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Abstract
The COVID-19 pandemic has captivated scientific activity since its early days. Particular attention has been dedicated to
the identification of underlying dynamics and prediction of future trend. In this work, a switching Kalman filter formalism
is applied on dynamics learning and forecasting of the daily new cases of COVID-19. The main feature of this dynamical
system is its ability to switch between different linear Gaussian models based on the observations and specified probabilities
of transitions between these models. It is thus able to handle the problem of hidden state estimation and forecasting for models
with non-Gaussian and nonlinear effects. The potential of this method is explored on the daily new cases of COVID-19 both
at the state-level and the country-level in the US. The results suggest a common disease dynamics across states that share
certain features. We also demonstrate the ability to make short to medium term predictions with quantifiable error bounds.

Keywords COVID-19 · Switching kalman filter · dynamics learning · forecasting

1 Introduction

The pandemic of COVID-19, also known as SARS-CoV-
2, has already caused several hundreds of thousands deaths
worldwide while bringing the global economy to a standstill.
The long incubation period, large portion of asymptomatic
infections, highly contagious rate, testing accuracy prob-
lem in the early stages of the spread, and the difficulty to
implement uniform nationwide policies, are just some of
the challenges in containing the spread of the virus. In the
meantime, relatively long-duration treatment and high death
rate have overwhelmed public health systems. Capturing the
underlying disease dynamics with the ability for credible sta-
tistical predictions is ever so critical for health care providers
and decision makers to be better prepared through resource
allocation to ultimately contain the virus.

Modeling and forecasting of COVID-19 cases have
recently received large attention. The fundamental epidemic
model, proposed in 1927 [1], is able to describe the dynamics
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of three population groups, namely, susceptible (S), infected
(I), and recovered (R). The SIR family of models are among
the most popular ones to learn the dynamics of COVID-19.
Toda [2] used SIR model to study the effects of transmission
rate to the growth of new cases, the economic impacts of
the pandemic was also investigated. The SIRD model (“D”
stands for “death”) is an extension of the SIR model, and is
used by [3] to demonstrate the differences of infectious rate
at different countries. Sarkar et al. [4] separated the suscep-
tible individuals into unaffected and quarantined ones, and
the infected individuals into asymptomatic and symptomatic
ones, the modified SIR model was used to study the con-
sequences of the public policies. He et al. [5] proposed a
modified SEIR model (“E” stands for “exposed”) to adapt
the particularities of COVID-19, which considers the social
and government interventions, quarantine and treatment. To
quantify the effectiveness of public health interventions (that
change with time), Linda et al. [6] proposed a dynamic SEIR
model with time-varying reproduction number. Radulescu
and Cavanagh suggested to use separate SEIR models for
different age compartments since they have different infec-
tion, recovery, and fatality parameters, and this model was
applied to a small “college town” community to study the
effects of several social interventions to the spread of the
disease. Besides the SIR family models, there are also some
other types of models that try to address the modeling and
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forecasting of COVID-19, including the phenomenological
models [7], exponential smoothing models [8], autoregres-
sive moving average andWavelet-based models [9], artificial
intelligence based models [10], time series models [11], and
many others [12,13].

The focus of the present work is to uncover some per-
sistent dynamics within the daily new case data and make
reasonable and reliable predictions of the future infections of
the whole United States (US) as well as of individual states
within the US. We explore the suitability of the switching
Kalman filter (SKF) [14] algorithm as a viable tool for this
purpose. Kalman filter (KF) is a widely used method for
tracking and navigation, and for filtering and prediction of
econometric time series [15]. The KF is efficient, and accu-
rate, only when the hidden state is a linear Gaussian model,
which is usually not true for most practical applications. By
using a mixture of several linear Gaussian models, the SKF,
however, is able to accurately estimate the hidden state that is
governed by nonlinear and non-Gaussian dynamics [16–18].
More specifically, a weighted combination of linear models
is used to estimate the true state at each time step. An addition
hidden switching variables are introduced to specify which
model to choose at any specific time step. The switching
between models usually indicates a change in the underlying
dynamics of the hidden state and hence is useful to monitor
abnormal behavior in a system. It has been used, for instance,
to monitor anomaly detection of dams [19], the diagnostics
and prognostics of vehicle health [20], and the monitoring of
bearing systems [21].

COVID-19data used in this paperwas extracted from [22].
The daily new case of the US is shown in Fig. 1, from which
we can see that the time series can be split into several stages
along the time, namely, the low-level new infections stage,
the rapid increasing stage starting from March 1, the slow
decreasing stage from the beginning of April to June 15, and
another rapid increasing stage after that. By the clear sepa-
ration of the data, we have reason to believe that there might
be different dynamics driving the evolution of each stage.
In addition, with the evolution of the spread of the virus, the
communities change their personal attitude towards handling
the disease and decision makers should make corresponding
adjustments to their public policies. These factors can, in
turn, drive changes in the dynamics of new infections. The
SKF, with its ability to switch between dynamical systems,
is well-adapted to these challenges.

The paper is organized as follows. Section 2 introduces
the mathematical foundations of SKF, as well the ideas of
learning its parameters from the observations. In Sect. 3, the
models being used in SKF are introduced, including both
the trend and seasonal models, the methodologies are also
summarized into two algorithms. The numerical analyses of
SKF on the actual data of the daily cases of the US and

Fig. 1 Daily new cases of the US up to July 24

several states of the US are carried out in Sect. 4. In Sect. 5,
we present the concluding remarks and discussions.

2 Switching Kalman filters

The mathematical foundation of SKF is presented in this
section. The KF is first recalled, based on which the SKF
method is introduced.

2.1 Kalman filter

The KF uses a linear state-space model to estimate the true
(hidden) states, including past, present and future states, of a
process from a set of observations, inwhich themean squared
error is minimized [23]. Denote xt ∈ R

n the true state and
yt ∈ R

m the observation, the linear dynamic model that the
KF tries to address can be specified as follows,

xt =Axt−1 + wt ,

yt =Hxt + vt ,
(1)

where wt ∼ N (0, Q), and vt ∼ N (0, R) are the state
and observation error matrices, respectively; A (n × n) and
H (m × n) are the state transition and observation matrices,
respectively. Note that, A, H , Q, and R might change with
time, but are assumed to be constant in this paper. In KF,
(xt |xt−1) and ( yt |xt ) are both assumed to be Gaussians. The
KF consists of two steps, namely, a “prediction” step and an
“updating” step [24]. Let x̂t |t−1 be the prior estimate at time
t given information available at time t−1, V t |t−1 be the prior
estimate of state error covariance, x̂t be the posterior estimate
given observation yt , and V t be the posterior estimate of the
state error covariance. The KF process can then be expressed
as,
KF prediction

x̂t |t−1 = Ax̂t−1,

V t |t−1 = AV t−1AT + Q.
(2)
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KF updating

x̂t = x̂t |t−1 + K tνt ,

V t = (I − K tH) V t |t−1,
(3)

where K t = V t |t−1HT
(
HV t |t−1HT + R

)−1
is referred

to as the Kalman gain and νt = yt − Hx̂t |t−1 is the so-
called innovation process. The likelihood of observation yt
given the observations of y1:t−1 can also be obtained as a
by-product of the process as

Lt = p( yt | y1:t−1) = N
(
νt ; 0, HV t |t−1HT + R

)
. (4)

For further short-hand reference, the KF process containing
the operations from Eqs. (2)–(4) is summarized as a subrou-
tine of the form,

[x̂t , V t , Lt ] = Filter
(
x̂t−1, V t−1, yt , A, Q, H, R

)
. (5)

Kalman filter has been demonstrated in a wide range of
applications from the navigation and tracking of vehicles and
aircraft [24–26] to estimation and forecast in economics [27].
From the above analysis one can see that the KF uses a linear
Gaussian dynamic model to estimate the hidden states of the
processes. This is exact only when the underlying dynam-
ical process is actually linear and the errors are Gaussian.
However, the estimates by KF could be unsatisfactory for
processes that are governed by nonlinear dynamics or where
the errors are shaped by non-Gaussian effects.

2.2 Collapse and switching Kalman filters

Instead of using single linear Gaussian model, the SKF esti-
mates the dynamical process as a mixture of N (with N > 1)
linear Gaussian models [14]. By construction, SKF is better
able to estimate the hidden states of processes with nonlinear
and non-Gaussian underlying dynamics, which is usually the
case in practical applications.

An additional Markov “switching” variable St with a
model transition matrix Z (N × N ) is introduced in SKF
to determine the weights of the linear models that are used
at time t . Suppose that St is known, the state at t is then esti-
mated by a weighted combination of linear Gaussian models
where the weight of each model is given by Pr(St = i | y1:t ),
for i = 1, . . . , N . Assume that the initial state p(x1) is a
mixture of N Gaussians, and each Gaussian can be propa-
gated forward by N different models, so that the belief state
of p(x2)will be a mixture of N 2 Gaussians. Then the state at
t , p(xt | y1:t ), will be a mixture of Nt Gaussians. That is, the
size of the belief state grows exponentially with time, which
makes the SKF system based on exact propagation of the
state intractable. There are several approaches to deal with

the exponential growth, in this paper we will focus on the
Generalized Pseudo Bayesian (GPB) algorithm [14,28]. In
this algorithm, we estimate the state at any time by a fixed
number of N Gaussians, which requires one to approximate
a mixture of Nt Gaussians at time t by a mixture of N Gaus-
sians. This is achieved by a “collapsing” stepwhich collapses
a mixture of N Gaussians into a single one by first and sec-
ond moments matching. Suppose that there is a mixture of
Gaussians with mean values of x j , covariances of V j , and
weights of W j , for j = 1, 2, . . ., then the collapsing can be
obtained as

x =
∑

j

W j x j ,

V =
∑

j

W j
[
V j + (x j − x)(x j − x)T

]
.

(6)

For further reference, the collapse step that contains the oper-
ation of Eq. (6) can be written as a subroutine as

[x, V ] = Collapse
(
{x j , V j ,W j } j

)
. (7)

Now, for the propagation from time t −1 to t , we can split
the SKF process into two steps. Suppose that the posterior
distribution p(xt−1| y1:t−1) at time t − 1 is a mixture of N
Gaussians that is

p(xt−1| y1:t−1, St−1 = i) = N
(
xit−1, V

i
t−1

)
, (8)

where the mean xit−1 = E[xt−1| y1:t−1, St−1 = i] and
covariance V i

t−1 = Cov[xt−1| y1:t−1, St−1 = i], for i =
1, . . . , N . The weight of Gaussian model i is obtained by
Wi

t−1 = Pr(St−1 = i | y1:t−1). Then the propagation from
time t − 1 to time t and from Gaussian model i to j is a KF,
hence

p(xt | y1:t , St = j, St−1 = i) = N
(
xi jt , V i j

t

)
, (9)

where the mean xi jt = E[xt | y1:t , St = j, St−1 = i] and
covariance V i j

t = Cov[xt | y1:t , St = j, St−1 = i]. The first
step of the propagation is then to use the Filter subroutine
[Eq. (5)] to obtain xi jt and V i j

t as

[
xi jt , V i j

t , Li j
t

]
= Filter

(
xit−1, V

i
t−1, yt , A j , Q j , H j , R j

)
,

(10)

where Li j
t = P( yt | y1:t−1, St = j, St−1 = i) is the like-

lihood of observing yt ; A j , Q j , H j , and R j are the state
space matrices of Gaussian model j , for j = 1, . . . , N . The
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following by-products are also computed

Wi j
t = Pr(St = j, St−1 = i | y1:t ) = Li j

t Zi jW i
t−1

∑
i, j L

i j
t Zi jW i

t−1

,

W j
t = Pr(St = j | y1:t ) =

∑

i

W i j
t ,

Mi j
t = Pr(St−1 = i |St = j, y1:t ) = Wi j

t

W j
t

,

(11)

where Zi j = Pr (St = j |St−1 = i) is the component of the
model transition matrix Z. Then the second step of the prop-
agation is to collapse the mixture of N 2 Gaussians into a
mixture of N Gaussians by the Collapse subroutine (7) as

[
x j
t , V

j
t

]
= Collapse

(
{xi jt , V i j

t , Mi j
t }i

)
. (12)

When a single estimate of the state is desired, the Col-
lapse subroutine can be applied again on the N mixture of
Gaussians and obtain a single Gaussian distribution.

The model parameters, for instance A, H , Q, and R,
remain to be estimated from the available information. In
practice, the hidden state x1:t is usually hard to obtain, hence,
only the observation data y1:t is provided for parameter
estimation. The method of maximum likelihood estimator
(MLE) [29] is utilized for such purpose, in which the log-
likelihood of the observation is first obtained as

ln
(
y1:τ

) = ln
∏

t

p
(
yt | y1:t−1

)

=
∑

t

ln p
(
yt | y1:t−1

)

=
∑

t

ln

⎡

⎣
N∑

i, j=1

p
(
yt , St = j, St−1 = i | y1:t−1

)
⎤

⎦

=
∑

t

ln

⎡

⎣
N∑

i, j=1

Li j
t Pr

(
St = j, St−1 = i | y1:t−1

)
⎤

⎦

=
∑

t

ln

⎡

⎣
N∑

i, j=1

Li j
t Zi jPr

(
St−1 = i | y1:t−1

)
⎤

⎦

=
∑

t

ln

⎡

⎣
N∑

i, j=1

Li j
t Zi jW

i
t−1

⎤

⎦ . (13)

In Eq. 13, τ is the end time of the data; and, Li j
t , Zi j andWi

t−1
are the same as in Eqs. (10) and (11). The set of parameters,
denoted as P , are embedded in the distribution of y1:T and
can be estimated by maximizing the log-likelihood function
as

P∗ = argmaxP ln
(
y1:t |P

)
. (14)

To avoid local maxima, the global optimization method,
Basin-hopping [16], is used to solve Eq. (14).

2.3 Step-ahead predictor

The SKF follows the one-step prediction and updating algo-
rithm, hence, the observation at time t + 1 is required for
the hidden state estimation at t + 1. However, we are also
interested in the step-ahead prediction without knowing the
observations of the future. More specifically, the prediction
of one step ahead (at time t + 1) or several steps ahead (at
time t + r ) given that the state at time t is known. We start
with the one-step-ahead predictor, in which, p(xt+1|xt ) is
first computed as

p(xt+1|xt ) =
N∑

i, j=1

p(xt+1, St+1 = j, St = i |xt )

=
N∑

i, j=1

p(xt+1|xt , St+1 = j, St = i)·

Pr(St+1 = j, St = i |xt )

=
N∑

i, j=1

p(xt+1|xt , St+1 = j, St = i)Wi j
t+1|t ,

(15)

where Wi j
t+1|t = Pr(St+1 = j, St = i |xt ) = W j

t+1|t M
i j
t+1|t ,

where W j
t+1|t = P(St+1 = j |xt ) and Mi j

t+1|t = Pr(St =
i |St+1 = j, xt ). Please note the differences of definitions
between Wi j

t+1|t and Wi j
t , W j

t+1|t and W j
t , and Mi j

t+1|t and
Mi j

t . By assumptions of KF, we have

P(xt+1|xt , St+1 = j, St = i) = N
(
xi jt+1|t , V

i j
t+1|t

)
, (16)

where the mean xi jt+1|t = E
[
xt+1|xt , St+1 = j, St = i

]
and

the covariance V i j
t+1|t = Cov

[
xt+1|xt , St+1 = j, St = i

]
.

Then, similar to Eq. (11) we can compute

Wi j
t+1|t = Zi jW i

t |t−1
∑

i, j Zi jW i
t |t−1

,

W j
t+1|t =

∑

i

W i j
t+1|t ,

Mi j
t+1|t = Wi j

t+1|t
W j

t+1|t
.

(17)

Note that, different from Eqs. (11), (17) does not have the
likelihood function of the observation since the observation
at time t+1 is not available.Moreover, Eq. (17) is a recursive
form, the initial condition of which, suppose that the step-
ahead predictor starts with time t , isWi

t |t−1 = Wi
t whereW

i
t
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is obtained fromEq. (11).We can see that the one-step-ahead
predictor is a mixture of N 2 Gaussian. A Collapse step can
be followed to reduce the number of mixture Gaussians to
N . The step ahead propagation from time t to t + 1 can also
be split into two steps, with the first step being the predicting
part of the Filter subroutine, that is

xi jt+1|t =A j xit ,

V i j
t+1|t =A jV i

t A
T
j + Q j .

(18)

In the second step, a collapse step is applied

[x j
t+1, V

j
t+1] = Collapse

(
{xi jt+1|t , V

i j
t+1|t , M

i j
t+1|t }i

)
. (19)

Fromwhichwe can see that the one-step-ahead predictor uses
only the estimated state of the current step to predict the state
of the next step. With the recursive manner, this predictor
can be easily extended to a multi-step-ahead predictor by
letting the predicted state of the current step be the available
information for the next step prediction.

3 Models andmethodology

3.1 Trend component

In the classical additive decomposition [30], the time series
xt can be decomposed as

xt = mt + st + εt , (20)

where mt is the slow changing trend component, st is the
seasonal component that has known period T , and εt is the
random noise component. One can relax the decomposition
and obtain the trend plus noise model as

xt = mt + εt . (21)

In time series analysis, the polynomial models have been
widely applied to filtering and prediction since they can effi-
ciently capture the trend component [31]. The 0th and 1th
order polynomials are proved to be adequate for short term
predictions. The COVID-19 data is affected by many factors
including the population density, mobility of the commu-
nity, temperature, testing credibility,masks policy, lock down
policy, personal attitude, personal health predisposition, etc.
With the high complexity, the 1th and 2nd order polynomi-
als are used to predict the trend components. The 2nd order
polynomials are useful for prediction problem with longer
lead time [31], which is the case for COVID-19 data.

The model constructed by the 1th order polynomials in
the state space is also known as the constant velocity model.

The state vector is x = [x, ẋ]T , and the velocity is assumed
to be constant over time, that is ∂ ẋt/∂t = 0. The state tran-
sition and state error covariance matrices of the model can
be obtained as [24]

Avel =
[
1 Δt
0 1

]
, Qvel = σ 2

q

[ 1
3Δt3 1

2Δt2
1
2Δt2 Δt

]
, (22)

where Δt is the sample interval, and σ 2
q is a constant that

defines the level of variance in the error.
The model constructed by the 2nd order polynomials in

the state space is also known as the constant acceleration
model. The state vector is x = [x, ẋ, ẍ]T , and the accelera-
tion is assumed to be constant over time, that is ∂ ẍt/∂t = 0.
The state transition and state error covariance matrices of the
model can be obtained as [24]

Aacc =
⎡

⎣
1 Δt Δt2

0 1 Δt
0 0 1

⎤

⎦ ,

Qacc = σ 2
q

⎡

⎣
Δt5/20 Δt4/8 Δt3/6
Δt4/8 Δt3/3 Δt2/2
Δt3/3 Δt2/2 Δt

⎤

⎦ . (23)

3.2 Seasonal component

By visually inspecting, the daily new cases data of the
US in Fig. 1 exhibits a periodic behavior with the period
approximately equals 7 days. In this paper, several seasonal
components are used to capture the periodic behavior. Each
of the seasonal component, s jt , is modeled by a harmonic
function of sines and cosines recursively with a specified
frequency Tj as [32]

(
s jt
s j∗t

)

=
[
cosω j sinω j

− sinω j cosω j

] (
s jt−1

s j∗t−1

)

= As j

(
s jt−1

s j∗t−1

)

, (24)

where ω j = 2π/Tj is the angular frequency. In Eq. (24), s jt
is the seasonal value at time t , and s j∗t is an auxiliary value
by construction. The error covariance matrix associated with
s jt and s j∗t is given by

Qs j =
[
σ 2
s j

0
0 σ 2

s j

]
, (25)

where σ 2
s j
is a constant.

Incorporating the trend components with the seasonal
components, the state space matrices of the constant velocity
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model becomes

A =blkdiag
(
Avel, As1, . . . , Asns

)
,

Q =blkdiag
(
Qvel, Qs1 , . . . , Qsns

)
,

H = [
1, 0, 1, 0, . . . , 1, 0,

]
,

R =σ 2
r ,

(26)

where ns is the number of seasonal components; “blkdiag”
denotes a block diagonalization operator. Similarly, the state
space matrices of the constant acceleration model becomes

A =blkdiag
(
Aacc, As1 , . . . , Asns

)
,

Q =blkdiag
(
Qacc, Qs1 , . . . , Qsns

)
,

H = [
1, 0, 0, 1, 0, . . . , 1, 0,

]
,

R =σ 2
r .

(27)

For the COVID-19 data of the US, the cyclic behavior
is clearly non-harmonic with additional fluctuations within
each cycle. To better capture these dynamics, two seasonal
components (ns = 2) with T1 = 7 and T2 = 3.5 days are
incorporated.

3.3 Methodology

From the previous analysis, the set of unknown parameters
that remains to be learned from the COVID-19 data is

P =
(
σ 2
qacc , σ

2
qvel , σ

2
r , σ 2

s1 , σ
2
s2

)
. (28)

The lower bound and upper bound for all the parameters are
chosen to be 1.0×10−7 and 1.0×107, that are large enough to
be able to include the optimal solution. The model transition
matrix is assumed to be

Z =
[
Z11 Z12

Z21 Z22

]
=

[
0.99 0.01
0.01 0.99

]
. (29)

That is, the state tends to remain on its own state. The choice
of the transition matrix is based on the nature that the daily
new cases data of COVID-19 usually has several stages,
namely, the steady growth stage, super linearly growth stage,
flat curve stage, and decreasing stage, and these stages remain
for a period of time before it switches to the next trend, that
is, it tends to remain on its own stage.

The SKF method and its multi-step-ahead predictor are
summarized in Algorithms 1 and 2, respectively. For the
purpose of dynamics learning of the COVID-19 data, the
Basin-hopping optimization is first used to find the optimal
set of parametersP∗ by maximizing the log-likehood of the
observations, ln( y1:τ ), that is obtained from Algorithm 1. In
other words, Algorithm 1 serves as an objective function in
the optimization problem. The data up to time τ is the training

Algorithm 1: Switching Kalman filter
Input: set of parameters P , end time of filtering τ , observations

y1:τ , model transition matrix Z
Output: estimated states x1:τ and V 1:τ , log-likelihood ln( y1:τ )

1 Initialization: x11 = x21 = y1; W
1
1 = W 2

1 = 0.5; ln( y1:τ ) = 0;
A j , H j ,Q j and R j are obtained from Eqs. (26) and (27) with
given P;

2 for t = 2 : τ do
3 for j=1:N do
4 for i=1:N do

5 Compute
[
xi jt , V i j

t , Li j
t

]
by Eq. (10) ;

6 Compute W j
t and Mi j

t by Eq. (11);

7 Compute
[
x j
t , V

j
t

]
by (12) ;

8 Perform ln( y1:τ ) = ln( y1:τ ) + Li j
t Zi jW i

t−1;
9 end for

10 end for

11 Perform [xt , V t ] = Collapse
(
{x j

t , V
j
t ,W

j
t } j

)
;

12 end for

Algorithm 2: Forecasting by Switching Kalman filter
Input: set of parameters P , starting time of forecasting τ ,

estimated states (at time τ ) xτ and V τ , model transition
matrix Z, number of forecasting steps r

Output: forecasted states xτ+1:τ+r and V τ+1:τ+r
1 Initialization: Wi

τ |τ−1 = Wi
τ ; A j , H j ,Q j and R j are obtained

from Eqs. (26) and (27) with given P;
2 for k = 1 : r do
3 for j=1:N do
4 for i=1:N do

5 Compute
[
xi jτ+k|τ+k−1, V

i j
τ+k|τ+k−1

]
by Eq. (18) ;

6 Compute W j
τ+k|τ+k−1 and Mi j

τ+k|τ+k−1 by Eq. (17);

7 Compute [x j
τ+k , V

j
τ+k ] by Eq. (19);

8 end for
9 end for

10 Perform
[
xτ+k , V τ+k

] = Collapse
(
{x j

τ+k , V
j
τ+k ,W

j
τ+k|τ+k−1} j

)
;

11 end for

set and is defined by the user. After obtaining the optimal set
of parametersP∗, it can then be fed into Algorithm 1 again
to estimate the hidden states x1:τ , where τ is the end time that
the user intends to estimate. Note that the end time of the esti-
mation can be different from the end time of the training set.
These estimations can be compared with the data to verify
the validity of the learned dynamics. Finally, for the purpose
of forecasting of the COVID-19 data, in which no further
observations are known beyond time τ , Algorithm 2 can be
used to perform multi-step-ahead predictions starting from
τ , with specified number of steps r . The r steps ahead pre-
dictions are used to approximate the future trend of the data.
The forecasting can also start from any date of the available
data, say τ ′ with τ ′ < τ − r , then the forecasts are obtained
by assuming that the data after τ ′ is not available. The r steps
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ahead predictions in this case can then be compared with the
data to quantify the accuracy of the forecasts.

4 Dynamics learning and forecasting of the
COVID-19 of the US

4.1 Dynamics learning and validation

In this section, the SKF is first used to identify the hid-
den dynamics behind the daily new cases of the COVID-19
of the US, including the whole US and some individual
states, for instance, California (CA), NewYork (NY), Florida
(FL), Texas (TX), North Carolina (NC), Georgia (GA) and
Alabama (AL). The selected states are either the previous
epicenter, or the ones that have rapid increasing trends cur-
rently based on the data up to July 24.

The incubation period of COVID-19 can be as long as
14 days according to [33], the infections from asymptomatic
to symptomatic are postponed to be shown in the data. In
addition, the wait time to get the test results is usually 3∼5
days [34], and this time is extended with the number of peo-
ple being tested increased rapidly starting in July. Thus, the
severity of the pandemic today is only presented in the data
after one week or so, which in turn causes the delays of
social reactions. These delays can postpone the effects of
policy interventions, including lock down, quarantine, man-
dated masks, mandated social distancing, etc. As a result, the
time series of daily new cases has slow changing dynamics,
even though the dynamics evolves with time. In other words,
the dynamics of the next several days might not have large
variation from the dynamics of the previous several days.
This provides the foundation to do step-ahead predictions.
Moreover, one might not need to use all the available data
to capture the embedded dynamics as long as the additional
data will not alter the current dynamics significantly.

To verify this, the Basin-hopping optimization and Algo-
rithm 1 are used to learn the dynamics based on two different
training sets, namely, the set with data up to June 30 and the
set with data up to July 20. The optimal parameters for the
US and several individual states are shown in Tables 1 and
2, the first three parameters of these two tables define the
trend component. Note that the behavior of the KF is highly
affectedby the ratios of twoerror covariances [8,35],σ 2

qacc/σ
2
r

and σ 2
qvel/σ

2
r . By comparing Tables 1 and 2 for the same loca-

tions, the error covariances of the observation, σ 2
r , only have

minor differences. Though, the differences between σ 2
qacc and

σ 2
qvel could be significant for some locations, for instance the

US, CA and NC, the ratios of σ 2
qacc/σ

2
r and σ 2

qvel/σ
2
r remain

at low levels. That means the dynamics learned from training

Table 1 Parameters learned from data up to July 20

Places σ 2
qacc σ 2

qvel σ 2
r σ 2

s1 σ 2
s2

US 104.0 10−2.1 106.3 105.0 103.7

CA 102.7 102.0 105.2 103.7 102.9

NY 102.7 10−3.8 105.8 104.2 10−6.8

FL 102.5 101.5 105.5 104.0 104.0

TX 102.2 10−7.0 105.3 104.0 102.5

NC 101.3 100.1 104.3 102.2 10−6.5

GA 100.6 101.1 104.9 102.6 102.8

AL 10−1.5 100.1 104.5 101.6 101.3

Table 2 Parameters learned from data up to June 30

Places σ 2
qacc σ 2

qvel σ 2
r σ 2

s1 σ 2
s2

US 103.3 103.2 106.3 104.9 103.8

CA 101.2 101.8 105.0 103.9 102.4

NY 102.8 10−2.8 105.8 104.2 10−4.9

FL 101.3 101.8 104.8 104.3 103.0

TX 101.9 101.3 104.8 103.0 103.0

NC 10−2.0 100.5 104.1 102.4 10−5.0

GA 10−0.1 101.5 104.5 102.7 102.6

AL 10−2.2 100.5 104.4 10−5.5 100.4

data up to June 30 is similar to that learned from training data
up to July 20.

Graphically, the comparisons of the hidden state estima-
tions given byAlgorithm 1with parameters learned from two
different training sets of two representative locations, the US
andFlorida, are presented inFigs. 2 and3. In thesefigures, the
top ones present the filtered (or estimated) trend components
with 95% confidence intervals, the middle ones show the fil-
tered trend plus seasonal components with 95% confidence
intervals, and the bottom one depicts the probabilities of the
constant acceleration and constant velocity models along the
time. The dashed vertical lines in the top and middle figures
indicate the cutoff dates of the training sets. For all the top
sub-figures, it can be seen that the trend component is able
to capture the overall evolution of the daily new cases where
the cyclic behaviors are filtered. However, the 95% confi-
dence interval of the trend component is unable to cover the
measured data.With the additional seasonal components, the
estimations in the middle sub-figures represent the data very
well, and some missing peaks are captured by the associ-
ated 95% confidence intervals. Themodel probability figures
in the bottom indicate the switching of dominance between
the constant acceleration model and constant velocity model.
Due to the nature of these two models, the number of cases
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(a) Training data up to June 30 (b) Training data up to July 20

Fig. 2 The hidden state estimation of the US with different training sets

grow linearly when the constant velocity model is dominant;
the cases grow quadratically when the constant acceleration
model is in dominance; and the growth rate is in between
when the probabilities of these two models are close. The
comparison between Fig. 2a, b shows that the performance
of the estimations are very similar in all three sub-figures for
different training sets. However, there are several differences
between Fig. 3a, b. Firstly, the confidence intervals given
by the training set up to July 20 are slightly larger than the
other ones. This can be explained that with more data in the
training set, especially the additional data has more fluctua-
tions, the SKF algorithm requires larger covariance matrices
to accommodate a larger variance. Secondly, themodel prob-
ability figures are slightly different, especially between April
5 and April 26. This is because the SKF algorithm is better
tweaked in the period with small variance for the smaller
training set. Nevertheless, the overall behaviors of Fig. 3a, b
are similar, especially for the dates after June 20, which are
more interesting for future decision-making.

This part shows that the SKF is able to accurately capture
the trend component, and can represent the data well with
additional seasonal component. It is also showed that we can
infer the future dynamics of the daily new cases series by the
available data with good accuracy. Hereinafter, the training
set will always be the data up to July 20.

4.2 Shared dynamics by different locations

Revisiting Table 1 with focus on the first three parameters
that define the trend component, we see that the parameters
for CA, NY, FL and TX (referred to as the first group) are
similar, and the parameters for NC, GA and AL (referred to
as the second group) are similar. The parameters of these two
groups are generally different if we look at the σ 2

r . The loca-
tions in the first group have large populations and population
densities, while the ones in the second group are on the con-
trary with low populations and population densities. In other
words, the locations with same level of population and pop-
ulation density seem to share the same dynamics. Hence, we
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(a) Training data up to June 30 (b) Training data up to July 20

Fig. 3 The hidden state estimation of Florida with different training sets

can possibly use the parameters learned from one location
to estimate the hidden states of another. To verify this, the
estimations of the hidden states of CA and NY by using the
parameters learned from their own data are shown in Figs. 4
and 5, respectively. And the estimations of the hidden states
of FL and NY by using the parameters learned from CA data
is shown in Figs. 6 and 7, respectively.

Comparing Fig. 4 with Fig. 5, the model probabilities of
CA andNY are very different. And the evolutions of the daily
new cases of these two states are different too. However, the
estimation of the hidden states of NY based on the learned
parameter from CA in Fig. 7 resembles Fig. 5 a lot, and the
95% interval of the filtered trend and seasonal components
can include the test data well. This not only shows that the
hidden states of NY can be estimated via CA data, but also
indicates that the model probability is an outcome of com-
bined effects of the learned parameter and the test data (the
model probabilities of Figs. 4 and 7 are very different with
exactly the same dynamics). For FL, the estimations based on
the learned parameters of its own data (Fig. 3b) and the esti-
mations based on the learned parameters of CA data (Fig. 6)
are also close.

The hidden state estimations of the three locations with
low populations and population densities are shown in
Figs. 8, 9 and 10. For NC in Fig. 8, the constant velocity
model is superior most of the time, though the advantage
is not huge, which is consistent with the steadily increas-
ing of daily new cases. The evolution patterns of the model
probability for GA and AL are similar, they both saw the
dominance of constant velocity model before June 20 (or
near this date), and a switching to more aggressive constant
acceleration model after that. Fig. 11 presents the estima-
tions of hidden state for NC again, but with the parameters
learned from GA data. Comparing Fig. 11 with Fig. 8, the
trend and seasonal behaviors are well captured, the model
probability has same pattern of evolution, and the switches
between models are also represented. Figure 11 is an exam-
ple showing that the dynamics are similar within the second
group.

Actually, the primary route of transmission of theCOVID-
19 is by close contact from person-to-person [36], and this
makes the population density a vital factor for the spread
of the disease. With same dynamics within the first and
second groups, respectively, our research indicates that the
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Fig. 4 Thehidden state estimation ofCaliforniawith trainedparameters
learned from its own data

population density might be the driving force of the spread
COVID-19.

4.3 The role of model probability

From the previous analysis, we already know that the model
probability gives the dominance of the constant accelera-
tionmodel and constant velocitymodel, which are associated
with quadratic growth and linear growth of the data, respec-
tively.

Another important feature is that the switching from linear
growth to quadratic growth usually indicates the change of
growth rate. When the data is increasing both before and
after the switching, it is a warning sign that the new cases
could increase rapidly. Take the US as an example (see in
Fig. 2b), the switching at aroundMarch 20 from linear growth
to quadratic growthwarned the rapid increasing of new cases,
and the later evolution has confirmed it. The switching at
around June 20, also gave a clear sign of increased growth
rate, andwe sawanother rapid increasing of newcases.By the
estimations of FL in Fig. 3b and CA in Fig. 4, GA in Fig. 9,

Fig. 5 The hidden state estimation ofNewYorkwith trained parameters
learned from its own data

Alabama in Fig. 10, and some other locations that are not
shown here, for instance TX and AZ, we can see the switches
from linear growth to quadratic growth for all these locations
at around June 20. The non-accidental similarity gave strong
sign of rapid increasing of infections, which could be useful
for the decision-making.

On the contrary, the switching from the quadratic growth
to linear growth usually gives good sign of either switching
to a less aggressive increasing or a stable decreasing stage.
Figure 2b of the US data experienced this type of switching
at around the end of April, and the data switched to a steady
decreasing stage after that. In addition, there is a sign of the
switching at July 24, which means the data will hopefully
switch from rapid increasing to a less aggressive stage. For
CA in Fig. 4, the switching at around July 5 gave a short
period of break from a rapid increasing to a less aggressive
growth, and it remained at the linear growth stage which
indicates thatCAcould experience a steadygrowth stagewith
low rate. One can do the same analysis for other locations.

From the above analysis we see that the model probabil-
ity plays an important role in exposing the hidden dynamics
and making general and non-quantitative predictions. The
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Fig. 6 The hidden state estimation of Florida with trained parameters
learned from California data

switching from one model to another gives useful informa-
tion for the overall trend.

4.4 Forecasting

Algorithm 2 described in Sect. 3.3 is used for forecasting
of the COVID-19 data. Figures 12 and 13 present the 20
days forecasts of the US and CA at different times, respec-
tively. Of which, the top sub-figures, the second sub-figures
from the top, the third sub-figures from the top, and the bot-
tom sub-figures show that forecasts starting from June 28,
July 8, July 17 and July 24, respectively. The model prob-
abilities along the forecasts are also presented. The top two
sub-figures, where the data of the predicted dates are avail-
able, show that the forecasts can capture the future trend
well. The predictions with seasonal components are able to
recover the cyclic behaviors in the data to some extent.More-
over, the 95% confidence interval of the forecasting is able
to include the measurement data but the width of the interval
grows very quickly with increased prediction steps. Which

Fig. 7 The hidden state estimation ofNewYorkwith trained parameters
learned from California data

means the forecasts by the SKF are more confident in short
to middle terms.

For the US in Fig. 12, the trend showed relatively rapid
increasing within the 20 days of forecasting starting from
June 28. The growth rate was decreased for the forecasts
staring from July 8, and the forecasting even switched to
decreasing for the forecasts starting from July 17. The model
probability of constant acceleration in this case experienced
a drop from over 0.8 to approximately 0.6, which resembles a
switching fromquadratic growth stage to linear growth stage,
that is, the rapid growth was tempered. However, this trend
was not maintained since the constant acceleration regained
its dominance afterward, see in the bottom sub-figure that
shows the forecasts starting from July 24. It suggests that the
new infections stopped decreasing on July 24 and will be in
a flat curve stage.

For CA in Fig. 13, the forecasting starting from June
28 indicated a rapid increasing within 20 days, though
the model probability suggested a potential switch from
quadratic growth to linear growth. But, if comparing with
the trend several steps behind, where the daily new cases just
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Fig. 8 The hidden state estimation of North Carolina with trained
parameters learned from its own data

experienced a nearly exponential growth, the increasing rate
of the forecasts is still tempered, which is consistent with
the change in model probability. The growth rate reduced a
lot for the forecasting staring from July 8. The model proba-
bility at around July 8 suggested a switching from quadratic
growth stage to linear growth stage, and it stayed at the latter.
This indicates that the daily case of California is more likely
to remain at a linear growth stage after July 8, with a growth
rate that is approximately the slope of the trend component.
This is verified by the forecasts starting from July 17 and
July 24. Both of which gave linear growth forecasts.

For both the US and CA, we can see that the forecasting
changeswith time progresses. The limitations of the forecast-
ing lie in the observation that prediction could give deviated
trend when there is a switch from one model to another.
For example in the third sub-figure of Fig. 12, the predicted
trend indicated a decrease in new cases, and the dominance of
constant acceleration model dropped to the same level of the
constant velocity model. However, the constant acceleration
model regained its dominance afterwards and the predicted
trend in the last sub-figure of Fig. 12 is flattened. In addition,
though the forecasts at a stable dynamics (no switch between

Fig. 9 The hidden state estimation of Georgia with trained parameters
learned from its own data

models) can predict the future trend well, it is not necessarily
that the predictionwith seasonal components can always cap-
ture the cyclic behaviorswell. For instance the first sub-figure
of Fig. 13, in which the trend of the data is well predicted but
the cyclic behavior is not represented well in the predictions
of the first several days.

The more quantitative forecasting of this section and the
non-quantitative overall prediction by the model probability
can be combined for mutual verification and providing more
reliable forecasts.

5 Concluding remarks

In this paper, the SKFwith seasonal component is introduced
and applied for the dynamics learning and forecasting of the
daily new cases of COVID-19 of the US. The optimal param-
eters of SKF learned from the data is able to capture both the
trend and seasonal component, in a sense that the 95% confi-
dence interval is able to include the data with narrow width.
The resembles of dynamics at neighborhood period of time
is also embedded in the SKF parameters, hence the dynam-
ics learned from previous data is sufficient to estimate the
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Fig. 10 The hidden state estimation of Alabama with trained parame-
ters learned from its own data

hidden states of future time steps. It is also discovered that
the locations with same level of population and population
density have similar dynamics, the dynamics of one location
can accurately estimate of the hidden state of another. The
model probabilities give implications of how the new cases
could evolve aswell as how the growth rate could change. The
switching betweenmodels indicated the change of dynamics,
hence, in turn, provides useful information for inference and
prediction of the overall trend. The multi-step-ahead predic-
tor of SKF provides quantitative forecasts of new cases for
both trend and seasonal components. The forecasting will
update with the progressing of time and has narrow 95%
confidence intervals for short tomiddle term predictions. The
quantitative forecasting can be combined the overall predic-
tion given by the model probabilities to offer more insight on
the future trend.

We remark that the effects of social interventions on the
pandemic are embedded in the dynamics of the daily new
cases data. The changes of public policies can be presented
in the switches of the dynamics given by the SKF. The con-
sequences of new major policies can, hence, be observed
and predicted by the SKF. The state space matrices A, H ,

Fig. 11 The hidden state estimation of North Carolina with trained
parameters learned from Georgia data

Q and R are assumed to be constant in the present paper,
however, there are changes of dynamics along the time. For
instance, the variations of the daily new cases data after June
20, especially for some states like CA, FL, GA and others
that are not presented, were obviously larger than the data
before. Using an online algorithm to learn the time-varying
parameters could improve the SKF method. Moreover, one
could also incorporate the SKF method with the SIR family
models. Different from the SKFmethod, where the epidemic
features are assumed to be implicitly embedded in the learned
dynamics, the SIR family methods describe the dynamics of
COVID-19 by epidemic parameters explicitly, for instance
the infection rate, recover rate and others. However, different
social scenarios are supposed to have different parameters,
for instance, the infection rates with and without lock down
policies are different, and the infection and recover rates
for young and elderly people are different. Different models
can be generated with different parameters, and these mod-
els can be incorporated into the scheme of SKF. The model
probabilities of these models can provide rich information of
the effectiveness of social interventions as aforementioned.
Linearization techniques of the SIR family model would be
required for the incorporation.
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Fig. 12 Daily new cases forecasting of theUS by SKF at different times Fig. 13 Daily new cases forecasting of California by SKF at different
times
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