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Abstract
The standard Yee FDTD algorithm is widely used in computational electromagnetics because of its simplicity and divergence
free nature. A generalization of this classical scheme to 3D unstructured co-volume meshes is adopted, based on the use
of a Delaunay primal mesh and its high quality Voronoi dual. This circumvents the problem of accuracy losses, which are
normally associated with the use of a staircased representation of curved material interfaces in the standard Yee scheme. The
procedure has been successfully employed for modelling problems involving both isotropic and anisotropic lossy materials.
Here, we consider the novel extension of this approach to allow for the challenging modelling of chiral materials, where the
material parameters are frequency dependent. To adequately model the dispersive behaviour, the Z-transform is employed,
using second order Padé approximations to maintain the accuracy of the basic scheme. To validate the implementation, the
numerical results produced are compared with available analytical solutions. The stability of the chiral algorithm is also
studied.

Keywords Chiral · Dispersive · Co-volume · Finite difference · Unstructured mesh

1 Introduction

Innovative fabrication techniques are currently being
employed to create new chiral materials for use in com-
munication technologies. For such materials, the electric
permittivity, magnetic permeability and chirality are all fre-
quency dependent parameters. The chirality allows for a
negative index of refraction with, simultaneously, a posi-
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tive relative permittivity and permeability. In addition, chiral
materials lead to optical rotatory dispersion (ORD) and circu-
lar dichroism (CD). In ORD, the polarization is continuously
rotated inside the material, while CD refers to the change of
polarization of the incident wave, from linear to elliptical,
due to the different absorption coefficients of a right and a
left circularly polarized wave. Such materials are being used
to create smaller antennas, super lenses [1], polarizers and
Radomes or radar cross section (RCS) reducing materials.

The Yee FDTD algorithm is widely used for general com-
putational electromagnetic simulations. The advantages of
the algorithm are its explicit nature, simplicity, low compu-
tational costs and divergence free nature. A major limitation
of the standard implementation is the requirement for a struc-
tured Cartesian mesh, which can result in accuracy losses in
simulations involving curved material surfaces. This limita-
tion can be alleviated, though not removed, by employing
finer meshes, but with a consequent increase in compu-
tational costs. To combine geometric flexibility with the
efficiency of the Yee FDTD algorithm, a novel hybrid solu-
tion method has been developed in which an unstructured
mesh procedure is used in the vicinity of material interfaces,
while the standardYeeFDTDscheme is used elsewhere [2,3].
The unstructured mesh procedure is essentially an unstruc-
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tured implementation of the FDTD method, using a primal
Delaunay and its Voronoi dual mesh [4]. The approach,
which has already been employed for the analysis of scatter-
ing and transmission problems involving both isotropic and
anisotropic materials, has been shown to require the use of
meshes that are up to eight times coarser than those required
by standard FDTD methods [5,6].

In this paper, we will consider an extension of this pro-
cedure to enable the modelling of problems involving chiral
dispersive materials. The approach adopted will employ a
Lorentz model for the electric permittivity and magnetic
permeability and a Condon model for the chirality [7]. Sev-
eral methods have been developed for modelling frequency
dependent materials within a time domain method, including
the auxiliary differential equation method [8], the piece-
wise recursive convolution method [9] and the Z-transform
technique [10]. As these three methods have been found to
produce generally comparable results, the Z-transform tech-
nique was selected and implemented here. This approach
is widely used in signal processing and can be viewed as
the discrete version of the Laplace transform. It is readily
implemented within the proposed solution algorithm and
demonstrates good convergence close to the resonant fre-
quency [11]. Demir et al. [12] appear to have been the first
to model chiral materials in 3D with FDTD and using the
Z-transform to handle the frequency dependence of themate-
rial parameters. In their method, first order approximations
were used in the Z-domain and the Z-transform coefficients
were derived analytically. Pereda et al. [13] used a differ-
ent approach, which achieved second order accuracy in the
Z-domain by employing a bilinear transformation for calcu-
lating Padé approximants [14].

In this paper, we present a hybrid unstructured mesh
FDTD approach, in which chiral materials are modelled
by employing a generalization of the method introduced by
Pereda et al. [13]. The implementation is validated by sim-
ulating the transmission of a pulse through a 3D chiral slab
in free space and by calculating the RCS of a sphere. The
stability of the resulting numerical algorithm, with respect to
changes in the mesh and the chirality, is also investigated.

2 Problem formulation for isotropic
dielectric materials

We start with the equations for an isotropic material, in order
to review the basic idea of the solution algorithm and to
highlight the changes required to enable the modelling of
frequency dependent chiral materials. If we assume that that
material is non-lossy [5], Ampère’s Law and Faraday’s Law
may be expressed, in scattered field form, as

∫

A

ε
∂

∂t
Escat ·dA =

∮

∂A

Hscat ·dl− ∂

∂t

∫

A

(ε − ε0)Einc ·dA

(1)

and

∫

A

μ
∂

∂t
Hscat · dA = −

∮

∂A

Escat · dl − ∂

∂t

∫

A

(μ − μ0)Hinc · dA (2)

Here, ∂A denotes the closed curve bounding a surface A, dA
is an element of surface area, directed normal to the surface
and dl is an element of contour length in the direction of the
tangent to the curve. In addition, ε is the electric permittivity
and μ is the magnetic permeability. The total electric field,
Etot , and the total magnetic field, Htot , are each regarded
as being formed as the sum of incident and scattered fields,
with the subscripts inc and scat being employed to indicate
incident and scattered components respectively. The incident
field is assumed to be a plane wave, generated in the far field,
which has the form Einc = E0 cos(ωt − k · r), where E0

is the polarization vector of the electric field, k is the wave
vector, r is the position vector,ω is the angular frequency and
t is the time. The incident magnetic field may be determined,
using Faraday’s Law, as

Hinc = k̂ × Einc

η
(3)

where k̂ is the unit wave vector and η = √
μo/εo is the

impedance of free space.
For numerical solution, Eqs. (1) and (2) are discretized

using twomutually orthogonal co-volumemeshes. Although
the approach is more general, we describe the implemen-
tation here on a primal tetrahedral mesh generated, using
a standard Delaunay method [15], and its associated dual
Voronoi diagram. EachVoronoi face is a perpendicular bisec-
tor of the corresponding Delaunay edge and each Delaunay
face is perpendicular to the corresponding Voronoi edge. It
is assumed that the Delaunay mesh has ND

e edges and that
the Voronoi mesh has NV

e edges. Each Delaunay edge has an
associated perpendicular closed loop of Voronoi edges and,
similarly, each Voronoi edge is surrounded by a closed loop
of Delaunay edges. The unknowns are located at the mid-
points of these edges. At the center of the i th Delauany edge,
the unknown is the projection, Escat,i , of the scattered elec-
tric field onto the direction of the edge. The unknown at the
center of the j th Voronoi edge corresponds to the projection,
Hscat, j , of the scattered magnetic field onto the direction
of the edge. Using the leapfrog time stepping scheme, dis-
cretization of Eqs. (1) and (2) results in
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Fig. 1 The i th Delaunay edge, connecting Delaunay vertices p1 and
p2, and the corresponding Voronoi face, formed by the Voronoi edges
ji,1, . . . , ji,6

En+1
scat,i = En

scat,i + Δt

εAV
i

⎡
⎣

MV
i∑

k=1

Hn+0.5
scat, ji,k

lVji,k − (ε − ε0)A
V
i

∂

∂t
En+0.5
inc,i

⎤
⎦

(4)

and

Hn+0.5
scat, j = Hn−0.5

scat, j + Δt

μAD
j

⎡
⎢⎣−

MD
j∑

k=1

En
scat,i j,k l

D
i j,k − (μ − μ0)A

D
j

∂

∂t
Hn
inc, j

⎤
⎥⎦

(5)

Here, Δt denotes the time step, the superscript n denotes an
evaluation at time level tn = nΔt, l Di is the length of the i th
Delaunay edge and AV

i corresponds to the area of theVoronoi
face spanned by the Voronoi edges surrounding Delaunay
edge i . Similarly, lVj represents the length of the j th Voronoi

edge and AD
j corresponds to the area of the Delaunay face

spanned by the Delaunay edges surrounding Voronoi edge j .
The numbers ji,k, k = 1, . . . , MV

i refer to the MV
i edges of

the Voronoi face corresponding to the i th Delaunay edge, as
illustrated in Fig. 1, while the numbers i j,k, k = 1, . . . , MD

j

refer to the MD
j edges of the Delaunay face corresponding

to the j th Voronoi edge, as illustrated in Fig. 2.
With these staggered equations, the magnetic field is

updatedover thedual graph at the half time step, usingEq. (5),
and the electric field is updated over the primal graph at the
full time step, using Eq. (4). At interface boundaries, the
material parameters are not constant over the area of integra-
tion and, in this case, average values of ε, μ are adopted [6].

The extension of this implementation to any primal poly-
hedral mesh and its orthogonal dual is direct. In particular,
themethod reverts to the standardYee FDTDalgorithmwhen
hexahedral meshes are employed.

Fig. 2 The j th Voronoi edge, connecting Voronoi vertices v1 and v2,
and the corresponding Delaunay face, formed by the Delaunay edges
i j,1, i j,2, i j,3

3 Mesh generation

Consider the problem of generating a body fitted mesh to
discretise the computational domain for a general problem
of interest. For the solution of wave propagation problems
with the FDTD method, a mesh of uniform size is generally
desired. The procedure adopted for constructing a suitable
mesh can be decomposed into four main stages, making full
use of the ability of the algorithm to be implemented on
general polyhedral meshes.

In the first stage, an unstructured triangulation of the sur-
face of the object is produced [16] and this triangulation is
then placed inside a hexahedral box. The region inside this
box is discretized using a regular Cartesian mesh of cubes,
of a uniform edge length. Cubes within a prescribed distance
of the object, or lying internal to the object, are removed
in a second stage, to create a staircase shaped surface that
completely encloses the object [15]. A pyramidal element is
added to each exposed internal square face. In the third stage,
a standard Delaunay mesh generator is used to create a uni-
form unstructured tetrahedral mesh that completely covers
the unmeshed region. The fourth stage consists of stitching
together the hexahedral and tetrahedral meshes [17].

The resulting unstructured mesh is optimized to ensure
that both the primal and the dual mesh are of the highest pos-
sible quality. The approach adopted is to relax, if necessary,
the requirement that a dual edge must be a bisector of the
corresponding Delaunay edge. At the same time, the corre-
sponding dual mesh vertex is moved to a point which still
ensures orthogonality between the two grids and which lies
inside the corresponding primal element. Primal elements
with a common circumcenter, and hence, a corresponding
Voronoi edge length of zero, will automatically be merged
prior to the solution process, creating a mesh consisting of
general polyhedral cells [4].
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4 Problem formulation for dispersive chiral
materials

The approach outlined above requires some modification
before it can be used to model problems involving frequency
dependent chiral materials. Incorporation of the Z-transform
method enables the development of a time domain for-
mulation that takes into account materials with frequency
dependent parameters. It is not possible to employ a pure
scattered field formulation and an intermediate total field step
is found to be required.

In this case, in the frequency domain, Ampère’s Law and
Faraday’s Law may be expressed in the integral form

∫

AV

jωDscat (ω) · dA =
∫

∂AV

Hscat · dl

+
∫

AV

(ε(ω) − ε0)jωEinc(ω) · dA (6)

∫

AD

jωBscat · dA = −
∫

∂AD

Escat · dl

+
∫

AD

(μ(ω) − μ0)jωHinc · dA (7)

Here, j = √−1 andD andB represent the electric fluxdensity
and the magnetic flux density respectively. The total field
formulation

∫

AV

jωDtot (ω) · dA =
∫

∂AV

Hscat · dl +
∫

AV

ε0jωEinc(ω) · dA

(8)∫

AD

jωBtot · dA = −
∫

∂AD

Escat · dl +
∫

AD

μ0jωHinc · dA

(9)

removes the terms ε(ω) andμ(ω). The constitutive equations
for chiral materials are expressed in the form

Dtot = εEtot + jκ

c
Htot Btot = μHtot − jκ

c
Etot (10)

where c is the speed of light and κ the chiral parameter cou-
pling the electric and magnetic fields. Implementing these
relationships within the numerical scheme provides compu-
tational challenges, as the electric field projection is stored
on the Delaunay mesh while the magnetic field projection is
stored on the Voronoi mesh. The Lorentzian model

ε(ω) = ε∞ + (ε� − ε∞) ω2
e

ω2
e + 2ωe ξe jω − ω2

μ(ω) = μ∞ + (μ� − μ∞) ω2
h

ω2
h + 2ωh ξh j ω − ω2

(11)

is employed to determine the variation of the permittivity
and the permeability with frequency. Here, the subscript ∞
denotes high frequency values, while the subscript � refers
to the low frequency limit. ωe, ωh refer to the resonance fre-
quency and ξe, ξh, to the damping coefficients for the Lorentz
model. The value of the chiral parameter is obtained, from
the Condon model, as

jκ(ω) = κ̂ = τk ω2
k jω

ω2
k + 2ωk ξk jω − ω2

(12)

where ωk denotes the resonance frequency, while ξk corre-
sponds to the damping coefficient for the chiral material. The
coupling constant, τk , defines the magnitude of the chirality.

Using these relations, Eqs. (6) and (7) may then be
expressed as

∫

AV

jωε∞Etot · dA =
∫

∂AV

Hscat · dl +
∫

AV

ε0jωEinc · dA

−
∫

AV

Jee · dA +
∫

AV

Jκh · dA (13)

∫

AD

jωμ∞Htot · dA = −
∫

∂AD

Escat · dl +
∫

AD

μ0jωHinc · dA

−
∫

AD

Jhh · dA −
∫

AD

Jκe · dA (14)

where

Jhh = jω(μ − μ∞)Htot Jκh = jωκ̂

c
Htot (15)

Jee = jω(ε − ε∞)Etot Jκe = jωκ̂

c
Etot (16)

5 Discrete equations and the Z-transform

To convert Eqs. (13) and (14) from the frequency to the time
domain, we use the substitution jω → ∂

∂t . The staggered
leapfrog scheme is then applied to discretize the resulting
equations. The bilinear transformation

jω = 2

Δt

1 − Z−1

1 + Z−1 (17)
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Fig. 3 Determining the electric field on theVoronoi edges: a reconstruct
the electric field vector from its projections on the Delaunay edges and
link this vector to the corresponding cell center and b average the elec-

tric field vectors from the cell centers linked to the same Voronoi edge
v and project them to the corresponding edge

is used, to convert a frequency dependent function to the Z-
domain [10]. Equations (15) and (16) can be expressed, with
second order accuracy in the Z-domain, by adopting the Padé
approximants bi j0 , bi j1 , bi j2 , ai j1 , ai j2 with i j = ee, κe, hh, κh.
In this manner, we obtain the approximation

Jee = bee0 + bee1 Z−1 + bee2 Z−2

1 + aee1 Z−1 + aee2 Z−2 (18)

Transferring to the time domain is straightforward, as Z−m

acts as a backwards operator in time, e.g. with m =
1, Z−1Jn+1

ee = Jnee. Rearranging Eq. (18) and, for an arbi-
trary field, F, using the notation Z−mFn = Fn−m , we obtain

Jn+1
ee = Wn

ee + bee0 En+1
tot

Wn+1
ee = bee1 En+1

tot − aee1 Jn+1
ee + bee2 En

tot − aee2 Jnee (19)

Similar approximations may be written for the terms Jn−1/2
κh ,

Jn+1/2
hh and Jn+1

κe . Using this notation, discretizing the time
dependent form of Eqs. (13) and (14) on our unstructured
mesh leads to the update equations

En+1
tot,i = 1

2ε∞ + bee0 Δt

[
2ε∞En

tot,i

+Δt

⎧⎨
⎩2

⎛
⎝ 1

AV

MV
i∑

k=1

Hn+1/2
scat, ji,k

lVji,k + ε0
∂En+1/2

inc,i

∂t

⎞
⎠

− Wn
ee,i − Jnee,i + 2Jn+1/2

κh,iav

}]
(20)

Hn+1/2
tot, j = 1

2μ∞ + bhh0 Δt

[
2μ∞Hn−1/2

tot, j

+Δt

⎧⎪⎨
⎪⎩2

⎛
⎜⎝ −1

AD

MD
j∑

k=1

En
scat,i j,k l

D
i j,k + μ0

∂Hn
inc, j

∂t

⎞
⎟⎠

− Wn−1/2
hh, j − Jn−1/2

hh, j − 2Jnκe, jav

}]
(21)

For a dispersive non-chiral material, Jκe, jav
and Jκh,iav

are
identically equal to zero. The difficulty in dealing with

Eqs. (20), (21) lies in the coupling terms Jn+1/2
κh,iav

and Jnκe, jav
.

For example, Jnκe, jav
is required on the Voronoi edges, but

it includes the electric field projections, that are only avail-
able on the Delaunay edges. In Fig. 3, we illustrate how we
overcome this problem. In the case of a tetrahedron, we
have six Delaunay edges and the electric field projection
Ei , i = 1, . . . , 6 is stored on each edge. Using these pro-
jections, the electric field vector ECell1 can be reconstructed
and linked to the center of the corresponding cell, in this case
cell 1. To achieve this, the equation set is as follows

¯̄PECell1 = (
ECell1 · êi

)
êi (22)

is constructed, where

¯̄P =
⎡
⎣ eix eix eix eiy eix eiz
eiy eix eiy eiy eiy eiz
eiz eix eiz eiy eiz eiz

⎤
⎦ (23)

Here,
(
ECell1 · êi

)
corresponds to the projection of the elec-

tric field vector ECell1 in the direction of the Delaunay edge
êi . The unknown electric field vector at the center of a given
cell is approximated by writing Eq. (22) for each of the N
Delaunay edges forming the corresponding cell in turn and
summing these equations, as depicted in Fig. 3b. In this case,
for each cell center, we solve the system

¯̄P′ECell1 =
N∑

q=1

(
ECell1,q · êq

)
êq (24)

with

¯̄P′
l,m =

N∑
q=1

3∑
l=1

3∑
m=1

eql eqm (25)

where ei1 = eix , ei2 = eiy and ei3 = eiz . The resulting field
vector is then associated to the corresponding cell center. As
a Voronoi edge connects two cells, we need to repeat this
procedure for the second cell leading to ECell2 . In the next
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step, the field vectors linked to these cells are averaged and
projected to the corresponding Voronoi edge v according to
(ECell1 + ECell2)/2 · v, as illustrated in Fig. 3b. With the
electric field defined on the Voronoi edges in this manner,
we may then compute Jnκe,iav

. We proceed analogously for
the magnetic field, but in this case we have a point from the
Delaunay mesh inside a Voronoi cell [6].

5.1 Updating scheme

With the total field formulation employed as an intermedi-
ate step, to obtain the desired scattered fields, the complete
solution algorithm may be described by the steps:

1. Magnetic field loop. Calculation of Hn+1/2
scat, j

(a) reconstruct Escat
n from Delaunay edges and project

to the Voronoi edges leading to En
scat, j

(b) add the incident field to obtain the total field vector
En
tot, j = En

scat, j + En
inc, j

(c) compute Jnke, j , H
n+1/2
tot, j and Jn+1/2

hh, j

(d) compute Hn+1/2
scat, j = Hn+1/2

tot, j − Hn+1/2
inc, j

2. Electric field loop. Calculation of En+1
scat,i

(a) reconstruct Hscat
n+1/2 from Voronoi edges and

project to the Delaunay edges leading to Hn+1/2
scat,i

(b) add the incident field to obtain the total field vector
Hn+1/2
tot,i = Hn+1/2

scat,i + Hn+1/2
inc,i

(c) compute Jn+1/2
kh,i , En+1

tot,i and Jn+1
ee,i

(d) compute En+1
scat,i = En+1

tot,i − En+1
inc,i .

6 Interface boundary conditions

To satisfy the boundary conditions at interfaces between
different materials, a weighted averaging is applied to the
Padé approximants. This is similar to the process that has
already been successfully employed for simulations involv-
ing isotropic and anisotropic media [5]. However, for the
Padé approximants, which are required in expressions such
as Eq. (18), we only average the coefficients in the numerator.
To illustrate this process, consider two elements, separated
by a boundary face, as illustrated in Fig. 4, and consider the
calculation of the permeability for the correspondingVoronoi
edge. Applying the bilinear transformation to μ∞ − μ from
Eq. (11) leads to (μ∞ − P(z)), where

P(z) = b0 + b1z−1 + b2z−2

1 + a1z−1 + a2z−2 (26)

Fig. 4 Representation of a Voronoi edge and the corresponding cells

The magnetic flux is determined as

B(z)i = μ(z)H(z)i = (μ∞ − P(z))H(z)i (27)

where the subscript i(= 1, 2) refers to the medium 1 or 2.
The average magnetic flux at the interface is calculated as

B(z)av = l1B(z)1 + l2B(z)2
l1 + l2

= w1(μ∞,1 − P(z)1)H(z)1

+w2(μ∞,2 − P(z)2)H(z)2 (28)

where wi = li/(l1 + l2) for i = 1, 2.

7 Numerical examples

7.1 Rotation of the plane of polarization

To verify the implementation of the scheme, the transmission
coefficients for an EM pulse incident upon a chiral slab are
computed, along with an evaluation of the variation of the
angle of the plane of polarisation of the incident field. The
dielectric slab has dimensions 0.3 m, 0.3 m and 0.1 m in
the x, y, and z directions respectively. The mesh employed
is such that 40 cells are used to discretise a length of 0.1 m.
The electric permittivity and magnetic permeability of the
slab are described by a Lorentz model and the chirality by a
Condon model. The slab is located in free space, as depicted
in Fig. 5.

In total the mesh with Δz = 0.0025 m consists of
3, 512, 025 cells corresponding to 10, 676, 124 Delaunay
and 10, 417, 154 Voronoi edges. The PML is represented
in terms of 1, 220, 300 hexahedral cells. We only consider a
real chirality, which induces a rotation of the plane of polar-
ization of the incident field (ORD). In this case, the variation
of the angle of polarization, Φ, can be computed as

Φ = κωL (29)
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Fig. 5 Chiral slab (shown in green) in free space (blue). (Color figure
online)
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Fig. 6 Rotation of the plane of polarization over time for 6 different
values of the chirality. The black lines correspond to the theoretical
values and the coloured lines to the numerically computed values over
several cycles

where κ is the real value of the chirality, ω is the angular
frequency of the incident wave and L is the thickness of the
slab [18]. To compute this angle, we use a Fourier transform,
which allows us to evaluate the variation of the amplitude
without time dependence. A point in the Delaunay mesh is
selected, such that, with respect to the incident wave, it lies
behind the chiral slab. Then, for a wave propagating in z
direction,

Φnum = FT(Ey)

FT(Ex)
(30)

where FT denotes the Fourier transform.
Figure 6 shows the numerically computed rotation com-

pared to the theoretical result, for different values of the
chirality. For values of κ less than 0.0407, the numerically
computed angles of rotation of the plane of polarization
remain almost constant over time and are in good agreement

with the theoretical values. For higher chiralities, however,
the numerical solution shows very strong fluctuations indi-
cating an instability of the scheme.

7.2 Stability investigation

Initially, to investigated the effect of the time step size on the
results, we performed calculations on the samemesh but with
different time steps. From the results of these calculations,
presented in Fig. 7a, it is apparent that reducing the time step
has little effect on the stability of the scheme.

Next, we investigated the effect of spatial step size on the
numerical stability. The slab thickness, L , is expressed as
L = nΔz, where n is the number of cells through the slab,
in the z direction, and Δz is the edge length of a given cell.
A cell normalized rotation of the plane of polarization may
then be defined as

Φcell = Φ

n
= κωΔz (31)

In the next step, we fix the chirality and create different
meshes by just increasing the spatial step Δz and compute
the relative error of Φcell .This leads to an increase in Φcell

for coarser meshes, as represented in Fig. 7b.
Finally, for several real chiralities we employ two meshes

with Δz = 0.0025 m for the finer mesh and Δz = 0.003 m
for the coarser mesh. The results produced after 20 cycles
are displayed in Fig. 8a, b.

It can be clearly seen that, for the same chirality, the oscil-
lations decrease when the mesh size reduces.

We conclude that the chirality induced instabilities are
directly linked to the spatial discretisation and not to the
time step. For a stable simulation, the results suggest that the
mesh used should ensure that ΦCell ≤ 0.4◦ for each cell.

7.3 Stability in the presence of damping

In this subsection, we demonstrate the stabilizing effects
of damping applied to the numerical scheme. The coupling
coefficient τk = 2 ·10−12 s leads to strong instabilities in the
scheme without damping. We increase the damping, using
ξk = 0.01, 0.025, 0.05 and 0.1 in turn, and again plot the
angles over 20 cycles. From the results, shown in Fig. 9, we
see that the scheme is now stablewell above theΦCell = 0.4◦
limit suggested for the non-damped case. It appears that, pro-
vided Im(κ) ≥ Re(κ)/15, the scheme is stable. But, in this
case, we are no longer dealing with a pure ORD.
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Fig. 7 a Same mesh, different time step and b same chirality, different meshes
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Fig. 8 Relative error of the numerically computed rotation of the plane of polarization with increasing chirality compared to analytical values for
two meshes. a Mesh with Δz = 0.0025 and b mesh with Δz = 0.003
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7.4 Reflection/transmission on a chiral slab

Consider the problem of determining the transmission and
reflection coefficients for a chiral slab, of infinite length and
width, with a finite thickness L , set between two isotropic
media. The first medium extends from z ∈] − ∞,−L[, the

bi-isotropic chiral slab forms the secondmedium that extends
from z ∈ [−L, 0[ and the third medium extends from z ∈
[0,+∞[. For our case, medium 1 and 3 will be taken to be
free space. This problem has an analytical solution [18]. The
linearly polarized narrowband pulse

Einc,y(r, t) = e−(t−k·r/ω)2/2τ 2 sin(ωt − k · r) (32)

propagating in the z direction, is sent towards the slab.
The values adopted for the material parameters are εs =
1.8ε0, ε∞ = 1.8ε0, μs = 1.1μ0, μ∞ = 1.0μ0, ωe = ωh =
ωk = 2π × 3.5 GHz, ξe = 0.14, ξh = 0.12, ξk = 0.1 and
τk = 1 ps. To compute the frequency dependent reflection,
we chose a point p1 in the mesh located in free space just
ahead of the slab. For the transmission coefficient, a point
p2, slightly behind the slab, is selected. The co-polarized
reflection coefficient, Rco, the co-polarized transmission
coefficient, Tco, and the cross polarized transmission coef-
ficient, Tcr , are then determined as
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Fig. 10 Comparison between analytical and numerical transmission coefficients. a Tco and b Tcr

Fig. 11 Comparison between analytical and numerical reflection coef-
ficients Rco

Rco = FT (Escat,y,p1)

FT (Einc,y,p1)

Tco = FT (Escat,y,p2)

FT (Einc,y,p2)

Tcr = FT (Escat,x,p2)

FT (Einc,y,p2)
(33)

The results for the transmission and reflection coefficients
are displayed in Figs. 10 and 11 respectively.

For a simple isotropic material, Tcr is equal to zero. Over-
all, good agreement is obtained between the numerical and
the analytical solution. The differences in the results arise
because the analytical model assumes a slab with infinite
extension in the directions perpendicular to the propagation.
In addition, the numerical dispersion inherent in the scattered
field formulation leads to a shift in the peaks for the reflection
coefficient.

Fig. 12 Cut through a typical mesh for a λ/15 sphere

8 Radar cross section (RCS)

This case involves the computation of the radar cross section
(RCS) of a chiral sphere. TheRCS corresponds to the amount
of scattered power from a target towards a radar and may be
readily determined from the numerical solution [5,6]. This
problem is chosen as an analytical solution is available [19].
The scattered wave is decomposed into co-polarized and
cross-polarized components. We consider a λ/40 sphere
and employ a mesh consisting of 4,742,854 Delaunay cells,
1,727,445 Delaunay vertices, 7,604,002 Delaunay edges and
10,544,148 Voronoi edges. The expression λ/n expresses
the fact that our mesh consists of a spacing of n points
per wavelength. We will use three different wavelengths,
0.8m,1.0m and 1.2m, corresponding to spheres of electrical
length 2.5m,2.0m and 1.66m respectively. A PML region
consisting of 10 layers of cells was found to be sufficient for
this case. As this mesh is too dense to display, the form of a
coarser mesh, suitable for the analysis of a λ/15 sphere, is
shown in Fig. 12.
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Fig. 13 Scattering of a plane wave by a chiral sphere with λ0 = 1 m, ξk = 0.3 and τk = 16.7 ps: a co-polarized RCS distribution and b
cross-polarized RCS distribution
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Fig. 14 Scattering of a plane wave by a chiral sphere with λ0 = 1m, ξk = 0.3 and τk = 10 ps; a co-polarized RCS distribution and b cross-polarized
RCS distribution
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Fig. 15 Scattering of a plane wave by a chiral sphere with λ0 = 0.8 m, ξk = 0.3 and τk = 16.7 ps: a co-polarized RCS distribution and b
cross-polarized RCS distribution
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Fig. 16 Scattering of a plane wave by a chiral sphere with λ0 = 1.2 m, ξk = 0.3 and τk = 16. ps; a co-polarized RCS distribution and b
cross-polarized RCS distribution

The bi-static RCS of a λ/40 sphere, with varying free
space wavelength λ0 and coupling constants between the
electric and magnetic fields, is computed. The wavelength λ

inside a dielectric shrinks with respect to free space accord-
ing to λ = λ0/

√
εrμr − κ2. The material parameters for

the electric permittivity and permeability remain the same,
because we are interested in the effect of chirality on the
RCS. For the simulations, the values εs = 1.8 ε0, ε∞ =
1.6 ε0, μs = 1.1 μ0, μ∞ = 1.0 μ0, ωe = ωh = ωk =
2π × 1 GHz, ξe = 0.12, ξh = 0.12 were employed for the
material parameters. A time step sizeΔt = 6.18 ps was used
and the wavelength λ0 of the incident wave took the values
0.8m,1.0m and 1.2m. The numerical solution was advanced
through 20 cycles and the results produced were compared
to the analytical solution, using the program developed by
Demir et al. [19].

As the RCS distributions will be symmetrical in this case,
only the results for angles lying between 180◦ and 360◦ are
shown in Figs. 13, 14, 15 and 16. All the results demonstrate
a very good agreement between the numerical and analytical
solution for different values of the coupling constants τk and
the wavelength λ0. In particular, the very weak signal at high
angles, from 300◦ to 360◦, is well captured.

9 Practical example

The final example demonstrates the use of the method in a
predictive mode and involves the calculation of the transmis-
sion coefficient of a dielectric radome. The radome is in the
form of half of an ellipsoidal shell, with a lateral radius of
0.5 m, a length of 1 m and a thickness of 0.05 m. A triangu-
lation of the radome surface is shown in Fig. 17a. The shell
is made of a chiral material, with properties characterised
by the Lorentz and Condon models of Eqs. (11) and (12),
with parameters values εs = 1.8 ε0, ε∞ = 1.6 ε0, μs =

1.1 μ0, μ∞ = 1.0 μ0, ωe = ωh = ωk = 2π × 1 GHz,
ξe = 0.12 and ξh = 0.12.

A narrowband pulse, as defined in Eq. (32), is used to illu-
minate the radome, with a central frequency at 1.2 GHz and a
width of 1 ns.Relative to an (x, y, z) cartesian coordinate sys-
tem, the pulse is polarized in the y direction and propagates
in the x direction. The mesh employed is designed to have 40
degrees of freedom per wavelength on the shell and a PML
represented by 10 layers of hexahedral elements. The short-
est distance between the inner boundary of the PML and the
radome surface is discretised with 8 cells. This mesh, which
is illustrated in Fig. 17b, contains 876,314 cells, 1,673,283
Delaunay edges and 2,076,114 Voronoi edges. The simula-
tion is stopped after 20 periods, a time of 16.6 ns, when all
the wave reverberations become insignificant. This required
40 min of CPU time on a single Intel Nehalem processor.
Figure 17b also shows computed contours of the scattered
field component Escat,y at a time corresponding to 8 ns of
propagation of the narrowband pulse.

The transmission coefficient spectrum is computed using
a Fourier transform of the time domain solution, as indicated
in Eq. (33). For this example, the reference points p1 and p2
are chosen to lie outside and inside the radome respectively.
Figure 18 shows the variation of the computed co-polarized
reflection and transmission coefficients, Rco and Tco respec-
tively, and the cross-polarized transmission coefficient, Tcr .
The results show that the reflection is higher below 3GHz. At
this frequency, the cross-polarized transmission factor shows
its maximum and above this frequency the transmission is
higher.

10 Conclusion

In this paper, we have demonstrated how a co-volume solu-
tion method, originally developed for applications involving
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Fig. 17 a View of the surface
discretisation of a portion of the
radome shell and b contours of
Escat,y , and a view of the mesh
employed, after propagation of
the narrowband pulse for 8 ns

Fig. 18 Calculated variation of the co-polarized reflection coefficient,
Rco, the co-polarized transmission coefficient, Tco, and the cross polar-
ized transmission, Tcr , for the radome example

PECs, isotropic dielectric and anisotropic dielectric materi-
als [5,6], can be further extended to enable the modelling of
isotropic frequency dependent materials and chirality. These
additional features have been incorporatedwith the use of the
Z-transform method [10,13]. We have investigated the effect
of the chirality on the stability of the resulting scheme and
demonstrated that stability is enhanced by the use of a finer
mesh or by reducing the real part of the chirality. Increasing
the damping also has a stabilising effect. As the chirality is
obtained by fitting the Condon model to experimental data,
varying Re(κ) or Im(κ) is not possible, so that, normally, a
stable solution can only be obtained by using finer meshes.
With an appropriate mesh, we have successfully simulated
the transmission and reflection of an electromagnetic pulse

through a chiral slab and computed the RCS of a sphere. The
modelling of chiral materials requires the use of a fine mesh,
with ΦCell < 0.4◦ for stability.
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