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Abstract
In this article, we follow a thorough matrix presentation of material parameter identification using a least-square approach,
where the model is given by non-linear finite elements, and the experimental data is provided by both force data as well as full-
field strainmeasurement data based on digital image correlation. First, the rigorous concept of semi-discretization for the direct
problem is chosen, where—in the first step—the spatial discretization yields a large system of differential-algebraic equation
(DAE-system). This is solved using a time-adaptive, high-order, singly diagonally-implicit Runge–Kutta method. Second, to
study the fully analytical versus fully numerical determination of the sensitivities, required in a gradient-based optimization
scheme, the force determination using the Lagrange-multiplier method and the strain computationmust be provided explicitly.
The consideration of the strains is necessary to circumvent the influence of rigid body motions occurring in the experimental
data. This is done by applying an external strain determination tool which is based on the nodal displacements of the finite
element program. Third, we apply the concept of local identifiability on the entire parameter identification procedure and
show its influence on the choice of the parameters of the rate-type constitutive model. As a test example, a finite strain
viscoelasticity model and biaxial tensile tests applied to a rubber-like material are chosen.

Keywords Material parameter identification · Least-square method · Finite elements · Evolution equations · Digital image
correlation · DIRK-method · DAE-system

1 Introduction

In solid mechanics, the mechanical behavior of a material
under external loads is represented by constitutive equations.
These material models depend on parameters calledmaterial
parameters. It is necessary to calibrate the model to defined
experiments in order to predict the structural behavior of
components or even structures. In former times, tensile tests
were carried out to ensure that more or less homogeneous
stress and strain states were obtained. In this case, either
the external forces of the testing machine’s force gauge and
the displacements of the testingmachine’s clamps are used to
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determine stresses and strainswithin the specimenunder con-
sideration. Alternatively, strain gauges were used to locally
determine the strains in certain regions of the specimen.
Today, in cases where optical access to the specimen’s sur-
face is given, digital image correlation systems (DIC) serve
as an adequate tool to detect the surface displacements in
a sub-region of the entire specimen, and, accordingly, the
strain field in that region—see, for example [76] or [17], and
the literature cited therein. Here, one can find out whether
the assumption of a homogeneous deformation state is justi-
fied, or whether inhomogeneities dominate the deformation.
Moreover, it is possible to directly choose specimens pro-
viding inhomogeneous deformations. Then, however, it is
necessary to solve the partial differential equations under
consideration (equilibrium conditions).

To determine the parameters, which represents an inverse
problem, we follow a non-linear least-square method (NLS)
minimizing the difference between the model response and
the experimental data. Commonly, the solution of boundary-
value problems in solid mechanics is computed by means
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of finite elements (FEM). A first approach of such a pro-
cedure was published by Schnur and Zabaras [70], where
the goal was to detect the place and the Young’s moduli
of an inclusion in a matrix material. Following this con-
cept of combining NLS and FEM, a first extension is the
use of discrete force-displacement curves, see, for exam-
ple [30,57,75]. An enhancement of such an approach is the
application of optical information either by a grating on
the specimen’s surface [51], or by Moirè-patterns [47]. In
regard to discrete displacement information, very few points
on the specimen’s surface or the contour data can serve
for identification purposes as well [29]. The entire mate-
rial parameter identification process using finite elements
and full-field measurements data was mainly driven by the
works of [2,53,54]. For a comprehensive overview see [52] as
well. There, a non-linear least-square method minimizes the
residual between the displacement field of the DIC-data (or
manufactured simulation data) and the displacements on a
sub-region of the FE-surface. Based on this approach, which
employs gradient-based optimization schemes orBFGS-type
approaches, further publications ondifferent applications fol-
lowed, see, for example [6,44–46,63,66].

An alternative approach to identify material parameters
is provided by the virtual field method, see, for example
[59], where the NLS is circumvented. In this case, the virtual
displacements are chosen in such a manner that a result-
ing system to determine the material parameters is obtained.
For an overview of different methods to identify material
parameters see [3]. In [3] the procedure to apply FEM and
displacement data is called FEM-U. A further alternative
approach is discussed in [65], where the parameters are
obtained by a direct approach to the DIC-data and which
is compared to the NLS-approach. Apart from gradient-
based methods, further gradient-free schemes are applied,
for example, in [37,38] using neural networks—or [29] with
a direct search method.

We call the schemes using a NLS-method together with
full-field measurement by a DIC-system and simulations by
means of finite elements the NLS-FEM-DIC approach. The
fundamental difference in the applications of the NLS-FEM-
DIC approach lies in the use of the material models, the
calculation of the sensitivities as well as which measurement
data are included in the identification. The starting point for
constitutivemodels are either linear elastic [34], or non-linear
elastic material properties. In the case of inelastic mate-
rial properties, the mathematical problem changes. In this
case, there has been no debate on how the NLS-FEM-DIC
approach is connected to the schemes in Numerical Mathe-
matics. Here, a connection can be drawn on to the methods
compiled in [69]. This was addressed on a theoretical level
in [24] by comparing the three approaches simultaneous
simulation equations (SSE), internal (IND), and external
numerical differentiation (END). In this article, we extend

the discussion in [24] to high-order time integration and a real
application. For this purpose, we draw on a particular inter-
pretation of the finite element method using material models
of evolutionary-type. The computation of finite elements
on the basis of constitutive equations of evolutionary-type
such as models of viscoelasticity, rate-independent plas-
ticity, and viscoplasticity turned out to be interpretable as
the solution of differential-algebraic equations (DAEs) after
applying the spatial discretization using finite elements, see
[15,16,77]. Drawing on this interpretation, consistent algo-
rithms to solve a system of DAEs can be applied. In [15]
this is discussed for vonMises-type plasticity, and in [22] for
the case of viscoelasticity, where singly diagonal-implicit
Runge–Kutta (SDIRK) methods are applied. These schemes
have the advantage that time-adaptivity (step-size control)
is provided without any considerable additional numerical
costs, and the fact that Backward–Euler like implementa-
tions to integrate the constitutive equations are embedded in
the scheme ensuring that no additional work has to be done.
In addition, it was found that the procedures are very efficient
for long-termprocesses such as relaxation or creep processes.
For further reading on similar approaches, see [8,39,64,67].

If the NLS-FEM-DIC approach is followed, where a
gradient-based method is applied, END (numerical differen-
tiation) is the first choice of most publications [9,55,60,65].
Although there is a large variability and flexibility of this
application, the computational costs are higher than for pro-
viding analytical derivatives. Using the analytical approach
to calculate the sensitivities (IND), only a very publications
use this approach [40,53,66]. Here, we draw on Acegen to
provide the codes containing the derivatives with respect to
the material parameters [41–43]. It will be shown that this
essentially reduces the computational times.

Regarding to the evaluation of the experimental data, it
is very common only to evaluate the displacement data,
which has the disadvantage that rigid-body motions in the
experiments cannot be represented by the finite element
simulation. Thus, the surface strains have to be compared,
which requires knowledge about the strain computations in
the FEM-simulation and the DIC-evaluation. In the case of
plane problems, the strains can directly be obtained by the
finite element program [9]. However, if the surface is curvi-
linear, most of the finite element programs cannot provide the
in-plane surface strains so that a comparison to the 3D-DIC
data is not possible. Here, we draw on the strain determina-
tion scheme proposed in [28]. This is applied not only on the
motion of the DIC-coordinates but to the nodal coordinates
of the FE surface as well. The nodes are treated in the same
manner as for the DIC-data. With regard to the sensitivity
computations, the derivatives of the equations with respect
to the material parameters are consequently also provided.

Furthermore, it is very common not to consider reac-
tion forces (or torques), although they can be determined
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Fig. 1 Experimental setup and typical strain distributions in horizontal and vertical directions

by finite elements as well. An approach using force data is
discussed in [60], where END is drawn on. However, the
use of IND requires a clear description of the analytical
sensitivities. This gap was filled in [24] using the Lagrange-
multiplier method within the DAE-interpretation of finite
elements. Although the computation of the reaction forces
is frequently performed by a node-wise formulation of the
equilibrium conditions, we follow the Lagrange-multiplier
procedure [31]. This is necessary if other time integration
schemes are applied, for example, Rosenbrock-type meth-
ods [26]. Furthermore, it is a clear variational concept for
displacement control and reaction force computation, and is
helpful in step-size control for considering local error esti-
mation of the forces as well.

Moreover, most contributions do not discuss quality mea-
sures describing the resulting material parameters, such
as the confidence interval, or the correlation between the
parameters. Additionally, we follow the concept of local
identifiability proposed in [4,7] which was studied in [25,71]
in the field of solid mechanics.

If all these concepts are applied, the entire NLS-FEM-
DIC concept becomes obvious. This will be demonstrated
for biaxial tensile tests in this article, where, additionally, the
comparison of numerical differentiation (equivalent to END)
to analytical derivatives (IND) is provided. Specifically, the
connection to theMultilevel-Newton algorithm—commonly
applied in finite elements—is discussed [23]. Rubber is cho-
sen as the test material.

The notation in use is defined in the following manner:
geometrical vectors are symbolized by �a, second-order ten-
sors A by bold-faced Roman letters, and calligraphic letters
A define fourth order tensors. Furthermore, we introduce
matrices at global level symbolized by bold-faced italic let-
ters A and matrices on local level (Gauss-point level) using
bold-faced Roman letters A.

Fig. 2 Geometry of the cross-like specimen (thickness 6mm)

2 Experimental data

First, we carried out experiments using a biaxial testing
device, see [33] for more details and references. We chose
a natural rubber according to [5]. In view of the identifi-
ability of all material parameters, we have to circumvent
equibiaxial testing paths. Fig. 1a shows the testing device,
and Fig. 1b,c represent typical strain distributions that are
determined by a digital image correlation system. Here, we
draw on the 3D-DIC system Aramis of the company GOM,
Brunswick, Germany. It turned out that rigid body motions
resulting from the stiffness of the entire testing machine have
significant influence on the parameter identification concept.
Thus, principal strains (or stretches) are determined using
the displacement data of the system. In our tests, the clamp
displacements are prescribed and the resulting forces are
measured and compared. The specimens under consideration
are shown in Fig. 2. The bulge serves for a better fixation in
the clamps.
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Since we are applying a model of overstress-type vis-
coelasticity, particular loading paths are required to obtain
the basic properties of the equilibrium stress state by the ter-
mination points of relaxation, see [35] for a discussion. We
prescribe rate-dependent loading paths, see Fig. 3a, and a
multi-step relaxation path, see Fig. 3b.

Horizontally, a displacement is appliedwhich is four times
larger than in the vertical direction (in order to ensure iden-
tifiability of the parameters, see the discussion in [33]). The
displacement rates of the clamps are horizontally u̇h(t) =
0.004, 0.01, 0.1, 1mm s−1. Rates slower than 0.004mm s−1

were not possible by the testing machine’s capabilities. As a
result, the vertical displacement rates are u̇v(t) = u̇h(t)/4.
The force-displacement (displacements of the holder) results
are shown in Fig. 7 together with the calibrated model.

3 Method of vertical lines

Asdiscussed in the introduction,we follow themethodof ver-
tical lines, which represents a semi-discretization of solving
partial differential equations (PDEs), first in space and subse-
quently in time, see [18,68]. In our case these are the coupled
partial differential equations stemming from the local balance
of linear momentum (quasi-static case) and the stress-strain
relation coupled with the evolution equations for internal
variables,

Div(F( �X , t)T̃( �X , t)) + ρR(�x)�k = �0,
T̃( �X , t) = h̃(C( �X , t),q( �X , t)),

q̇( �X , t) = r̃(C( �X , t),q( �X , t)).

(1)

This is accompanied by initial and boundary conditions for
the displacements, the tractions, and the internal variables.
F( �X , t) = Grad �χR( �X , t) represents the deformation gradi-
ent of the motion �x = �χR( �X , t), where the material point
with the position vector �X in the initial configuration occu-
pies the place �x at time t .C = FTF is the right Cauchy-Green
tensor, whereas T̃ = (det F)F−1TF−T represents the second
Piola-Kirchhoff stress tensor, and T the Cauchy stress ten-
sor. ρR defines the density in the reference configuration,
and �k is the acceleration of gravity. DivA = ∂Ai j/∂X j �ei is
the divergence operator applied to a second-order tensor A
using the partial derivatives with respect to the coordinates
in the reference configuration. Here, we draw on a model
of finite strain viscoelasticity, see [35,50,62], with particular
modifications. Eq. (1)2,3 are dependent on internal variables
q∈ R

nq , which can be scalar- or tensor-valued. In the entire
procedure here, we assume that the time derivative Eq. (1)3
are done on quantities operating relative to the reference con-
figuration. Thus, variables with relative derivatives such as
Oldroyd- or Jaumann derivatives have to be transformed back

to referential quantities. In the presentation here, the vector q
is composed of the six independent components of the (sym-
metric) viscous right Cauchy–Green tensor q ← Cv, i.e. we
have nq = 6. Cv = FT

vFv stems from the multiplicative
decomposition of the deformation gradient into an elastic
and a viscous part, F = FeFv. The second Piola–Kirchhoff
tensor decomposes into three parts,

T̃ = JρRU
′(J )C−1 + T̃iso

eq + T̃ov

with U ′(J ) = K

10
(J 4 − J−6). (2)

The first part is connected to the volumetric deformation
J := det F, the second part represents the isochoric, equilib-
rium stress state, and the last term defines the overstress part.
The specific strain energy function U (J ) = K/50(J 5 +
J−5 − 2) is chosen to avoid nonphysical behavior in tension
and compression as it is common in most models, see the
discussion in [13,27]. The isochoric equilibrium stress part
reads

T̃iso
eq = ϕ1I + ϕ2C + ϕ3C

−1
(3)

with

ϕ1 = 2ρR
(detC)1/3

(w1 + w2IC), ϕ2 = − 2ρR
(detC)1/3

w2,

ϕ3 = − 2ρR
3(detC)1/3

(w1IC + 2w2IIC) (4)

and

w1 = ∂weq

∂IC
= c10, w2 = ∂weq

∂IIC
= c01

3

2
II1/2
C

(5)

for

weq(IC, IIC) = c10(IC − 3) + c01(II
3/2
C

− 3
√
3). (6)

In a certain sense, this is the extension of the Mooney-

Rivlin model to polyconvexity, see [27]. C = F
T
F defines

the unimodular right Cauchy–Green tensor depending on
F = (det F)−1/3F with det F = 1. Here, we have the invari-
ants IC = trC and IIC = ((trC)2 − trC

2
)/2. The overstress

part is given by

T̃ov = 2ρRμ0
(detCv)

1/3

(detC)1/3

(
C−1

v − 1

3
(C · C−1

v )C−1
)

(7)

depending on the evolving viscous right Cauchy–Green ten-
sor

Ċv = 4ρRμ0

η

(detCv)
1/3

(detC)1/3

(
C − 1

3
(C · C−1

v )Cv

)
. (8)
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Fig. 3 Displacement loading
paths in the biaxial tensile
testing machine
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(a) Displacement loading paths with different rates
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(b) Multi-step loading paths

Particularly, a process-dependent viscosity

η = η0 exp

(
−s0

√
CT̃ov · T̃ovC

)
(9)

is necessary to reflect rate dependence. In some situations,
we express the function depending on theGreen-strain tensor
E = (C−I)/2,which does not essentially affect the principal
equations.

In this model, we have six material parameters, which
are determined step-wise. The parameter vector κT

eq =
{K , c10, c01} determines the equilibrium stress state, and
κT

ov = {μ0, η0, s0} controls the overstress behavior. Here,
we follow the common procedure of connecting the density
ρR with the material parameters K ← KρR, c10 ← c10ρR,
c01 ← c01ρR, and μ0 ← μ0ρR. Obviously, Eq. (2) repre-
sents the concrete formulation of Eq. (1)2, and Eq. (8) the
evolution Eq. (1)3.

Equation (1)1 is transferred into a weak form represented
by either the classical principle of virtual displacements or by
amixed formulation, for example a three-field formulation as
proposed in [74]. Both weak formulations have the disadvan-
tage that the calculation of the reaction forces at those degrees
of freedom, where displacements are prescribed, is not pos-
sible (they do not produce a virtual work). Of course, local
equilibrium formulations intuitively lead to results, but it is
not embedded in the theory itself. Furthermore, no consistent
mathematical description is provided. This can be circum-
vented by analytical considerations regarding the Lagrange
multiplier method, see [31], leading to the DAE-system

F(t,y(t), ẏ(t)):=
⎧⎨
⎩
ga(t,ua(t),q(t)) + Mλ(t)

Cc(t,ua(t))
q̇(t) − r(ua(t),q(t))

⎫⎬
⎭ = 0. (10)

Here, we draw on the abbreviation of the unknowns y T (t) =
{uT

a (t),λT (t),q T (t)} and their initial conditions

y(t0):=
⎧⎨
⎩
ua(t0)
λ(t0)
q(t0)

⎫⎬
⎭ =

⎧⎨
⎩
ua0

λ0

q0

⎫⎬
⎭:=y0. (11)

ua ∈ R
nu+np consists of the unknown nodal displacements

u∈ R
nu , where forces (or surface tractions) are applied, and

of the degrees of freedom û, where the known displacements
u∈ R

np are given. In the Lagrange multiplier approach to
obtain the reaction forces, it is assumed that all nodal dis-
placements uT

a = {uT , ûT } are unknown. This implies the
constraint equation

Cc(ua) = û − u = M Tua − u = 0, with

M =
[
0nu×np
1np

]
. (12)

The displacements u are assigned by the incidence matrix
M∈ R

(nu+np)×np to the unknown nodal displacements ua.
Further, λ∈ R

np represents the Lagrange multiplier vector
and is interpreted as the vector containing the reaction forces,
which are necessary to enforce the prescribed displacements
u.

q(t) =
nel∑
e=1

neGP∑
j=1

Z e( j)
q

T
qe( j)(t),

or qe( j)(t) = Z e( j)
q q(t) (13)

contains all internal variables, q∈ R
nQ, evaluated at all nG

spatial integration points,which are usually theGauss-points.
nel is the number of elements, and neGP represents the number
of Gauss-points within element e. nQ = (∑nel

e=1 n
e
GP

) × nq
defines all internal variables of the entire mesh. In this sense,
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the “global” ODEs

r(t,ua,q) =
nel∑
e=1

neGP∑
j=1

Z e( j)
q

T
r(Ce( j),qe( j)) (14)

hold as well. The vector ga ∈ R
nu+np contains all equations

resulting from the weak formulation

ga(t,ua,q) =
{
g(y)

g(y)

}
=

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

nel∑
e=1

Z eT

⎧⎪⎨
⎪⎩
neGP∑
j=1

we( j)B̃
e( j)

T h̃
(
Ce( j),qe( j)

)
det Je( j)

⎫⎪⎬
⎪⎭− p(t)

nel∑
e=1

Z
e
T

⎧⎪⎨
⎪⎩
neGP∑
j=1

we( j)B̃
e( j)

T h̃
(
Ce( j),qe( j)

)
det Je( j)

⎫⎪⎬
⎪⎭,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(15)

with the incidence matrices Z e ∈ R
neu×nu and Z

e ∈ R
neu×np

assembling all element contributions into a large system of
equations. They are not explicitly programmed, and they
represent the assembling procedure. They contain only the
numbers 1 and 0. Ce( j) ∈ R

6 represents the column vector
representation of the symmetric part of the right Cauchy–
Green tensor (Voigt-notation) which depends non-linearly
on the element nodal displacements ue ∈ R

neu , Ce( j) =
Ĉ
e( j)

(ue), with ue = Z eu + Z
e
û. neu is the number of

element nodal displacement degrees of freedom, we( j) the
weighting factors of the Gauss-integration in an element,
neGP are the number of Gauss-points within one element, and

B̃
e( j) ∈ R

6×neu defines the strain-displacement matrix of ele-
ment e evaluated at the j-th Gauss-point, j = 1, . . . , neGP,
which depends on the element nodal displacements ue as
well. The Gauss points have the local coordinates ξ ( j) ∈ R

3

(weonly consider three-dimensional continua). Furthermore,
Je( j) ∈ R

3×3 symbolizes the Jacobi-matrix of the coordi-
nate transformation between reference element coordinates
and global coordinates, and p(t)∈ R

nu defines the given
equivalent nodal force vector. The symmetric part of the
stress tensor (1)2 is transferred into a vector T̃∈ R

6, T̃ =
h̃(Ce( j),qe( j)), which is evaluated at Gauss-point ξ ( j), and
depends due to the right Cauchy–Green tensor on the dis-
placements and the internal variables at that Gauss point.

In the case of elasticity, where the equations have to be
evaluated in the absence of internal variables, the DAE-
system (10) degenerates to the systemof non-linear equations

F(t,y(t)):=
{
ga(t,ua(t)) + Mλ(t)

Cc(t,ua(t))

}
= 0, (16)

where t stands for a parameter similar to a generalized con-
tinuation method. Here, the non-linear system (16) has to be
fulfilled at each loading step t .

In implicit finite element approaches, the DAE-system
(10) is often solved using a Backward–Euler method. This
yields the non-linear system

g
(
tn+1,un+1, ûn+1,qn+1

) = 0,

g
(
un+1, ûn+1,qn+1

)+ λn+1 = 0,

Cc
(
tn+1, ûn+1

) = 0,

l
(
un+1, ûn+1,qn+1

) = 0, (17)

with

l
(
un+1, ûn+1,qn+1

)
= qn+1 − qn − �tnr

(
un+1, ûn+1,qn+1

)
(18)

at each point in time tn+1, 0 ≤ tn+1 ≤ T , tn+1 = tn +
�tn , where �tn is the step-size. In the final iterated solution,
û = u is reached—which is not necessarily the case in other
integration schemes, see [26]. In this case, the system (17)
can be written as (û is assumed to be known)

g
(
tn+1,un+1,qn+1

) = 0,

g
(
un+1,qn+1

)+ λn+1 = 0,

l
(
un+1,qn+1

) = 0.

(19)

Equations (19)1,3 are solved using the Multilevel-Newton
algorithm, and Eq. (19)2 represents a downstream step since
it is explicit in λn+1. Regarding the Multilevel-Newton algo-
rithm, see [61] for the original scheme, and [15,23] for the
discussion in finite elements. Sincewe assume aDAE-system
with consistent initial conditions, the non-linear system (19)
is fulfilled for the initial conditions at time t0.

The same algorithmic structure is given by diagonal-
implicit Runge–Kutta methods (DIRK-methods), where at
each stage Tni = tn + ci�tn , �tn = tn+1 − tn , the non-linear
system

g
(
Tni ,Uni , Ûni ,Qni

) = 0,

g
(
Uni , Ûni ,Qni

)+ Λni = 0,

Cc
(
Tni , Ûni

) = 0,

l
(
Uni , Ûni ,Qni

) = 0, (20)

with

l
(
Uni , Ûni ,Qni

)=Qni−S q
ni−�tnaii r

(
Uni , Ûni ,Qni

)
(21)

has to be solved. ci , i = 1, . . . , s, and ai j (ai j = 0 for
j < i), are the coefficients of theButcher array containing the
given weighting factors of the method under consideration,
see [19,20]. In the final solution, condition (20)3 is fulfilled
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so that we can simplify system (20) to

g
(
Tni ,Uni ,Qni

) = 0,

g
(
Tni ,Uni ,Qni

)+ Λni = 0,

l
(
Tni ,Uni ,Qni

) = 0.

(22)

The stage quantities are used to determine the stage deriva-
tives

U̇ni = Uni − S u
ni

�tnaii
, Q̇ni = Qni − S q

ni

�tnaii
,

Λ̇ni = Λni − S λ
ni

�tnaii
, (23)

required for the starting vectors

S u
ni = un + �tn

i−1∑
j=1

ai j U̇nj ,

S q
ni = qn + �tn

i−1∑
j=1

ai j Q̇nj ,

S λ
ni = Λn + �tn

i−1∑
j=1

ai j Λ̇nj .

(24)

The unknown stage quantities are the nodal displacements
Uni , the reaction forcesΛni (negative Lagrange multipliers),
and all internal variables Qni from all Gauss-points in the
structure. Alternatively, it is possible to apply a rate formu-
lation in which the stage-derivatives are the unknowns. We
choose the first version to obtain the same implementation
as in “classical” implicit finite elements.

The final values at time tn+1 are

un+1 = un + �tn

s∑
i=1

bi U̇ni ,

qn+1 = qn + �tn

s∑
i=1

bi Q̇ni ,

λn+1 = λn + �tn

s∑
i=1

bi Λ̇ni ,

(25)

where thebi , i = 1, . . . , s, are additionalweighting factors of
the Butcher array. For stiffly accurate methods, the condition
as j = b j holds—so that the stage quantities at the s-stage
are identical to the final result, un+1 = Uns , qn+1 = Qns ,
and λn+1 = Λns .

For s = 1 (one stage), c1 = b1 = a11 = 1, the
Backward–Euler approach is embedded in the more gen-
eral DIRK-methods. The advantage of the DIRK-methods
is that step-size selection is obtained for very few extra

computations, see [15], which is necessary for physical
problems with different local time-scales. This has clear
advantages with regard to computational, especially in relax-
ation or creep dominated problems. The higher order of the
methods yields larger time steps for the same accuracy as
in the Backward–Euler approach. This has been demon-
strated for problems in crystal plasticity, viscoplasticity,
diffusion-driven mechanics, thermo-mechanical or electro-
thermo-mechanical coupling, curing processes, and thermal
fluid-structure interaction. According to our experience, a
two-stage, second-order method is sufficient for more accu-
rate solutions and time-adaptivity.

In the case of non-linear elastic problems (absence of
ordinary-differential part), the entire approach can be inter-
preted as a continuation method, i.e. the Newton-Raphson
scheme is applied to

g(tn+1,un+1) = 0

λn+1 = −g(tn+1,un+1)
(26)

which has to be fulfilled at each time tn+1, see Eq. (16).
The starting (guess) vector of the Newton-Raphson method
is commonly chosen to be the previous solution un+1, or
some estimation, see [32]. The latter estimation is strongly
recommended (also for the problem (20) for some parts of
the non-linear system) since it essentially stabilizes the com-
putations.

4 Least-square approach

In the following, the non-linear least-square problem is dis-
cussed in detail. First, the basic NLS is recapped. Then
the fully analytical computation of the sensitivity matrices
is explained, and the numerical differentiation technique is
summarized. Since we are interested in investigating quality
measures, which is also connected to the concept of local
identifiability for the identified material parameters, this is
explained afterwards.

4.1 Basic problem

Least-square methods minimize the square of the distance
between the model and the experimental data. Before this
is explained in more detail, the experimental data has to
be discussed. In the case of full-field measurement, we
obtain from each experiment E , E = 1, . . . , nexp, a data

vector d (E) ∈ R
n(E)
exp . For n(E)

N (temporal) load-steps, each

load-step consists of n(E)
d entries (discrete spatially dis-

tributed displacements or stretches, forces concerned, …),
i.e. n(E)

exp = n(E)
N n(E)

d . The experimental evaluation times

are tm , m = 1, . . . , n(E)
N . These data vectors are assembled
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into the vector d (E)T = {d (E)T
0 ,d (E)T

1 , . . . ,d (E)T

n(E)
N

}, where
d (E)
m ∈ R

n(E)
d contains the information from one experiment.

For all tests under consideration, this leads to the entire data
vector d T = {d (1)T ,d (2)T , . . . ,d (nexp)T }, d∈ R

nD, with
nD = ∑nexp

E=1 n
(E)
exp .

For each experiment E , the finite element model provides
displacements (u (E)

n and u (E)
n ), and reaction forces λ

(E)
n for

the temporal points t (E)
n , n = 1, . . . , N (E). Both the tem-

poral and the spatial points of the experiment and the finite
element model do not coincide. Thus, a temporal and a spa-
tial interpolation of the model data to the experimental data
have to be carried out. We choose the (temporal) linear inter-
polation of the experimental data to themodel time data since
the sensitivities of the simulations cannot be interpolated. In
this sense, the size of the data vectors d adapts to the infor-
mation from the finite element computations. In the spatially
distributed data, there are several aspects to be considered.
Firstly, a DIC-system describes only surface data on a sub-
region of the finite element mesh. Thus, only a subset of
model data has to be compared. Secondly, a (commercial)
DIC-system can provide both the motion of material points,
accordingly the displacements of the material points, or, by
a black-box interpolation of the DIC-evaluation program,
strain data at these points. This statement holds for com-
mercial finite element programs as well. It has turned out in
several applications that rigid-body motions in the experi-
mental tests—resulting from the compliance of the testing
machine—essentially influence the comparability of both
data sets. Although there are algorithmic possibilities tomin-
imize the rigid-body motions in the DIC-data, this does not
help in all cases. Thus, the strain data evaluation is—to our
experience—of greater interest. In this case, however (and, in
view of a fully analytical sensitivity analysis, see Sect. 4.2),
the strain evaluation procedure has to be known. Thus, we
follow the interpolation concept proposed in [28] based on
triangulation, see [36,58] for a similar approach. This con-
cept can be applied to both theDIC-data aswell as to the finite
element nodal displacement data. Thus, the same interpola-
tion scheme and strain evaluation is applied for both systems
(DIC and FEM). Moreover, we can compute at any point of
the DIC-region and the finite element model displacements
and strains lead to a considerable flexibility in the evalua-
tion. Finally, the forces, which are commonly recorded as
well, should be considered in the identification process since
we are interested in adapting stress-strain models requiring
some force information.

As we discussed before, only a subset ũ(E)
n = M̃

(E)
u(E)
n ,

ũ(E)
n ∈ R

ñ(E)
u of the finite element nodal displacements

u(E)
n ∈ R

n(E)
u can be compared to the DIC-data. If in-plane

strains or stretches are considered, an interpolation scheme
is required. Instead of the common letter λ for a stretch, we

take ν to circumvent a misinterpretation with the Lagrange-
multiplier λ. In this case the simulation component

sk(κ) = νk(ũn(κ)) (27)

is indirectly dependent on the parameter set κ . In the case of
a principal strain measure, it reads εk(νk(ũn(κ))).

In order to extract the required nodal displacements, the

incidence matrix M̃
(E)

is introduced. On the side of the
forces—in our application of a biaxial tensile test we have

two, F (E)
FEM1n = −M

(E)T
1 λn and F (E)

FEM2n = −M
(E)T
2 λn . The

vectors M
(E)

k ∈ R
np(k)

, k = 1, 2, are chosen to extract the
nodal reaction forces required to determine the scalar val-
ues. The indices 1, 2 indicate the horizontal and the vertical
directions.

In conclusion, we have the entire vector d of all exper-
imental data with different physical properties (e.g. forces,
displacements, strains,…), and the finite element result s(κ)

depending on the parameter set κ ∈ R
nκ . Since different

physical quantities and different amounts of data are avail-
able (few forces and a huge amount of displacement-based
data), a weighting technique r̃(κ) = Wr(κ) = W{s(κ)−d}
is applied to the residual r(κ) = s(κ)−d. Here, we draw on
the concepts proposed in [21]. The entire weighting matrix
reads

W =
⎡
⎢⎣
W (1)

. . .

W (nexp)

⎤
⎥⎦ with

W (E) =

⎡
⎢⎢⎣
W (E)

0
. . .

W (E)

n(E)
N

⎤
⎥⎥⎦ (28)

Within the weighting matrix

W (E)
n =

⎡
⎢⎣

w
(E)
F

w
(E)
F

w
(E)
ε I

⎤
⎥⎦ , (29)

we have the same weighting factors

w
(E)
F = 1

max
n=1,...,n(E)

N

∣∣F (E)
n

∣∣ (30)

for the force data in vertical and horizontal direction of the
biaxial tensile tests. The weighting factors of the strain data
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are defined by

w(E)
ε = 1(∥∥ε(E)

n

∥∥
max

n=1,...,n(E)
N

)
n(E)
d

. (31)

Now, the NLS-problem reads

f (κ)

= 1

2
{Wr(κ)}TWr(κ)

= 1

2
{W{s(κ) − d}}T {W{s(κ) − d}} → min (32)

i.e. the square of the weighted residual should be aminimum,
and the necessary condition for the minimum in the solution
κ = κ∗ is given by

F(κ) = d f

dκ
= D T (κ)W TW {s(κ) − d} = 0, → κ∗

(33)

representing a system of non-linear equations to determine
the material parameters κ∗. No inequalities were necessary
in the applications of this article.

Here, the functional matrix

D(κ) = dr̃(κ)

dκ
= ds(κ)

dκ
, (34)

D∈ R
nD×nκ , is required, which is frequently called the

sensitivity matrix (or, in short, sensitivity). This holds for
Gauss-Newton-like algorithms as well [48,56,69]. In this
respect, we need the derivatives of both the resulting forces
as well as the displacements with respect to the parameter
vector κ ,

dF (E)
FEMn(κ)

dκ
= −M

(E)T dλ(E)
n (κ)

dκ
,

dũ(E)
n (κ)

dκ
= M̃

(E) du(E)
n (κ)

dκ
. (35)

The derivatives of the principal strains (or stretches) with
respect to the parameters κ are obtained using the chain-rule,
e.g.

dεk
dκ

= dεkn
dνkn

{
dνkn
dũn

}T [dũn

dκ

]
, (36)

see Eq. (35)2, see “Appendix A”. For the case of overstress-
type models, the equilibrium stress part is identified first,
i.e. we need the sensitivities of the parameterized non-linear
system (26). Since the derivatives are defined implicitly, as

the solution of the non-linear system (26) depends on the
parameters κ , the system reads

g(tn+1,un+1(κ), κ) = 0

λn+1(κ) = g(tn+1,un+1(κ), κ)
(37)

The sensitivities are obtained by differentiating Eq. (37)1
with respect to κ (the indices n + 1 and (E) are omitted for
brevity in the following)

∂g
∂κ

+ ∂g
∂u

du
dκ

= 0 ⇒ ∂g
∂u

du
dκ

= −∂g
∂κ

. (38)

In other words, a system of linear equations with nκ right-
hand sides has to be computed after each load step n.
The matrix ∂g/∂u represents the tangential stiffness matrix.
For moderate systems and direct solution schemes, one
LU-decomposition is required, and nκ back-substitutions
(commonly, the LU-decomposition has already been done
which was required for solving the system (37)1). Then, the
sensitivities of the Lagrange multipliers read

dλ

dκ
= −∂g

∂κ
− ∂g

∂u
du
dκ

(39)

requiring the solution of Eq. (38). This implies only amatrix-
matrix product. The matrix ∂g/∂u is also a part of the entire
tangential stiffness matrix.

In the case of DAEs, we follow the concepts summarized
in [69]. The sensitivities can be determined either on the level
of the DAE-system 10, yielding the so-called simultaneous
simulation of sensitivities, see [12,49], or on the time-
discretized level—leading to twoapproaches namely internal
numerical differentiation (IND) and external numerical dif-
ferentiation (END). The resulting simultaneous sensitivity
equations (SSE) can be shown to be equivalent to IND under
special conditions (same integrator to obtain the sensitivi-
ties). Since the implementation of the SSE yields—in the
general case—systems that are too large for our applications,
it is not recommended.We follow the sensitivity computation
using IND and END as discussed in the following.

4.2 Internal numerical differentiation

In the case of internal numerical differentiation, the DAE-
system (10) is discretized in time first. All sensitivities
are provided by analytical computations. The solution (25)
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depends on the parameters κ ,

un+1(κ) = un(κ) + �tn

s∑
i=1

bi U̇ni (κ),

qn+1(κ) = qn(κ) + �tn

s∑
i=1

bi Q̇ni (κ),

λn+1(κ) = λn(κ) + �tn

s∑
i=1

bi Λ̇ni (κ).

(40)

Sincewe drawon stiffly accurate diagonally-implicit Runge–
Kutta methods, the final solution at each time tn+1 is directly
provided by the non-linear system, un+1(κ) = Uns(κ),
qn+1(κ) = Qns(κ), λn+1(κ) = Λns(κ). Thus, we need the
derivatives of the stage derivatives and the starting values
with respect to κ ,

dU̇ni

dκ
= 1

�tnaii

[
dUni

dκ
− dS u

ni

dκ

]
,

dQ̇ni

dκ
= 1

�tnaii

[
dQni

dκ
− dS q

ni

dκ

]
, (41)

with

dS u
ni

dκ
= dun

dκ
+ �tn

i−1∑
j=1

dU̇nj

dκ
,

dS q
ni

dκ
= dqn

dκ
+ �tn

i−1∑
j=1

dQ̇nj

dκ
. (42)

Thus, the derivatives (41) must be stored additionally, and
we obtain the dependencies

g
(
Tni ,Uni (κ),Qni (κ), κ

) = 0,

l
(
Tni ,Uni (κ),Qni (κ),S q

ni (κ), κ
) = 0,

g
(
Tni ,Uni (κ),Qni

(
κ), (κ)) + Λni (κ) = 0.

(43)

We seek for the derivatives dU/dκ and dQ/dκ , which
can be—similarly to the Multilevel-Newton algorithm—be
determined by assuming the implicit function theorem (here,
we briefly recap the theory in [24]). We assume that the con-
ditions of the implicit function theorem are fulfilled, i.e. the
stage quantities of the internal variables can be represented
by a function Qni = Q̂(Uni (κ), κ). This function is inserted
into Eq. (43)1,

g
(
Tni ,Uni (κ), Q̂(Uni (κ), κ), κ

) = 0, (44)

and calculate the derivative with respect to κ (we omit again
the temporal index ni)

[
∂g
∂U

+ ∂g
∂Q

dQ̂
dU

]
dU
dκ

= −∂g
∂κ

− ∂g
∂Q

∂Q̂
∂κ

(45)

On the left, the coefficient matrix is again the tangential stiff-
ness matrix of the non-linear solver in the FE-program. The
matrix ∂Q̂/∂κ is obtained from the second equation (inte-
gration step for the internal variables)

l
(
Tni ,Uni (κ), Q̂(Uni (κ), κ),S q

ni (κ), κ
) = 0, (46)

by applying again the chain rule, see Eq. (21) for fulfilled
constraint (20)3,

[
∂l
∂U

+ ∂l
∂Q

dQ̂
dU

]
dU
dκ

+ ∂l
∂Q

∂Q̂
∂κ

+ ∂l
∂S q

dŜ q

dκ
+ ∂l

∂κ
= 0, (47)

where the first matrix on the left (term within the brack-
ets) vanishes in the Multilevel-Newton algorithm, see [24,
Eq.(23)]. With ∂l/∂Ŝ q = −1, the linear system

∂l
∂Q

∂Q̂
∂κ

= dŜ q

dκ
− ∂l

∂κ
(48)

has to be computed in each stage. Since we assembled
formally these equations, see Eqs.(13)-(14), they can be
decoupled in this step. In other words, after each stage small
linear systems have to solved on Gauss-point level (in our
case with 6 internal variables, 6× nκ ). This result is inserted
into Eq. (45).

Since theLagrange-multipliers are explicitly determinable,

Λni (κ) = −g(Tni ,Uni (κ), Q̂(Uni (κ), κ), κ) (49)

the sensitivity is based only on quantities derived before,

dΛ

dκ
= −

[
∂g
∂U

+ ∂g
∂Q

∂Q̂
∂U

]
dU
dκ

− ∂g
∂Q

∂Q̂
∂κ

− ∂g
∂κ

. (50)

The “classical” derivatives within the Multilevel-Newton
algorithm are provided in an analytical form in [22], whereas
the sensitivities required for the numerical optimizer are com-
puted by means of the program Acegen [41–43] .

4.3 External numerical differentiation

External numerical differentiation, i.e. the computation of
the sensitivities (34) by means of numerical differentiation is
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the usual procedure in the NLS-FEM-DIC approach. In this
case, the derivatives are approximated by

dũn+1

dκ
≈

nκ∑
j=1

ũn+1(κ + �κ je j ) − ũn+1(κ)

�κ j
eTj , (51)

with the vectors e j ∈ R
nκ (all entries are zero except for one

having a 1 in row j). This holds similarly for the Lagrange
multipliers, dλn+1/dκ , as well. To determine these deriva-
tives, the finite element solver, i.e. the DAE-solution (22), is
computed with κ and κ +�κ je j . The derivatives dun+1/dκ
and dλn+1/dκ from all time steps tn+1 must be stored. END
has an essential advantage if the finite element program is
treated as a black-box solver, for example as it is the case
for commercial programs. A disadvantage is to be seen in
the computational time required and the unawareness of the
exact implementation.

4.4 Quality measures

Today, there are many tools to identify material parameters
using a least-square approach. They are programmed very
stable.The R2-value, R2 = 1−(∑nd

i=1(di−si )2
)
/
(∑nd

i=1(di−
d)2

)
with d = (1/nd)

∑nd
i=1 di , R

2 ≤ 1, gives a hint on
how the model reflects the course of the experimental data.
However, it does not say anything about the quality of the
parameters found. Either one stops with the iterative scheme
in a local minimum of the non-linear least-square prob-
lem, or a subset of the material parameters is not uniquely
determinable. In this case, it is possible to obtain infinite com-
binations of the parameters—with the same quality regarding
the experimental curves. In this context, the physicalmeaning
of the parameters becomes questionable. Thiswasmentioned
in [4,7] for the general case in parameter identification, and
studied in solid mechanics in [25,33,71]. Since this is only a
local concept in the solution found by some optimizer, it is
merely an indicator (so far, however, it appears to be quite
a useful indicator). In its theoretical development, an expan-
sion is done in the solution, and the curvature is investigated
to find outwhether a local “valley” of the goal function exists.
In this case, the Hessian

H(κ) = d2 f (κ)

dκdκ
=
[
∂2 f (κ)

∂κi∂κ j

]

=
[

nd∑
k=1

w2
kk

(
∂2sk(κ)

∂κi∂κ j
(sk(κ) − dk) + ∂sk(κ)

∂κi

∂sk(κ)

∂κ j

)]

(52)

is exploited, or its approximation

H ≈ D TD =
[
w2
kk

∂sk(κ)

∂κi

∂sk(κ)

∂κ j

]
. (53)

We check the condition detH �= 0 to verify whether there
might be a unique solution, see for details [4,7].

To our experience, the investigation of identifiability
should be done using a re-identification procedure. This
means that we perform a direct computation with the param-
eter found by the optimizer, with the same path and boundary
conditions of the experiment. Then, we try to re-identify the
parameters and evaluate the Hessian. The reason for this pro-
cedure is that scattering of real experiments can essentially
influence the value of the determinant so that misinterpre-
tations regarding the results can occur. A certain drawback
of this indicator is that in real applications detH is never
really zero so that the question occurs how small should
be this measure so that the results become questionable.
Unfortunately, this essentially depends on the problem under
consideration (size of s, number of parameters, influence of
weighting factors, …). The smaller it become the more sen-
sitive the parameter identification process becomes. Thus, it
is a experienced-based quantity.

A measure of the quality of the parameters is also pro-
vided by the confidence interval—here, we draw on the real
experimental data

κconf = κ∗ ± �κ, (54)

which is based on the diagonal components of the covariance
matrix,

�κi = √
Pii , i = 1, . . . , nd, (55)

with

P = s2H−1(κ∗). (56)

Here, we have the standard deviation

s2 = 1

nD − 1
r T (κ∗)r(κ∗). (57)

These investigations can be done after determining a param-
eter set that is totally independent of the parameter identifica-
tion method. In view of analytical and numerical parameter
identification studies, we would like to refer to [34]. A result
of the covariance matrix is given by the correlation matrix

C = [
ci j
]

with ci j = Pi j√
Pii
√
Pj j

, i, j = 1, . . . , nκ .

(58)

This matrix provides a hint whether parameters are corre-
lated, see, for example [11].
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Fig. 4 Mesh using 20-noded Q2P1-elements and the boundary condi-
tions concerned (nu = 8472)

5 Identification at biaxial tensile test

To identify the material parameters κeq and κov we proceed
as follows. In a first step, only the termination points of relax-
ation resulting from the loading process in Fig. 3b are chosen
to determine κeq. In the second identification step, we draw
on the loading with four different displacement rates, see
Fig. 3a, and the multi-step relaxation loading path shown in
Fig. 3b. These tests are required to determine the material
parameter set κov.

The geometry of the biaxial tensile specimens are shown
in Fig. 2. We exploit triple symmetry, i.e. only one-eighth of
the specimen is discretized, and draw on the 20-noded mixed
hexahedral elements (Q2P1-elements of [74], see also [22]
for details. Figure 4 shows the mesh, and the boundary con-
ditions concerned. The triangulated surface regions of both
the DIC-data points as well as the finite element nodal points
are compared in Fig. 5. Here, we apply the triangulation tool
proposed in [72,73].

5.1 Identification of equilibrium stress part

With regard to the findings of a unique identification of
the material parameters in biaxial experiments from [33],
one approach is to apply a much larger deformation in one
direction than in the other direction. We define a four times
larger displacement in vertical direction, see Fig. 3b. Since
we have an overstress-type model, the material parameters
κT
eq = {K , c10, c01} of the equilibrium stress part are deter-

mined by the termination points of relaxation in a first step,
T̃ov = 0 in Eq. (2). We store the maximum and mini-
mum strain state of the DIC-data as well as the vertical
and horizontal forces of the testing machine’s force gauge
at the termination points of relaxation. These data-points are
compared with the finite element solution in a least-square
sense. In this case, there are no internal variables so that we
have only a NLS-problem applied to systems of non-linear
equations, see Eq. (37), considering either IND, see Eqs.(38)-
(39) for the functional matrices required by the Matlab tool

lsqnonlin.m, or END, as discussed in Sect. 4.3. Here,
we compare both the surface strains of the strain measure
E(1) = U− 1, whereU is the right stretch tensor of the polar
decomposition of the deformation gradient F = RU, and
the force-displacement curves provided by the termination
points of relaxation.

The resultingmaterial parameters are compiled in Table 1.
We obtain the results in Fig. 6a with an R2-value of 0.994.
The computational strain distribution at the final point is
compared with the experimental strain distribution. Here,
we consider the maximum and minimum principal strains.
Figure 6b shows the relative error of the principal maximum
strains

e = |εmax,exp − εmax,sim|
|εmax,exp| × 100. (59)

Here, the relative error is around 20% in the center region of
the specimen. The confidence interval of the material param-
eter indicates that only c10 is sensitive, which is due to the
fact that the middle region of the sample is primarily con-
sidered in the identification, not so much the heavily loaded
sample arms. It is well-known that the first and second invari-
ant IC and IIC are strongly coupled in pure tensile tests. In
the biaxial tensile test this is less pronounced, but visible in
the correlation matrix:

C =
⎡
⎣1.0 0.107 − 0.623

1.0 − 0.841
1.0

⎤
⎦ (60)

There is a strong correlation between the parameters c10 and
c01, see Eq. (58), which is known since the invariants IC
and IIC are not independent of each other in the small strain
range. Here, we have a square of the standard deviation of
s2 = 0.053.

The computations require 25 iterationswith a starting vec-
tor κ

(0)
eq = {100, 0.264, 0.5}. In the case of END, we have

104 function calls, and it requires a factor of the computa-
tional time of approximately 3.4 more than IND. It should be
noted that the number of iterations with the starting vectors
can be more or less. However, only a local minimum is met,
i.e. there is no statement about a global minimum with the
selected entire numerical scheme. In our experience to do
so far, the concept of local identifiability provides relatively
stable, unique solutions.

To find out whether the material parameters are uniquely
identifiable, a re-identification concept is applied. In this
case, a forward computation is performed with the material
parameters found, and the simulation data is chosen as virtual
experimental data. Then, the determinant of the Hessian (53)
is evaluated. If the parameters are not uniquely identifiable,
the determinant is zero. In our case, detH ≈ 1.287 × 10−3

holds. Thus, identifiability is guaranteed according to the
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Fig. 5 Triangulation of surface
data for strain determination

(a) Triangulation of the entire DIC-data (b) Triangulation of the FEM-data
(only the region which is com-

pared to the DIC-data is shown)

Table 1 Identified material parameters of equilibrium stress part and overstress part

Equilibrium stress part κeq Overstress part κov

K c10 c01 μ0 η0 s0
Nmm−2 Nmm−2 Nmm−2 Nmm−2 smm N−1 (Nmm−2)

5706.81 ± 222 0.012 ± 0.007 0.33 ± 0.004 0.26 ± 0.02 14113.39 ± 4405 0.00053 ± 0.006
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Relative error e of final principal strain, see definition (59)

Fig. 6 Force-displacement identification result and relative error in principal strains

chosen indicator, see discussion in [33], since it is moder-
ately small.

5.2 Identification of overstress part

In the viscoelastic case, we have nu = 8472 unknown nodal
displacements, nQ = 194400 unknown internal variables in
the whole structure. Here, we fix thematerial parameters κeq,

see Table 1, and determine the parameters κT
ov = {μ0, η0, s0}

on the basis of the four displacement rates in the loading
paths of Fig. 3a and the multi-step relaxation path of Fig. 3b.
Once again, we make use of the measured horizontal and
vertical force data as well as the maximum and minimum
strain data, adding up to significantly more data than for the
parameter identification of the equilibrium stress part. The
time-adaptive time integrator is the second-order scheme of
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(b) Vertical rate-dependent calibration results
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Fig. 7 Force-displacement results of identification of rate dependence and relaxation

Ellsiepen, see [10,14], which is based on the second-order
method of [1]. The result of the identification of the force-
displacement curves is shown in Fig. 7 (the strain data is
not shown here). We have R2 = 0.9903, and the parameters
are assembled in Table 1, resulting from the starting values
of the iterative scheme κ

(0)
ov = {0.2, 180., 0.001}. Since the

confidence interval is larger than the value itself, the param-
eter s0 required to incorporate rate-dependence is not of high
quality. This is indicated also by the correlation matrix

C =
⎡
⎣1 − 0.075 0.015

1 0.934
1

⎤
⎦ , (61)

where the viscosity η0 and s0 are strongly correlated. The
square of the standard deviation s2 = 0.0573 is, however,
small. The re-identification procedure yields the determinant
of the Hessian detH ≈ 1.71×10−4 indicating identifiability.

The comparison of the computations with analytical
derivatives (IND) with numerical differentiation (END)
again yields a factor of 3.5, i.e. END requires much more
time for the identification process.

A brief comparison of a Backward–Euler computation
with the step-size controlled, second-order SDIRK-method
of Ellsiepen (both computed adaptively—however, the BE-
method requires the number of global Newton-iterations
within the Multilevel-Newton algorithm, where we reduce
the step-size by a factor of 0.5 if the number of iterations
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Fig. 8 Step-size behavior ofBackward–Eulermethod and second-order
SDIRK-scheme for multi-step-relaxation path

exceeds 15, and increase the load-step by a factor of 1.2 if
the iteration number is less than 4) yields for one computa-
tion of the multi-step relaxation path of Fig. 3b the step-size
behavior shown in Fig. 8.

Although the time-steps become larger for the BE-scheme
during the relaxation path, it requires a factor of 1.12 only for
this process. However, this depends essentially on the error
tolerances assumed for the SDIRK time-step estimation.
After each change of the process path, the implementation of
the step-size control starts with a step-size of �tn = 10−4s
again.

6 Conclusions

In this paper a non-linear least-square method of Matlab,
which requires gradients, is applied to the residual between
full-fieldmeasurement data andfinite-element computations.
The usual approach of only including displacements has
been extended here with respect to the consideration of
reaction forces and a three-dimensional surface strain tool
applied to the finite element nodal data. This was done in
particular both in the derivation of the equations by the
method of Lagrange multipliers and the three-dimensional
strain calculation tool, which are necessary in the analyt-
ical calculation of the sensitivities. Both are required since
considering forces improves the identification process, while
the strain information circumvents rigid bodymotions which
are commonly inherent in displacement data. In particu-
lar, the in-plane strain analysis tool is a simpler approach
for curved three-dimensional surfaces, which is difficult to
implement in the coding of finite element programs. Further-
more, high-order diagonally-implicit Runge–Kutta method
are chosen as a time-integrator for the resultingDAE-system.
As a consequence of using a thorough matrix notation and
of interpreting the finite element method as the solution of
DAE-systems, it is possible to use methods of numerical

mathematics and to discover a general approach. In this case,
a comparison of internal numerical differentiation (the sensi-
tivities are computedwith analytical expressions provided by
the code-generation tool Acegen) and external numerical dif-
ferentiation is provided. Although the latter is more flexible,
it requires more than a factor of 3 of computational time—
in our applications (dependent on the number of material
parameters). This is demonstrated using data for rubber based
on biaxial tensile experiments. Additionally, it is shown that
measures such as the confidence interval, correlation matrix,
and the concept of identifiability are helpful indicators of the
quality resulting from the optimization tool. It turns out that
not all parameters of the applied finite strain viscoelasticity
model are necessary to reproduce the biaxial tensile test data
using digital image correlation.
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A Sensitivities of the surface stretches

In Eq. (36) the derivatives of the stretches νk with respect to
the nodal displacements are required. In [28] the formulas to
calculate the in-plane surface stretches by the displacements
of the points are explained in detail. The squares of stretches
μk = ν2k are computed by

μ1,2 = IĈ
2

±
√
I2
Ĉ

4
− II2

Ĉ
. (62)

with the invariants of the right Cauchy–Green tensor

IĈ = Ĉ1
1 + Ĉ2

2, IIĈ = Ĉ1
1Ĉ

2
2 − Ĉ1

2Ĉ
2
1, (63)

where

Ĉα
β(κ) = AαβĈαβ(κ), α = 1, 2, β = 1, 2 (64)
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are the mixed-variant components. [Aαβ ] = [Aαβ ]−1 can be
computed by the metric of the tangent vectors, �Aα , α = 1, 2,
in the reference configuration Aαβ = �Aα · �Aβ . If the surface
is described by finite element similar approach, we have

�Aα = ∂ �X
∂�α =

(
nen∑
k=1

Nk,α Xkj

)
�e j , (65)

where Xkj are the coordinates in the reference configura-
tion, and Nk(�

1,�2) a surface description (similar to the
shape functions in finite elements). nen represents the num-
ber of “element nodes”. For convective coordinates, we have
Ĉαβ = aαβ with the metric coefficients aαβ = �aα · �aβ , which
are based on the surface tangent vectors in the current con-
figuration. They are approximated by

�aα(κ) = ∂ �x
∂�α =

(
nen∑
k=1

Nk,α xk j (κ, t)

)
�e j , (66)

with xk j (κ, t) = Xkj+ukj (κ, t). In this sense, the derivatives
∂μk/∂ũn must be calculated. This is done using Acegen to
generate the analytical derivatives [41–43].
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