking is outlined in Algorithm 2.

Algorithm 2 Summary of the history remapping process.
1. Loop over quadrature points, given coordinates m and displace-

ments ũX̃ (m)

2. Perform Newton iteration to find the backtracked location m̃

(a) Locate the element in which the iterative value m̃k lies, see
Fig. 3

(b) Calculate the unsmoothed displacement of the iterative point
uX

(
m̃k

)

(c) Calculate the residual and update the solution m̃k+1 = m̃k −
[

∂r
∂m̃k

]−1 · r
(
m̃k

)

(d) Check convergence ‖r‖ < tol

3. Perform Newton iteration to determine the isoparametric coordi-
nates of m̃: ξ̃ (m̃), see Eq. (26)

4. Determine the element integration point corresponding to the value
ξ̃ (m̃)

5. Reallocate history φ (m) = φ (m̃)

2.5 Lagrangian step

After the smoothing and the remapping steps, a Lagrangian
step is carried out to solve the physical problem. In this step,
the spatial mapψ is calculated, for a fixed material deforma-
tion gradient FX̃ , which is calculated by the smoothing step.
In a thermomechanically coupled problem, it is then required
to solve the balance of linear momentum

J div
( τ

J

)
+ ρ0b = 0 (29)

for the mechanical part along with the balance of energy

J div (q) − r + cvθ̇ − wext − wint = 0 (30)

for the thermal part, where τ is theKirchhoff stress calculated
from the deformation gradient F = FψF−1

X̃ , J = det (F) and
ρ0b is the material volumetric body force, with ρ0 as the den-
sity in the material configuration. In the balance of energy
equation, q is the heat flux in the spatial configuration, r
represents a heat source, cv is the heat capacity, θ is the tem-
perature, wext is the external power due to the rate of change

of the displacement field andwint is the internal power stem-
ming from the evolution of internal variables. The heat flux
is defined as

q = − 1

J
k∇ψθ, (31)

where the constant k is the heat conductivity coefficient. The
weak forms of the above balance laws could be expressed
with the help of the test functions δψ and δθ as

GM =
∫

M
τ : ∇s

ψ (δψ) JX̃ dM

−
∫

M
ρ0bJX̃ dM −

∫

M
T · δψ JX̃ d AM , (32)

GT =
∫

M
Jq · ∇ψ (δθ) JX̃ dM

+
∫

M

(
wext + wint + r − cvθ̇

)
δθ JX̃ dM

−
∫

M
Q · Nδθ JX̃ d AM , (33)

where ∇s
ψ (δψ) = 1/2

(∇ψ (δψ) + ∇ψ (δψ)
)
is the sym-

metric spatial gradient of the test function δψ and T is the
surface traction. The heat flux in the material configuration
Q is related to its current value as Q = JF

−1
q, and N is the

unit normal to the reference surface.
Finally, the determinant JX̃ = det

(
FX̃

)
is necessary to

provide the right volume for integration associated to the
material configuration such that dB = JX̃ dM . As can be
seen, the Lagrangian step is almost standard, where the only
difference is the use of the modified F = FψF−1

X̃ to calculate
the stresses and changing the integration volume with the
factor JX̃ . Therefore, any Lagrangian element formulation
or material model can be used in this step. In this work, a
Q1P0 element is adopted, where the details of the FE imple-
mentation and the linearization of the weak forms can be
found in [6].

3 Thermomechanical material model for
rubber curing

The rubber forming and vulcanization model introduced
in [1] is summarized in this section, which is formulated
within a non-isothermal thermomechanical framework. The
idea of this model, see Fig. 4, is to represent the degree
of vulcanization with a plasticity-like formulation, where a
temperature-dependent evolution law causes the material to
transform from the uncured to the cured state.
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Fig. 4 1D representation of the isochoric part of the model

3.1 Thermomechanical formulation

A non-isothermal formulation is required to account for the
high temperature changes during the curing process. The
temperature-dependent Helmholtz free energy function, see
[7,24], is given as

Ψ = ΨEQ (C, θ) + Ψ̄NEQ
(
C̄e, θ

)
, (34)

where C̄e is the elastic part of the isochoric right Cauchy–
Green strain tensor. The deformation gradient in this setting
is decomposed into volumetric Fvol and isochoric F̄ parts,

F = F̄Fvol , (35)

with F̄ = J− 1
3 F and Fvol = J

1
3 1, where J = det F. The

isochoric deformation gradient is also split into elastic and
inelastic parts as

F̄ = F̄eF̄i , (36)

which enables the definition of the isochoric left and right
Cauchy–Green strain tensors, respectively, as follows

b̄ = F̄F̄T , C̄ = F̄T F̄. (37)

The equilibrium part (time-independent) of the free energy
is given as

ΨEQ (C, θ) = t (θ) eEQ,0 + fEQ (θ) ΨEQ,0 + Ω̄ (θ) , (38)

while the non-equilibrium part takes the form

Ψ̄NEQ
(
C̄e, θ

) = t (θ) eNEQ,0 + fN EQ (θ) Ψ̄NEQ,0, (39)

where t (θ) = 1 − θ/θ0 , and the term Ω̄ (θ) represents the
sum of purely thermal effects on the free energy due to the
heat capacity,

Ω̄ (θ) = C̄ (θ) − C̄ (θ0) + θ
[
Ῡ (θ0) − Ῡ (θ)

]
, (40)

and the functions C̄ (θ) and Ῡ (θ) are defined as

C̄ (θ) =
∫ θ

θ0

c̄v (ξ) dξ and Ῡ (θ) =
∫ θ

θ0

c̄v (ξ)

ξ
dξ, (41)

with c̄v as the heat capacity of a stress free body, which
is assumed to have a linear dependency on temperature as
follows

c̄v (θ) = c1θ + c0, (42)

where c0 and c1 are material parameters and θ0 is the refer-
ence temperature. Moreover, the internal energy components
are given as

eEQ,0 = κ0αvθ0 ln (J ) , eNEQ,0 = 0, (43)

considering the material bulk modulus κ0 and the thermal
expansion coefficient αv at reference temperature θ0. The
temperature dependency of the mechanical part of the free
energy reads

fEQ (θ) = fN EQ (θ) = θ

θ0
− θ [tanh (b (θ − θ0))]3

θ0 + a
, (44)

which accounts for the glass transition temperature of the
rubber, where a and b arematerial constants. The equilibrium
part of the free energy at reference temperature reads

ΨEQ,0 = U0 (J ) + Ψ̄EQ,0, (45)

where the volumetric energy U0 is given as

U0 (J ) = κ0 (J − ln (J ) − 1) , (46)

and the isochoric energy Ψ̄EQ,0 is defined using the cross-
linking part of the extended tubemodel strain energy function
[18],

Ψ̄EQ,0 = Ψ̄0
(
b̄
)

Gc

2
=

[(
1 − δ2

) (
Ib̄ − 3

)

1 − δ2
(
Ib̄ − 3

) + ln
(
1 − δ2

(
Ib̄ − 3

))
]

,

(47)

defined in terms of the first invariant of the isochoric left
Cauchy–Green strain tensor Ib̄ = tr

(
b̄
) = tr

(
C̄

)
. The non-

equilibrium branch has a similar form

Ψ̄NEQ,0 = Ψ̄ v
0

(
b̄e

)

Gv
c

2
=

⎡

⎣

(
1 − δ2v

) (
Ib̄e − 3

)

1 − δ2v

(
Ib̄e − 3

) + ln
(
1 − δ2v

(
Ib̄e − 3

))
⎤

⎦ ,

(48)
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Table 1 Parameters used in the thermal functions

κ0 (MPa) 100

ρ
(
kg m−3

)
1120

θ0 (K) 253

θre f (K) 293

k
(
Wm−1K−1

)
0.16

c0
(
MPa K−1

)
0.92624

c1
(
MPa K−2

)
0.00112

αv

(
K−1

)
0.0001854

a (K) 69.84

b
(
K−1

)
0.196

but it is defined in terms of the elastic isochoric Cauchy–
Green strain tensor Ib̄e = tr

(
b̄e

) = tr
(
C̄e

)
. The material

parameters in the previous equations are Gc, δ, Gv
c and δv .

The thermal material parameters required in the previous
equations are taken from [1] and are given in Table 1. These
parameters will not be changed in the upcoming examples.

3.2 Stress response and inelastic evolution law

The material stress response is the sum of volumetric and
isochoric Kirchhoff stresses resulting from the free energy
functions defined in the previous sections,

τ = fEQ (θ)
(
τ e

vol,0 + τ e
iso,0

)

+ t (θ) τ e,0 + fN EQ (θ) τ v
iso,0, (49)

where

τ e
vol,0 = JU ′

0 (J ) 1, τ e,0 = Je′
EQ,0 (J ) 1, (50)

τ e
iso,0 = P : τ e

0, τ e
0 = 2∂b̄Ψ̄

e
0

(
b̄
)
b̄, (51)

τ v
iso,0 = P : τ v

0, τ v
0 = 2∂b̄e Ψ̄

v
0

(
b̄e

)
b̄e. (52)

The fourth order deviatoric projection tensor Pabcd =
1/2 [δacδbd + δadδbc] − 1/3 [δabδcd ] is calculated with the
help of the Kronecker delta δ.

The inelastic response of the material stemming from vis-
coelasticity and the vulcanization process is defined, similar
to the concept of finite viscoplasticity [28], by the flow rule

Lv

(
b̄e

) = ˙̄be − l isob̄e − b̄e lTiso = −2γ̇ N P b̄e, (53)

where Lv is the Lie derivative, and l iso = ˙̄FF̄−1 is the iso-
choric velocity gradient. Using this definition, the inelastic
deformation rate is prescribed by the direction of the driving
stress N P and the effective strain rate γ̇ . The driving stress
is given in terms of the isochoric inelastic Kirchhoff stress as

N P = τ v
iso,0∥

∥
∥τ v

iso,0

∥
∥
∥
,

∥
∥τ v

iso,0

∥
∥ =

√
τ v
iso,0 : τ v

iso,0, (54)

and the effective strain rate γ̇ , in analogy to [11], is defined
as

γ̇ = fN EQ γ̇0

(
τv
0

τ̂

)

(1 − α)p , (55)

where τv
0 is an effective stress measure

τv
0 = 1√

2

√
τ v
iso : τ v

iso, (56)

and γ̇0/τ̂ is a material constant.
Finally, the term (1 − α)p in Eq. (55) introduces the effect

of rubber vulcanization, where p is a material constant. A
value ofα = 0keeps the inelastic branchof the rheology fully
viscoelastic to represent the uncured state. A value of α = 1,
on the other hand, deactivates the evolution law to convert
the inelastic branch to fully hyperelastic. The evolution of
the variable α is described in the next section.

3.3 Degree of vulcanization

It is assumed that the volumetric part of themodel is the same
for both cured and uncured rubber. The isochoric part, on the
other hand, is different, where the uncured rubber exhibits a
viscoelastic response, while cured rubber shows hyperelastic
behavior. Uncured rubber is modeled with a rate indepen-
dent part of the isochoric free energy Ψ̄EQ , as well as a rate
dependent part Ψ̄NEQ . However, the vulcanization process
causes the rate dependent branch to gradually become elastic
by deactivating the viscoelastic evolution law γ̇ (α). In this
way, the final result of vulcanization yields the cured rubber
model as the sum of the two parts Ψ̄EQ and Ψ̄NEQ .

If the properties of uncured and cured rubber are defined,
one can introduce a variableα, which represents the degree of
vulcanization depending on temperature θ and time t , where
α can have a value of 0 for the fully uncured state and 1 for the
fully cured state. In between these limit values, and based on
experimental observations, the degree of vulcanization canbe
described for a constant temperature by the logistic function

α(t, θ) = 1

1 +
(

1
α0

− 1
)
exp (−k (θ) β (θ) t)

, (57)

where α0 is an initial value of vulcanization that is assumed
to exist before the curing starts. Furthermore, k is a parameter
that controls the speed of vulcanization and can be expressed
in terms of temperature as
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Table 2 Parameters for the vulcanization law

kmax
(
s−1

)
6.571 × 10−3

k1 (K) 148.5798

k2 (−) 26.17816

ζ (−) 0.03

β0 (−) − 1964.519

β1
(
K−1

)
44.59459

β2
(
K−2

) − 0.332826

β3
(
K−3

)
8.1975 × 10−4

k (θ) = kmax + kmax (ζ − 1)

1 +
(

θ−273.15K
k1

)k2 , θ ≥ 273.15K, (58)

where kmax is a material constant that represents the maxi-
mum value of k (θ), while the parameter ζ gives the initial
value of k (θ) at low temperature as ζkmax . The function k (θ)

is also corrected by a polynomial function β as follows

β (θ) = β0 + β1 (θ − 273.15 K)

+ β2 (θ − 273.15 K)2

+ β3 (θ − 273.15 K)3 , θ ≥ 273.15 K. (59)

The expression in Eq. (57) is a closed form which enables
the calculation of the state of cure at a constant temperature.
In order to adapt it for variable temperatures during finite
element simulations, the rate equation

α̇(θ) = k (θ) β (θ) α (θ) (1 − α (θ)) (60)

is used. Based on experimental data in [27], Table 2 summa-
rizes the identified material parameters in [1] for the curing
law, which will be used in the upcoming examples. The his-
tory variables, which need to be remapped in this model, are
the degree of vulcanization α and the inverse of the inelastic

isochoric right Cauchy–Green tensor C̄−1
i = (

F̄T
i F̄i

)−1
.

4 Numerical examples

4.1 Indentation problem

An indentation problem similar to the one analyzed in [30]
is studied to clarify the behavior of the ALE formulation.
The specimen is considered in plane strain conditions and
the geometry can be seen in Fig. 5, where the boundary
conditions for the spatial and the material displacements are
also shown. The rubber material used is defined by the con-
stants Gc = 0.2 MPa, δ = 0.1, Gv

c = 2 MPa, δv = 0.25,
γ̇0/τ̂ = 0.02 s−1 MPa−1, and p = 1. Displacements of

Fig. 5 Indentation problem, geometry and boundary conditions

50 mm are applied at the top and the reaction force is mea-
sured. The concentration of stresses at the tip of the loading
area leads to large element distortion in the Lagrangian sim-
ulation, see Fig. 6. The ALE simulation is performed with
smoothing steps carried out at regular intervals every five
Lagrangian steps, where the total number of 100 time incre-
ments is used and the total simulation time is 60 s. Different
values of the smoothing parameters μX /μψ are used as can
be seen in Figs. 6 and 7. A superior spatial mesh smooth-
ing is achieved by smaller values of μX /μψ , where the
rearrangement of the spatial mesh is accompanied by the
movement in the material mesh. Furthermore, Fig. 7 shows
the stiff response of the Lagrangian method at higher dis-
placements, whereas the ALE approach preserves a softer
material response.

4.2 Rubber molding problem

Molding of a green rubber sample [19] is studied in this
example to compare the performance of the ALE formula-
tion to the Lagrangian solution. The geometry of the problem
is shown in Fig. 8, where the mold is simulated with fixed
degrees of freedom, and contact between rubber and mold
is solved with a node to surface algorithm using the penalty
method with a contact penalty parameter of 100MPa. A total
displacement of u = 12 mm is prescribed at the top surface
of the rubber specimen with a loading rate of 0.5 mm/s. The
material constants for the rubber are taken as Gc = 0.2MPa,
δ = 0.1, Gv

c = 4 MPa, δv = 0.1, γ̇0/τ̂ = 0.08 s−1 MPa−1,
and p = 1. For the ALE simulation, a smoothing parameter
of μX /μψ = 2 is used and smoothing steps are carried
out at regular intervals every four Lagrangian steps. The
number of time increments used is 800 steps for both ALE
and Lagrangian simulations. It can clearly be observed in
Figs. 9 and 10 that the Lagrangian approach is inapplicable
of solving the problem up to full displacement. Large ele-
ment distortions leads to the termination of the solution at u
= 9.9 mm. On the other hand, the ALE approach keeps the
meshwithminimal distortion and enables the continuation of
the simulation. Figure 11 shows the evolution of the material
and spatial mesh at different loading stages.
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Fig. 6 Indentation problem, material and spatial meshes for different
values of μX /μψ

Fig. 7 Indentation problem, force displacement response for different
values of μX /μψ

4.3 Forming and curing of a tire cross-section

The simulation of the forming and curing process of a tire
cross-section is addressed in this example. This involves
the molding of the tire under inflation pressure and the
application of heat for an appropriate period of time until vul-
canization of the rubber is complete and the tire has achieved
its final desired shape. The geometry of the tire cross-section,
its layers and the mold are shown in Fig. 12. For the purpose

Fig. 8 Rubber molding problem, geometry and FE discretization,
dimensions in (mm)

Fig. 9 Rubber molding, deformed meshes obtained by ALE and
Lagrangian simulations

Fig. 10 Rubbermolding, force displacement response obtained byALE
and Lagrangian simulations

of this work, the rubber layers (tread, inner liner, sidewall,
bead filler) are all modeled using the rubber curing material
model explained in the previous section, with the material
constants Gc = 0.2 MPa, δ = 0.1, Gv

c = 4 MPa, δv = 0.1,
γ̇0/τ̂ = 0.2 s−1 MPa−1, and p = 1. The carcass and the belt
layers are simulated using solid elements and Neo-Hookean
material with increased stiffness. The material parameters
for the carcass are κ = 100 MPa, G = 50 MPa, and the
parameters for the belt are κ = 100 MPa, G = 200 MPa.
Likewise, the bead is simulated using Neo-Hookean mate-
rial with κ = 8 × 105 MPa, G = 6 × 105 MPa. The bead
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Fig. 11 Rubber molding,
evolution of the spatial and
material meshes

vertical movement is fixed and plane strain conditions are
applied to the cross-section.

ALE remeshing is activated only around the grooves
where high distortion is expected, in the domain specified in
Fig. 12. TheALE and the Lagrangian elements are connected
through shared nodes on the boundary of the ALE domain.
ALE smoothing steps are performed every four Lagrangian
stepswith a smoothing parameter ofμX /μψ = 3.5. Smooth-
ing steps continue until time = 260 s, where the tire is fully
formed and no further re-meshing is needed. Regarding the
contact, the mold degrees of freedom are fully restrained and
node to surface contact between tire and mold is defined,
where the mold surface is taken as master. Moreover, a stan-
dard contact penalty method is used with a contact penalty
parameter of 500 MPa.

Pressure loading of 0.25 MPa is applied to the inner sur-
face of the tire according to the loading pattern shown in
Fig. 13. Furthermore, the inner and the outer surfaces of the
tire are heated by temperature increase of Δθ = 130 K, also
according to the loading pattern shown in Fig. 13. The results
are given in Fig. 14,where the heating of themolded tire leads
to the evolution of the degree of vulcanization. This is an irre-
versible process, where the new cured tire has its new shape
and new properties and does not spring back to the initial
state after cooling and removal of the pressure.

The advantage of the ALE approach can clearly be seen
in this example, as the Lagrangian simulation of the same
problem causes extreme distortion of the mesh and cannot
resolve the shape of the grooves as can be seen in Fig. 15.
This example also shows the possibility of combining ALE
finite elements with Lagrangian finite elements in the same
simulation.

An increase of about 5-15% in computational time
depending on the problem is observed in case of ALE sim-
ulations when compared to the corresponding Lagrangian
solution. Smoothing and remapping steps are performed after
several pure Lagrangian steps, which contribute to the reduc-

Fig. 12 Tire cross-section, details of the tire layers and FE discretiza-
tion, dimensions in (mm)

tion of the solution time. It is also observed that the main
contribution to the increase in computing time comes from
the smoothing, rather than the remapping step. The twoNew-
ton iterations and the element search algorithm are only
executed if required, which is limited to elementswhere large
material mesh displacements occur. Moreover, the Newton
iterations performed during history remapping are just solv-
ing three-component equations, while the element search
algorithm checks closer elements first, and, thus, does not
need to loop over the entire list of elements.
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Fig. 13 Loading pattern for the applied pressure and temperature on
the tire cross-section

5 Conclusions

A robust Arbitrary Lagrangian–Eulerian framework for ther-
momechanical simulations of viscoplastic problems with
special focus on rubber curing and tire manufacturing has
been implemented. An advanced phase transition rubber
curing model, which predicts the thermomechanical vulcan-
ization process, is incorporated into the staggered ALE finite
element method. To date, ALE formulations have mostly
been applied to basic finite strain plasticity models for the
simulation of metals. In most of these cases, Lagrangian
simulations are still largely acceptable, see the examples in
[2,26]. In contrast, the ALE formulation for soft rubbermate-
rial seems critical for successful molding simulations as it
has been demonstrated by the examples in this paper. The
examples presented show the advantage of the ALE formu-

lation in reducing mesh distortion and allowing full molding
of rubber material during tire manufacturing. The capability
of the constitutive model to represent the vulcanization and
the transformation of rubber from green to cured state is also
demonstrated in the last example.

The ALE approach based on tracking both, the material
and the spatial configurations, as proposed in [2,30] has been
used, which proved to provide a more suitable way to incor-
porate rubber hyperelasticity and multiplicative finite strain
inelasticity, with no projection required for the elastic vari-
ables. Furthermore, operator split of the ALE solution into
smoothing, remapping and Lagrangian steps leads to a very
efficient simulation with minimal increase in computational
time, as well as it allows the straightforward incorporation of
already available Lagrangian finite elements. The smoothing
step is based on solving a fictitious hyperelasticity problem
to optimize both material and spatial meshes. This avoids
the need of geometric rezoning procedures, which become
complex in 3D applications. Another advantage of tracking
the material mesh is that it can be used to remap the history
variables by an implicit particle tracking scheme. Unlike the
explicit Lax–Wendroff and Godunov schemes, the particle
tracking does not depend on the number of history variables
or require the evaluation of spatial gradients of these vari-
ables.

The main focus of this paper was to investigate if the
ALE approach has an advantage over pure Lagrangian sim-
ulations. However, the validation of the approach for real

(a)

(b)

Fig. 14 Tire cross-section, evolution of a the temperature field and b the degree of vulcanization
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Fig. 15 Tire cross-section,
comparison of the final results
obtained by the ALE and
Lagrangian approach

tire molding experiments requires specific experimental data
with complex geometries and multiple materials characteri-
zation, which will be the subject of future work.
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A Linearization and discretization of the
mesh smoothing equations

The solution of the nonlinear boundary value problem in
Eq. (12) for the unknown smoothed material deformation
field by the iterative Newton Raphson method requires the
linearization of this equation. The linearization is achieved
by the directional derivative of Eq. (12) with respect to the
material displacement increment ΔuX̃ ,

DGsm · ΔuX̃ =
∫

M

[
GradmΔuX̃ Sψ̃ + FX̃

(
DSψ̃ · ΔuX̃

)]

: Gradm (δX ) dM

+
∫

M

[
GradmΔuX̃ SX̃ + FX̃

(
DSX̃ · ΔuX̃

)]

: Gradm (δX ) dM . (61)

In the above equation, the derivatives of the second Piola
Kirchhoff stresses are given as

DSψ̃ · ΔuX̃ = Cψ̃ : ΔEψ̃ , DSX̃ · ΔuX̃ = CX̃ : ΔEX̃ ,

(62)

where the tangent tensors Cψ̃ and CX̃ are

Cψ̃ = 2
∂Sψ̃

∂Cψ̃

∣
∣
∣
∣
∣
FX̃

, CX̃ = 2
∂SX̃
∂CX̃

∣
∣
∣
∣
∣
F

ψ̃

(63)

and Eψ̃ as well as EX̃ are the Green-Lagrange strain tensors

Eψ̃ = 1

2

(
FT
X̃ C̄nFX̃ − 1

)
, EX̃ = 1

2

(
FT
X̃ FX̃ − 1

)
, (64)

considering that the right Cauchy Green strain tensors are
Cψ̃ = FT

ψ̃
Fψ̃ = FT

X̃ C̄nFX̃ and C̄n = F̄T
n F̄n . Eq. (61) could

be simplified as

DGsm · ΔuX̃ =
∫

M

[
GradmΔuX̃ Sψ̃ : Gradm (δX )

+ δEX̃ : Cψ̃ : ΔEψ̃

]
dM

×
∫

M

[
GradmΔuX̃ SX̃ : Gradm (δX )

+ δEX̃ : CX̃ : ΔEX̃
]
dM (65)

with the increment of the Green-Lagrange strain tensors

ΔEX̃ = 1

2

[
FT
X̃GradmuX̃ + GradTmuX̃ FX̃

]
, (66)

ΔEψ̃ = 1

2

[
FT
CX̃GradmuX̃ + GradTmuX̃ FCX̃

]
, (67)

where the following deformation gradient is defined FCX̃ =
C̄nFX̃ . It is worth noting that the only difference to the stan-
dard linearization in the above equations is in the termΔEψ̃ .

Space discretization for the finite element method is
obtained by dividing the reference domain M into sub-
domains, and utilizing linear shape functions N with the
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isoparametric concept, the coordinates of a node in the ref-
erence domain can be interpolated as

m =
nenode∑

A=1

NA (ξ) mA, (68)

and the material and spatial displacements are interpolated
in the same manner

uX =
nenode∑

A=1

NA (ξ) dA
X and uψ =

nenode∑

A=1

NA (ξ) dA
ψ. (69)

This enables the evaluation of Eqs. (66) and (67) for an ele-
ment e as follows

ΔEX̃ ,e = 1

2

n∑

I=1

[
FT
X̃ ,e

(
ΔuI

X ⊗ ∇mNI

)
+

(
∇mNI ⊗ ΔuI

X
)

FX̃ ,e

]
,

(70)

ΔEψ̃,e = 1

2

n∑

I=1

[
FT
CX̃ ,e

(
ΔuI

X ⊗ ∇mNI

)
+

(
∇mNI ⊗ ΔuI

X
)

FCX̃ ,e

]
,

(71)

or in a more compact form as

ΔEX̃ ,e =
n∑

I=1

BX̃ ,L IΔuI
X , ΔEψ̃,e =

n∑

I=1

Bψ̃,L IΔuI
X . (72)

Furthermore, Eq. (12) can be rewritten as

Gsm =
∫

M

[
Sψ̃ + SX̃

]
: δEX̃ dM , (73)

where the linearization of the Green-Lagrange strain tensor
is

δEe = 1

2

n∑

I=1

[
FT
e (δXI ⊗ ∇mNI ) + (∇mNI ⊗ δXI ) Fe

]

=
n∑

I=1

BL I δXI . (74)

This enables the expression of the residual force

Rsm =
∫

M
BT
X̃

[
Sψ̃ + SX̃

]
dM , (75)

the geometric stiffness

Kg
sm =

∫

M
BT
X̃

[
Sψ̃ + SX̃

]
BX̃ dM , (76)

and the material stiffness

Ksm =
∫

M
BT
X̃Cψ̃Bψ̃dM +

∫

M
BT
X̃CX̃ BX̃ dM . (77)
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