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Abstract
Fiber optical strain sensors are used to measure the strain at a particular sensor position inside the fiber. In order to deduce
the strain in the surrounding matrix material, one can employ the strain transfer principle. Its application is based on the
assumption that the presence of the fiber does not impede the deformation of the matrix material in fiber direction. In fact, the
strain transfer principle implies that the strain in fiber direction inside the fiber carries over verbatim to the strain inside the
matrix material. For a comparatively soft matrix material, however, this underlying assumption may not be valid. To overcome
this drawback, we propose to superimpose the matrix material with a one-dimensional model of the fiber, which takes into
account its elastic properties. The finite element solution of this model yields a more accurate prediction of the strain inside
the fiber in fiber direction at low computational costs.

Keywords Strain transfer principle · Strain measurement · Fiber reinforced materials · Fiber Bragg sensors · Fiber optical
strain sensors

1 Introduction

Fiber optical sensors, such as fiber Bragg gratings embedded
into a surrounding matrix material, are often used to mea-
sure the strain at the sensor position inside the fiber. Such
measurements can be used, for instance, to infer the magni-
tude of residual stresses in the matrix material. This can be
achieved through an appropriate inverse problem, based on
a forward deformation simulation. However, the numerical
simulation of the stresses and strains inside components with
an embedded measurement fiber under mechanical loadings
is challenging due to the difference in typical length scales
between the fiber diameter and part geometry. A potential
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remedy is to simulate the matrix material in the absence of
the fiber, and to incorporate the effect of the latter only a pos-
teriori.

The first attempt to analytically model the stress transfer
from a uniaxially loaded matrix material to an embedded
fiber was made by [5], leading to the emergence of the
research field referred to as shear-lag theory nowadays (see
for instance [17,19,20]), with various applications to fiber
optical sensors described, e. g., in [13,14,34]. Here, the uni-
axial stress in fiber direction is related to the shear stress at
the fiber matrix interface, which is recognized as the dom-
inating mechanism of stress transfer from the matrix to the
fiber material.

In order to deduce the full strain state inside the material
surrounding the fiber instead of only two stress components,
one can alternatively employ the strain transfer principle
(STP) described in [10,12]. The STP postulates a linear rela-
tionship between the strain tensor inside the sensor and the
strain tensor of the far field of the surrounding matrix mate-
rial (i. e., as though there was no fiber present). This linear
relationship can be expressed analytically in the form of the
strain transfer tensor and it is valid for orthotropic matrix as
well as orthotropic fiber materials; see [10]. An extension
of this model to coated fibers and temperature differences
between the matrix and the fiber is also available in [32].
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The predictions of the analytical STP have been confirmed
by various experimental works, for instance [11,16,33].

TheSTPyields particularly good resultswhen thematerial
properties of the matrix and the fiber are similar, or when
the fiber material is softer than the matrix. In these cases
the fiber does not restrain the deformations of the matrix
material in fiber direction under a certain load. The strain in
fiber direction in the matrix material is transferred verbatim
to the strain inside thefiber in fiber direction andvice versa. In
case the matrix material is softer than the fiber, however, the
fiber itselfmay restrain deformations of the entire part/matrix
material, and the strain in fiber direction no longer carries
over verbatim from the matrix material. The magnitude of
this effect also depends on the fiber diameter, part dimensions
as well as load conditions under consideration.

To overcome this drawback one has to take into consider-
ation the entire geometry of the part, the embedded fiber as
well as the load conditions. However, since the fiber diam-
eter is usually small compared to the part dimensions, a
fully resolved finite element (FE) model is often impracti-
cal. Instead, we propose an extension of the STP. Ourmethod
combines the practical benefits of the STPwith the improved
accuracy of a fully resolved finite element model. In partic-
ular, we may also simulate the deformation of the matrix
material in the absence of the fiber.

We refer to our proposed approach as the extended STP.
We apply the classical STP to deduce all strain components
except the strain in fiber direction from a FE model of the
matrix material without the fiber. By contrast, the strain in
fiber direction is derived from the solution of a modified FE
model. The latter is obtained by superimposing the elastic
properties of the bulkmatrixmaterial with a one-dimensional
model of the fiber. This does not require the fiber to be
resolved in the computational mesh.

Models for the simulation of embedded fibers were previ-
ously developed in the context of reinforcement of concrete
structures (see for instance [6,7,24,25]). They often require
an alignment of the reinforcement with the mesh. More
recent approaches like [4,9,31] use a coupling between the
background mesh and the one-dimensional fiber. By using
interpolation of quantities between the 1d and 3d mesh, no
alignment of the fiber to the background mesh is required. In
particular [31] requires the solution of a difficult saddle point
problem. The saddle point problem is iteratively solved using
a penalty method in order to obtain an approximate solution.

The drawback for using non-aligned meshes (so called
“smeared elements”) is that their coupling approach is only
valid down to a background mesh element size of about
the cross-section diameter of the fiber. Smeared elements
may also lead to stability issues. In particular, mortar meth-
ods as employed by [31], which are also standard for
treatment of conformally meshed interfaces, can result in
over-constrained and locking behavior,which causes a loss of

energy convergence and unstable interfacial fluxes as stated
by [26].

Since the focus of this paper is primarily to improve the
original strain transfer principle by including the strain in
fiber direction, we use a very simple method for obtaining
this strain, which does not introduce additional degrees of
freedom and requires only the solution of a linear system of
equations. However, in contrast to [31], our method requires
that edges of the mesh are aligned with the path of the fiber,
which results in a more difficult meshing procedure. Our
method for computing the strain in fiber direction can be
replaced any time, i. e., by one of the methods mentioned
above, given their suitability for thin fibers.

The paper is structured as follows. Section 2 states the
linear elasticity problem for a componentmanufactured from
matrix material with an embedded fiber. Section 3 introduces
the strain transfer principle and recalls the results from the
existing analytical theory. Section 4 presents our extension
to this theory. In Sect. 5 we derive the variational form of
our elasticity model, and Sect. 6 presents detailed numerical
results of our extended STP in comparison with the original
STP and with fully resolved finite element computations.

Nomenclature We denote by A : B the double contrac-
tion of a rank-4 tensor A with a matrix B, i. e., (A : B)i j =
∑

k
∑

� Ai jk�Bk�. We also use A : B for the double contrac-
tion of twomatrices, i. e., A :B = ∑

i
∑

j Ai j Bi j . Moreover,
I denotes the identity on rank-4 tensors, i. e., I : A = A
holds for any matrix A of appropriate dimensions. A ⊗ B
denotes the outer product between matrices A and B, i. e.,
(A ⊗ B)i jk� = Ai j Bk�. Finally a · b denotes the usual dot
product between vectors a and b, i. e., a · b = ∑

i ai bi .

2 Linear elasticity with embedded fiber

LetΩ ⊂ R
d denote the domain (d = 3) occupied by the part

under consideration. Furthermore, let C : Ω → L(Sym(d))

denote the stiffness tensor field on Ω , i. e., for every material
point x ∈ Ω , C(x) is a linear mapping between symmetric
d×d strainmatrices and symmetric d×d stressmatrices. The
function f : Ω → R

d denotes a force density field, e. g., due
to gravity. Let Uad denote the set of all admissible displace-
ments of the part which satisfy given boundary conditions
such that (2.3) has a unique solution.

The elastic deformation energy of a displacement field
u ∈ Uad on the domain without embedded fiber is given by

Ematrix(u) = 1

2

∫

Ω

ε(u) : C : ε(u) dx −
∫

Ω

f · u dx, (2.1)

where ε(u) denotes the symmetrized displacement gradient

ε(u) = 1

2

(
∇u + (∇u)T

)
. (2.2)
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We define the equilibrium solution, which solves the follow-
ing minimization problem, as

unf = min
u∈Uad

Ematrix(u), (2.3)

where the subscript denotes the absence of the fiber. We refer
the reader to [3] for an account of the mathematical theory.

Let γ : [0, L] → Ω denote the arc-length parameteriza-
tion of a curve which models the center line of the fiber.
Consequently, L denotes the total length of the fiber. Let us
assume that each point of the fiber γ (t) is tied to the cor-
responding point in the domain Ω , i. e., we do not consider
slip between fiber and matrix material. Given a deformation
field u ∈ Uad on the domain, the energy of a one-dimensional
fiber generally consists of three parts,

Efiber(u) = Estretch(u) + Ebend(u) + Etwist(u), (2.4)

modelling the stretching energy Estretch(u), the bending
energy Ebend(u) and the twisting energy Etwist(u), respec-
tively. Following [29,30], the stretching energy is given by

Estretch(u) = 1

2

∫

γ

E Aεγ (u)2 ds, (2.5)

where E denotes the effective elastic modulus of the fiber
material defined below, A is the cross-sectional area and
εγ (u) is the strain in fiber direction. Similarly, the bending
energy is given by

Ebend(u) = rac12
∫

γ

E Iκγ (u)2 ds, (2.6)

where I denotes the area moment of inertia and κγ denotes
the curvature of γ (i. e., the derivative of the bending angle).
For the twisting energy we have

Etwist(u) = 1

2

∫

γ

GIT δγ (u)2 ds, (2.7)

whereG denotes the shearmodulus, IT is the torsion constant
for the section and δγ (u) denotes the derivative of the torsion
angle of γ . We consider only homogeneous fibers for which
E , A, I , G and IT are constant. However, the curvature κγ

may vary along the fiber.
Usually, the radius of curvature of the fiber, 1/κγ (u),

is much larger than the radius R of the fiber itself. Simi-
larly, the length over which the fiber twists by a full turn
2π/δγ (u) is usually much larger than R. Furthermore, we
have A ∝ R2, I ∝ R4 and IT ∝ R4. This permits us
to conclude Iκγ (u)2 � R2 and IT δγ (u)2 � R2. As a
consequence, the bending and twisting energy terms can be
neglected compared to the stretching term for most applica-
tions involving only small deformations of the domain Ω .

Therefore, we neglect the bending and twisting energies
and consider

Efiber(u) = Estretch(u) = 1

2

∫

γ

E Aεγ (u)2 ds. (2.8)

The equilibrium solution, which solves the following mini-
mization problem is defined as

uf = min
u∈Uad

Ematrix(u) + Efiber(u), (2.9)

where the subscript denotes the presence of the fiber in the
deformation energy.

We return to the definition of the effective stretching
Young’s modulus of the fiber material. In order to compen-
sate for the existing matrix material in the volume occupied
by the fiber, E is defined as

E = max{0, Ef − Em}, (2.10)

where Ef is the stretching Young’s modulus of the fiber and
Em is the stretching Young’s modulus of the matrix in the
local fiber direction v = γ̇ (s). Em is calculated from the
matrix compliance as

Em = (Πγ : C−1 : Πγ )−1, (2.11)

where Πγ = vvT. Equation (2.11) recovers the classi-
cal Young’s modulus for an isotropic matrix material [2,
eqns. (27) and (30)]. For the case Ef ≤ Em which indi-
cates soft fiber material, this results in uf = unf . Otherwise,
uf and unf are different.

The fiber cross-section is assumed to be of circular shape,
such that

A = πR2

holds, and the strain in fiber direction εγ (u) is given by

εγ (u) = Πγ : ε(u).

These relations allow us to evaluate and minimize the total
deformation energy in (2.9). Notice that this does not require
to resolve the fiber in the computational mesh.

3 Strain transfer principle

The STP states that there exists a linear relationship between
the strain at the center line of the fiber and the strain inside the
matrix material. In other words, there exists T ∈ L(Sym(d))

such that

ε(uf) ≈ T : ε(unf) along γ. (3.1)
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T depends only on the geometry of the fiber described by
its radius R and the material parameters of the matrix and
fiber and possibly the fiber orientation if any of the materials
are anisotropic. Equation (3.1) is exact only if unf and uf are
identical outside of the fiber. In general, this is approximately
fulfilled if the fiber has only little influence on the overall
deformation uf . This is for instance the case if Ef � Em, i. e.,
the fiber is a relatively soft inclusion in the matrix material.

Analytical representationThere exists an analytical represen-
tation of the strain transfer principle by [10], which considers
a homogeneous, uncoated orthotropic fiber with elliptic
cross-section embedded into a homogeneous orthotropic
fiber reinforced composite with coinciding fiber directions.
Under the assumptions of perfect bonding between fiber and
matrix material, small deformations, and a uniform stress
distribution in the fiber, the displacement and stress continu-
ity conditions at the fiber matrix interface are evaluated using
expressions from [12] to describe the linearly elastic effect of
the elliptic inclusion in the matrix material. Residual strains
in the fiber are neglected and the fiber is assumed to have
infinite length. This leads to a 1:1 relation between (ε(uf))1
and (ε(unf))1, for ε(uf) and ε(unf) in Voigt notation, i. e.,

ε(u) = (
ε(u)11 ε(u)22 ε(u)33 2ε(u)23 2ε(u)13 2ε(u)12

)T
.

We assume here that the first axis of the coordinate system
is aligned with the fiber direction. We additionally assume
constant temperatures, i. e.,ΔT = 0. The detailed derivation
in [10] then results in a sparse strain transfer matrix T with
the non-zero entries expressed by the relations

(ε(uf))1 = (ε(unf))1, (3.2a)
⎛

⎜
⎜
⎝

(ε(uf))2
(ε(uf))3
(ε(uf))4
Θ(uf)

⎞

⎟
⎟
⎠ = (

O −UL−1N
−1)

⎡

⎣UL−1W

⎛

⎝

(
C f
21 − C21

)
(ε(unf))1(

C f
31 − C31

)
(ε(unf))1

0

⎞

⎠

+(
K −UL−1WQ

)
⎛

⎝
(ε(unf))2
(ε(unf))3
(ε(unf))4

⎞

⎠

⎤

⎦ , (3.2b)

(ε(uf))5 =
b +

√
C55
C66

a

b + C f
55√

C66C55
a

(ε(unf))5, (3.2c)

(ε(uf))6 =
a +

√
C66
C55

b

a + C f
66√

C66C55
b
(ε(unf))6. (3.2d)

Here Θ(uf) is the angular displacement of the sensor, which
we ignore here. Moreover, we denote the entries of the stiff-
ness tensor C in Voigt notation by Ci j , 1 ≤ i, j ≤ 6 and,
similarly, the entries of the compliance tensor S = C

−1

in Voigt notation by Si j , 1 ≤ i, j ≤ 6. The superscript · f
denotes material parameters of the fiber and no superscript
denotes matrix material parameters. Furthermore, a = b =
R denotes the lengths of the semi-axes of the fiber’s cross-
section. The matrices in (3.2b) are given by

K =

⎛

⎜
⎜
⎝

a 0 0
0 0 b

2
0 0 a

2
0 b 0

⎞

⎟
⎟
⎠ , H =

⎛

⎜
⎜
⎝

0
b

−a
0

⎞

⎟
⎟
⎠ , W =

⎛

⎜
⎜
⎝

1 0 0
0 1 0
0 0 1
0 0 1

⎞

⎟
⎟
⎠ ,

Q =
⎛

⎝
C22 C23 0
C32 C33 0
0 0 C44

⎞

⎠ , U =

⎛

⎜
⎜
⎝

δ1 −δ2 δ1 δ2
δ2 δ1 −δ2 δ1
δ3 −δ4 −δ3 −δ4
δ4 δ3 δ4 −δ3

⎞

⎟
⎟
⎠ ,

with

δ1 = 2β23 + 2β22(μ
2
R − μ2

I ), δ2 = 4β22μRμI ,

δ3 = 2μR

(

β23 + β33

μ2
R + μ2

I

)

,

δ4 = 2μI

(

β23 − β33

μ2
R + μ2

I

)

and

L =

⎛

⎜
⎜
⎝

2μI
b

2μR
b

2μI
b − 2μR

b
2
a 0 2

a 0
0 − 2

b 0 − 2
b

− 2μR
a

2μI
a

2μR
a

2μI
a

⎞

⎟
⎟
⎠ , O = (

K H
)
,

N = (
WQf 0

)
,

where 0 denotes the zero vector 0 ∈ R
4×1. The matrix Qf is

similar to Q but with fiber material parameters C f
i j instead

of Ci j . Finally, by [12], the parameters βi j , μR and μI are
related to the entries of S via

βi j = Si j − Si1S j1

S11
, μR =

√
√
√
√

√
β33

4β22
− 2β23 + β44

4β22
,

μI =
√
√
√
√

√
β33

4β22
+ 2β23 + β44

4β22
.

4 Extension of the strain transfer principle

We primarily consider the case Ef > Em, which is relevant
for fiber Bragg grating applications. A typical case is that of
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a glass fiber embedded in either an isotropic or fiber rein-
forced plastic. For the sake of simplicity, we ignore here the
soft protective coating of the fiber. We propose the following
extension of the STP (in tensor notation)

ε(uf) ≈ (I − Πγ ⊗ Πγ ) : (T : ε(unf)) + Πγ εγ (uf) on γ.

(4.1)

Equation (4.1) lets us recover the strain tensor ε(uf) using the
strain field ε(unf) computed from the solution unf of (2.3)
(without a fiber), and using the strain in fiber direction εγ (uf)
computed from the solution uf of (2.9) (taking the stiffening
due to the fiber into account). Note that since we consider
a one-dimensional fiber, the full ε(uf) tensor is not directly
computable from uf in a meaningful way, but only the com-
ponent εγ (uf) in fiber direction is available. We remark that
(4.1) is equivalent to the original STP, but with a corrected
strain in fiber direction.

5 Variational formulation and numerical
discretization

Problem (2.9) will be solved using the method of finite ele-
ments. The displacement u ∈ Uad minimizing the energy in
(2.9) is characterized by the variational formulation

∫

Ω

ε(u) : C : ε(v) dx +
∫

γ

E A εγ (u) εγ (v) ds

=
∫

Ω

f · v dx for all v ∈ V , (5.1)

where Uad = {u ∈ H1(Ω)|u = u0 on ΓD} and ΓD is
the boundary of Ω with imposed Dirichlet boundary con-
ditions u = u0 for the displacement. The corresponding test
space V is given by V = {u ∈ H1(Ω)|u = 0 on ΓD}.
For the finite element discetization, the domain Ω ⊂ R

3 is
approximated by a tetrahedral mesh consisting of a set of
tetrahedrons T (Ω) such that the fiber γ is approximated by
a set of edges E(γ ) of the mesh. The set of admissible dis-
placements Uad is approximated by functions Uad,h which
are piecewise linear on each tetrahedron, globally continuous
and satisfy the Dirichlet boundary conditions. Similarly, the
set of test functions is approximated by functions Vh which
are piecewise linear on each tetrahedron, globally continuous
and are zero on the boundary ΓD . Due to the linearity, ε(u)

and ε(v) are constant on each tetrahedron. In this discrete
setting, the variational form (5.1) becomes

∑

t∈T (Ω)

∫

t
ε(u) : C : ε(v) dx +

∑

e∈E(γ )

∫

e
E Aεγ (u)εγ (v) ds

=
∑

t∈T (Ω)

∫

t
f · v dx for all v ∈ Vh . (5.2)

For an edge e ∈ E(γ ) and its incident vertices p1 and p2, the
strain in fiber direction can be calculated as

εγ (u) = (u(p2) − u(p1)) · (p2 − p1)

|p2 − p1|2 , (5.3)

where u(p1) and u(p2) denote the nodal displacements in p1
and p2.

6 Numerical demonstration

We test the proposed extension of the STP on an example
of intermediate complexity. The geometry is a 100mm ×
100mm × 10mm plate with a 32mm diameter bore located
at (x, y) = (60mm, 40mm), as shown in Fig. 1a. As matrix
material we use a fiber reinforced plastic, for which we
compute the effective stiffness tensor by homogenization,
describedbelow inSect. 6.2.The sensorfiber ismadeof glass.
All FE computations were performed usingDolfin/FEniCS
2019.1; see [1,15]. The strain transfer described in (3.2) is
also computed numerically. Further details are given in the
following sections.

6.1 Domain andmesh generation

Thegeometry shown inFig. 1awas createdusingFreeCAD.1

Notice that this geometry also contains a fiber of diameter
4mm and length s = 170mm along the path shown inFig. 1b,
which begins at (x, y, z) = (−10mm, 20mm, 5mm) and
ends at (x, y, z) = (80mm, 110mm, 5mm). The sole pur-
pose of resolving the relatively thick fiber in the mesh is to
create a reference finite element solution to compare to the
results obtained by the STP. The fiber cross-section itself was
split into 4 quadrants such that after meshing there will be an
edge following the center line of the fiber. For meshing, the
geometry was exported from FreeCAD as a STEP file. The
STEP file was then loaded into Gmsh using the OpenCAS-
CADE plugin. The boundaries of the different regions were
associated using the “Coherence” function in Gmsh and dif-
ferent subdomains, boundaries and the fiber center line were
labeled. The characteristic length used for meshing was cal-
culated from curvature, such that the mesh is more refined
near the fiber. The resulting mesh at the boundary and inside

1 https://www.freecadweb.org.
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Fig. 1 Plate with hole (a), path
of the sensor fiber (b) and
generated mesh (c), (d)

(a) (b)

(c) (d)

of the domain can be seen in Fig. 1c and d, respectively. The
mesh contains 161, 476 nodes and 963, 272 tetrahedral ele-
ments. The Gmsh mesh including subdomains, boundaries
and pathswas then loaded and converted to theXDMF format
using meshio.2

As was mentioned above, the mesh with the three-
dimensional fiber resolved is used for the purpose of com-
puting reference solutions. However, the same mesh was
also used when computing the strains for the embedded one-
dimensional fiber using our extended STP and also for the
solution without an embedded fiber. In these cases, the mate-
rial inside of the meshed fiber was set equal to the matrix
material. We followed this procedure to avoid the influence
of different meshes on the solutions. In practice, there would
be no need to refine the mesh close to the fiber, nor to resolve
the fiber in the mesh.

2 https://github.com/nschloe/meshio.

6.2 Homogenization of matrix material

For the demonstration, we used glass fiber reinforced
polypropylene asmatrixmaterial. For glass we use aYoung’s
modulus of Eg = 73GPa and a Poisson ratio of νg = 0.18.
For polypropylene we use Epp = 1.665GPa and νpp =
0.36. The fibers are assumed to be parallel and of infinite
length in z-direction with a diameter which results in a
fiber volume fraction of 50%. The effective stiffness matrix
was computed using fibergen from [21], which employs
a Lippmann-Schwinger approach (see [18]) with a conju-
gate gradient solver on a staggered grid described in [8,28].
Using a laminate mixing rule at the interfaces, see [27], only
a resolution of 55 × 32 × 1 voxels is required for the rep-
resentative volume element to achieve a sufficient accuracy.
The method also allows the computation of effective mate-
rial properties for other fiber distributions, e. g., for injection
molded components. For our FE calculations, we assume the
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reinforcement fibers to be oriented in the x-direction of the
plate. In this instance, one has to swap the x- with the z-
axis of the homogenized matrix material stiffness returned
by fibergen, which in Voigt notation reads

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

38.61 2.43 2.43 0 0 0
2.43 6.34 3.03 0 0 0
2.43 3.03 6.34 0 0 0
0 0 0 1.65 0 0
0 0 0 0 1.75 0
0 0 0 0 0 1.75

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

GPa

(6.1)

and enters the computation of the strain transfer matrix in the
following section.

6.3 Computation of strain transfer matrices

For the embedded fiber, we assume the same properties of
glass as above, i. e., Ef = 73GPa and a Poisson ratio of
νf = 0.18. The strain transfer matrix between strain tensors
in Voigt notation representing the respective strain transfer
tensor T in (3.1) can then be computed analytically as demon-
strated in Sect. 3. However this approach is limited to the
case where the fiber axis coincides with one of the axes of
orthotropy of the surroundingmaterial. Alternatively, we can
evaluate it numerically, which does not impose this limita-
tion. Therefore we employed the numerical approach using
fibergen [21] in a similar fashion as for the homogenization.
As representative volume element for the latter, we chose a
1 × 1 box with a disc of diameter 0.05 placed at the center
representing the fiber, while the remaining domain repre-
sents the matrix material. Due to use of periodic boundary
conditions for the displacements, the diameter of the disc
has to be sufficiently small and the resolution sufficiently
large (in our case 512×512 voxels). For the identification of
the strain transfer matrix, six linearly independent load cases
with prescribed strain E (i) are required. The prescribed strain
represents the far field or matrix strain at the fiber position.
The computed strain field ε(i) for prescribed strain E (i) is
evaluated at the center of the domain to obtain the strain
inside the fiber ε

(i)
f = ε(i)(0.5, 0.5). The transfer matrix T is

then given by the relation

(
ε
(1)
f | . . . |ε(6)

f

)
= T

(
ε
(1)
m | . . . |ε(6)

m

)
, (6.2)

where the strains in each columnare given inMandel notation
(the notation is only important to interpret the numerical val-
ues below). In our instance, the fiber is oriented in z-direction,
i. e., parallel to the reinforcementfibers of thematrixmaterial.
In order to compute the strain transfer matrix for instances
where the sensor fiber has an angle α to the reinforcement

fibers we keep the sensor fiber oriented in z-direction but
rotate the matrix material around the x-axis. The rotated CR

(in full tensor notation) is then given by

C
R
i jk� = Rim R jn Rkp R�qCmnpq ,

where the sum is carried out over all free indices (using Ein-
stein summation) and R = Rx represents the rotation matrix
for rotation by the angle α around the x-axis

Rx =
⎛

⎝
1 0 0
0 cosα − sin α

0 sin α cosα

⎞

⎠ .

Similarly as forC of our plate, one has to swap the x- with the
z-axis of T to obtain the strain transfer matrix in the correct
coordinate system for our example. Furthermore, if the fiber
orientation (in the x − y-plane) has an angle β �= 0 to the
x-axis one has to rotate T around the z-axis by angle β, i. e.,

T R
i jk� = Rim R jn Rkp R�qTmnpq ,

where again the sum is carried out over all free indices (Ein-
stein summation) and R = Rz represents the rotation matrix
for a rotation by the angle β around the z-axis

Rz =
⎛

⎝
cosβ − sin β 0
sin β cosβ 0
0 0 1

⎞

⎠ .

Note that T also has to be blown up to a full 4-tensor and
then converted back to a matrix in Mandel notation.

In the first horizontal section of the path of the sensor fiber
in our example (see Fig. 1b)we haveβ = 0 and the computed
(and properly rotated) strain transfer matrix as defined in
(6.2) is given by

T =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1.00 0 0 0 0 0
− 0.15 0.10 0.02 0 0 0
− 0.15 0.02 0.10 0 0 0

0 0 0 0.08 0 0
0 0 0 0 0.11 0
0 0 0 0 0 0.11

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In the middle of the arc section at an angle of β = π
4 , the

strain transfer matrix is given by

T =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.67 0.16 0.01 0 0 0.25
0.03 0.30 0.01 0 0 0.27

− 0.11 − 0.06 0.11 0 0 − 0.12
0 0 0 0.10 0.03 0
0 0 0 0.03 0.13 0

0.21 0.38 − 0.01 0 0 0.63

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠
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and finally in the vertical section (β = π
2 ) we have

T =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.55 − 0.14 0.02 0 0 0
0 1.00 0 0 0 0

− 0.08 − 0.14 0.11 0 0 0
0 0 0 0.10 0 0
0 0 0 0 0.11 0
0 0 0 0 0 0.11

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Note that in all sections the strain in fiber direction is always
transferred verbatim from thematrix material, as recognized,
e. g., from the unit diagonal entry in the first and the last fiber
sections.

6.4 Solution of linear elasticity problems

The discretization and solution of (5.1), its counterpart com-
ing from (2.1), and the reference solution are performedusing
Dolfin/FEniCS 2019.1; see [1,15]. Meshes, subdomains
and the fiber path are loaded from the XDMF files generated
as described in Sect. 6.1. The plate is clamped on the lower
boundary (y = 0mm, see Fig. 1a) and a fixed displacement
of (1, 0, 0)T mm is enforced on the upper (y = 100mm)
boundary. The volume force f is set to zero. For the solution
of the arising linear systems we use the conjugate gradi-
ent method together with an AMG preconditioner from the
Dolfin PETSc backend. Three solutions are obtained: the

Fig. 2 Diagonal strain
components of the solutions
along the path of the sensor
fiber. The plots on the left show
the results for a matrix fiber
volume fraction of 0%. The
plots on the right are for a matrix
fiber volume fraction of 50%
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Fig. 3 Mixed strain components
of the solutions along the path of
the sensor fiber. The plots on the
left show the results for a matrix
fiber volume fraction of 0%. The
plots on the right are for a matrix
fiber volume fraction of 50%
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displacement field of the reference solution ur (with three-
dimensionally resolved fiber); the solution unf with the fiber
neglected by setting the material inside the fiber subdomain
to the matrix material; and the solution uf from the superim-
posed one-dimensional fiber model (5.1), where the material
inside the fiber subdomain is also set to the matrix material
but the fiber’s stiffness enters through the stretching energy
term.

6.5 Evaluation

In Figs. 2 and 3 we plot all components of the corresponding
strain tensors along the path of the fiber. The strain for the ref-

erence solution ur is denoted by εr, the strain for unf is given
by εnf and the strain εf for uf is obtained from our extended
STP given in (4.1). For comparison, the strain obtained by the
original STP (3.1) is denoted by T εnf . In addition to a matrix
fiber volume fraction of 50% (right plots of Figs. 2 and 3),
we also performed the same simulations with a fiber volume
fraction of 0% (left plots of Figs. 2 and 3) representing a very
soft and isotropic matrix material.

Ideally, the STP solutions T εnf (red triangles) and εf (blue
diamonds) should be identical to the reference solution εr

(black stars). For the 11- and 22-components we observe that
our extended version of the STP agrees very well with the
reference solution, whereas the original STP has major devi-
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ations for the 11-component until after the bend of the sensor
fiber at around s = 90mm as well as for the 22-component
beginning with the bend at around s = 60mm. This observa-
tion is independent of the matrix fiber volume fraction. For
the 33-component the extended STP and original STP are
identical, since the sensor fiber direction is always orthogonal
to the z-direction. Also they both disagree with the refer-
ence solution by a significant amount for the 0%matrix fiber
volume fraction case. The 23- and 13-components are one
order of magnitude smaller than the other components and
in theory they should be zero in view of the symmetry of the
problem in z-direction (one would expect a sign change of
displacements at the symmetry plane of the geometry z = 0
resulting in a constant zero displacement in z-direction in
that plane and therefore resulting in zero strain 23- and 13-
components). The reason that the 23- and 13-components
are not zero originates from discretization error due to a non-
symmetricmesh.Note that the 33-component is generally not
expected to be zero in the symmetry plane z = 0, even when
the z-displacement is zero. Finally, for the 12-component
the original and extended STP agree everywhere except for
the bend around the hole. Here again the extended STP out-
performs the original STP in the case of a 0% matrix fiber
volume fraction. The 50% case is indecisive.

7 Conclusion and outlook

In this paper, we proposed an improvement of the original
strain transfer principle, which recovers the strain compo-
nents inside a fiber embedded in a matrix material from
simulations which do not require the fiber geometry to be
resolved. The matrix material itself can be isotropic or fiber
reinforced. The proposed modification to the classical STP
consists of an additional term in the elastic energy of the
total part, which takes into account the additional stretch-
ing energy using a simple one-dimensional fiber model. This
modification is particularly relevant for fiber materials which
are stiffer than the matrix, as it is often the case for fiber opti-
cal strain sensors made of glass. Our evaluation shows that
the extended STP improves the classical STP in regions in
which the presence of the sensor fiber restricts the displace-
ment of the surrounding material in fiber direction.

It is a limitation that the one-dimensional fibermodel (2.9)
does not incorporate lateral strains, which results in mod-
erate deviations in the 33-component. More deviations are
expected due to the neglection of bending and twisting terms.
While these have only a minor contribution to the overall
energy of the fiber in the chosen example, they may become
more relevant in other setups.

The inclusions of bending and twisting energies as well as
the consideration of lateral strains are left to future research.
We expect that these termswill be quite challenging tomodel,

discretize and implement. Furthermore, as glass fiber sen-
sors are usually coated with a protective layer made of a soft
material, amodel for coated fibers should be considered. Ear-
lier investigations of [13,14,23] suggest that a low modulus
coating layer absorbs some portion of the matrix strain in the
transfer process, leading to a relative decrease in fiber strains
compared to uncoatedfibers. For this case there already exists
an analytical STP proposed in the literature; see for instance
[32]. Additionally, the integration of ideas from the shear-lag
theory mentioned in the introduction might prove beneficial
to address the usually vast differences in the material prop-
erties between fiber and coating materials.

Supplemental material for this publication can be found
at https://github.com/fospald/strain-transfer-principle and is
citeable via [22].
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