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Abstract
The dynamics of the spread of epidemics, such as the recent outbreak of the SARS-CoV-2 virus, is highly nonlinear and
therefore difficult to predict. As time evolves in the present pandemic, it appears more and more clearly that a clustered
dynamics is a key element of the description. This means that the disease rapidly evolves within spatially localized networks,
that diffuse and eventually create new clusters. We improve upon the simplest possible compartmental model, the SIR model,
by adding an additional compartment associated with the clustered individuals. This sophistication is compatible with more
advanced compartmental models and allows, at the lowest level of complexity, to leverage thewell-mixedness assumption. The
so-obtained SBIR model takes into account the effect of inhomogeneity on epidemic spreading, and compares satisfactorily
with results on the pandemic propagation in a number of European countries, during and immediately after lock-down.
Especially, the decay exponent of the number of new cases after the first peak of the epidemic is captured without the need
to vary the coefficients of the model with time. We show that this decay exponent is directly determined by the diffusion of
the ensemble of clustered individuals and can be related to a global reproduction number, that overrides the classical, local
reproduction number.

Keywords COVID-19 · Epidemiology · Reproduction number · Compartmental models

1 Lock-down andmodeling of the COVID-19
epidemic

Since the beginning of the COVID-19 epidemic in Decem-
ber 2019, many countries have chosen severe restrictions on
mobility and transport. It has become a controversial question
in public debate whether these decisions were necessary and
inevitable, and whether the lock-down was maintained for
an unnecessary long period or, on the contrary, was relaxed
too soon in an unsafe way. In order to evaluate retrospec-
tively such decisions, and to anticipate similar measures in
the future, an in-depth understanding of epidemic propaga-
tion is needed. In the present investigation we focus on the
seemingly universal way in which the SARS-CoV-2 disease
is controlled by lock-down.
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Indeed, in a number of countries in which lock-down was
applied, the number of new infections decays exponentially
after the peak of the epidemic with a very similar time-scale
(see Fig. 4). In the present investigation we shed light on the
role of the finite size of spatially localized clusters on this
phenomenon, by improving upon a simple paradigm model,
the classical SIR model, and by assessing the resulting SBIR
model against realistic data.

The SIR model in its simplest form contains three com-
partments, corresponding to susceptible, infected and recov-
ered or removed individuals, and the dynamics are governed
by two model parameters γ (recovery rate) and β (infec-
tion rate). A wide variety of SIR modifications have seen
the light since its original formulation [13]. Many of them
propose additional compartments (see for instanceMassonis,
Banga, and Villaverde [17] for an analysis of a great number
of compartmental models), nonlinear incidence rates [7], and
non-constant model coefficients [3,8]. An overview of these
models is beyond the scope of the present work and we refer
to the review articles on the subject [6,12].

In a large number of these epidemiologic studies using
compartmental models, the dynamics are extremely sensi-
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tive on the temporal variations of the model parameters,
and saturation of the epidemic at a realistic level is only
obtained if the main parameters, such as the infection rate
(or reproduction numberR0 = β/γ ) are changed during the
analysis. Sophisticated approaches have been developed to
estimate the temporal evolution ofβ by assuming for instance
a prescribed shape of the time-evolution of the reproduction
number [15] or by adjusting thevalueofβ instantaneaously to
the observations [8]. We show that even using constant coef-
ficients, saturation of the epidemic is obtained when the local
nature of interactions within clusters is taken into account.

Indeed, perhaps the largest known flaw of the SIR model
is the assumption of well mixedness. By assimilating all
susceptible individuals into one single compartment, it is
tacitly assumed that all individuals are in contact with all
others, and the spatial structure of the epidemic is thereby
ignored. An approach to overcome this weakness is to use
either networks, self-propelled interacting agents, nested or
coupled local SIR-type models [18] or diffusion equations
[14,16,19]. Such modifications change the level of complex-
ity of the model considerably requiring either the solution
of a two-dimensional reaction-diffusion problem, tracking a
large number of propelled particles, or the solution of integro-
differential equations. We refer to Rahmandad and Sterman
[21] for a discussion of the differences between agent-based
and compartmental models, and to Zohdi [26] for an agent-
based model of epidemic spreading applied to a planetary
domain.

The model we introduce in the present work is much sim-
pler and uses a two-scale approach: either individuals are far
enough away from the individuals not to be in contact, or they
pertain to a cluster of individuals in contact with the infected.
This approach allows to take into account spatial structuring
at the lowest level of complexity, i.e., by adding one single
compartment. We sub-divide the group of susceptibles into
B, those in a so-called “blob”, who are or have been in con-
tact with the infected, and S, those who are (spatially) distant
from the infected.Wewill show, by comparison with data for
a variety of European countries, that this model reproduces
the exponential decay of the number of newly infected after
its peak-value, with an exponent determined by the spatial
diffusion coefficient of the blob.

An important simplification of reality which we will
assume throughout this investigation is the constancy of
the model-coefficients. All countries introduced different
measures which change the effective transmission rate by
physical effects such as quarantine-measures [5], or by
changing the awareness of the individuals [25]. The present
investigation aims primarily at the assessment of a novel
approach to take into account inhomogeneity. The lock-down
period for a number of similar occidental countries seems the
correct starting point, since despite differences in detailed
measures, the parameters governing the dynamics of the epi-

demic are expected to become constant during lock-down.
The universal features captured by the model can therefore
be disentangled from other effects, and the results can be
compared to the data within the limits of the quality of the
measurements.

In the following we will first present the SBIR model
and its difference with the classical SIR approach (Sect. 2).
We will analytically determine the exponential decay time-
scale for the SIR model with and without cross-immunity, as
well as for the SBIR model. We show, by comparison with
data from the Johns Hopkins University data-base [10], that
the SBIR model allows to simultaneously fit the data in the
increasing and decreasing phase of the epidemic without the
need of adjusting the model-parameters during the epidemic
(Sect. 3). We further estimate the reproduction number and
show that it reaches a stableminimal value during lock-down.
The appendices contain the mathematical procedure to ana-
lytically estimate the decay exponents of the differentmodels
and the initial and final reproduction numbers.

2 A cluster-based compartmental model

Spatially resolved epidemiological models are elegant and
physically better justified than theSIRmodel but have the dis-
advantage that they are harder to analyze analytically, which
makes insights on the effect of the different parameters more
complicated. Indeed the complexity increases in general the
descriptive capacities of a model, but decreases the insights
which can be obtained.

We propose here a new model, that does only introduce
one new compartment, representing the individuals who are
or have been spatially close to the infected people. Thereby
our model remains based on global parameters and does not
introduce the need to solve a two-dimensional diffusion prob-
lem. This simplicity allows the analytical derivation of the
long-time behavior and thereby elucidates the role of local
cluster-saturation on global decay-rates.

We will in this section first recall the SIR model, give an
analytical estimate of the decay-exponent in the final phase
of the epidemic, and show the influence of cross-immunity
in a simple CSIR model. After that we introduce the SBIR
model and discuss its physical and some of its mathematical
properties.

2.1 The decay exponent in SIR and cross-immunity

The simplestmodel formacroscopicmodeling of an epidemy
is the so-called SIRmodel [9,13]. Themodel describes a pop-
ulation divided in three categories, Susceptible S, Infected I
and Removed or Recovered R (Fig. 1, top). The total popula-
tion N = S+ I + R is supposed constant on the timescale of
the epidemic. The evolution of, and the interaction between
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Fig. 1 Diagrammatic representation of three compartmental models,
SIR, CSIR and SBIR. In SIR and CSIR three compartments interact,
with the only difference in CSIR that those three compartments do not
contain the entire population, since part of the population is supposed
to be protected by cross-immunity. In the SBIR model, the susceptible
part of the population is subdivided into individuals B inside the blob,
and S, outside the blob, and the four compartments interact

the three compartments is given by a set of three coupled
ordinary differential equations,

dS

dt
= −β

I S

N
d I

dt
= β

I S

N
− γ I

d R

dt
= γ I . (1)

In the following it is convenient to normalize these equa-
tions by N , so that R, S, I all take values between one and
zero and S + R + I = N = 1. Here and in the follow-
ing, time will be normalized by a timescale of one day. The
value of γ −1 corresponds therefore to a typical timescale
expressed in days. Initially R(0) = 0, I (0) = I0 � 1 and
S(0) = 1 − I (0) ≈ 1. The dynamics of the SIR model
are characterized by an exponential growth with exponent
λ+ = β − γ , upto a time τ where saturation of the infected
is obtained, by collective, or herd immunity, obtained when
S < γ/β. Note that in the present epidemic of SARS-CoV-
2, we remain very far below such collective immunity at the
time of the first peak. Long enough after this t = τ , expo-
nential decay is observed until all infected have disappeared.
The behavior is sketched in Fig. 2. We show in Appendix 1
a simple and straightforward way to determine the approx-

Fig. 2 Schematic representation of the evolution of the number of
infected individuals in SIR and SBIR under the assumption of constant
model-parameters. Time τ represents the peak-value of the number of
infected

imate exponential growth and decay rate of the epidemic.
This analysis, assuming continuity of two exponentials (as
in Fig. 2), yields the decay-exponent

λ− = γ λ+

β
≡ γ λ+

λ+ + γ
, (2)

which gives a direct relation between the exponential during
the initial, growing phase of the epidemic, and the decaying
phase.We note that an exact analytical solution of the system
exists [11], but the extension of the method to more com-
plicated systems might not be straightforward. The present
approach yields less accurate but readily interpretable results,
allowing direct insights in the effect of the parameters on the
evolution of the epidemic.

Furthermore, the peak-value of the number of infections
is given by

I (τ ) =
(

λ+

β

)2

, (3)

and at this time τ , the rate of infection P = βSI is close to
its maximum and is given by (see Appendix 1)

P(τ ) = γ

(
λ+

β

)2

. (4)

An important question is whether cross-immunity could
explain the saturation of an epidemic such as the ongoing
one at the observed levels. We consider thereto a population
where a part of the individuals has attained cross-immunity
- the precise source of it, past contact with similar viruses
or any other hidden mechanism being beyond the scope of
this study. This part of the individuals is called C (Fig. 1,
center). To obtain the CSIR equations, the SIR-equations are

123



1488 Computational Mechanics (2021) 67:1485–1496

now only changed on the level of the global community size,
where we replace

N = C + S + I + R = 1 → N∗ = S + I + R = 1 − C .

(5)

The growth-exponent λ+ is not changed by this modification
for given γ, β, but the peak-values of I and P are multiplied
by a factor (1−C) as explained in Appendix 2. For instance

PCSIR(τ ) = γ (1 − C)

(
λ+

β

)2

= (1 − C)PSIR(τ ). (6)

In the long-time however, the decay-exponent λ− is the same
for the SIR and the CSIR model.

2.2 SBIR: SIR in a blob

We consider a cluster-based compartmental model, where
only a sub-ensemble of individuals N∗ < N will inter-
act with infected individuals. Via social interaction, a set of
clusters diffusing around infected individuals will emerge,
this diffusion process being distinct from virus transmis-
sion, and having its own dynamics. We define the number
of persons belonging to one of these diffusing clusters as
N∗ = B+ I+R ≡ 1−S, where I and R have the same inter-
pretation as before, i.e., infected and recovered/removed,
respectively, and B is referred to as the blob, namely the peo-
ple who joined a diffusing cluster through social interaction
and who are not yet infected or recovered. These individuals
can be seen as local susceptibles, and in the following the B, I
and R compartments are considered globally, independently
of the number of clusters they correspond to. The persons in
S are susceptible individuals, that need first to join the blob
before being possibly infected. The 4 compartments, as illus-
trated in Fig. 1, are now related by the following system of
ordinary differential equations,

dS

dt
= −κ

SI

N
+ ζ

SB

N
(7)

dB

dt
= κ

SI

N
− ζ

SB

N
− β

BI

N∗ (8)

d I

dt
= β

BI

N∗ − γ I (9)

dR

dt
= γ I . (10)

If the growth exponent λ+ = β − γ has the same expression
as in the SIR model, the final decay exponent, if β > κ , is
given by (see Appendix 3),

λ− = γ − κ (11)

which is different from the expressions for SIR and CSIR,
and now depends on the spatial diffusion-coefficient of the
blob related to κ .

In the limit of very fast diffusion, B will approach S, and
the SIR-dynamics is observed subsequently. Furthermore,
mathematical robustness of the formulation is ensured, since
none of the quantities S, B, I , R can become negative.

2.3 The physics behind SBIR

Before integrating the SBIR model, it is insightful to show
what the physical picture behind the model is. This will help
to interpret the results and to guide the choice of the parame-
ters. The parameters of the model are γ, β, κ and ζ . Whereas
γ is an intrinsic parameter characterizing the disease, β, κ

and ζ depend on physical, biological and psychological influ-
ences. The β parameter, representing the infection rate is
already present in the classical SIRmodel. It will be obtained
here from an estimation of λ+ in the early stage of the epi-
demics, which is known to be barely affected by the spatial
structure of the population [24].

In order to understand the dynamics of the blob, let us
consider the coupling between the S and B compartments,
and first neglect the term proportional to ζ . We have then

dN∗

dt
= κ

SI

N
, (12)

If we assume S/N ≈ 1 (as expected in early stages) and that
I varies slowly, we have

N∗ ≈ κ I t . (13)

When a constant population density σP is introduced, the
surface of the blob N∗/σP corresponds to the increase of a
surface explored by a random walk. Indeed, the separation
of a random walker from its initial position is

r(t) ≡
√〈

(x(t) − x(0))2
〉 ∼ √

Dt, (14)

where D is the diffusion coefficient, and the surface explored
is proportional to the square of this length. The interaction
between the two compartments is therefore governed by a
Brownian-like diffusion process, with a diffusion coefficient
D = κ I/σP . In most epidemics, I rapidly grows so that the
time-varying effective diffusion coefficient increases as well,
and super-diffusive growth of the blob is observed.

We can ask how this diffusion is related to the movement
of individuals. In the kinetic theory of gases, themacroscopic
diffusion coefficient is related to microscopic motion by

Dm ∼ ul, (15)
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where in this expression u is the velocity magnitude of
the gas-molecules and l the mean-free-path. In our descrip-
tion, where the blob diffuses with a typical timescale κ−1,
the effective mean free path of individuals in contact with
infected is proportional to the number of infected I , assum-
ing that their velocity, which is related to the displacement
of individuals, is constant (and reduced) during lock-down.
Even though this is obviously a very rough approximation,
we could use this idea to estimate the change of diffu-
sion after lock-down using smartphone mobility data (as for
instance [1,2]). In the present investigation we will use con-
stant model-coefficients and show that this approximation,
during confinement, gives good agreement with data. The
influence of non-constant coefficients is left for future inves-
tigation.

We still have the parameter ζ to discuss. The evolution
equation of S can be written as

dS

dt
= −κ

SI

N

(
1 − 	−1 B

I

)
, (16)

where

	 = κ/ζ. (17)

The ratio B/I indicates how many individuals in the cluster
are typically interacting with one infected. Indeed, if we set
ζ to zero, there is no bound on the blob-size, and a blob of
one-million individuals in contact with a single infected case
would not make sense physically. This is precisely the flaw in
the SIR model (the well-mixedness hypothesis) that we want
to improve upon in the SBIR model. The combination of the
κ and ζ term will allow the system to relax to an equilibrium
value 	 of the typical infection density per cluster. In the
present investigation we will use 	 not only to set the ratio
of κ and ζ , but also to set the initial condition for the ratio
B/I .

2.4 Dependence of epidemic spreading on the
diffusion rate

We have thus given physical interpretations of the model
parameters κ and ζ . Before showing how the SBIR model
compares to realistic data for constant coefficients, we will
determine the long-time evolution of the system for well
defined initial conditions. The values we used are β = 3γ ,
ζ = κ/10, γ = 0.1, B(0) = R(0) = 0, I (0) = 1 · 10−5.
The temporal evolution of the different quantities is docu-
mented in Appendix 4. We have observed that at very long
times, the only stable solution of the system is I = 0, B = 0,
S = 1−R. The final state of the population is shown in Fig. 3,
where the values of S(∞) and R(∞) are plotted as a func-
tion of κ/γ . Values of R(∞) can range from R(∞) = I (0)

Fig. 3 Influence of the diffusion rate κ on the final number of sus-
ceptible individuals S(∞) = 1 − R(∞) and recovered or removed
individuals R(∞) for given constant coefficients

for κ = 0 to R(∞) = O(1) for κ 
 1, where the SIR
limit is attained. It is clear from this plot that the final state
of the SBIR-population is very importantly determined by
the diffusion rate. This allows to model the evolution of the
COVID-19 epidemic during its firstmonths, without the need
to change the model coefficients during a simulation.

3 Comparison with data on confirmed
infections

In this section we compare the results of our model to recent
data on the epidemic. The number of daily confirmed new
infected cases is obtained from the Johns Hopkins University
data-base [10]. This quantity is related to the source term in
Equ. (9),

PSBIR
t = β
BI

N∗ 
t . (18)

With N∗ = B + I + R and 
t = 1 day. We have chosen
to compare to several European countries where the lock-
down is applied and Sweden, a country who has only applied
“mild” restrictions on its population.

Our procedure is the following. We use for the parameter
γ = 0.1 and determine in the data the time t = 0 where the
prevalence of daily confirmed new infected cases exceeds
P(0) = 1 · 10−6. The value γ −1 determines the typical
time-interval duringwhich an individual is infectious and can
thereby transmit the disease to other individuals. The exact
length of this time interval can vary between 3 and 18 days
[15], and our choice of 10 days is in agreement with recent
investigations [4,8,23]. The value γ = 0.1 corresponds to
the case where from a group of isolated infected individuals,
50%will recover after approximately 7 days. Choosing a dif-
ferent value for this parameterwould not dramatically change
the results, but would directly change the choice of β used in
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Fig. 4 Comparison of SBIR and CSIR results, with data from JHU [10] for 8 European countries. The data represent the reported daily new
infections. The shaded region corresponds to the lock-down period in the different countries

the remainder. This latter parameter is determined as follows.
During the early growth phase of the epidemic, the data is
fitted by an exponential, thereby determining λ+ = β − γ ,
and thus also β. We use I (0) = P(0)/β and the value of

B(0) is adjusted to match the height of the peak P(τ ). The
value of the cluster diffusion κ is varied to get a best fit on
the decay phase. We note that in the phase of the epidemic
we focus on, the influence of the parameter ζ on the results
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is weak compared to the influence of the choice of κ . It is
chosen so that the initial ratio B(0)/I (0) is equal to κ/ζ .
Finally, we impose R(0) = 0.

The results of the integration of the SBIR model are com-
pared in Fig. 4 to the data, and the parameters are indicated
on each plot. The general agreement is rather encouraging.
It is observed that for all countries the value of β is of order
0.3. The value of the diffusivity varies within the subset of
considered countries in the range κ ∈ [4.5 ·10−2, 7.5 ·10−2]
and the ζ parameter is typically 2 to 3 orders of magnitude
smaller. For all countries a revival of the epidemic starts some
time after the lock-down period, which is not reproduced by
the model in its present form, and the reason for this is dis-
cussed in the conclusion. The lock-down period is indicated
in Fig. 4 by a shaded area. We have used an objective defi-
nition for the dates of this lock-down period using mobility
data from Google [1], given in Appendix 5.

Also shown in the figure for comparison are the CSIR
results. We have again fitted the initial growth exponent,
and we have adjusted the value of the cross-immunity C
to reproduce the peak of infection. To obtain a correct fit
we need to use values for the part C of individuals having
cross-immunity in the interval C ∈ [0.997, 0.999]. Using
the CSIR model, the value of the cross-immunity needed to
attain a saturation of the number of newly infected at the level
of the observations, for the values of β and γ used to fit the
increasing exponential, seems therefore unrealistic. Further-
more, the decay exponent λ− in the CSIRmodel λ−

SIR ≈ 0.07
is too large, which largely underestimates the duration of the
epidemic.TheSBIRmodel,with the introductionof thediffu-
sivity parameter κ , gives fairly good agreement in the decay
regime with λ−

SBIR ≈ 0.04. This ability to correctly represent
and explain the fast increase and the slow decrease of the
epidemic is the major advantage of the SBIR model.

We also compare fhe SBIRmodel to a countrywhere lock-
down restrictions were very light, Sweden. It is observed that
the model also describes the behaviour of the data in this
country, but with a value of κ more than twice larger than in
countries with severe lock-down restrictions. The spatial dif-
fusion of the blob in which the ensemble of clusters evolves
is in Sweden thus, according to our model, twice as large as
in the other considered countries.

4 Estimating the reproduction number

The evolution of the number of new infected individuals can
also be quantified by the reproduction numberRt . We recall
that the initial value of the reproduction number within the
SIR or SBIR models is defined by R0 = β/γ .

Fig. 5 Comparison of the SBIR results forRt for 8 European countries.
The shaded region is the superposition in transparency of the lock-down
periods in the considered countries

We can rewrite the I -equation of the SBIRmodel [Eq. (9)]
as

1

I

d I

dt
= γ (Rt − 1) (19)

where the instantaneous reproduction number is given by the
expression

Rt = β

γ

B(t)

N∗(t)
. (20)

Since both B and N∗ evolve in time, this quantity will also
vary. Initially, since R, I � B, we have Rt ≈ R0.

In Fig. 5, we show the evolution of Rt obtained from the
SBIR-integration. To compare with data we use the local log-
arithmic derivative of the newly infected cases P to estimate
Rt

Rt = 1 + 1

γ P

dP

dt
. (21)

The use of P instead of I in Eq. (19) is justified as long
as B/N∗ is a slowly varying quantity. In order to reduce the
noise in the value of the derivative, data is preprocessed using
a two-week moving average.

We see that the values of Rt from SBIR do agree rela-
tively well with the data. Around t = 0 the scatter is very
large, which is in part caused by the quality of the data which
depends among others on the number of tests. During lock-
down, the value of Rt drops from its initial value which
varies for the considered countries around 3 − 4, to a value
around 0.5. The rapid decay of Rt is present in both the
data and the model estimates. The shape of the temporal
evolution is close to a hyperbolic tan shape, as used in a
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recent modeling investigation of the COVID-19 epidemic
[15]. However, there seems to be a time-delay between the
two values. This might stem from the modeling approach, as
no delay is introduced here between exposition and infection.
The SBIR model, which is a direct improvement of the SIR
model could possibly reproduce thiswhen anE-compartment
is added as in classical SEIR models.

Finally, the relation between the value of the decay expo-
nent λ− observed during lockdown in Fig. 4 and R can be
derived when a pure exponential is assumed,

λ− = γ (1 − Rt ). (22)

Therefore, using Eq. (11), we have for SBIR when the blob-
size is determined by the diffusion of B,

Rt = κ

γ
≡ Rκ . (23)

We could call Rκ the macroscopic or global reproduction
number, whereas the classical quantity R0 = β/γ is the
microscopic or local reproduction number. WhenR0 > Rκ ,
the number of infected individuals in the blob will increase
faster than new susceptibles can enter the blob, so that dif-
fusion will sooner or later become the limiting factor in the
spreading of the epidemic. During lock-down it is this fac-
tor which will determine the decay of the number of new
infections.

5 Discussion

We have shown that the introduction of an additional com-
partment in the SIR model allows to take into account the
presence of clusters in the evolution of an epidemic. We have
shown that the SBIR model reproduces the decay-exponent
of new infections during lockdown, without the need to vary
in time the model parameters over a duration exceeding 100
days.

The results in the present paper have to be understood as
an illustration of the potential of the approach. A more com-
prehensive study should take into account the increase in the
number of tests and its consequences on the number of new
infected cases [22]. Also, we have deliberately chosen in the
present work to consider the simplest model, SIR, and to add
the effect of clustering upon this model. This allows to assess
most easily the refinement.However, the nature of the present
subdivision of compartments is so simple that most existing
compartmental models (such as the SEIR model), can be
modified in a similar manner. Effects such as vaccination, a
finite incubation period, structuring of the compartments by
age, and incomplete immunity could be taken into account
in this manner.

The SBIR model shows that the close-to-universal decay
exponent of the number of newly infected during lockdown,
as observed in the data, can be linked to the cluster-diffusion.
We also show that, during lockdown, a highly infectuous
disease can be characterized by a global reproduction number
Rκ = κ/γ , which overrides the classical local reproduction
number R0 = β/γ .

We also show that the SBIR model in its present form
reproduces observations in countries during lock-down, but
no longer reproduces observations long time after restric-
tions are weakened. We trace back the origin of this different
behavior to two reasons. The main reason is that we have
assumed a constant diffusion coefficient κ during lock-down
and we have not increased this coefficient at the end of
the lock-down period. Using realistic data on mobility from
mobile network providers (as used here to determine the
period of lockdown) to modulate κ , would allow the blob
to increase more rapidly after lockdown, and to allow the
epidemic to rapidly generate new clusters. Another reason is
the fact that in the SBIR model, as formulated here, all the
recovered individuals R are counted in the blob-population
N∗. This is plausible in countries during lock-down, where
clusters are fixed in space, hence will saturate and suffocate
when R increases. In countries where the clusters not only
expand, but also relocate, the epicenter of the epidemic will
move spatially and leave behind regions where a large part of
the population has been touched by the epidemic, but where
the disease is less active. The way in which we can model
these two distinct phenomena will be discussed and assessed
in a future investigation.
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Analytical determination of the decay
exponent in SIR

The decay exponent in the SIR model can be approximated
analytically. We define t = τ the time where the number
of infected I peaks (d I/dt = 0). We observe exponential
increase and decay before and after this time, respectively
(see Fig. 2),

I (t � τ) = I0 exp(λ
+t), I (t 
 τ) = I1 exp(−λ−t).

(24)

123



Computational Mechanics (2021) 67:1485–1496 1493

For short times S ≈ 1 and for very long times, I � R, S.
Therefore

λ+ = β − γ, (25)

−λ− = βS∞ − γ (26)

= λ+ − βR∞. (27)

In order to determine λ−, we need therefore the total number
of recovered, R∞, given by

R∞ = γ

∫ ∞

0
I (t)dt . (28)

Since we assume exponential growth for short time, and
exponential decay for long times, respectively, continuity at
t = τ allows to write,

R∞ = γ

∫ τ

0
I (t)dt + γ

∫ ∞

τ

I (t)dt (29)

= γ

(
1

λ+ + 1

λ−

)
I (τ ), (30)

which expresses R∞ as a function of a new unknown, I (τ ),
the peak-value of I . Considering the I -equation,

dt I = (Sβ − γ ) I , (31)

the term in brackets vanishes for S = γ /β. We know that
S = 1 − I − R, we also have that in the initial exponential
phase

R = γ

λ+ I (32)

and therefore

γ /β = 1 − (1 + γ /λ+)I (τ ) (33)

= 1 − (β/λ+)I (τ ). (34)

so that

I (τ ) =
(

λ+

β

)2

(35)

Which yields an expression for I (τ ).We have the relations
(27), (30), (34) for the unknown quantities, Iτ , R∞ and λ−,
and solving this system yields

λ− = γ λ+

β
= γ (β − γ )

β
. (36)

Note that for typical values, for instance γ = 0.2; β = 0.4,
this yields λ− = 0.1. Numerical integration yields λ− =
0.119. This error of 20% is due to the assumptions of the

two exponentials near the peak, where the rounding of the
integrals significantly contributes to the error.

The quantity that we will consider in the comparison with
data is the daily confirmed new infected P
t , which is asso-
ciated with the source term in the I -equation,

P = βSI , (37)

where in our system, where the time-unit is days, 
t = 1.
Interesting relations, when substituting this value for λ−

in the equations are

I (τ ) =
(

λ+

β

)2

, P(τ ) = γ

(
λ+

β

)2

(38)

S(τ ) = γ

β
, R(τ ) = λ+

β

(
1 − λ+

β

)
, (39)

R∞ = 1 − γ 2

β2 , S∞ = γ 2

β2 . (40)

Exponent in SIR with cross immunity (CSIR)

Let us now consider the case of a partially immune popula-
tion,

1 = C + S + I + R, (41)

where I (0)/S(0) and R(0)/S(0) are small (as in the previous
case), so that S(0) ≈ 1 − C . The I -equation reads

d I

dt
= β

I S

1 − C
− γ I . (42)

For short times, we have thus, since S ≈ 1 − C ,

λ+ = β − γ, (43)

as for SIR. The growth of I halts at time τ when d I/dt = 0,
so that we find for S(τ )

S(τ ) = (1 − C)
γ

β
. (44)

We find then for the different quantities, following the same
reasoning as in the previous section,

I (τ ) = (1 − C)

(
λ+

β

)2

, P(τ ) = γ (1 − C)

(
λ+

β

)2

(45)

and for the exponential decay-rate,

λ− = γ λ+

β
, (46)
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as for SI R.
What we learn from this is that, cross-immunity or not, if

we measure λ+, initially, λ− is not influenced for a given γ .
Only the height of the peak of the number of infected I , and
of the number of daily confirmed cases P will be multiplied
by 1 − C .

Exponent in SBIR

Let us now consider the SBIRmodel. The I equation of SBIR
reads,

d I

dt
=

(
β

B

B + I + R
− γ

)
I (47)

Let us consider the situation where the number of infected
individuals grows faster that the number of individuals in
the blob. The growth of the number of infections is then
bounded by the source-term in the blob-evolution equation,
and β I B/N∗ ≈ κ I S/N . In this saturated phase, the I -
equation becomes then,

d I

dt
= κ

I S

N
− γ I . (48)

If, as during the first wave of the COVID-19 epidemic, the
global infection rate is still low and S/N ≈ 1, it is immedi-
ately found that

d I

dt
≈ (κ − γ ) I , (49)

so that exponential decay is observed with a decay exponent
λ− = γ −κ for κ < γ , or a slow increase if β < κ < γ . The
reproduction number is in this phase therefore determined by
the spatial spreading, so that the value of Rt evolves from
its local, microscopic valueR0 = β/γ to its diffusion deter-
mined value Rκ = κ/γ ,

d I

dt
≈ γ (Rκ − 1) I . (50)

Let us evaluate when this is the case. Let us rewrite the
I -equation as

d I

dt
=

(
β

1

1 + I+R
B

− γ

)
I . (51)

We will again assume exponentials as in Fig. 2. At short
times, since B 
 I + R, we have the same increasing expo-
nential as in SIR and CSIR, with λ+ = β − γ . This increase

will continue as long as I + R � B. Since R is in the expo-
nential phase proportional to I (as for SIR), we have

I + R

B
≈

(
1 + γ

λ+
) I

B
. (52)

Let us therefore focus on the quantity I/B to see whether
this quantity will be negligible for long times,

d(B/I )

dt
= 1

I

dB

dt
− B

I 2
d I

dt
(53)

= B

I

[
κ
SI

BN
− ζ

S

N
− β

I

N∗ − β
B

N∗ + γ

]
. (54)

Considering the initial phase, where I/B � 1, and esti-
mating the order of magnitude of the different terms, it is
observed that the leading order contributions of this equa-
tion are the last two terms in brackets, yielding,

B

I
∼ exp

[−λ+t
]
. (55)

Within a finite time, the blob will thus contain a considerable
number of infected and recovered individuals, so that there
is no more room for additional infected.

Numerical integration of themodel

We present here an analysis of the behavior of the model by
numerical integration of the ODEs (8–10) constituting the
SBIR system. Since the principal difference of SBIR with
respect to SIR is the diffusion from the S to the B compart-
ment, we will assess the sensitivity of the model on a change
of the diffusion coefficient. For this, we fix the parameters
as follows β = 3γ , ζ = κ/10, γ = 0.1, B(0) = R(0) = 0,
I (0) = 1·10−5 and S(0) = 1− I (0) ≈ 1.Using these param-
eters we vary the value of the diffusion rate in the interval
κ ∈ [0, 10γ ].

In Fig. 6 (a) we show the susceptible individuals as a func-
tion of time for different values of κ/γ . As expected, for small
values of κ , S remains close to unity, whereas for large values
the S-compartment is emptied almost completely. For long
times the S value is slowly increasing, an effect associated
with the flux of individuals from the B to the S compartment
when the number of infected becomes very small. We have
observed that this latter effect can be very slow for certain
sets of parameters.

Fig. 6 (b) shows the temporal behavior of the individu-
als contained in the blob. For small values of the diffusion, B
reaches rapidly a local maximum, and the number of individ-
uals in the blob does not exceed the value 10−5. The epidemic
is therefore rapidly limited in size. The value of the localmax-
imum increases when κ increases and the blob will contain
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Fig. 6 Temporal evolution of a susceptible individuals S, b indi-
viduals in the blob B, c the number of infected individuals I , d
recovered/removed individuals R. The different colors indicate different
values of the diffusion rate in the range κ ∈ [0, 10γ ]

almost all susceptible individuals after around 100 days for
the largest values of the diffusivity. For these values, the SIR
behavior is recovered.

Fig. 7 Estimation of the lock-downdates fromGooglemobility reports.
Thick lines represent the lock-down period determined for each country

In Fig. 6 (c) we display the temporal behavior of the num-
ber of infected individuals for different values of κ . It is
observed that for κ < γ , the number of infected decreases
almost immediately: the epidemichas no time to spread, since
the infected individuals remain confined locally around the
source of the epidemic outbreak. On the contrary, when dif-
fusion is strong, the epidemic will spread and rapidly all
susceptible individuals will be part of the blob. The system
behaves in this limit of strong diffusion as a well-mixed sys-
tem, and the classic SIR-behavior is observed for the highest
values of κ/γ considered here.

Finally, Fig. 6 (d) shows all recovered and removed indi-
viduals as a function of time. At the end of the evaluated
time-interval the value of R is a continuously increasing func-
tion, ranging from R ≈ I (0) for κ ↓ 0 to a value of order
(but somewhat below) unity, corresponding to the asymptotic
SIR value for κ → ∞.

Use of google mobility-data to determine
lock-down dates

Weuse themobility data provided byGoogle [1] to determine
the dates of the lock-down in the different countries. Fig. 7
shows the variations of mobility compared to a reference-
value measured mid-january for the six countries considered
in this work. The data used here corresponds to the retail
and recreation data. Several other quantities are reported by
Google, but most reproduce the same trend. Since we only
use this data to illustrate the duration of the lockdown and
do not use this to change the model-coefficients, the precise
choice does not seem very important.

We have smoothened the data to get rid of high-frequency
variations. We call the smoothened variable G(t). The gen-
eral trend shows that during the epidemic the mobility drops
to a value depending on the restrictions in the different coun-
tries. An approximate plateau value is observed. We take for
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each country the minimum value of this plateau as the refer-
ence mobility-level during lock-down, indicated by G0. The
beginning of lock-down is then determined for the timewhen
for the first time G(t) < 1.15 G0 and the end, the first later
date where G(t) > 1.5 G0, as can be seen on Fig. 7. These
begin and end dates are used to indicate the lock-down peri-
ods as a shaded region in Fig. 4.

We note that this approach could allow to modulate the
model coefficients. Since this will hinder the analysis of
the present approach and since the assessment of the SBIR
model is the main goal of the present work, this modulation
is not implemented here. However, if a second wave of infec-
tions is to be reproduced, changing the model coefficients, or
the dynamics of the R-individuals will become compulsory.
Realistic mobility data can allow to get a handel on the way
in which to modify the coefficients.
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