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Abstract
Weconsider amixture-theoretic continuummodel of the spread ofCOVID-19 inTexas. Themodel consists ofmultiple coupled
partial differential reaction–diffusion equations governing the evolution of susceptible, exposed, infectious, recovered, and
deceased fractions of the total population in a given region. We consider the problem of model calibration, validation, and
prediction following a Bayesian learning approach implemented in OPAL (the Occam Plausibility Algorithm). Our goal is to
incorporate COVID-19 data to calibrate the model in real-time and make meaningful predictions and specify the confidence
level in the prediction by quantifying the uncertainty in key quantities of interests. Our results show smaller mortality rates
in Texas than what is reported in the literature. We predict 7003 deceased cases by September 1, 2020 in Texas with 95% CI
6802–7204. The model is validated for the total deceased cases, however, is found to be invalid for the total infected cases.
We discuss possible improvements of the model.

Keywords Bayesian statistics · Model inference · Disease dynamics · Mixture theory · COVID-19 · SARS-CoV-2 virus

1 Introduction

Modeling the spreading of infectious diseases can help in
extracting relevant information from the data, such as effec-
tive reproduction rates, mortality rates, contact rates, in
exploring the effectiveness of various preventive measures
and their effect on the epidemic, developing a deeper under-
standing of how the particular disease spreads and major
features that support the spreading, [15]. During 2020, much
of the world has been under lockdown due to a novel SARS-
CoV-2 virus. The virus originated in Wuhan, China, and
has resulted in the loss of many lives, loss of livelihood,
and almost complete shutdown of economies. SARS-CoV-2
virus infection spreads via droplets generated during cough-
ing/sneezing and touching contaminated surfaces. To slow
down its spread, people are advised to maintain social dis-
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tancing and in certain places even strict restriction on public
movement is enforced. The virus seem to infect all groups,
however, has been more deadly for older people and people
with compromised immunity [8,9,18,28]. While the search
for vaccines and drugs are going on, the researchers across
the globe have put in an effort to develop a model that cap-
tures the evolution of the epidemic and reveal the important
parameters which help policy makers and medical profes-
sionals in devising preventive strategies.

Existingworks onCOVID-19 epidemic prediction include
stochastic transmission models (compartmental models)
based on the idea of putting individuals in different cate-
gories, such as susceptible (S), exposed (E), infected (I),
recovered/removed (R), and deceased (D). Each category
evolves in time often captured by systems of ODEs and
are coupled to other species through the cross-interaction
terms. These models average the individual interaction and
therefore are more effective for large-scale epidemics. Such
models have been applied to extract the relevant information
such as the effective reproduction rate (number of secondary
infections at given time) [2,17], account for asymptotic cases
on disease spread [26], and to test the effects of preven-
tive measures such as social distancing and isolation [14].
The parameters in the cross-interaction terms can be either
assumed to be constant in time or time varying to include

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-020-01889-z&domain=pdf
http://orcid.org/0000-0003-2158-364X


1056 Computational Mechanics (2020) 66:1055–1068

the effect of various preventive policies such as social-
distancing, strict isolation directives, in the model [10,17].
Compartmental models can be generalized by allowing fields
corresponding to each category to vary in space. The ran-
dom (Brownian) motion of individuals is approximated by
diffusion term whereas the interaction between categories is
modeled by reaction terms, [16]. This results in a set of non-
linearly coupled reaction–diffusion PDEs (partial differential
equations). Recently a model of this type has been applied
to predict the spread of disease in Lombardy, Italy [30]. That
work is based on the earlier model of the spread of rabies
[16].

In this work, we consider a multi-species model of the
evolution of COVID-19 which is characterized by a system
of PDEs. The species comprise of the fractions of the popu-
lation in the following categories: exposed but no symptoms,
already infected, recovered after an infection, and those who
succumbed to the virus. These fractions are treated as a con-
tinuous fields over a bounded domain in R

2 (the state of
Texas). The model considered in this work is inspired from
the recent work [30] and earlier work [16].

The goal of this work is to apply a Bayesian learning in
OPAL to model calibration, validation and prediction utiliz-
ing the spatially and temporally resolved data and to address
uncertainties.We adopt the OPAL (OccamPlausibility Algo-
rithm [11,23,24]) that is developed to deliver a systematic
path toward valid prediction in the presence of uncertain-
ties. Depending on the spatial resolution of interest (such as
county, state, country), the data are available in real time list-
ing the number of COVID-19 cases, number of recovered
patients, number of patients deceased. An objective of this
work is to leverage the data for model calibration and val-
idation. Since the data are evolving, it is also necessary to
evolve the model parameters (i.e. continuously update the
model parameters over specified time intervals).

Bayesian learning consists of three key steps: calibration,
validation, and prediction. In the calibration step, the model
parameters are sampled through some assumed probability
density function and,with an appropriate likelihood function,
the probability densities (posteriors) of parameters are deter-
mined. This is the step where the data is sampled to obtain
the pdf (probability distribution function) of model param-
eters. In the validation step, the model output is compared
with the data and if the error is within a preset tolerance, the
model is specified as Not Invalid. It can be noted that the cal-
ibration and validation steps are similar to the training and
testing step in a deep learning framework; however, there is
one important difference: in this Bayesian method, parame-
ters are updated in the validation step as well. In all of the
Bayesian steps, the likelihood function plays the key role. It
assigns a penalty when the model output does not agree with
the data. This is similar to the loss function in deep learning.

COVID-19 cases in Texas were initially slowly growing
(period March 15–May 31). Near the end of May, the cases
started rising rapidly. The jump in cases can be attributed to
1) opening up of businesses and less restriction in movement
of people post May 20, and 2) the increase in COVID-19
testing resulting in large numbers of infected cases which
may have gone unnoticed for mild cases otherwise. For our
analysis, we consider the period June 1–June 30 as in this
period the government policy remained somewhat the same
making the assumption of temporally constant parameters
less error-prone. We consider June 1–June 20 data for the
calibration and June 21–June 30 for the validation of the
model. Based on calibrated and validated model, we predict
the total number of infected and deceased cases in 25 districts
of Texas in the period July 1–September 1. It is shown that
care is required in setting up a good model and scenario of
prediction. Sensitivity analysis plays an important role in the
model inference. For example, we show that when some of
the model parameters were fixed to the values reported in
previous studies, specifically the fatality rate (change from
infected to deceased) and recovery rates (from infected to
recovered), the total deceased cases will be insensitive to any
change in parameters. The total deceased cases was mainly
sensitive to the parameters described above and, by fixing
them,we lose the ability to train ourmodel. This also explains
why in [30] authors saw large numbers of infected caseswhen
they were trying to match the total deceased cases with data.
Since the most sensitive parameters affecting total deceased
cases was fixed in their study, they over estimate the infected
cases to match the total deceased cases. Another important
point emerging from our study is the sensitivity of the model
output on the initial condition.

Results of the calibrated-validated model show a decrease
in mortality rates for Texas as compared to mortality rates
reported in literature [30]. Validation results show that the
model parameters affecting total infected cases gets updated
significantly, and, therefore, the total infected casesQoI com-
puted from the validation posterior and calibration posterior
show noticeable differences. This, we think, is natural as
the number of infected cases is changing rapidly and the
model is inadequate to accommodate this. Whereas, the total
deceased cases QoI computed from the validation posterior
and calibration posterior are close andwe see small update of
the parameters affecting the total deceased cases in the val-
idation step. This suggests that the deceased cases in Texas
has stabilized. We place higher confidence in our predic-
tion of deceased cases. On June 30, 2020, there was total
2525 fatalities and total 175,977 infected cases all over Texas.
We predict 7003 deceased cases and 301,658 infected cases
by September 1, 2020 with uncertainty (standard deviation)
102 and 5786 respectively. The 95% CI are 6802–7204 for
deceased cases and 290,251–313,064 for infected cases.
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Fig. 1 Schematics of SEIRD model with 5 compartments

The remainder of this paper is organized as follows: in
Sect. 2, we describe the forward model. In Sect. 3, Bayesian
approach in OPAL and associated components are pre-
sented. The discretization of the forward model, source and
processing of the data and map are described in Sect. 4.
Therein, we also present the sensitivity analysis results.
In Sect. 5, we apply the Bayesian inference and show
calibration-validation-prediction results. We discuss the pre-
diction results and further improvements of themodel in Sect.
6. We make the codes available publicly in website https://
github.com/prashjha/BayesForSEIRD.

2 Reaction–diffusionmodel

Let� ⊂ R
2 be a simply-connected geographical region pro-

jected on a2Dplane.Let [0, T ]be the timedomainof interest.
At any point x ∈ � and time t ∈ [0, T ], we introduce fol-
lowing real-valued fields:

• φs = φs(x, t)—susceptible population density (those not
yet infected by COVID-19)

• φe = φe(x, t)—exposed population density (which are
exposed but do not yet show symptoms)

• φi = φi (x, t)—infected population density
• φr = φr (x, t)—recovered population density
• φd = φd(x, t)—deceased population density
• φn = φn(x, t)—total population density

We have φn = φs +φe+φi +φr +φd . By population density,
of course, we mean the number of individuals per unit area
in �. We assume φn(x, t) > 0 for all (x, t) ∈ � × [0, T ].

Assuming sufficient smoothness and differentiability, the
density fields are governed by the following nonlinear cou-
pled system of PDEs:

∂tφs = αφn −
(
1 − A

φn

)
βiφsφi −

(
1 − A

φn

)
βeφsφe

− μφsφn + ∇ · (φnνs∇φs),

∂tφe =
(
1 − A

φn

)
βiφsφi +

(
1 − A

φn

)
βeφsφe − σφe

− γeφe − μφeφn + ∇ · (φnνe∇φe),

∂tφi = σφe − γdφi − γrφi − μφiφn + ∇ · (φnνi∇φi ),

∂tφr = γrφi + γeφe − μφrφn + ∇ · (φnνr∇φr ),

∂tφd = γdφi , (1)

where γa, a ∈ {e, r}, are recovery rates, γd is the mortal-
ity rate of COVID-19 infected patients, βa, a ∈ {e, i}, are
contact rates, νa, a ∈ {s, e, i, r}, are diffusivity constants
of various densities, α is the birth rate, σ is the inverse of
the incubation period, μ is the general mortality rate (non
COVID-19), and A is the constant appearing due to Allee
effect. Above model is based on commonly accepted phys-
ical processes, see [15]. Boundary conditions for fields are
taken as Neumann conditions:

∇φa · n = 0, ∀(x, t) ∈ Ω × [0, T ],∀a ∈ {s, e, i, r , d}.
(2)

Initial conditions are given by

φa(x, 0) = φ0
a(x), ∀x ∈ Ω,∀a ∈ {s, e, i, r , d}. (3)

We ignore natural death and birth i.e. α = μ = 0.
We remark that designing initial condition for this model
is bit more involved and we discuss this in some detail in
Sect. 4. Initially we have the data for the total infected cases
(sum of infected, recovered, and deceased), deceased cases,
recovered cases, and total population. To obtain the remain-
ing fields, namely, exposed cases and susceptible cases, we
assume that at t = 0, there is a real number R such that

φe(x, 0) = Rφi (x, 0). (4)

Calculations show that the model output can be sensitive to
the choice of R. We add it to our list of model parameters to
be determined by Bayesian inference.

3 Bayesian learning

Suppose theSEIRD(susceptible-exposed-infected-recovered-
deceased) model in (1) can be expressed concisely as

A(θ, S; u(θ , S)) = 0, (5)

where θ = (A, βe, νs, νi , γe, γr , γd , σ, R) ∈ � ⊂ [0,∞)Nθ ,
Nθ = 9, is the model parameter vector, S a scenario spec-
ifying the conditions on which the problem is posed, and
u(θ, S) = (φs, φe, φi , φr , φd) is the vector of population
densities satisfying the forward problem for a given param-
eter θ and scenario S. We assume that βi = βe and νr =
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νe = νs in rest of the article. This reduces the computational
complexity of the model inference problem at a very little
cost of approximation.

We assume that the solution u(θ , S) belongs to the space
[L2(0, T ; H1(�))]5, i.e., for each a ∈ {s, e, i, r , d}, the
components of u satisfy

∫ T

0
||φa||21 < ∞, (6)

where

||φa ||1 =
(∫

�

|φa |2 + |∇φa |2dx
)1/2

(7)

is the H1 Hilbert space norm. For simplicity, we let V denote
the solution space, where

V = [L2(0, T ; H1(�))]5. (8)

In the rest of the article, we will assume that for any θ ∈ �

and given scenario S, the solution u = u(θ , S) of the forward
problem (5) exists and belongs to the space V .

While the solution of (5) describes the distribution of
the disease over the total geographical region of the state
of Texas, we are ultimately interested in the specific quanti-
ties computed from the solution u, such as the total number
of cases of infected and deceased patients in each of a set of
25 districts into which the state is partitioned. The quantity
of interest Q (QoI or QoIs when more than one quantity of
interest) is a functional defined on the space of solutions of
forward model, i.e.,

Q : V → R; Q(u(θ, Sp)) = Q̃(θ), (9)

where Sp is the prediction scenario, see [23,24]. Q̃ is the ran-
dom function since θ is a random variable. For the problem
at hand, we consider the total cases of infected and deceased
patients in each of 25 districts of Texas at prediction time
t = Tp as the QoIs.

Before we describe the three key steps in OPAL Bayesian
learning, it is important to first discuss the various compo-
nents of the approach.

3.1 Noise in the data and themodel inadequacy

3.1.1 Experimental noise

Suppose g is the real data (the ground truth),Y is the recorded
data with some margin of error, and ε is the noise, then Y
must be related to g by some function f (unknown)

Y = f (g, ε).

To proceed further, we need to assume some reasonable form
of function f . Following common assumptions, we suppose
that ε follows the Gaussian distribution with mean 0 and take
f (g, ε) = g + ε (additive noise), resulting in

Y = g + ε. (10)

Since Y is a vector, ε = (ε1, .., εN )where each εi is given
by the Gaussian distribution with 0 mean and σi standard
deviation.

3.1.2 Model inadequacy

For a given parameter θ and scenario S, we compute the
parameter-to-observable map d(θ , S) at some time t . The
model is always imperfect so a model of inadequacy must be
constructed. Following [22–24], we assume

g − d(θ , S) = γ (θ, S), (11)

where γ (θ , S) is the modeling error and may depend on the
parameters and scenario. Dependence of γ on θ and S is not
known and therefore one has to develop hypothesis about its
values.

It is possible to combine the data noise and model inade-
quacy and assume a probability distribution for the combined
error γ + ε. If done so, we have

Y − ε − d(θ) = γ (θ , S) ⇒ Y − d(θ) = ε + γ (θ , S),

(12)

i.e., the difference between the recorded data and the model
output is equal to the sum of the noise and the model inad-
equacy. In this article, we assume ε + γ (θ, S) ∼ N (0, �),
where� is the covariance matrix. Here x ∼ N (μ, σ )means
that x is sampled from a Gaussian distribution or the x is the
random variable with the probability distribution given by
N (μ, σ ).

3.2 The likelihood function

To infer for the model parameters, we need a likelihood
probability distribution function L that assigns a penalty
depending on how far the model output d for a given param-
eter θ is from the data Y . We let

L(θ, S; t) = N (Y(t) − d(θ , S; t),�). (13)

where� is covariancematrix.We also assume that the sumof
noise and model inadequacy is uncorrelated and the covari-
ance matrix, for the noise and model inadequacy, � is a
diagonal matrix. We may assume that � = �(t), i.e. covari-
ance depends on the time at which the model output and the
data are compared.
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Fig. 2 Bayesian prediction pyramid showing three levels; calibra-
tion, validation, and prediction. Model is calibrated using the data Y c
obtained under the scenario Sc. Calibration scenarios are designed to
test the sub-components of the model. Model is then validated using
the data Yv obtained under scenario Sv . Validation scenarios are more
complex as compared to calibration scenarios. Finally, the calibrated-
validated model is employed to predict quantities of interest under the
scenario Sp . Scenario Sp represents the conditions under which obtain-
ing the data is either expensive or very difficult [11,23,24]

3.3 Calibration, validation, and prediction

Model inference inOPALBayesian learning framework con-
sists of three steps: calibration, validation, and prediction, see
Fig. 2. These are described below.

3.3.1 Model calibration

In this step, the model parameters are tuned so that the statis-
tics of the output of the model agrees with that of the data.
We assume that the data for model calibration correspond to
the calibration scenario Sc. Let πc(θ |Sc) be the prior prob-
ability distribution of the model parameters, πc(Y c|θ, Sc)
be the conditional probability of the data when the param-
eter is fixed to θ (the likelihood function), πc(θ |Y c, Sc) be
the conditional probability of the parameter for a given data
Y c (posterior), and πc(Y c|Sc) be the evidence. Bayes’ rule
relates the prior, likelihood, and the posterior as follows:

πc(θ |Y c, Sc) = πc(Y c|θ , Sc)πc(θ |Sc)
πc(Y c|Sc) . (14)

The evidence is the marginalization of the numerator in (14)
so that the posterior πc(θ |Y c, Sc) is integrated to 1 with
respect to θ ∈ �. It is given by

πc(Y c|Sc) =
∫

�

πc(Y c|θ, Sc)πc(θ |Sc)dθ . (15)

We consider log-normal priors to ensure that the samples
of parameters remain positive, see Sect. 4 for more details.
Suppose we consider COVID-19 data at first Nc days as the
calibration data, i.e. Y c = (Y(ti ))

Nc
i=1. In the scenario Sc, we

consider the total number of infected and deceased cases in
whole of Texas as the data. The corresponding parameter-to-
observable map is d(θ , Sc; t) = (d1, d2) with

d1(θ , Sc; t) =
∫

�

∑
a∈{i,r ,d}

φa(x, t)dx,

d2(θ , Sc; t) =
∫

�

φd(x, t)dx. (16)

The likelihood function is simply the product of likelihood
function at each time ti , i = 1, 2, . . . , Nc,

πc(Y c|θ, Sc) =
Nc∏
i=1

L(θ, Sc; ti )

=
Nc∏
i=1

2∏
j=1

N (Ycj (ti ) − d j (θ , Sc; ti ), σ j (ti )),

(17)

where we substituted the form of L(θ , Sc; ti ) from (13) and
assumed that the noise in the infected cases and the deceased
cases are not correlated and may depend on the time of the
data.

As the prior and the likelihood functions are known, we
can solve for the posterior πc(θ |Y c, Sc) using (14). (14) is
solved numerically using the MCMC algorithm. These steps
assimilate the data into the posterior πc(θ |Y c, Sc) which
informs the sampling of parameters for an accurate model
output.

3.3.2 Model validation

In this step, we validate the model by first tuning the param-
eters using the validation data obtained under the validation
scenario Sv , and then computing the QoIs at validation
times and comparing it with the data. Let πv(θ |Sv) =
πv(θ |Y c, Sc, Sv) be the prior for the validation step which
is conditioned on the calibration data Y c and the scenario
Sc. We take the calibration posterior πc(θ |Y c, Sc) as the
validation prior, i.e. πv(θ |Y c, Sc, Sv) = πc(θ |Y c, Sc). Let
πv(Yv|θ,Y c, Sc, Sv) be the likelihood function, πv(θ |Yv,

Y c, Sc, Sv)be thevalidationposterior, andπv(Yv|Y c, Sc, Sv)

be the evidence.
Suppose the COVID-19 data at times ti , for i = Nc +

1, Nc+2, . . . , Nc+Nv defines the validation data, i.e. Yv =
(Y(ti ))

Nv

i=Nc+1. Similar to calibration scenario, we let the total
number of infected and deceased cases in Texas be the data
in validation scenario Sv . P-to-o map d(θ, Sv; t) is defined
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similarly to (16). The likelihood function is

πv(Yv|θ,Y c, Sc, Sv) =
Nv∏
i=1

L(θ, Sv; tNc+i )

=
Nv∏
i=1

2∏
j=1

N (Yv j (tNc+i ) − d j (θ, Sv; tNc+i ), σ j (tNc+i )),

(18)

As in the calibration step, we solve for the posterior
πv(θ |Yv) using (14). For the validation of the model, we
sample the parameter from the validation posterior, solve the
forward problem A(θ, Sv; u(θ, Sv)) = 0, and compute the
QoI Q. If the difference of prediction (QoI in other words)
and the data Yv is within the tolerance γtol , i.e.

d(Q(θ , Sv; tNc+Nv ),Y(tNc+Nv )) ≤ γtol , (19)

then we declare the model as Not Invalid. Here, d(·, ·) is the
metric that compares the two randomfields, [24]. For the cur-
rentmodel,we performvalidation as follows:we consider the
total infected and deceased cases in Texas as QoI and com-
pute the standard deviation σin f and σdec of the normalized
error in infected cases and deceased cases. With tolerance
γin f = 0.08 (8% error) and γdec = 0.04 (4% error), we
check if σin f < γin f and σdec < γdec to determine the valid-
ity of the model.

3.3.3 Model prediction

Suppose the model was found to beNot Invalid. We compute
the total infected cases and total deceased cases, aswell as the
infected and deceased cases in each of 25 districts in Texas,
at prediction days from t = Nc + Nv + 1 to t = Tp. The
QoIs so obtained are the random fields. Standard deviation
of QoI indicates the uncertainty in the predictions.

4 Numerical approximation of forward
problem and sensitivity analysis

In this section, we outline the numerical approximation of
the forward model. The data, obtained from https://www.
dshs.texas.gov/coronavirus/additionaldata/, consists of total
population, total infected cases (sum of active infected,
recovered, and deceased cases), deceased cases, and recov-
ered cases for each of the 254 county in Texas. The number
of recovered cases are not exact as noted in the source of the
data. We process the county-wise data to obtain the data for
each district and also total data in Texas.We let data in period
June 1–June 20 as the calibration data and June 21–June 30 as
the validation data.Weobtain themap ofTexas alongwith the

Fig. 3 Map of the state of Texas state partitioned into 25 internal dis-
tricts. The number of cases (grey) and deceased cases (red) in various
districts as of 1st June 2020 is also shown. In the background, the trian-
gulation of the map is shown

district boundaries in shapefile format from http://gis-txdot.
opendata.arcgis.com/datasets/texas-state-boundary. To tri-
angulate the Texas region, we follow these steps:

1. Load theTexasmapfile inQGIS software.QGIS software
is freely available.

2. Coarse grain the outer boundary segments using Simplify
tool in QGIS. The original map has few very small length
segments which may create problem in triangulation or
result in very fine mesh.

3. Obtain the vertices using Extract Vertices tool in QGIS
and save the vertices layer using save layer as option.
Select As_XY inGraphical category while saving the file
in a csv format.

4. Prepare a Gmsh input file using vertices file for triangu-
lation.

In Fig. 3, we show the triangulation along with the total cases
of infection and the total fatal cases in 25 districts at the
beginning of model inference, i.e., 1st June 2020.

4.1 Numerical discretization

Suppose (·, ·) denote the L2 inner product over domain �.
We assume homogeneous Neumann boundary condition for
all densities. Let Va = H1(�) for a ∈ {s, e, i, r , d, n} and
V h
a be the finite dimensional approximation of Va by contin-

uous piecewise linear interpolations over triangulation T h .
Suppose φan ∈ V h

a denote the solution at time tn . Given
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Table 1 Prior probability data:
parameter values from previous
studies [3,30]. The values are
converted to the appropriate
units

Parameter Value Variance after ln Range

γe 1/6 0.25 [0.8/6, 1.25/6]
γr 1/24 0.25 [0.75/24, 1.33/24]
γd 1/160 0.25 [0.5/160, 2/160]
σ 1/7 0.25 [0.8/7, 1.25/7]
A 1000 0.4 [10, 1200]
βe 3.3 × 10−4 0.5 [5 × 10−5, 10−3]
νs 4.35 × 10−6 0.5 [10−7, 10−4]
νi 10−8 1 [5 × 10−9, 5 × 10−6]
R 4.64 0.25 [0.2, 20]

Fig. 4 Sensitivity results for case when θ = (A, βe, νs , νi , R) (on left)
and θ = (A, βe, νs , νi , γe, γr , γd , σ, R) (on right). Top figures show
parameters with higher μ∗, the mean of the Morris elementary effects,

for the two QoIs. Bottom figures show the QoI values at different sam-
ples. Note that the variation in total deceased cases is extremely small
in setting 1

{φan }a∈{s,e,i,r ,d}, we seek φan+1 at time tn+1 = tn+�t . Since
the equations for φa are nonlinearly coupled, we consider a
fixed point iteration at each time step. Let φk

a , φ
k+1
a ∈ V h

a
denote the current iteration and next iteration (unknown)
approximation of φan+1 and let φ̃a ∈ V h

a denote the test func-
tion. At iteration step k at time tn , weak forms for susceptible,
exposed, infected, and deceased density fields are as follows:

1. Susceptible

(φk+1
s , φ̃s) + �t

((
1 − A

φk
n

)
βiφ

k
i φ

k+1
s , φ̃s

)

+ �t

((
1 − A

φk
n

)
βeφ

k
eφ

k+1
s , φ̃s

)

+ �t(μφk
nφ

k+1
s , φ̃s) + �t(νsφ

k
n∇φk+1

s ,∇φ̃s)

= (φsn , φ̃s) + �t(αφk
n , φ̃s). (20)

2. Exposed

(φk+1
e , φ̃e) + �t((σ + γe)φ

k+1
e , φ̃e)

+ �t(μφk
nφ

k+1
e , φ̃e) + �t(νeφ

k
n∇φk+1

e ,∇φ̃e)

= (φen , φ̃e) + �t

((
1 − A

φk
n

)
βiφ

k+1
s φk

i , φ̃e

)

+ �t

((
1 − A

φk
n

)
βeφ

k+1
s φk

e , φ̃e

)
. (21)

3. Infected

(φk+1
i , φ̃i ) + �t((γd + γr )φ

k+1
i , φ̃i )
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(a) (b)

Fig. 5 Results for the Bayesian calibration step. The left figure is a typ-
ical evolution of the model outputs at day 1, 10, and 20 along a MCMC
chain that shows rapid mixing starting ∼ 200 samples. The red line and
the red shaded region corresponds to the data and the region within one

standard deviation according to the likelihood model. The right figure
shows the marginalized calibration posterior densities (orange) and the
marginalized calibration prior densities (blue) for each parameters of
interest

+ �t(μφk
nφ

k+1
i , φ̃i ) + �t(νiφ

k
n∇φk+1

i ,∇φ̃i )

= (φin , φ̃i ) + �t(σφk+1
e , φ̃i ). (22)

4. Recovered

(φk+1
r , φ̃r ) + �t(μφk

nφ
k+1
r , φ̃r ) + �t(νrφ

k
n∇φk+1

r ,∇φ̃r )

= (φrn , φ̃r ) + �t(γrφ
k+1
i , φ̃r ) + �t(γeφ

k+1
e , φ̃r ). (23)

5. Deceased

(φk+1
d , φ̃d) = (φdn , φ̃d) + �t(γdφ

k+1
i , φ̃d). (24)

The fields φk+1
a are solved in the same order as their weak

forms are presented above. Note that in weak form for φe,
we consider updated solution φk+1

s instead of φk
s . Similar

is true for other equations. Algorithm 1 provides the key
steps required to solve the forward problem. The solver is
implemented through FEniCS [1,20]. The resulting linear
systems in (20)–(24) are solved by the GMRES algorithm
with the incomplete LU preconditioners.

4.2 Units

We let time be in the units of days and length in units of
100 km. Let ρ0 = 10000 people/(100 km)2. The densi-
ties φa , a{s, e, i, r , d, n}, are in units of ρ0. The parameters
α, γe, γr , γd , σ have unit of 1/day, parameters βi , βe, μ have

unit of 1/(ρ0 day), A has unit of 1/ρ0, and νs, νe, νi , νr have
unit of (100 km)2/(ρ0 day).

4.3 Initial condition

We obtain the total population, total infected cases, deceased
cases, recovered cases for each of the county from the data
at t = 0 (1st June 2020). To specify the initial population
densities φa , a ∈ s, e, i, r , d , we proceed as follows: for
φa , a ∈ {i, r , d, n}, we consider the following sum of 254
Gaussian functions centered at the centroid of counties:

φa(x, 0) =
254∑
i=1

Ai exp

[
−|x − xc,i |2

2B2
i

]
, (25)

where Ai is the amplitude of Gaussian, Bi is the length scale
controlling the decay, xc,i is the centroid of i th county. We
take Bi = √

Area of county i/(4π) and choose amplitude
such that the integration of individual Gaussian functions
over the R

2 is same as the number of cases (infected,
recovered, deceased or total population depending on a ∈
{i, r , d}). This approach leads to 95.5% of the number of
cases in each county fall into a circle centered at its centroid
with the radius approximated by square-root of its area. To
determine the remaining two species, we first hypothesize
that the exposed cases density is given by

φe(x, 0) = Rφi (x, 0). (26)
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Table 2 The mean, the variance
in ln() of the parameter space,
and the approximated mode for
each parameters of interest
derived from the calibration
posterior samples

Parameter Mean Variance after ln Approximated mode

A 707 0.116 594

βi,e 3.17 × 10−4 0.181 2.42 × 10−4

νs,e,r 6.39 × 10−6 0.254 4.36 × 10−6

γr 0.0804 0.0575 0.0737

γd 2.23 × 10−3 0.0214 2.16 × 10−3

σ 0.0866 0.0383 0.0817

R 2.82 0.0552 2.59

Algorithm 1 Fixed point iterative solver for SEIRD problem
(1)
1: read parameters θ = (A, βe, νs , νi , γe, γr , γd , σ, R)

2: apply initial condition φa(0) for a ∈ S := {s, e, i, r , d, n}
3: % time stepping
4: for each integer 0 ≤ n ≤ T /�t do
5: % nonlinear iteration
6: φ1

a = φ0
a = φan for a ∈ S

7: for each integer k > 0 do
8: solve for φk+1

s using (20)
9: solve for φk+1

e using (21)
10: solve for φk+1

i using (22)
11: solve for φk+1

r using (23)
12: solve for φk+1

d using (24)
13: % compute error
14: e = ∑

a ||φk+1
a − φk

a ||
15: % check for convergence or max iteration
16: if e < tol then
17: φan+1 = φk+1

a for a ∈ S
18: break
19: end if
20: if k > Nmax iter then
21: exit
22: end if
23: φk

a = φk+1
a for a ∈ S

24: k = k + 1
25: end for
26: compute model output at time tn+1
27: φan = φan+1 for a ∈ S
28: n = n + 1
29: end for

Using the fact that φn = ∑
a∈{s,e,i,r ,d} φa , we determine φs .

The parameter R in above is treated as the model parameter.
Wewill see next the effect of parameter R on the total infected
cases.

4.4 Sensitivity analysis

In this section, we perform a sensitivity analysis of quanti-
ties of interest on different parameters. We consider the total
infected and total deceased cases as the QoI. We consider
two settings. In the first setting, we fix γe, γr , γd , σ accord-
ing to Table 1 and let θ = (A, βe, νs, νi , R) denote themodel
parameters. In the second setting, we include γe, γr , γd , σ in
the parameter list. In Table 1, we list the values of parameters

Fig. 6 The model outputs at the calibration posterior samples. The red
line and the red shaded region corresponds to the data and the region
within one standard deviation according the likelihoodmodel. Thegreen
line corresponds to the model output at the mean of the calibration
posterior samples

reported in the previous study and their range considered in
the sensitivity study.

We performed the convergence study to confirm that the
model has been discretized correctly in space and time. The
choice ofmesh and time stepwere constrained by the fact that
the PDEs have to be solved many times. The triangulation of
map in this and the study in the next section consists of 2969
vertices and 5683 triangle elements. The mesh size is about
18.942 km. The final time is T = 20 days and the size of
time step is �t = 0.1 day.

We employ open source library SALib and use themethod
ofMorris [6,21] for sensitivity calculation.We generate 1200
and 2000 samples of parameters for setting 1 and 2, and com-
pute the total infected and deceased case for each parameter.
In Fig. 4, we plot the μ∗ (mean of the absolute value of the
elementary effects), total infected and deceased QoIs at dif-
ferent parameter samples. From the plots, we note that while
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Fig. 7 The marginalized validation posterior densities (orange) and the marginalized validation prior densities (blue) for each parameters of interest

the variation in the infected QoI is very large indicating that
the model can be calibrated. The variation in the deceased
QoI is extremely small (below order 1) in setting 1 indicat-
ing that the model can not be calibrated for a given deceased
data. The results of setting 2 show that the deceased QoI is
most sensitive to parameters γd , σ, γr and the other param-
eters have almost no effect. For this reason the parameters
γd , σ, γr are kept variable and learned from the data. Results
also show the negligible effect of γe, νi on QoIs, and, there-
fore, their values are fixed from Table 1.

5 Inference results

We consider the total infected and deceased cases respec-
tively in the period June 1–June 20 and June 21–June
30 as the calibration and validation data. We predict the
number of infected and deceased cases for period July
1–September 1. We assume that νr = νe = νs and
βi = βe. Based on the sensitivity study in the preced-
ing section, we fix values of γe and νi from Table 1 and
consider θ = (A, βe, νs, γr , γd , σ, R). For the posterior
sampling in the calibration and validation steps, we uti-
lize the preconditioned Crank-Nicolson (pCN) algorithm

Table 3 The mean, the variance
in ln() of the parameter space,
and the approximated mode for
each parameters of interest
derived from the validation
posterior samples

Parameter Mean Variance after ln Approximated mode

A 413 0.0569 379

βi,e 3.78 × 10−4 0.0592 3.46 × 10−4

νs,e,r 3.94 × 10−6 0.250 2.70 × 10−6

γr 0.0658 0.0451 0.0614

γd 2.25 × 10−3 0.0243 2.07 × 10−3

σ 0.0724 0.0353 0.0686

R 2.28 0.0618 2.08
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Fig. 8 The model outputs at the validation posterior samples. The red
line and the red shaded region corresponds to the data and the region
within one standard deviation according the likelihoodmodel. Thegreen
line corresponds to the model output at the mean of the validation pos-
terior samples

implemented in the hIPPYlib library (version 3.0.0) [31,
32].

5.1 Calibration

We consider a log-normal prior with mode and variance for
parameters given in Table 1. We note that for the parame-
ter A, we consider a mode of 400 to ensure that A is not
sampled often in a nonphysical regime. From the SEIRD

model (1), the term
(
1 − A

φn

)
βiφsφi represents the portion

of the susceptible population transitioning to exposed due to
infected population. If A is such that 1− A/φn < 0 then the

transmission direction is reversed which is nonphysical and
undesired.

The pCN algorithm is employed for generating sam-
ples from the posterior distribution, which is ideal for the
inference problems with high dimensional parameter spaces
and Gaussian priors. We refer to the interested readers to
[4,5,13] and the reference within for the theory associated
withMarkov chainMonteCarlo and the pCNalgorithm.With
multiple runs of the pCN algorithms with different step size
factors β, we choose β = 0.3 to maximize the efficiency of
the posterior samples.

A set of∼ 3500 calibration posterior samples are obtained
through running 4 independent chains, with an average
acceptance rate of 20%. The results for the Bayesian cal-
ibration of the model parameters, including both a typical
chain evolution of the model outputs and the marginal-
ized calibration posterior densities are shown in Fig. 5. The
model outputs of the calibration posterior samples match
the data with reasonable precision. The marginalized cali-
bration posterior densities indicate a higher recovery rate,
a lower mortality rate, and a longer incubation period com-
pared to our prior assumptions, with the approximatedmodes
at ∼ 1/13.6 day−1, ∼ 1/462 day−1, and ∼ 1/12.2 day−1

respectively. A summary of the mean, the variance, and the
approximated mode is shown in Table 2. The model outputs
for all the calibration posterior samples and the model output
at the mean of the calibration posterior are plotted with the
data in Fig. 6.

5.2 Validation

We approximate the calibration posterior density by a log-
normal density using its mean and variance and use it as
the prior density for the validation step. We employ the pCN
algorithmwith the step size factorβ = 0.3 to sample from the
validation posterior density. A set of ∼ 4500 validation pos-
terior samples are obtained through running 4 chains with an

Fig. 9 Prediction of the total infected cases and deceased cases in whole of Texas from July 1 to September 1 2020
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Fig. 10 Prediction of the total infected cases and deceased cases in top five districts from June 1 to September 1 2020. Left side of the vertical line
correspond to the calibration plus validation days. Right side of vertical line correspond to the prediction days
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Fig. 11 Projection of total cases in 25 districts on August 15 (left) and September 1 (right). Red corresponds to the deceased cases and grey
corresponds to the infected cases

average acceptance rate of 30%. Using the validation poste-
rior, we compute the total infected cases and deceased cases
from t = 20 to t = 30 and compare with the data. The
standard deviation of the normalized error in total infected
and deceased cases are found to be 0.0863 > γin f = 0.08
and 0.0068 < γdec = 0.04. This implies that the model is
Invalid for the infected QoI and Not Invalid for the deceased
QoI. This conclusion is strengthened by the plots in Fig. 8
which shows that the model under predicts the infected cases
whereas the model prediction of the deceased cases is very
close to the data.

5.3 Prediction

Using the validation posterior, we compute the total number
of cases in 25 districts until September 1, 2020. The model
predicts 7003 fatalities with 95% CI 6802–7204 and 301658
total cases of COVID-19 infection with 95% CI 290251–
313064 in Texas by September 1, 2020. Uncertainty, in terms
of the standard deviation of the quantity of interest, in the
prediction for deceased and infected cases are 102 and 5786
respectively. Figure 9 shows the evolution of cases in Texas
along with the confidence intervals. We select top five dis-
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tricts in terms of the total infected cases as of June 30, 2020
and plot the evolution of the cases in these five districts until
September 1, 2020. Figure 11 shows the projection of the
district QoIs by August 15 and September 1 on Texas map.

6 Conclusion

Bayesian techniques have been employed to predict the
COVID-19 spread in Texas. The model is found to be ade-
quate to predict the deceased cases, however, falls short for
the infected cases. By September 1, we predict to see about
7003 fatalities and 301658 infected cases. Uncertainties, in
terms of the standard deviation of the QoI distribution, in
deceased and infected cases are about 102 and 5786. Cal-
culations show the SEIRD model employed in this work is
not valid for the prediction of the infected cases. The cases
of COVID-19 infection has been rising rapidly and it may
be the case that the model is not adequate to account for the
rapid increase in cases.

Several extensions of the model can be considered. For
example, the model parameters can be allowed to vary
in time and space; see [10,17] where the parameters in
ODE based SEIRD model are considered to be time depen-
dent. Physical landscape or heterogeneities can be added
to the model by considering non-homogenous and possibly
anisotropic diffusion models [16]; higher infection diffusiv-
ity in densely populated counties, anisotropic diffusion to
include the effects of highways/freeways. Another aspect
believed to play a major role in the dynamics of COVID-19
spread is the asymptomatic/mildly symptomatic cases which
are often not accounted in the data, see [7,12,19,25,29]. This
work can be extended, similar to [26,27], by subdividing the
infected portion of the population into the asymptomatic and
symptomatic groups to account for the effects of the unre-
ported cases. OPAL provides a framework to rank models
and select the best model for prediction. It can be applied to
different variants of the SIR model such as SIS (susceptible-
infected-susceptible), SEIR, SIRD, MSIR (M stands for
immunity inherited from mother), SEIIR (II for infected but
asymptomatic and infected but symptomatic), etc and find
the best model for the prediction of the infected cases.
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