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Abstract
This work focuses on the development of a super-penalty strategy based on the L2-projection of suitable coupling terms to
achieveC1-continuity between non-conformingmulti-patch isogeometric Kirchhoff plates. In particular, the choice of penalty
parameters is driven by the underlying perturbed saddle point problem from which the Lagrange multipliers are eliminated
and is performed to guarantee the optimal accuracy of the method.Moreover, by construction, the method does not suffer from
boundary locking, especially on very coarse meshes. We demonstrate the applicability of the proposed coupling algorithm to
Kirchhoff plates by studying several benchmark examples discretized by non-conforming meshes. In all cases, we recover the
optimal rates of convergence achievable by B-splines where we achieve a substantial gain in accuracy per degree-of-freedom
compared to other choices of the penalty parameters.

Keywords Isogeometric analysis · Multi-patch coupling · Super-penalty method · Kirchhoff plates

1 Introduction

Isogeometric analysis (IGA), firstly introduced in [21], is a
methodology used for the numerical discretization of partial
differential equations (PDEs) based on the same building
blocks used in computer aided design (CAD). Indeed, in
IGA, the same mathematical objects, such as B-splines and
non-uniform rational B-splines (NURBS) [34], used for
the geometrical description are employed for the numeri-
cal solution of the PDE at hand. A distinguishing feature
of splines is the high regularity achievable by construction,
which allows the approximation of higher-order variational
problems directly in their primal, for instance Kirchhoff
plates [29,33], Kirchhoff–Love shells [22,24,25,36] and the
Cahn–Hilliard equation [14]. For a detailed review of the
method and its recent applications, the reader is referred
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to [9,21,40], whereas its mathematical foundations can be
found in [4,10].
Although smoothness is attained naturally within a patch,
geometries of engineering relevance are in general described
by multiple patches, where typically the underlying spline
representations are non-conforming at the common interface.
Clearly, in this scenario, a direct strong coupling between
patches is not straightforward to achieve. Moreover, as in the
scope of this work we are interested in the Kirchhoff plate
model problem, an efficient strategy to obtain C1-coupling
is needed since a global C1-continuity is required to obtain
a well-defined bilinear form for the problem at hand. In the
literature, three methods are predominantly used to achieve
the latter coupling in a weak sense and they are summarized
in the following.
High-order mortar methods have been studied in [18,20] in
the context of Kirchhoff plates and Kirchhoff–Love shells,
respectively, and have been extended to a general Cn-
coupling in [11]. For a detailed review in the context of
isogeometric analysis, we refer to the review article [17].
However, mortar methods lead to the formulation of a sad-
dle point problem,where the associated Lagrangemultipliers
constitute additional unknowns to be solved for in the global
system of equations.
Nitschemethod has been analyzed in [38] for coupling isoge-
ometric Kirchhoff plates in the scope of immersed methods
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and in [15] for imposing weakly kinematic boundary condi-
tions for fourth-order PDEs. Although this family ofmethods
is less sensitive to the choice of parameters compared to
classical penalty approaches, their formulation requires addi-
tional consistency terms which, in the Kirchhoff problem,
involve the computation of derivatives of shape functions up
to order three. This adds some extra steps of complexity in
the implementation and increases the overall computational
cost of the coupling strategy.
Finally, penalty methods are widely used in the engineer-
ing community due to their conceptual simplicity, see the
seminal work [2]. Furthermore, they can be easily and effi-
ciently incorporated into a numerical code, where we refer
to [1,13,16,23,26] for more insights and some applications in
the context of isogeometric Kirchhoff–Love shells. Nonethe-
less, a major drawback of this approach resides in their
lack of robustness with respect to the choice of penalty
parameters. Typically, the choice of penalty coefficients
is problem-dependent and is based on a time-consuming,
heuristic process. As noted in [16], on one hand, if the penalty
factors are chosen too small the interface constraint is satis-
fied only loosely. On the other hand, if the coefficients are too
high, the condition number of the resulting system matrix is
negatively impacted and the convergence behavior is spoiled
by spurious locking phenomena. The contribution in [16] par-
tially addresses these issues by introducing suitably scaled
penalty parameters and a single problem-independent user-
defined coefficient. This work was recently extended in [26]
to alleviate locking by introducing independent fields related
to the coupling terms and by exploiting reduced integration
techniques.
Our contribution falls into this realm. Inspired by the super-
penalty method studied in [3], our goal is to introduce a
simple coupling procedure for the displacement and rota-
tion fields, respectively, for non-conforming multi-patch
Kirchhoff plates, which preserves the high-order optimal
convergence rates achievable by B-splines while mitigat-
ing the detrimental effects related to locking. To alleviate
the over-constraint of the solution space we perform an L2-
projection of the penalty terms onto a space of reduced degree
defined on the active side of the coupling interface where,
motivated by the work in [7] for mortar methods, we select
a p/p − 2 pairing, where p denotes the B-splines degree. In
particular, starting from the perturbed saddle point formula-
tion of the Kirchhoff plate model problem, we show how the
corresponding Lagrange multipliers can be eliminated from
the system and, more importantly, how the perturbation gives
us insights into the optimal choice for the penalty coefficients.
Indeed, the proposedmethodology is truly parameter-free, as
the penalty factors are fully determined by the given physical
constants, the geometry and its discretization, i.e. mesh size
and spline degree.We remark that the proposedmethodology
is especially advantageous for moderate degrees p = 2, 3,

where locking phenomena are particularly pronounced and
the L2-projection proves to be an effective and computation-
ally efficient remedy.
Then, we address the ill-conditioning issues stemming from
our choice of super-penalty parameters. We adapt the block
preconditioner based on an inexact Schur complement reduc-
tion (SCR) introduced in [27,28] and we combine it with
a preconditioner tailored to the isogeometric discretization
of the Kirchhoff plate, where we exploit the tensor prod-
uct structure of B-splines and an efficient algorithm for the
solution of the arising Sylvester-like system; for a detailed
derivation we refer to [30,31,37].
Finally, we show through several numerical benchmarks the
optimal convergence properties of the presented method-
ology, where our approach does not suffer from boundary
locking, especially on very coarse meshes. This leads to
a substantial improvement in the accuracy achievable per
degree-of-freedom (dof).
The structure of the paper is as follows. Section 2 provides
a review of the fundamental concepts related to B-splines.
Section 3 describes in details the derivation of the proposed
methodology andmotivates our choice of penalty parameters.
Section 4 presents the ideas used in the construction of the
preconditioner employed in thiswork. InSect. 5 themethod is
validated on several numerical benchmarks and it is applied
to the analysis of an idealized multi-patch design of an L-
bracket. Finally, some conclusions are drawn in Sect. 6.

2 A brief introduction to B-splines

In this section, some definitions and fundamentals related to
B-splines are reviewed. We refer the reader to [9,19,34], and
references therein, for a comprehensive review of B-splines
and NURBS and their role in isogeometric analysis.
Starting from two integers p, n, a univariate B-spline basis
function bi,p of degree p is generated starting from a non-
decreasing sequence of real values referred to as knot vector,
denoted in the following as � = {

ξ1, . . . , ξn+p+1
}
. It is

worth mentioning that the smoothness of the obtained B-
spline basis is C p−k at every knot, where k denotes the
multiplicity of the considered knot, while it isC∞ elsewhere.
In the remainder of this work, we consider only splines of
maximum continuity, i.e. C p−1. The definition of multivari-
ateB-splinesBi,p(η) is achieved in a straight-forwardmanner
using the tensor product of univariate B-splines as:

Bi,p(η) =
d̂∏

j=1

b j
i j ,p j

(η j ) , (1)

where d̂ denotes the dimension of the parameter space. Addi-
tionally, themulti-index i = {i1, . . . , id̂

}
denotes the position
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in the tensor product structure and p = {
p1, . . . , pd̂

}
indi-

cates the vector of polynomial degrees, associated with
the corresponding parametric dimension η = η1, . . . , ηd̂ ,
respectively. Then, let us define a domain � ∈ R

d described
by a B-spline parametrization F as a linear combination of
multivariate B-spline basis functions and corresponding con-
trol points as follows:

� = F(�̂) with F(η) =
∑

i

Bi,p(η)Pi , (2)

where the coefficients Pi ∈ R
d of the linear combination are

the control points and d represents the dimensionality of the
physical space. Although not treated here, it is straightfor-
ward to extend the notation to NURBS, for details see [9].
In the rest of the paper, without loss of generality, the degree
vectorpwill be considered equal in each parametric direction
and therefore simplified to a single scalar value p. Further,
the vectors i and η will be omitted to simplify the notation.
Finally,we can introduce the following discrete space formed
by multivariate B-splines of degree p:

S p
h (�) = span

{
b ◦ F−1 | b ∈ B

}
. (3)

3 The projected super-penalty method

In this section, we introduce a method that alleviates locking
phenomena arising when coupling non-conforming isogeo-
metric patches. Inspired by the work presented in [7] in the
context of isogeometric mortar methods, the proposed tech-
nique is based on the projection of the coupling terms at
the interface, typically defined in terms of the degree p of
the solution space related to the corresponding patch, onto a
reduced space of B-splines of degree pred = p − 2 defined
on the active side of the interface.

3.1 The strong form of the Kirchhoff plate problem

Let us introduce the governing PDE, characterized by the
bilaplace differential operator, that describes the bending-
dominated problem of a Kirchhoff plate, following the
notation in [36]. Let us define an open set� ⊂ R

2 with a suf-
ficiently smooth boundary ∂�, such that the normal vector
n to the boundary is well-defined (almost) everywhere. Let
us also introduce two admissible splittings of the boundary

� = ∂� into � = �u ∪ �Q and � = �φ ∪ �M , such that
�u∩�Q = ∅ and�φ ∩�M = ∅, respectively. Consequently,
the strong form of the problem reads:

DΔ2u = g in �

u = u� on �u

−∇u · n = φ� on �φ

νDΔu + (1 − ν)D n · (∇∇u)n = M� on �M

D(∇(Δu) + (1 − ν)Ψ (u) ) · n = Q� on �Q ,

(4)

where u represents the deflection of the plate, D its bending
stiffness, ν is the Poisson ratio, g is the load per unit area
in the thickness direction, u� , φ� , M� and Q� are the pre-
scribed deflection, rotation, bending moments and effective
shear, respectively. The bending stiffness D of an isotropic,
homogeneous plate is defined as:

D = Et3

12(1 − ν2)
, (5)

where E is the Young modulus and t denotes the thickness
of the plate. For the sake of simplicity and without loss of
generality, these are assumed to be a constant in �. Finally,
the differential operator Ψ (·) reads:

Ψ (·) =
[

∂3(·)
∂x∂2y

,
∂3(·)
∂2x∂ y

]	
. (6)

3.2 Themulti-patch formulation of the perturbed
saddle point Kirchhoff problem

Here, following the notation used in [7], we introduce a
decomposition of � into N non-overlapping subdomains �i

such that:

� =
N⋃

i=1

�i , where �i ∩ � j = ∅ for i 
= j . (7)

Now, let us define the interface γ k,m between two adjacent
patches �k,�m, 1 ≤ k,m ≤ N as the intersection of their
corresponding boundaries:

γ k,m = ∂�k ∪ ∂�m . (8)

Then, the skeleton � is defined as the union of all non-empty
interfaces (which we suppose to be labeled with an ordered
index � = 1, . . . , L) and reads:

� =
L⋃

�=1

γ � . (9)

123



1136 Computational Mechanics (2021) 67:1133–1153

Fig. 1 Example of two subdomains �k , �m with their coupling inter-
face γ k,m , highlighted in red, and their corresponding normal vectors
nk , nm . Note that we have separated the subdomains for visualization
purposes. For a correct interpretation of the colors, the reader is referred
to the web version of this manuscript

Consequently, we can denote by uk and nk the value of the
primary field and the outward normal on ∂�k , and um and
nm the value of the primary field and outward normal on the
neighboring subdomain ∂�m , see Fig. 1 for an example on
two patches.

Then, for each interface γ k,m we can write the following
coupling conditions:

uk − um = 0 on γ k,m

∇uk · nk + ∇um · nm = 0 on γ k,m , (10)

which can be rewritten using the standard jump and normal
jump operators, respectively, as:

�u� = 0 on γ k,m

�∇u�n = 0 on γ k,m . (11)

Further, given 1 ≤ s, t ≤ L , s 
= t , we denote the cross-
points by cs,t = γ s ∩ γ t and we label them with an ordered
index cs , s = 1, . . . , S. For ease of notation and without
loss of generality, in the following we assume the flexural
rigidity D to be constant in � and the Poisson ratio ν to be
zero. Further, we assume that the values prescribed as natural
boundary conditions are zero as well.
Now, let us introduce for each subdomain �i the following
space:

H2
 (�i ) =

{
vi ∈ H2(�i ) : vi |∂�∩∂�i = ∂vi

∂n

∣∣∣∣
∂�∩∂�i

= 0

}
,

(12)

from which the following broken Sobolev space can be char-
acterized as:

V =
{
v ∈ L2(�) : v|�i ∈ H2

 (�i ), i = 1, . . . , N , v

is continuous in cs, s = 1, . . . , S
}

, (13)

endowed with the broken norm ‖ · ‖2V = ∑N
i=1 ‖ · ‖2

H2(�i )
.

Then, let us also define the spaces:

H
1
2
 (�) = {�∇v�n : v ∈ V

}

H
3
2
 (�) = {�v� : v ∈ V

}
. (14)

Lastly, we need to introduce the following dual spaces:

Q1 =
[
H

3
2
 (�)

]′

Q2 =
[
H

1
2
 (�)

]′
.

(15)

We are now ready to formulate (4) as a saddle point problem.
Given f ∈ V ′, find (u, λ1, λ2) ∈ V × Q1 × Q2 such that:

N∑

i=1

∫

�i
D ∇(∇u) : ∇(∇v) +

L∑

�=1

(∫

γ �

�v�λ1 +
∫

γ �

�∇v�nλ2

)

= ( f , v) ∀v ∈ V

L∑

�=1

∫

γ �

�u�μ1 = 0 ∀μ1 ∈ Q1

L∑

�=1

∫

γ �

�∇u�nμ2 = 0 ∀μ2 ∈ Q2 . (16)

We also define three continuous bilinear forms a : V ×V →
R, b1 : V × Q1 → R and b2 : V × Q2 → R as follows:

a(u, v) =
N∑

i=1

∫

�i
D ∇(∇u) : ∇(∇v) u, v ∈ V

b1(v, μ1) =
L∑

�=1

∫

γ �

�v�μ1 v ∈ V , μ1 ∈ Q1

b2(v, μ2) =
L∑

�=1

∫

γ �

�∇v�nμ2 v ∈ V , μ2 ∈ Q2 .

(17)
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Now, given ε
(�)
1 , ε

(�)
2 > 0, � = 1, . . . , L , we can introduce

the singularly perturbed version of (16): given f ∈ V ′, find
(uε, λ1,ε, λ2,ε) ∈ V × L2(�) × L2(�), such that

N∑

i=1

∫

�i
D ∇(∇uε) : ∇(∇v)

+
L∑

�=1

(∫

γ �
�v�λ1,ε +

∫

γ �
�∇v�nλ2,ε

)
= ( f , v) ∀v ∈ V

L∑

�=1

(∫

γ �
�uε�μ1 − ε

(�)
1

∫

γ �
λ1,εμ1

)
= 0 ∀μ1 ∈ L2(�)

L∑

�=1

(∫

γ �
�∇uε�nμ2 − ε

(�)
2

∫

γ �
λ2,εμ2

)
= 0 ∀μ2 ∈ L2(�) . (18)

Under suitable regularity assumptions, we can provide an
estimation of the error introduced by the perturbations ε

(�)
1

and ε
(�)
2 on the solution of the original saddle point prob-

lem (16) as [6, Remark 4.13.14]:

||u − uε||V + ||λ1 − λ1,ε||L2(�) + ||λ2 − λ2,ε||L2(�)

≤ C

⎡

⎢
⎣ε̃1

(
L∑

�=1

‖λ1‖2H3/2(γ �)

) 1
2

+ ε̃2

(
L∑

�=1

‖λ2‖2H1/2(γ �)

) 1
2

⎤

⎥
⎦ (19)

where we have defined:

ε̃1 = max
�=1,...,L

ε
(�)
1 , and ε̃2 = max

�=1,...,L
ε
(�)
2 . (20)

3.3 The projected super-penalty formulation

For each patch �i , we assume p ≥ 2 and we indicate with

S p
h (�i ) the space trivially obtained extending by zero the

elements of S p
h (�i ) over � \ �i . Additionally, let us define:

Xi,h = span
{
b ∈ S p

h (�i )
}

. (21)

Consequently, let us denote by Vi,h ⊂ Xi,h the finite-
dimensional space given by the span of B-splines defined on
the corresponding subdomain �i , where the exact character-
ization of Vi,h depends on the chosen boundary conditions,
for further details we refer to [8]. This allows us to introduce
the following finite dimensional subspace of V ,

Vh =
{

v ∈
N⋃

i=1

Vi,h : v is continuous in cs, s = 1, . . . , S

}

.

(22)

Moreover, for each interface γ �, we denote by �� the knot
vector on γ � inherited from the active side. Motivated by
the choice of the p/p − 2 stable pairing in [7], we construct
the following isogeometric space S p−2

h (γ �) on the reduced
knot vector ��

 obtained by removing from �� the first and
last two knots, where an example is depicted in Fig. 2 for

p = 2, 3. Similarly to before, we indicate with S p−2
h (γ �) the

space obtained extending by zero over � \ γ � the elements
of S p−2

h (γ �).
We can now define the discrete counterpart of the

Lagrange multiplier spaces as:

Qh = Q1,h = Q2,h =
L⋃

�=1

S p−2
h (γ �) . (23)

With these definitions at hand, the discretized version of (18)
reads: find

(
uh, λ1,h, λ2,h

) ∈ Vh × Qh × Qh such that:

N∑

i=1

∫

�i
D∇(∇uh) : ∇(∇vh)

+
L∑

�=1

(∫

γ �

�vh�λ1,h +
∫

γ �

�∇vh�nλ2,h

)
= ( f , vh) ∀vh ∈ Vh

L∑

�=1

(∫

γ �

�uh�μ1,h − 1

α�
defl

∫

γ �

λ1,hμ1,h

)

= 0 ∀μ1,h ∈ Qh

L∑

�=1

(∫

γ �

�∇uh�nμ2,h − 1

α�
rot

∫

γ �

λ2,hμ2,h

)
= 0 ∀μ2,h ∈ Qh ,

(24)

where α�
defl and α�

rot are “large” parameters related to
the deflections and rotations, respectively. In general, they
depend on the problem definition, e.g. the physical constant
D, the mesh size and spline degree, where a full charac-
terization of our choice will be given later in the section.
We can now formally eliminate the Lagrange multipliers and
recast (24) into its primal form. Indeed, we can write:

λ1,h |γ � = α�
defl�

��uh�

λ2,h |γ � = α�
rot�

��∇uh�n , (25)
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(a)

(b)

Fig. 2 Example of the projection setup on a coupling interface. We
select the finer side (on �1 in this example) to define the reduced space
for the projection. Additionally, an intersection mesh at the interface

is created only for integration purposes to properly compute the pro-
jected penalty terms. The p + 1 integration points are schematically
represented as blue dots

where�� : L2(γ �) → S p−2
h (γ �) denotes the L2-projection,

associated with the interface γ �, onto the reduced space
S p−2
h (γ �). Finally, employing the previous results and the

properties of the L2-projection, the resulting discretized
bilinear form, augmented by suitable penalty terms that
weakly enforce the coupling conditions (11), reads: find
uh ∈ Vh such that:

N∑

i=1

∫

�i
D ∇(∇uh) : ∇(∇vh)+

+
L∑

�=1

(
α�
defl

∫

γ �

���uh��
��vh�

+α�
rot

∫

γ �

���∇uh�n�
��∇vh�n

)
= ( f , vh) ∀vh ∈ Vh .

(26)

3.3.1 Inf-sup test

The well-posedness of (24), independently of the value of
the parameters α�

defl and α�
rot, relies on the well-posedness

of the underlying unperturbed problem, i.e. the problem cor-
responding to (24) where we set α�

defl = α�
rot = +∞ , � =

1, . . . , L . Although a rigorous proof of the inf-sup stability
of such unperturbed problem is currently under investiga-
tion, we assess the behavior of the numerical inf-sup test for
a domain � subdivided along a straight interface into two
subdomains �i , i = 1, 2. As we are dealing with a double
saddle point problem, we compute two different inf-sup con-
stants C inf-sup

defl and C inf-sup
rot , corresponding to the deflection

and rotation jumps, respectively. In the following we report
the results for different discretization sizes of the interface
h� = 1/2k, k = 3, . . . , 7 andB-spline degrees p = 2, . . . , 5,
where h� denotes the maximum mesh size associated with
the interface γ �. The numerical values ofC inf-sup

defl andC inf-sup
rot

are summarized in Table 1. In all cases we observe that the
inf-sup constants converge to some values bounded away
from zero, numerically suggesting that the method is inf-sup
stable.

3.3.2 Coercivity test

Then, we also assess numerically the behavior of the coerciv-
ity constant on an examplewith four patches�i , i = 1, . . . , 4
separated by four straight interfaces meeting at a cross-point.
In particular, we want to compute the biggest α0 such that:
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Table 1 Results of the numerical inf-sup test for C inf-sup
defl and C inf-sup

rot ,
respectively, on different uniformly refined meshes h� = 1/2k , k =
3, . . . , 7 and spline degrees p = 2, . . . , 5

p h�

1/23 1/24 1/25 1/26 1/27

(a) C inf-sup
defl

2 0.6594 0.6631 0.6632 0.6632 0.6632

3 0.5158 0.5183 0.5217 0.5217 0.5217

4 0.4144 0.4118 0.4164 0.4165 0.4165

5 0.3473 0.3404 0.3433 0.3437 0.3437

(b) C inf-sup
rot

2 0.6594 0.6631 0.6632 0.6632 0.6632

3 0.5158 0.5183 0.5217 0.5217 0.5217

4 0.4144 0.4118 0.4164 0.4165 0.4165

5 0.3473 0.3404 0.3433 0.3437 0.3437

Table 2 Numerical estimation of the coercivity constant α0 on different
uniformly refined meshes h� = 1/2k , k = 2, . . . , 5 and spline degrees
p = 2, 3, 4

p h�

1/22 1/23 1/24 1/25

2 0.8049 0.8043 0.8041 0.8041

3 0.8040 0.8040 0.8040 0.8040

4 0.8040 0.8040 0.8040 0.8040

α0||v0||2H2(�)
≤ a(v0, v0) ∀v0 ∈ K = ker(B1) ∩ ker(B2) ,

(27)

where B1 and B2 are the linear operators associated with
the bilinear forms b1 and b2, respectively. The results for
different discretization sizes of the interface h� = 1/2k, k =
2, . . . , 5 and B-spline degrees p = 2, . . . , 4 are presented
in Table 2, from which we can numerically infer that the
method is coercive on the intersection kernel.

Remark 1 The inf-sup and coercivity tests are performed on
a reduced version of the knot vector ��

, where also the first
and last internal knots of �� are eliminated. This is justi-
fied by our preliminary mathematical analysis, where this
choice is required. However, from a numerical standpoint,
we retain the optimality of the method without performing
such a reduction and in all our examples we directly employ
��

 to define the projection spaces.

3.3.3 On the choice of penalty parameters

It is well-known that the penalized problem (26) is varia-
tionally consistent only in the limit α�

defl = α�
rot → ∞ � =

1, . . . , L . On the other hand, the well-posedness of this prob-
lem is robust with respect to the choice of the parametersα�

defl
andα�

rot. Therefore, the proposedmethodologywill not suffer
from boundary locking for any choice of penalty values. As a
consequence, α�

defl and α�
rot can be chosen solely to guarantee

the optimal accuracy of the method.

Remark 2 A clear trade-off of this choice is the negative
impact on the conditioning of the resulting system matrix.
A possible remedy based on an ad-hoc preconditioner will
be discussed in a later section. Another drawback consists in
the loss of significant digits due to the (potentially big) dif-
ference in magnitude between the penalty contribution and
the internal stiffness. For this reason, and to efficiently com-
pute the projection operators, we advise using this method in
combination with splines of degree p = 2, 3, as these round-
off errors occur below a tolerance threshold of significance
to most engineering applications.

Inspired by the method proposed in [16] in the context of
Kirchhoff–Love shells, wewant to develop a fully parameter-
free penalty method. To this end, we scale the deflection and
rotation penalty parameters by the physical constants, the
local mesh size and the geometry as:

α�
defl = meas(γ �)β−1 Et

(h�)β(1 − ν2)

α�
rot = meas(γ �)β−1 Et3

12(h�)β(1 − ν2)
,

(28)

wheremeas(γ �) indicates the length of the coupling interface
and the exponent β is chosen to ensure the optimal con-
vergence of the method with respect to the degree p of the
underlying discretization. Note that all of these parameters
are known and depend only on the problem definition, mean-
ing that no user-defined factor is required. We highlight that
our choice is based on the fact that the perturbations intro-
duced in (18) cannot be “big” compared to the accuracy with
which we want to solve the original problem and the esti-
mate provided in (19) guides the choice of β. Moreover, as
wewant to recover optimal rates of convergence for the error,
the exponent β must be a function of the underlying splines
degree p.
From the numerical experiments conducted thus far, the scal-
ing factor β = p − 1 in (28) is necessary to ensure optimal
convergence of the method in the H2 norm, whereas for a
scaling of β = p we observed optimality in the H2 and H1

norms. Finally, a factor of β = p + 1 provides optimality in
the H2, H1 and L2 norms. If not stated otherwise, we will
use β = p + 1 in all our numerical examples.

Remark 3 Although a rigorous mathematical proof of the
method and the optimal choice ofβ are currently under devel-
opment, we believe that this allows for some extra flexibility
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in the proposed methodology, where the suitable scaling fac-
tor can be chosen with respect to the corresponding quantity
of interest.

Remark 4 Our choice of penalty factors correspond to the
one in [16] if we set β = 1 and if we remove any user-
defined parameter. Clearly, for generic splines of degree p,
this yields a sub-optimal convergence behavior in the asymp-
totic regime.

3.3.4 Cross-points modification

In the literature of mortar methods, it is well-known that
the treatment of cross-points requires extra considerations,
see [12] and references therein for a discussion in the context
of mortar coupling of isogeometric multi-patches. Analo-
gously, our method also inherits the need for a cross-points
modification. Indeed, in order to retain optimality of the
method, a linear constraint must be imposed to the control
variables meeting at the cross-point to ensure C0-continuity.
An example with four patches is depicted in Fig. 3, where
in Fig. 3a we depict the dofs associated with each coupling
interface and in Fig. 3b we visualize the imposition of the
constraint. To explain the procedure, let us start from the
following unconstrained system of equations:

Auh = f . (29)

Now, the constraint can be incorporated easily into the stan-
dard linear system in a fully algebraic fashion, where a
possible implementation is presented in Algorithm 1.

Algorithm 1 Algorithm for applying a C0 constraint at a
cross-point.
1: procedure Apply_C0_constraint(vector of dofs at cross-points

ucp)
2: Label one dof in ucp as active
3: Label the remaining dofs in ucp as inactive
4: Build the rectangular matrix C representing the linear active-

inactive constraints (see (30))
5: Solve the reduced system Âûh = f̂ , where Â = C	AC and

f̂ = C	 f
6: Recover the solution uh from uh = Cûh
7: end procedure

The construction of the rectangularmatrix C is best explained
with an example.Let us assume that the dofs at the cross-point
are numbered as ucp = [ucp1 ucp2 ucp3 ucp4]. Now, without
loss of generality, we pick ucp1 as the active control point

and the rest as inactive nodes. Then, the constraint can be
expressed via the matrix C as follows:

uh =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

u1
.
.
.

ucp1
.
.
.

ucp2
.
.
.

ucp3
.
.
.

ucp4
.
.
.

undof

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

u1 . . . ucp1 . . . undof⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

u1 1 0 0 0 0
.
.
.

. . .

ucp1 0 0 . . . 1 0 . . . 0
.
.
.

. . .

ucp2 0 0 . . . 1 0 . . . 0
.
.
.

. . .

ucp3 0 0 . . . 1 0 . . . 0
.
.
.

. . .

ucp4 0 0 . . . 1 0 . . . 0
.
.
.

. . .

undof 0 0 0 0 1

·

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

u1
.
.
.

ucp1
.
.
.

undof

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

= Cûh , (30)

where ndof denotes the total number of degrees-of-freedom
in the system. This procedure eliminates the unknowns asso-
ciated with the inactive nodes from the system.

Remark 5 Note that, as we only require C0-continuity at the
cross-point, the valence of the point does not pose any addi-
tional conceptual challenge to the method.

4 A nested preconditioner based on the
Schur complement reduction

In this section, following the notation introduced in [35] and
building upon the work presented in [27,28] in the context
of elastodynamics and hemodynamics, we present an effi-
cient way to mitigate the detrimental effects on the condition
number stemming from our choice of super-penalty parame-
ters. This preconditioner is based on the approximate solution
of the block factorization of the system matrix known as
Schur complement reduction (SCR). We remind the reader
that before performing the algorithm described in the fol-
lowing, we apply a symmetric diagonal scaling to the system
matrix.

4.1 The Schur complement reduction

We begin by reordering the matrixA ∈ R
ndof×ndof stemming

from (26) in blocks as follows:

A =
[
Ai,i Bi,�

B	
i,� C�,�

]
, (31)
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(a) (b)

Fig. 3 Example of the dofs involved in the computation of the coupling integrals and cross-point modification in a four patches setup. For a correct
interpretation of the colors, the reader is referred to the web version of this manuscript

where the subscripts i and � refer to internal and interface
dofs, respectively, where an example is depicted in Fig. 4. Let
us remark that Ai,i is a block-diagonal matrix where every
block is the matrix associated to an homogeneous Dirich-
let problem (fully clamped) on the corresponding patch �i .
Moreover, with a slight abuse of notation, we assume that, if
needed,A has already been modified to account for the con-
straints related to the cross-points introduced in the previous
section.

Now, we can perform the following block factorization of
A:

A = LDU =
[

I 0
B	
i,�A

−1
i,i I

] [
Ai,i 0
0 S�,�

] [
I A−1

i,i Bi,�

0 I

]
,

(32)

where we have introduced the Schur complement S�,� :=
C�,� − B	

i,�A
−1
i,i Bi,� . Multiplying by L on both sides we

get:

[
Ai,i Bi,�

0 S�,�

] [
xi
x�

]
=
[

I 0
B	
i,�A

−1
i,i I

]−1 [
ri
r�

]

Fig. 4 Example of reordering of the dofs in a two patches setup, dis-
cretized by B-splines of degree p = 2, associated to the block system
matrix A

=
[

I 0
−B	

i,�A
−1
i,i I

] [
ri
r�

]
=
[

ri
r� − B	

i,�A
−1
i,i ri

]
. (33)

We highlight that, up to this point, this factorization is per-
formed in exact algebra. Then, from (33), we can solve for x
in a segregated fashion by exploiting Algorithm 2.
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Algorithm 2 SCR algorithm
1: procedure Solution of AX = R based on SCR
2: Solve for an intermediate solution x̂i

Ai,i x̂i = ri (34)

3: Update the interface residual r� = r� − B	
i,� x̂i

4: Solve for the interface solution x� from the Schur equation

S�,�x� = r� (35)

5: Update the internal residual ri = ri − Bi,�x�

6: Solve for the internal solution xi from

Ai,ixi = ri (36)

7: end procedure

Clearly, the Schur complement S�,� is in practice expensive
and often infeasible to compute explicitly. A way around this
issue is given in Algorithm 3, where we summarize a matrix-
free procedure to apply the Schur complement to a vector.

Algorithm 3 Algorithm for applying the Schur complement
to a vector
1: procedure Application of S�,� to a vector X�

2: Compute the matrix-vector multiplication x̂� = C�,�x�

3: Compute the matrix-vector multiplication x� = Bi,�x�

4: Solve for an intermediate solution x̃� from

Ai,i x̃� = x� (37)

5: Compute the matrix-vector multiplication x� = B	
i,� x̃�

6: Return x̂� − x�

7: end procedure

Remark 6 As noted in [27], the cost of the preconditioner is
often dominated by the solution of the Schur system (35).
To reduce the computational burden of this step, we use as
preconditioner a coarse approximation of the Schur comple-
ment obtained by applying only a few iterations ofGMRES to

Ai,i for assembling S̃�,� = C�,� − B	
i,�Ã

−1
i,i Bi,� . Although

this choice works reasonably well for our numerical exam-
ples, we remark that more research is needed to find a robust
(both in h and p) and scalable preconditioner for the Schur
complement and, more in general, for fourth-order PDEs.

4.2 Nested block preconditioner strategy based on
SCR

The main idea presented in [27] is to combine the robust-
ness of the SCR factorization with the ease of application
of a block preconditioners (such as SIMPLE or variants
thereof [35]). Indeed, we can build a preconditioner PSCR

based on an approximate factorization of (33), where Eqs.
(34)–(36) are solved within a prescribed tolerance. Given

that PSCR changes its algebraic definition at every itera-
tion, following [27], we employ a flexible GMRES algorithm
(FGMRES) as the iterative method for the most outer solve
Ax = r. At each iteration of FGMRES, we can apply the
preconditioner PSCR via Algorithm 2, where this entails the
solution of the blocks Ai,i and S�,� . This part of the algo-
rithm is denoted as intermediate solver. Last, since we do
not assemble the Schur complement explicitly, but we apply
its action on a vector through Algorithm 3, we perform a
final solve for Ai,i in (37), denoted as inner solver. The final
performance of the preconditioner is therefore determined by
the prescribed tolerances for the outer, intermediate and inner
layers, respectively, where the objective is finding a good bal-
ance between the computational cost and the robustness of
the method. In the following, we denote the aforementioned
tolerances by ηo, ηt and ηn for the outer, intermediate and
inner layers, respectively.

4.2.1 A preconditioner based of the fast diagonalization
(FD) algorithm

Since each outer iteration of the nested preconditioner is
based on the solution of three systems involving the block
Ai,i , an efficient and robust preconditioner for this block is
required. In this work we extend the isogeometric precondi-
tioner studied in [31,37], based on the Fast Diagonalization
algorithm, to the Kirchhoff plate problem. In the following,
we focus our derivation on the single-patch case. The exten-
sion to themulti-patch case is straightforwardby construction
since the block Ai,i is formed by disjoint sub-blocks associ-
ated to each patch �i .
Now, exploiting the tensor product structure of the B-spline
basis at the patch level, let us introduce the preconditioner
PFD in Kronecker form as:

PFD = M1 ⊗ K2 + K1 ⊗ M2 , (38)

whereMk and Kk with k = 1, 2 refer to the one-dimensional,
parametric mass and hessian matrices associated to the k-th
parametric dimension, respectively. They can be expanded
as follows:

[Mk]i, j =
∫ 1

0
bi,p(ηk) b j,p(ηk) dηk

[Kk]i, j =
∫ 1

0
b′′
i,p(ηk) b

′′
j,p(ηk) dηk , (39)

where b indicates the univariate B-spline basis functions
introduced in Sect. 2. Then, analogously to [32], we par-
tially include the geometry and physical coefficients inside
the preconditioner. In particular, let us denote by C the fol-
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lowing function:

C(η) = D
(∣∣∣∣J−1

F

∣∣∣∣
2

)4 |det (JF)| , (40)

where we recall that JF represents the jacobian of the B-
spline parametrization F and D is the flexural stiffness of the
plate. Now, as explained in [32, Appendix A.3], we perform
a separation of variables on C such that we can write:

C(η) ≈ C̃(η) =
[
ω1(η1)τ2(η2) 0

0 τ1(η1)ω2(η2)

]
, (41)

where this matrix is evaluated at each quadrature point. With
this, we can modify the preconditioner given in (38) to par-
tially account for the geometry and coefficients information
as follows:

PF
FD = M̃1 ⊗ K̃2 + K̃1 ⊗ M̃2 , (42)

where

[
M̃k
]
i, j =

∫ 1

0
ωk(ηk)bi,p(ηk) b j,p(ηk) dηk

[
K̃k
]
i, j =

∫ 1

0
τk(ηk)b

′′
i,p(ηk) b

′′
j,p(ηk) dηk .

(43)

Finally, each iteration of the iterative solver requires the solu-
tion of the following system:

PF
FDs = r , (44)

where r denotes the current residual. Due to the tensor struc-
ture of the preconditioner, we can rewrite (44) as a Sylvester
matrix Eq. [39]:

M̃2SK̃1 + K̃2SM̃1 = R , (45)

where s = vec(S) and r = vec(R).

Remark 7 Let us recall that for any matrix Z ∈ R
r×c the

operator vec(Z) gives as output the vector z ∈ R
rc formed

by stacking the columns of Z .

Let us now consider the generalized eigendecomposition of
the matrix pencils (K̃1, M̃1) and (K̃2, M̃2), respectively, as:

K̃1U1 = M̃1U1D1

K̃2U2 = M̃2U2D2 .
(46)

Here, D1 and D2 are diagonal matrices containing the eigen-
values of M̃−1

1 K̃1 and M̃−1
2 K̃2, respectively. Further,U1 and

U2 are defined as:

U	
1 M̃1U1 = I

U	
2 M̃2U2 = I .

(47)

With these definitions at hand, we can rewrite (42) in Kro-
necker form as:

(U1 ⊗U2)
−	 (D1 ⊗ I + I ⊗ D2) (U1 ⊗U2)

−1 s = r ,

(48)

where the preconditioner can be efficiently applied via Algo-
rithm 4.

Algorithm 4 FD method for applying PF
FD

1: procedure Update of the iteration residual via the FD
method

2: Compute the generalized eigendecomposition in (46)
3: Compute the intermediate result r̃ = (U1 ⊗U2)

	 r
4: Compute the intermediate residual s̃ = (D1 ⊗ I + I ⊗ D2)

−1 r̃
5: Return s = (U1 ⊗U2) s̃
6: end procedure

Remark 8 We remark that the application of the nested pre-
conditioner PSCR combined with PF

FD can be implemented
in a fully matrix-free framework. Furthermore, although not
investigated in this work, the patch-wise block structure of
Ai,i could be further exploited for parallelization.

For the sake of conciseness, we do not provide here further
details of the FD algorithm, but we refer to [31,37] for a thor-
ough theoretical and numerical investigation of the method
in the scope of isogeometric analysis.

5 Numerical examples

In this section we assess the performance of the proposed
couplingmethodwith several numerical examples defined on
non-conforming, multi-patch geometries. All the numerical
experiments presented in the following have been imple-
mented in the open-source and free Octave/Matlab package
GeoPDEs [41], a software designed for the solution of partial
differential equations in the context of isogeometric analysis.

5.1 A four-patches plate example

In this example we consider the computational domain � =
[0, 2] × [0, 2] depicted in Fig. 5, split into four subdomains
�i . We remark that all meshes are non-conforming at every
coupling interface, as the irrational factor

√
2/100 has been

used to shift the interface knots. The body load and boundary
data are computed such that the exact solution is smooth and
it reads:

uex = sin(πx) cos(π y) . (49)
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This setup is used to test the robustness of our method in
the case of severe non-matching discretizations and with
respect to the problem parameters. To this end, we present
the convergence results for all combinations of Young’s
moduli E = [104, 108] [Pa] and thickness of the plate
t = [0.05, 0.01, 0.005] [m], where we set the Poisson’s ratio
ν = 0 [−]. We compare our method to a classical penalty
approach, where we set α�

defl = α�
rot = 104E, � = 1, . . . , L ,

and to a choice of penalty parameters scaled with respect to
the physical parameters as proposed in [16]. In particular,
they read:

α�
defl = δ

Et

h�(1 − ν2)

α�
rot = δ

Et3

12h�(1 − ν2)
,

(50)

where the user-defined parameter δ = 103 is chosen. From
the results in Fig. 6, we observe that the projection strategy
shows robustness with respect to the input parameters and
allows for an easy treatment of locking phenomena, where
optimal convergence rates are also attained for very coarse
meshes.
In Fig. 7 the convergence behavior of the error measured in
the H2 norm with and without the imposition of the C0 con-
straint at the cross-point is plotted. We observe that the loss
of accuracy hinders the convergence for p = 3, 4, whereas
the expected optimal rates of convergence are recovered in
all cases when the linear constraint is imposed to the system.
This is further highlighted in Fig. 8, where the element-wise
H2 error is depicted for a discretization of degree p = 4,
without and with the constraint, respectively. On one hand,
we remark how the error is concentrated and much higher
in the elements around the cross-point, spoiling the optimal
convergencewhen the constraint is not imposed. On the other
hand, with the linear constraint, we recover optimal conver-
gence properties of the method.
Finally, for this example we also analyze the performance of
the nested preconditioner. In Table 3 we report the iterations
needed by the external solver and in brackets the average
number of intermediate iterations, for several degrees of the
discretization p = 2, 3, and we compare it with a clas-
sical diagonally preconditioned conjugate gradient (PCG),
a PCG where an incomplete LU (ILU) is used as precon-
ditioner and a GMRES preconditioned with ILU. All the
results refer to a global tolerance ηo of 10−10 and, for the
nested SCR-FGMRES strategy, the intermediate and inner
tolerances ηt and ηn are set to 10−6. Further, the Schur
complement is preconditioned by an approximation S̃�,�

obtained with a maximum of 6 iterations of GMRES. For
the sake of completeness, we perform the same test with
the choice of penalty parameters studied in [16]. The results
are summarized in Table 4, where we observe no substantial

difference regarding the iterations needed to solve the sys-
tem compared to the case where our choice of parameters is
employed. This suggests that the proposed preconditioner is
robust with respect to the penalty factors and it is also suit-
able to precondition systems stemming from other penalty
approaches.
In Table 5 we study the influence of the intermediate and
inner tolerances on the number of outer iterations required
by the FGMRES solver, on a fixed mesh of 4096 elements,
for B-splines of degree p = 2, 3. We note that as the cho-
sen tolerances become smaller and smaller, we recover the
algebraically exact SCR method, where in the limit the algo-
rithm converges in one iteration. We also remark that finding
an optimal choice for these parameters is, to the best of the
authors’ knowledge, still an open question in the community.

5.2 A nine-patches plate geometry

In this example we consider the computational domain � =
[0, 3] × [0, 3] depicted in Fig. 9, divided into nine subdo-
mains �i . Similarly to the previous example, all meshes are
non-conforming at every coupling interface, where again an
irrational factor of

√
2/100 has been used to shift the inter-

face knots. The body load and boundary data are derived
from the following analytical exact solution:

uex = sin(πx) cos(π y). (51)

Further, we set the Young’s modulus to E = 106 [Pa], the
thickness of the plate to t = 0.01 [m] and the Poisson’s ratio
to ν = 0 [−].

The convergence results of the error measured in the L2,
H1 and H2 are presented in Fig. 10, for splines of degree
p = 2, 3. In this examplewe test the robustness of themethod
with respect to:

• Floating patches;
• The presence of multiple cross-points where a constraint
must be applied.

We again observe the expected asymptotic convergence
rates of the error for all norms, where we remark that
the method behaves optimally, particularly for very coarse
meshes, where locking phenomena are avoided. Indeed, on
one hand, we again notice that a classical “vanilla” choice
of the penalty parameters yield a severe overconstraint of
the solution space, resulting in a loss of accuracy of several
order of magnitudes compared to the projection method. On
the other hand, the scaling studied in [16] leads to better
results especially in the energy norm. However, for coarse
meshes, we note that the method still suffers from locking,
thus hindering the accuracy achievable by B-splines.
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Fig. 5 Problem setup and initial
non-conforming, multi-patch
discretization for the curved
four patches example

(a) (b)

Table 3 Condition number of A and number of iterations needed by different iterative methods, p = 2, 3, as a function of the elements (el.)

256 el. 1024 el. 4096 el. 16384 el.

(a) p = 2

Condition number 1.80 × 107 2.03 × 108 2.61 × 109 3.82 × 1010

Diagonally scaled PCG 792 953 − −
PCG with ILU 111 980 − −
GMRES with ILU 63 174 402 −
Nested SCR-FGMRES 3 (21.6/3.3/20.3) 3 (36/6/30.3) 4 (51/17.5/40.7) 6 (66.5/51/51.3)

(b) p = 3

Condition number 8.76 × 107 1.77 × 109 4.09 × 1010 1.60 × 1012

Diagonally scaled PCG 921 − − −
PCG with ILU 53 221 − −
GMRES with ILU 35 73 − −
Nested SCR-FGMRES 3 (26.6/4/24) 3 (41.6/9/35) 4 (58/25.5/45.7) 6 (76.3/68.3/55.3)

For the nested SCR-FGMRES, the numbers in brackets indicate the average number of intermediate iterations needed to solve Eqs. (34)–(36)
in Algorithm 2, respectively. Iterations marked with—did not reached convergence within the prescribed 1000 maximum number of iterations

Table 4 Condition number of A and number of iterations needed by different iterative methods, p = 2, 3, as a function of the elements (el.) for
the parameters proposed in [16]

256 el. 1024 el. 4096 el. 16384 el.

(a) p = 2

Condition number 1.21 × 109 3.82 × 109 1.33 × 1010 5.01 × 1010

Diagonally scaled PCG 992 − − −
PCG with ILU 175 − − −
GMRES with ILU 79 209 478 −
Nested SCR-FGMRES 3 (22.3/4/21.6) 3 (32/7.3/28.3) 4 (44.5/20.2/34.7) 5 (63.2/55/50.2)

(b) p = 3

Condition number 1.67 × 109 4.79 × 109 1.48 × 1010 5.25 × 1010

Diagonally scaled PCG 778 − − −
PCG with ILU 697 − − −
GMRES with ILU 90 209 − −
Nested SCR-FGMRES 3 (28.6/5.3/27.3) 3 (39.3/13/34.6) 5 (55.8/29.4/41) 6 (74/73.3/48.3)

For the nested SCR-FGMRES, the numbers in brackets indicate the average number of intermediate iterations needed to solve Eqs. (34)–(36)
in Algorithm 2, respectively. Iterations marked with—did not reached convergence within the prescribed 1000 maximum number of iterations
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 Convergence study of the error measured in the H2 norm in the
non-matching case for four patches with curved interface example for
different Young moduli and values of the thickness, B-splines of degree

p = 2, 3. Comparison of a classic penalty method, the scaled version
with respect to the problem parameters proposed in [16] (scaled) and
our projection approach (proj)
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(a) (b)

Fig. 7 Convergence study of the error in the H2 norm in the non-matching case for the curved four patches example. Influence of imposing a C0

constraint at the cross-point

(a) (b)

Fig. 8 Element-wise plot of the error in the H2 norm in the non-matching case for the curved four patches example, B-splines of degree p = 4.
Influence of imposing a C0 constraint at the cross-point, notice the difference of one order of magnitude used in the two colorbars

Table 5 Influence of the intermediate and inner tolerances ηt and ηn (where we always set ηt = ηn) on the number of outer iterations needed by
the FGMRES solver, p = 2, 3, on a fixed mesh with 4096 elements

ηt = ηn = 10−4 ηt = ηn = 10−5 ηt = ηn = 10−6 ηt = ηn = 10−8 ηt = ηn = 10−10

p = 2 11 5 4 3 2

p = 3 13 7 4 3 2
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Fig. 9 Problem setup and initial
non-conforming, multi-patch
discretization for the nine
patches example

(a) (b)

(a) (b) (c)

Fig. 10 Convergence study of the error measured in the L2, H1 and H2

norms in the non-matching case for nine patches example for different
B-splines of degree p = 2, 3. Comparison of a classic penalty method,

the scaled version with respect to the problem parameters proposed
in [16] (scaled) and our projection approach (proj)

Fig. 11 Initial configuration and
non-conforming discretization
for the three patches example

(a) (b)

123



Computational Mechanics (2021) 67:1133–1153 1149

(a) (b) (c)

Fig. 12 Convergence study of the error measured in the L2, H1 and
H2 norms in the non-matching case for the three patches example, B-
splines of degree p = 2, 3. Comparison of a classic penalty method, the

scaled version with respect to the problem parameters proposed in [16]
(scaled) and our projection approach (proj)

Fig. 13 Geometry setup and
non-conforming discretization
for the flat L-bracket example

(a) (b)

5.3 A three-patches plate example

In this example we consider the computational domain � =
[0, 2] × [0, 2], split into three subdomains �i , see Fig. 11a.
The initial non-conforming discretization used in the follow-
ing is depicted in Fig. 11b,where the interface knots are again
shifted by a factor of

√
2/100 to induce the non-conformity.

The peculiarity of this example is the presence of a geometri-
cally non-conforming interface between the patches, which
is further used to assess the robustness of our method.

Remark 9 Similarly to [7], we define an interface as geomet-
rically conforming if the pull-backwith respect to both active
and inactive domains is an entire edge of each parametric
domain �̂i .

Similarly to the previous examples, the exact solution reads:

uex = sin(πx) cos(π y), (52)
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Fig. 14 Solution contour for the
flat L-bracket example,
B-splines of degree p = 2, 3

(a) (b)

from which the applied body load and imposed boundary
conditions are derived. Regarding the problem parameters,
we set the Young’s modulus to E = 106 [Pa], the thickness
of the plate to t = 0.01 [m] and the Poisson’s ratio to ν =
0 [−].
The convergence results of the error measured in the L2,
H1 and H2 are presented in Fig. 12, for splines of degree
p = 2, 3. Analogously to our previous results, our method
attains optimal rates of convergence, even in the presence
of a geometrically non-conforming interface. Once again,
this numerical experiment confirms that our method is
insensitive to boundary locking, starting from very coarse
discretizations, where a substantial gain in accuracy per
degree-of-freedom is observed.

5.4 A flat L-bracket

The last example we present is meant to show the applicabil-
ity of the method to more complex multi-patch geometries.
Analogously to the example studied in [5], we modeled a
flat L-bracket with 28 patches coupled along 34 interfaces,
as depicted in Fig. 13. We apply a constant line load of
100 [N/m] in the negative z-direction on the upper right edge
and we impose clamped boundary conditions on the entire
boundary of the upper left and lower left holes, respectively.
Further, we set the Young’s modulus to E = 200×109 [Pa],
the thickness of the plate to t = 0.01 [m] and the Pois-
son’s ratio to ν = 0 [−]. The solution field obtained with
B-splines of degree p = 2, 3 is depicted in Fig. 14, where we
remark the smoothness of the obtained solution, especially
across the coupling interfaces. In Fig. 15 we also plot the

bending stress tensor m, where its components are defined
as:

mi j = D
(
νδi j ukk + (1 − ν)ui j

)
, (53)

and where δi j denotes the standard Kronecker delta. We
again obtain a smooth stress field, where no visible spu-
rious oscillations are introduced by the proposed coupling
strategy. Finally, in Fig. 16, we plot the convergence results
of the stress component m11, evaluated at point A marked
in Fig. 13a, as a function of the number of dofs on a series
of uniformly refined meshes. We note that for the classi-
cal penalty approach, and only for this example, we have
tuned the penalty parameters to converge towards the ref-
erence value, where we have set α�

defl = 104E , α�
rot =

E, � = 1, . . . , L . This example highlights once again
the gain in accuracy achieved on coarse meshes by the
proposed method, also for point-wise quantities of inter-
est.

6 Conclusions

In this work we have introduced a simple methodology for
the C1-coupling of isogeometric patches based on the L2-
projection of suitable super-penalty terms in the context of
Kirchhoff plates. The method does not suffer from lock-
ing phenomena even in the case of severe non-matching
discretization, where optimal rates of convergence of the
error measured in the L2, H1 and H2 norms have also been
attained on very coarse meshes and a substantial gain in
accuracyper degree-of-freedomhasbeenobserved compared
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(a) (b) (c)

(d) (e) (f)

Fig. 15 Components of the bending stress tensor m for the flat L-bracket example, B-splines of degree p = 2, 3

to a classical penalty approach and to the scaled choice of
parameters presented in [16] in the scope of Kirchhoff–Love
shells. The method turns out to be particularly effective for
moderate spline degrees p = 2, 3. Our choice of param-
eters is completely determined by the problem definition
and is based upon the underlying perturbed saddle point
formulation associated with the plate, from which the two
Lagrange multipliers are eliminated and the magnitude of
the corresponding perturbations gives us insights on how to

appropriately select the penalty factors. Then, to mitigate the
detrimental effects of this choice on the condition number of
the system matrix, we have combined the nested block pre-
conditioner introduced in [27]with a preconditioner based on
the Fast Diagonalization algorithm tailored for isogeometric
Kirchhoff plates, inspired by the strategy in [37].
To conclude, we have numerically demonstrated the applica-
bility and robustness of the proposed projected super-penalty
approach for coupling Kirchhoff plates discretized by non-
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Fig. 16 Convergence study of the stress component m11, evaluated at
point A in Fig. 11a, for the flat L-bracket example for different B-splines
of degree p = 2, 3. Comparison of a classic penalty method, the scaled
versionwith respect to the problemparameters proposed in [16] (scaled)
and our projection approach (proj)

conforming isogeometric patches, where the method does
not show any boundary locking also on very coarse meshes.
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