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Abstract
Peridynamics (PD) is a non-local continuum formulation. The original version of PDwas restricted to bond-based interactions.
Bond-based PD is geometrically exact and its kinematics are similar to classical continuum mechanics (CCM). However,
it cannot capture the Poisson effect correctly. This shortcoming was addressed via state-based PD, but the kinematics are
not accurately preserved. Continuum-kinematics-inspired peridynamics (CPD) provides a geometrically exact framework
whose underlying kinematics coincide with that of CCM and captures the Poisson effect correctly. In CPD, one distinguishes
between one-, two- and three-neighbour interactions. One-neighbour interactions are equivalent to the bond-based interactions
of the original PD formalism. However, two- and three-neighbour interactions are fundamentally different from state-based
interactions as the basic elements of continuum kinematics are preserved precisely. The objective of this contribution is to
elaborate on computational aspects of CPD and present detailed derivations that are essential for its implementation. Key
features of the resulting computationalCPDare elucidated via a series of numerical examples. These include three-dimensional
problems at large deformations. The proposed strategy is robust and the quadratic rate of convergence associated with the
Newton–Raphson scheme is observed.

Keywords Peridynamics · Continuum kinematics · Computational implementation

1 Introduction

Peridynamics is an alternative approach to formulate non-
local continuum mechanics [1]; its roots can be traced back
to the pioneering works of Piola [2,3]. However, it is funda-
mentally different from established non-local elasticity [see
[4,5], among others] as the concepts of stress and strain are
absent. As a non-local theory, the behaviour of each mate-
rial point is influenced by interactions with other material
points in their finite vicinity. In contrast to CCM, the gov-
erning equations of PD are integro-differential equations
appropriate for problems involving discontinuities such as
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cracks and interfaces. Given that PD inherently accounts
for geometrical discontinuities, it provides a suitable frame-
work for fracture mechanics and related problems [6–17].
However, the range of PD applications is broad and not lim-
ited to fracture. PD has experienced prolific growth as an
area of research, with a significant number of contributions
in multiple disciplines. Various applications and extensions
of PD not dealing exclusively with material failure include
quasi-static problems [18–22], coupled problems [23–27],
multiscale modeling [28–35], structural mechanics [36–
40], constitutive models [41–48], biomechanics [49,50], and
wave dispersion [51–57]. For an extensive study of the bal-
ance laws, applications, and implementations, see [58]. For a
brief description of PD together with a review of its applica-
tions and related studies in different fields to date, see [59].
Very recently, Bode et al. [60,61] proposed a mixed PD for-
mulation as a generalization of PD theory that offers a stable
alternative suitable for finite deformations, also referred to as
Peridynamic Petrov–Galerkin method. Fundamental works
on PD are growing in number but are still relatively limited,
see e.g. [62,63]. Note, that while the discretised format of
PD bears a similarity to discrete mechanics, it is still a con-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-020-01885-3&domain=pdf


796 Computational Mechanics (2020) 66:795–824

tinuum formulation. For further connections and differences
between PD theory, continuum mechanics and particle sys-
tems, see the contributions [64–67], among others.

The original PD theory of Silling [1] was restricted to
bond-based interactions. This limited its applicability for
material modelling. For example, the theory was unable
to account for a Poisson ratio other than 1/4 for isotropic
materials. This shortcoming was addressed in various con-
tributions and finally rectified in [68] via the introduction
of the notion of state and the categorising of interactions
as bond-based, ordinary state-based or non-ordinary state-
based; see also [69] for an alternative approach and see
[70] for a discussion on Poisson’s ratio in lattice peridy-
namics model. The kinematics in state-based PD do not
exactly follow the motion of a continuum body and can lead
to non-physical deformation modes or instabilities, as dis-
cussed in [45,71] in the context of correspondence. Recently,
Javili et al. [72] introduced a continuum-kinematics-inspired
approach to peridynamics, referred to as CPD, which bridges
the gap between CCM and PD. More precisely, CPD is
an alternative PD formulation whose underlying kinemat-
ics exactly follows the motion of a continuum body and in
the limit coincideswith those ofCCM.The interaction poten-
tials inCPDare decomposed into three parts corresponding to
one-, two- and three-neighbour interactionswithin a horizon.
One-neighbour interactions are equivalent to the bond-based
interactions of the original PD formalism. However two-
and three-neighbour interactions are fundamentally differ-
ent from state-based interactions. The main objective of this
manuscript is to elaborate on the computational aspects of
CPD and to provide detailed numerical examples at finite
deformations to illustrate the theory and demonstrate its
potential.

The manuscript is organised as follows. Section 2 intro-
duces the notation, elaborates on the kinematics of the
problem, presents the governing equations of CPD and pro-
vides suitable constitutive laws that inherently account for
material frame indifference via dependence on objective
deformation measures. Next, we detail the implicit compu-
tational implementation of the governing equations and their
approximate forms in Sect. 3. In particular, we discuss the
computational aspects for treating afinite deformation, quasi-
static problem. To do so, we propose physically meaningful
interaction energy densities and provide detailed derivations.
Thereafter, in Sect. 4, the key features of the interaction ener-
gies and capabilities of CPD are illustrated via a series of
numerical examples. Section 5 concludes this work and pro-
vides an outlook.

2 Problem definition

This section briefly defines the problem of CPD and gathers
its main relations and equations. Central to CPD is the kine-
matic description as detailed in Sect. 2.1. This is inspired
by CCM. Thereafter, the key quantities of CPD together
with the governing equations are given in Sect. 2.2. Ther-
modynamically consistent constitutive laws for CPD are
derived in Sect. 2.3. In Sect. 2.4, we propose specific forms
of constitutive laws for one-neighbour, two-neighbour and
three-neighbour interactions in a unified format.

2.1 Kinematics

Consider a continuum body that occupies the material con-
figurationB0 ⊂ R3 at time t = 0 and ismapped to the spatial
configuration Bt ⊂ R3 via the nonlinear deformation map y
as x = y(X, t) : B0×R+ → Bt withX and x identifying the
points in thematerial and spatial configurations, respectively,
as illustrated in Fig. 1. Note that we restrict the analysis to
quasi-static conditions. Thus time plays the role of a history
parameter to order the sequence of events. Central to theCPD
theory, and in contrast to standard local continuum mechan-
ics, is the non-locality assumption that any point X ∈ B0 can
interact with points within its finite neighbourhood H0(X).
The neighbourhood H0 is referred to as the horizon in the
material configuration. The measure of the horizon in the
material configuration is denoted by δ0 := meas(H0) and
is generally the radius of a spherical neighbourhood centred
at X. The spatial horizon Ht = y(H0(X), t) is the image of
the material horizon H0 under the deformation map y and
in general will not remain spherical. Note that the horizons
H0 and Ht coincide with the points X and x in the limit of
an infinitesimal neighbourhood, thereby recovering the kine-
matics of the local continuum mechanics formalism.

To be more precise, we identify the neighbours within the
horizon by a superscript. For instance, the point X| ∈ H0(X)

denotes a neighbour of point X in the material configuration.
The point x| within the horizon of x is the spatial counterpart
of the point X| defined through the nonlinear deformation
map y as x| := y(X|, t). In our proposed framework, for any
point X we identify all possible neighbour sets {X|,X||,X|||}
that are mapped onto {x|, x||, x|||}, respectively, as shown in
Fig. 1. The relative positions, i.e. the finite line elements, in
the material and spatial configurations are denoted as �{•}
and ξ {•}, respectively, where the superscript {•} identifies the
neighbour; that is
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Fig. 1 Deformation of a
continuum body within the CPD
formulation. The continuum
body that occupies the material
configuration B0 ⊂ R3 at time
t = 0 is mapped to the spatial
configuration Bt ⊂ R3 via the
nonlinear deformation map y.
The neighbourhood of X is
mapped onto the neighbourhood
of x. That is, the neighbour set
{X|,X||,X|||} is mapped onto
{x|, x||, x|||}, respectively

�| := X| − X and ξ | := x| − x

where ξ | = ξ(X|;X) = y(X|) − y(X),

�|| := X|| − X and ξ || := x|| − x

where ξ || = ξ(X||;X) = y(X||) − y(X),

�||| := X||| − X and ξ ||| := x||| − x

where ξ ||| = ξ(X|||;X) = y(X|||) − y(X). (1)

Before defining the kinematic measures of CPD, we recall
the three local kinematic measures of relative deformation
in CCM, namely the deformation gradient F := Grad y, its
cofactor K := CofF and its determinant J := DetF. In the
spirit of these local measures, we introduce three non-local
kinematic measures of relative deformation, namely ξ |, a|/||
and v|/||/||| associated with CPD. The first relative deforma-
tion measure of CPD is ξ |. It mimics the linear map F from
the infinitesimal line element dX in the material configura-
tion to its spatial counterpart dx. In view of our proposed
CPD formalism, the relative deformation measure

ξ | = x| − x, (2)

is the main ingredient to describe one-neighbour inter-
actions. The second relative deformation measure a|/|| is
reminiscent of the linear map K from the infinitesimal vec-
torial area element dA in the material configuration to its
spatial counterpart da. This is essentially Nanson’s formula
from conventional continuum kinematics. In our proposed
framework, the relative area measure

a|/|| = [x| − x] × [x|| − x], (3)

is the main ingredient to describe two-neighbour interac-
tions. The third relative deformation measure v|/||/||| mimics
the linear map J from the infinitesimal volume element dV
in thematerial configuration to its spatial counterpart dv. The
relative volume measure

v|/||/||| =
[
[x| − x] × [x|| − x]

]
· [x||| − x], (4)

is the main ingredient to describe three-neighbour interac-
tions.

2.2 Governing equations

Equipped with the kinematic description of CPD, we briefly
recall the governing equations. Similar to CCM, the govern-
ing equations ofCPDcanbe expressed in global or point-wise
form. In contrast to CCM, the point-wise equations of CPD
are not local. That is, applying a localization procedure on
global forms in CPD renders point-wise relations that still
contain integrals over the horizon and are thus non-local.
It is sometimes possible to apply a localization procedure
on the non-local forms of CPD that yield neighbour-wise
equations valid for each pair of neighbouring points that are
not integrals and hence local. The global form of the linear
momentum balance for quasi-static problems reads

∫

∂B0

text0 dA +
∫

B0

bext0 dV = 0, (5)

where bext0 denotes the external force density per volume in
the material configuration, with units N/m3, and text0 is the
external traction on the boundary in the material configura-
tion, with units N/m2. This format of the external loading is
a particular sub-case of a more general case accounting for
higher-gradient and non-local continua as detailed in [73,74]
among others. The universal form of the quasi-static lin-
ear momentum balance (5) can alternatively be expressed
in terms of volume integrals as

∫

B0

bint0 dV +
∫

B0

bext0 dV = 0. (6)

The internal body force density in the material configuration
bint0 in CCM is the material divergence of the Piola stress P.
In CPD however, bint0 takes an integral form over the horizon.
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Table 1 Governing quasi-static
equations of classical continuum
mechanics (CCM) and
continuum-kinematics-inspired
peridynamics (CPD)

Linear momentum balance Angular momentum balance

CCM DivP + bext0 = 0 ε : [F · Pt] = 0

CPD
∫

H0

p| dV | + bext0 = 0
∫

H0

ξ | × p| dV | = 0

The Piola stress is denoted by P and F · Pt is symmetric due to angular momentum balance expressed using
the third-order permutation tensor ε

That is

bint0 =
∫

H0

p| dV |, (7)

with p| the force density per volume squared, with units
N/m6. Inserting the internal body force density (7) into the
quasi-static linear momentum balance (6) yields, after local-
ization, the linear momentum balance of CPD

bint0 + bext0 = 0 ⇒
∫

H0

p| dV | + bext0 = 0. (8)

To derive the angular momentum balance, we start from the
global form of the quasi-static moment balance

∫

∂B0

y × text0 dA +
∫

B0

y × bext0 dV = 0, (9)

which, after some mathematical steps and using the linear
momentum balance (5), upon localization reduces to the
angular momentum balance of CPD

∫

H0

ξ | × p| dV | = 0. (10)

Table 1 gathers the key governing equations for both CCM
and CPD for the case of quasi-statics.

2.3 Constitutive laws

Constitutive laws bridge the gap between the kinematics
described in Sect. 2.1 and the kinetics in Sect. 2.2. The consti-
tutive laws of CPD, as in CCM, must be thermodynamically
consistent and are thus derived via a Coleman–Noll-like pro-
cedure. Let� denote the point-wise stored energy density per
volume in the material configuration. The dissipation power
density D reads

D =
∫

H0

p| · ξ̇ | dV | − �̇ ≥ 0. (11)

For elasticity D = 0, and the inequality (11) becomes

�̇ =
∫

H0

p| · ξ̇ | dV |. (12)

This relation forms the basis for the derivation of the hyper-
elastic constitutive laws in CPD. The stored energy density
� consists of the contributions from one-, two- and three-
neighbour interactions. Letψ1

|,ψ2
|/|| andψ3

|/||/||| denote the
stored energy densities corresponding to one-neighbour, two-
neighbour and three-neighbour interactions, respectively, in
the material configuration. That is

ψ1
| = ψ1(ξ

|) : one-neighbour interaction energy density,[
ψ1

|] = N · m/m6,

ψ2
|/|| = ψ2(a|/||) : two-neighbour interaction energy density,[
ψ2

|/||] = N · m/m9,

ψ3
|/||/||| = ψ3(v

|/||/|||) : three-neighbour interaction energy density,[
ψ3

|/||/|||] = N · m/m12.

(13)

The point-wise stored energy density � reads

� =
∫

H0

1

2
ψ1

|dV | +
∫

H0

∫

H0

1

3
ψ2

|/|| dV ||dV |

+
∫

H0

∫

H0

∫

H0

1

4
ψ3

|/||/||| dV |||dV ||dV |,
(14)

where the factors one-half, one-third and one-fourth are
required to prevent multiple counting of energy since we
visit each point multiple times depending on the number of
integrals. Thus, the rate of the stored energy density �̇ reads

�̇ =
∫

H0

[
p|
1 + p|

2 + p|
3

]
· ξ̇ | dV |, (15)

in which the vectors p|
1, p

|
2 and p|

3 are defined by

p|
1 := ∂ψ1

|

∂ξ | , p|
2 :=

∫

H0

2 ξ || × ∂ψ2
|/||

∂a|/|| dV ||,

p|
3 :=

∫

H0

∫

H0

3 ξ || × ξ ||| ∂ψ3
|/||/|||

∂v|/||/||| dV |||dV ||,
(16)

the derivation of which is omitted here for the sake of brevity
[see [72], for further details]. It is important to keep in mind
that to arrive at the definition (16)2, we require ∂ψ |/∂a|/||
to be homogeneous of degree one in a|/||. Note that at this
stage, p|

1, p
|
2 and p|

3 in Eq. (16) simply provide a structure
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for a constitutive relation and do not necessarily imply a
particular physical meaning. Inserting the rate of the stored
energy density (15) into equality (12), immediately reveals
the hyperelastic constitutive law of CPD as

p| = p|
1 + p|

2 + p|
3. (17)

This clearly implies that p|
1, p

|
2 and p|

3 can be interpreted as
force density vectors due to one-neighbour, two-neighbour
and three-neighbour interactions, respectively and hence the
notation employed.

2.4 Examples of constitutive laws

In this section, we provide both generic and specific exam-
ples of hyperelastic constitutive laws for CPD. That is, we
give a concrete form for the interaction potentials (13). The
specific examples havenot beenpresented todate in the litera-
ture. We investigate the possible options and seek interaction
potentials that a priori fulfil the CPD angular momentum
balance (10). That is

∫

H0

ξ | × p| dV | != 0 ⇒
∫

H0

ξ | × p1| dV |

+
∫

H0

ξ | × p2| dV | +
∫

H0

ξ | × p3| dV | != 0.
(18)

The angular momentum balance (18) is sufficiently satisfied
if each of the three integrals vanish identically. That is

∫

H0

ξ | × p1| dV | != 0,
∫

H0

ξ | × p2| dV | != 0,
∫

H0

ξ | × p3| dV | != 0.
(19)

To proceed, we define scalar-valued line, area and volume
measures l, a and v , respectively as

l := |ξ || , a := |a|/||| = |ξ | × ξ |||,
v := |v|/||/|||| = |ξ | · [ξ || × ξ |||]|. (20)

It has been proven [72] that if the energy densities (13) are
expressed in terms of l, a and v instead of ξ |, a|/|| and
v|/||/|||, respectively, then conditions (19) are fulfilled a pri-
ori. That is, we require

ψ1
| = ψ1(ξ

|) = ψ1(l), ψ2
|/|| = ψ2(a|/||) = ψ2(a),

ψ3
|/||/||| = ψ3(v

|/||/|||) = ψ3(v).
(21)

The interaction potentials (21) are generic examples of suit-
able one-, two- and three-neighbour interactions.

Finally, we propose specific examples of stored energy
densities ψ

|
1,2,3 that are both thermodynamically consistent

and satisfy the angular momentum balance. These energy
densities are employed in the numerical examples in Sect. 4
and their key characteristics are illustrated and discussed. For
that it proves convenient to define the counterparts of l, a
and v in the material configuration, denoted by L, A and V ,
respectively. That is

L := |�|| , A := |A|/||| = |�| × �|||,
V := |V |/||/|||| = |�| · [�|| × �|||]|. (22)

An example of the stored energy density per volume squared
in the material configuration for one-neighbour interactions
ψ

|
1 = ψ1(l;L) and in accordance with the original bond-

based model of Silling [1] reads

ψ1
| = ψ1(l;L) = 1

2
C1 L [S1 − 1]2 with

[C1] = N · m
m7 and S1 := l

L
,

(23)

where C1 is the one-neighbour elastic coefficient and can be
viewed as the resistance against the change of length between
a point and its neighbours, reminiscent of the elastic modulus
in CCM. Note that the parameter S1 is precisely the stretch
of the bond from a point to its first neighbour. Motivated by
the format of the stored energy density for one-neighbour
interactions (23), we propose the stored energy density per
volume cubed for two-neighbour interactions as

ψ2
|/|| = ψ2(a;A) = 1

2
C2 A [S2 − 1]2 with

[C2] = N · m
m11 and S2 := a

A
,

(24)

with C2 the two-neighbour elastic coefficient which can
be interpreted as the resistance against the change of the
area of the triangle formed by a point and a pair of its
neighbours, analogous to Poisson-like effects in CCM for
two-dimensional manifolds. The parameter S2 is essentially
the area stretch of this triangle. Similar to the stored energy
densities for one- and two-neighbour interactions, we pro-
pose the stored energy density per volume to the fourth power
for three-neighbour interactions as

ψ3
|/||/||| = ψ3(v;V ) = 1

2
C3 V [S3 − 1]2 with

[C3] = N · m
m15

and S3 := v

V
,

(25)

where C3 is the three-neighbour elastic coefficient, which
can be interpreted as the resistance against the change of
the volume of the tetrahedron formed by each point and
its triplet of neighbours, analogous to volumetric Poisson-
like effects of CCM. The stored energy densities (23)–(25)
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Table 2 Unification of concepts and fundamental relations of CPD

One-neighbour Two-neighbour Three-neighbour

Force density per volume squared in the material configuration with dimension N/m6

p1| := ∂ψ1
|

∂ξ | p2| :=
∫

H0

2 ξ || × ∂ψ2
|/||

∂a|/|| dV || p3| :=
∫

H0

∫

H0

3 ξ || × ξ ||| ∂ψ3
|/||/|||

∂v|/||/||| dV ||| dV ||

Angular momentum balance∫

H0

ξ | × p1| dV | != 0
∫

H0

ξ | × p2| dV | != 0
∫

H0

ξ | × p3| dV | != 0

Suitable deformation measures

l := |ξ || , L := |�|| a := |a|/||| , A := |A|/||| v := |v|/||/|||| , V := |V |/||/||||
Generic examples of interaction energy densities

ψ1
| = ψ1(l;L) ψ2

|/|| = ψ2(a;A) ψ3
|/||/||| = ψ3(v;V )

Specific examples of interaction energy densities

ψ1
| = 1

2
C1 L

[
l

L
− 1

]2
ψ2

|/|| = 1

2
C2 A

[a
A

− 1
]2

ψ3
|/||/||| = 1

2
C3 V

[v
V

− 1
]2

∂ψ1
|

∂ξ | = C1

[
l

L
− 1

]
ξ |

|ξ ||
∂ψ2

|/||

∂a|/|| = C2

[a
A

− 1
] a|/||

|a|/|||
∂ψ3

|/||/|||

∂v|/||/||| = C3

[v
V

− 1
] v|/||/|||

|v|/||/||||

are introduced in this fashion since the energy density (23)
is identical to the common format used in bond-based PD
[75].

Alternative formats for energy densities could be pro-
posed and their consequences investigated. However, the
main objective of this manuscript is to provide details of the
computational implementation which remains largely inde-
pendent of the specific format of the stored energy density.
Table 2 summarises the discussion of constitutive laws and
collects the fundamental relations and definitions of CPD
together with generic and specific examples of the stored
energy densities that sufficiently satisfy the angular momen-
tum balance.

3 Computational implementation

The computational implementation of CPD comprises three
major steps. We begin by replacing the integral equations in
Sect. 3.1 with quadrature relations using appropriate weight-
ing coefficients. Next, in Sect. 3.2, a discretised form of
the linear momentum balance (8) is derived. The discre-
tised balance is a non-linear system of coupled equations
of the form R = O that is solved using a Newton–
Raphson scheme. To do so, we compute the tangent matrix
K defined as the linearisation of the residual vector R.
Finally, the force densities and their derivatives contributing
to R and K, respectively, are calculated from the constitu-
tive laws associated with the stored energy density given in
Sect. 3.3.

Remark 1 The proposed computational framework corre-
sponds to the three-dimensional setting. Nevertheless, both

plane-strain and plane-stress assumptions can be recov-
ered via applying appropriate boundary conditions on a 3D
domain. Note that neither “stress” nor “strain” is present
in the peridynamic formulation; they can only be com-
puted through post-processing. Therefore, the notions of
“plane strain” or “plane stress” become naturally less rel-
evant since they are defined from a local view of continuum
mechanics. Furthermore, it is straightforward to infer a fully
two-dimensional counterpart from the provided discussion.
Our formulation in 2D, however, corresponds to a purely two-
dimensional case wherein both deformations and forces are
absent in the third direction. This compares to the surface
elasticity theory of Gurtin and Murdoch [76–79]. Obvi-
ously, three-neighbour interactions do not contribute in our
2D formulation. Both three- and two-dimensional numerical
examples are provided in Sect. 4. ��

3.1 From continuous to discretise form

In general, the governing equations of CPD are expressed
in integral form. Unlike CCM, even point-wise equations in
CPD include integrals over the horizon. The points Pa at
which we evaluate the balance of momentum (8) are pre-
cisely the collocation points. At each collocation point Pa ,
we use quadrature rules to evaluate the integrals over the hori-
zon by employing quadrature points. In this contribution,
the collocation points coincide identically with the quadra-
ture points, henceforth, we refer to them collectively as grid
points or simply points. This assumption is made for the sake
of simplicity; alternatives will be investigated in a separate
contribution.
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Fig. 2 Schematic illustration of how a “contributing pair” is defined. The pair i, j in the upper half of the figure is a “contributing pair” and
contributes to the energy due to two-neighbour interactions. However, the pair i, j in the lower half is not a “contributing pair” and does not
contribute to energy

To proceed, we first discretise the domain by a set of grid
points that serve the double-purpose of being collocation and
quadrature points. Every grid point in the present description
represents continuum point as opposed to physical particles.
Furthermore, each grid point defines a neighbourhoodH0 ⊂
B0. Each grid pointPa is identified by its coordinates,Xa and
xa , in the material and spatial configurations, respectively.
Therefore, the integral of an arbitrary quantity {•} over the
domain B0 is approximated by

∫

B0

{•} dV =
#P∑
a=1

{•}a V a, (26)

where V a is the volume of the support domain of the grid
point Pa and #P is the total number of grid points. The
volume V a can be computed according to the discretisa-
tion strategy employed. For instance, if the points are chosen
based on a Voronoi tessellation, the volume of each Voronoi
cell can be assigned to the pointPa at its centre, see [80]. It is
also relatively straightforward to discretise the domain using
the common discretisation tools of the finite element method
and then associate each finite element with the point Pa at
its barycentre with Va equal to the volume of the respective
element. Alternatively, for simple geometries, one can dis-
cretise the domain using a uniform grid for which V a = α �3

with � being the grid spacing and α a constant dimensionless

correction factor accounting for the size of the support. If the
grid spacing is non-uniform, the parameter � can be replaced
with a suitable average grid spacing �avg. The summation on
the right-hand side of Eq. (26) should correctly represent the
volume of the domain itself in the sense that

∫

B0

dV =
#P∑
a=1

V a . (27)

Next, we discretise the various multiple integrals that appear
in the form
∫

B0

∫

H0

{•} dV | dV ,

∫

B0

∫

H0

∫

H0

{•} dV || dV | dV ,

∫

B0

∫

H0

∫

H0

∫

H0

{•} dV ||| dV || dV | dV .

(28)

Let #N denote the number of points within the horizon
of the point Pa . The effective volume of the neighbouring
point i contributing to one-neighbour interactions at the point
Pa is denoted as V1, assuming that all neighbours equally
contribute. The effective volume V1 can be defined by

V1 := VH
#N1

, (29)

where VH denotes the volume of the neighbourhood of
the collocation (continuum) point Pa . For example if the
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point Pa is completely inside the bulk and entirely sur-
rounded (i.e. no part of its horizon extends outside of B0)
then VH = 4/3π δ30. Otherwise, VH is modified by a dimen-
sionless correction factor β < 1, as VH = β 4/3π δ30 where
β accounts for the truncated support. In the definition of
the effective volume for one-neighbour interactions (29), the
total number of contributing neighbours within its horizon
is denoted as #N1. A neighbour {i} of the point Pa is iden-
tified as a contributing neighbour if the distance between
the pair {a, i} is less than or equal to the horizon size of δ0.
Clearly, all neighbours count as contributing neighbours for
one-neighbour interactions and thus, #N1 = #N . As will
be made clear, this property does not necessarily hold for
two-neighbour and three-neighbour interactions. The inte-
gral (28)1 can be formally written in the discretised form
as

∫

B0

∫

H0

{•} dV | dV =
#P∑
a=1

#N∑
i=1
i 	=a

{•}ai V1 V a, (30)

with #N being the total number of neighbours in the
neighbourhood of the pointPa . In a similar fashion, the inte-
gral (28)2 can be formally discretised as

∫

B0

∫

H0

∫

H0

{•} dV || dV | dV =
#P∑
a=1

#N∑
i=1
i 	=a

#N∑
j=1
j 	=i
j 	=a

{•}ai j V2 V a,
(31)

where V2 is the effective volume squared contributing to two-
neighbour interactions defined by

V2 := [VH]2
#N2

, (32)

with #N2 the total number of contributing pairs in the neigh-
bourhood of the point Pa .

A pair of neighbours {i, j} of the point Pa is identified as
contributing pair if (i) the points {a, i, j} are non-collinear
and (ii) the distance between each pair of {a, i}, {a, j} and
{i, j} is less than or equal to the horizon size δ0. Therefore,
and in contrast to one-neighbour interactions, not all the pos-
sible pairs would count as contributing pairs, as illustrated in
Fig. 2. The order of the pairs of neighbours does not matter.
That is, the two neighbour sets {i, j} and { j, i} contribute
equally to the energy. We exploit this property to improve
computational efficiency but omit it in the text, for the sake
of readability. An approach that considers multiple horizon
sizes was considered in [81,82].

Remark 2 In view of the definition of contributing pairs,
the first condition must hold since if the points {a, i, j} are

collinear, the stiffness matrix can become singular. Further-
more, the derivations of the governing equations of CPD

in [72] require that if a triangle {


ai j} contributes to the energy,

both triangles {


jai} and {



i ja} must also equally contribute

to the energy which leads to the second condition. That is, if
the distance between each pair is not less than or equal to the
horizon size δ0, the stiffness matrix can lose its symmetry.
Similar arguments hold for contributing triplets are defined
next. ��

Finally, the discretised form of the integral (28)3 reads

∫

B0

∫

H0

∫

H0

∫

H0

{•} dV ||| dV || dV | dV

=
#P∑
a=1

#N∑
i=1
i 	=a

#N∑
j=1
j 	=i
j 	=a

#N∑
k=1
k 	= j
k 	=i
k 	=a

{•}ai jk V3 V a, (33)

with

V3 := [VH]3
#N3

, (34)

where V3 is the effective volume cubed contributing to three-
neighbour interactions in the neighbourhood of the point
Pa and #N3 is the total number of contributing triplets in
the neighbourhood. A triplet of neighbours {i, j, k} of the
point Pa is identified as contributing triplet if (i) the points
{a, i, j, k} are non-coplanar and (ii) the distance between
each pair of {a, i}, {a, j}, {a, k}, {i, j} {i, k} and {k, j} is
less than or equal to the horizon size δ0. Again, the order of
the triplets of neighbours does not matter. That is, six neigh-
bour sets {i, j, k}, {k, i, j}, { j, k, i}, {i, k, j}, { j, i, k} and
{k, j, i} contribute equally to the volume. To test the fidelity
of the implementation, one can numerically compute the fol-
lowing integrals to ensure they hold exactly:

∫

H0

dV | = VH,

∫

H0

∫

H0

dV || dV | = [VH]2,
∫

H0

∫

H0

∫

H0

dV ||| dV || dV | = [VH]3.
(35)

3.2 Discretised balance of linear momentum

The underlying governing equation of CPD is the linear
momentum balance. The term bext0 in the linear momentum
balance (8) corresponds to externally prescribed body forces
and its incorporation into our framework is fairly straightfor-
ward and is omitted from this presentation in order to focus
on the novel aspects of the computational implementation.
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The point-wise, non-local, form of the linear momentum bal-
ance (8) in the absence of body forces, i.e. the equilibrium
equation, is thus given by

∫

H0

p| dV | = 0. (36)

We proceed with this reduced linear momentum balance and
develop a discretised version based on the strategy presented
in Sect. 3.1. Using the definitions of the force densities (17)
at each collocation point, the integral over the horizon in (36)
can be decomposed into three parts, corresponding to one-,
two- and three-neighbour interactions, as follows

∫

H0

p1| dV | +
∫

H0

p2| dV | +
∫

H0

p3| dV | = 0. (37)

This form of the point-wise balance of linear momentum can
be expressed as

R = 0 with R := R1 + R2 + R3 = 0, (38)

where R is the point-wise residual vector and is decomposed
into R1, R2 and R3 corresponding to one-neighbour, two-
neighbour and three-neighbour contributions, respectively.
That is,

R1 :=
∫

H0

p1| dV | =
∫

H0

∂ψ1
|

∂ξ | dV |,

R2 :=
∫

H0

p2| dV | =
∫

H0

∫

H0

2 ξ || × ∂ψ2
|/ ||

∂a|/ || dV || dV |,

R3 :=
∫

H0

p3| dV | =
∫

H0

∫

H0

∫

H0

3 ξ || × ξ ||| ∂ψ3
|/ ||/ |||

∂v|/ ||/ ||| dV ||| dV || dV |.

(39)

Next, we discretise the residual vector R. The global discre-
tised residual vectorR is composed of point-wise discretised
residual vectorsRa assembled into a global vector as follows

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1

R2

...

Ra

...

R#P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1
1 + R1

2 + R1
3

R2
1 + R2

2 + R2
3

...

Ra
1 + Ra

2 + Ra
3

...

R#P
1 + R#P

2 + R#P
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (40)

The point-wise discretised residual vector Ra of colloca-
tion point Pa is comprised of the point-wise discretised
residual vectors Ra

1, R
a
2 and Ra

3 corresponding to one-
neighbour, two-neighbour and three-neighbour interactions,
respectively. That is

Ra
1 :=

#N∑
i=1
i 	=a

∂ψ1
|

∂ξ | V1,

Ra
2 :=

#N∑
i=1
i 	=a

#N∑
j=1
j 	=i
j 	=a

2 ξ || × ∂ψ2
|/||

∂a|/|| V2,

Ra
3 :=

#N∑
i=1
i 	=a

#N∑
j=1
j 	=i
j 	=a

#N∑
k=1
k 	= j
k 	=i
k 	=a

3 ξ || × ξ ||| ∂ψ3
|/||/|||

∂v|/||/||| V3.

(41)

In the definitions of the point-wise discretised residual vec-
tors (41), the bond vectors are related to the deformation via
the relations

ξ | = xi − xa, ξ || = x j − xa, ξ ||| = xk − xa, (42)

with xa being the position vector of the collocation point
Pa in the deformed configuration. The deformation vector
of the neighbours i , j and k are denoted by xi , x j and xk ,
respectively. The global residual vector R is energetically
conjugate to the global deformation vector x that consists of
the point-wise deformation vectors xa , that is

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

...

xa

...

x#P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (43)

As it is customary in nonlinear problems involving large
deformations, the full deformation history can be divided
into increments. The fully discrete nonlinear system of gov-
erning equations at each increment can be concisely stated as
R

·= O whose approximate solution is obtained via an iter-
ativeNewton–Raphson scheme. The consistent linearization
of the resulting system at iteration k reads

Rk+1
·= O with Rk+1 = Rk + ∂R

∂x

∣∣∣∣
k
· 
xk

⇒ Rk + ∂R

∂x

∣∣∣∣
k
· 
xk

·= O,

(44)

with the resulting deformation change 
xk at iteration k
given by


xk = −K-1
k · Rk with Kk := ∂R

∂x

∣∣∣∣
k
, (45)
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where Kk denotes the corresponding algorithmic tangent
(stiffness) at iteration k. Finally, the deformationx is updated
after each iteration by 
x obtained from Eq. (45) according
to

xk+1 = xk + 
xk . (46)

Note that the tangent K is a matrix and composed of point-
wise contributions Kab. That is

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K11 K12 . . . K1b . . . K1#P
K21 K22 . . . K2b . . . K2#P

...
...

...
...

...
...

Ka1 Ka2 . . . Kab . . . Ka#P
...

...
...

...
...

...

K#P1 K#P2 . . . K#Pb . . . K#P#P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with

Kab = ∂Ra

∂xb
. (47)

Each contributionKab itself can be further decomposed into
the contributions from one-neighbour, two-neighbour and
three-neighbour interactions. That is

Kab = Kab
1 + Kab

2 + Kab
3

with Kab
1 = ∂Ra

1

∂xb
, Kab

2 = ∂Ra
2

∂xb
, Kab

3 = ∂Ra
3

∂xb
.

(48)

The next task is to compute the discretised point-wise
residualRa and the discretised point-wise stiffnessKab from
the stored energy densities (23), (24) and (25) corresponding
to one-neighbour, two-neighbour and three-neighbour inter-
actions, respectively.

3.3 Discretised residuals and tangents

The final steps in the computational implementation of the
proposed scheme are (i) to express the discretised resid-
ual vectors (41) in terms of the deformation of the point
Pa and its neighbours, and (ii) to compute their associated
tangents (48). We begin with the residual vectors. Before
proceeding, recall the definitions

�| := Xi − Xa, �|| := X j − Xa, �||| := Xk − Xa,

ξ | := xi − xa, ξ || := x j − xa, ξ ||| := xk − xa,

(49)

in the material and spatial configuration, respectively. Fur-
thermore, the following relations will prove useful through-

out the forthcoming derivations:

∂S1
∂ξ | = ∂

∂ξ |

(
l

L

)
= 1

L

∂

∂ξ |
(
|ξ ||

)
= 1

L

ξ |

|ξ || ,
∂S2

∂a|/|| = ∂

∂a|/||
(a
A

)
= 1

A

∂

∂a|/||
(
|a|/|||

)
= 1

A

a|/||

|a|/||| ,
∂S3

∂v|/||/||| = ∂

∂v|/||/|||
(v
V

)
= 1

V

∂

∂v|/||/|||
(
|v|/||/||||

)
= 1

V

v|/||/|||

|v|/||/|||| .

(50)

The point-wise discretised residual vector of point Pa due
to one-neighbour interactions reads

Ra
1 =

#N∑
i=1
i 	=a

∂ψ1
|

∂ξ | V1, (51)

where ∂ψ1
|/∂ξ | can be expressed as

∂ψ1
|

∂ξ | = ∂

∂ξ |

(
1

2
C1 L [S1 − 1]2

)
= C1 L [S1 − 1]

∂S1
∂ξ | .

(52)

Upon using Eq. (50)1 and the relation S1 = l/L = |ξ ||/|�||,
one obtains

∂ψ1
|

∂ξ | = C1 [S1 − 1]
ξ |

|ξ || = C1

[
1

|�|| − 1

|ξ ||
]

ξ |. (53)

Thus, the point-wise discretised residual vector of point Pa

due to one-neighbour interactions reads

Ra
1 =

#N∑
i=1
i 	=a

C1

[
1

|�|| − 1

|ξ ||
]

ξ | V1. (53)

The point-wise discretised residual vector of pointPa due to
two-neighbour interactions is given by

Ra
2 =

#N∑
i=1
i 	=a

#N∑
j=1
j 	=i
j 	=a

2 ξ || × ∂ψ2
|

∂a|/|| V2, (54)

where ∂ψ2
|/∂a|/|| reads

∂ψ2
|

∂a|/|| =
∂

∂a|/||

(
1

2
C2 A [S2 − 1]2

)
=C2 A [S2 − 1]

∂S2
∂a|/|| ,

and using Eq. (50)2 and the relation S2 = a/A =
|a|/|||/|A|/||| = |ξ | × ξ |||/|�| × �||| furnishes

∂ψ2
|

∂a|/|| = C2 [S2 − 1]
a|/||

|a|/||| = C2

[
1

|A|/||| − 1

|a|/|||
]
a|/||

= C2

[
1

|�| × �||| − 1

|ξ | × ξ |||
]

ξ | × ξ ||. (55)
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Inserting Eq. (55) into Eq. (54) yields

Ra
2=

#N∑
i=[1
i 	=a

#N∑
j=1
j 	=i
j 	=a

2C2

[
1

|�| × �||| − 1

|ξ | × ξ |||
]

ξ || × ξ | × ξ || V2.
(56)

Using the identity

ξ || × ξ | × ξ || = [ξ || · ξ ||] ξ | − [ξ || · ξ |] ξ ||, (57)

the point-wise discretised residual vector of point Pa due to
two-neighbour interactions reads

Ra
2 =

#N∑
i=1
i 	=a

#N∑
j=1
j 	=i
j 	=a

2C2

[
1

|�| × �||| − 1

|ξ | × ξ |||
]

[
[ξ || · ξ ||] ξ | − [ξ || · ξ |] ξ ||] V2.

(58)

Lastly, the point-wise discretised residual vector of point Pa

due to three-neighbour interactions

Ra
3 =

#N∑
i=1
i 	=a

#N∑
j=1
j 	=i
j 	=a

#N∑
k=1
k 	= j
k 	=i
k 	=a

3 [ξ || × ξ |||] ∂ψ3
|

∂v|/||/||| V3,
(59)

is rewritten using the relation

∂ψ3
|

∂v|/||/||| = ∂

∂v|/||/|||

(
1

2
C3 V [S3 − 1]2

)

= C3 V [S3 − 1]
∂S3

∂v|/||/||| ,

and using Eq. (50)3 and the relation S3 = v/V =
|v|/||/||||/|V |/||/|||| = |[ξ | × ξ ||] · ξ ||||/|[�| × �||] · �||||
gives

∂ψ3
|

∂v|/||/||| = C3 [S3 − 1]
v|/||/|||

|v|/||/||||
= C3

[
1

|V |/||/|||| − 1

|v|/||/||||
]

v|/||/|||

= C3

[
1∣∣[�| × �||] · �|||∣∣ − 1∣∣[ξ | × ξ ||] · ξ |||∣∣

]

[
[ξ | × ξ ||] · ξ |||] . (60)

Inserting Eq. (60) into Eq. (59) yields the point-wise dis-
cretised residual vector of point Pa due to three-neighbour
interactions as

Ra
3 =

#N∑
i=1
i 	=a

#N∑
j=1
j 	=i
j 	=a

#N∑
k=1
k 	= j
k 	=i
k 	=a

3C3 [ξ || × ξ |||]

[
1∣∣[�| × �||] · �|||∣∣ − 1∣∣[ξ | × ξ ||] · ξ |||∣∣

]

[
[ξ | × ξ ||] · ξ |||] V3.

(61)

Equipped with the discretised residuals (53), (58) and
(61), the algorithmic tangents are derived next. Unlike the
commonly accepted strategy in classical state-based peridy-
namics, we do not approximate the tangent stiffness using
finite difference or other numerical differentiation schemes.
A key feature of the proposed methodology is that we com-
pute the tangent stiffnessK directly. This is mainly possible
since we do not rely on the notion of “state”. Computing K

directly has enormous advantages. For example, the associ-
ated decrease in the number of Newton iterations required to
achieve convergence can reduce the computational time and
significantly boost the accuracy of the calculations. Through-
out our numerical simulations we observe the asymptotic
quadratic convergence associated with the Newton–Raphson
scheme. Note, for highly non-linear sets of equations, numer-
ical differentiation is inaccurate and ultimately unstable [83].
We derive the tangents for pairs of points Pa and Pb due to
one-neighbour, two-neighbour and three-neighbour interac-
tions separately and combine them additively according to
Eq. (48). The discretised tangent matrix for the points Pa

and Pb due to one-neighbour interactions reads

Kab
1 = ∂Ra

1

∂xb
, (62)

which after using Eq. (53), can be written as

∂Ra
1

∂xb
= ∂

∂xb

⎛
⎜⎜⎝

#N∑
i=1
i 	=a

C1

[
1

|�|| − 1

|ξ ||
]

ξ | V1

⎞
⎟⎟⎠

=
#N∑
i=1
i 	=a

C1
∂

∂xb

([
1

|�|| − 1

|ξ ||
]

ξ |
)

V1.

(63)

To proceed, we use the chain rule

∂{•}
∂xb

= ∂{•}
∂ξ | · ∂ξ |

∂xb

= ∂{•}
∂ξ | ·

[ [
δib − δab

]
i
]

=
[
δib − δab

] ∂{•}
∂ξ | ,

(64)
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and the relation

∂

∂ξ |

([
1

|�||−
1

|ξ ||
]

ξ |
)

= 1

|ξ ||3 ξ | ⊗ ξ |+
[

1

|�||−
1

|ξ ||
]
i, (65)

where i is the identity tensor. Thus, the discretised tangent
for the points Pa and Pb due to one-neighbour interactions
reads

Kab
1 = ∂Ra

1

∂xb
=

#N∑
i=1
i 	=a

C1

[
δib − δab

]

[
1

|ξ ||3 ξ | ⊗ ξ | +
[

1

|�|| − 1

|ξ ||
]
i
]
V1.

(66)

The discretised tangent matrix for the points Pa and Pb due
to two-neighbour interactions is

Kab
2 = ∂Ra

2

∂xb
, (67)

which, after using Eq. (59), can be written as

∂Ra
2

∂xb
= ∂

∂xb

⎛
⎜⎜⎜⎜⎜⎝

#N∑
i=1
i 	=a

#N∑
j=1
j 	=i
j 	=a

2C2

[
1

|�| × �||| − 1

|ξ | × ξ |||
]

[
[ξ || · ξ ||] ξ | − [ξ || · ξ |] ξ ||] V2

⎞
⎟⎟⎟⎟⎟⎠

=
#N∑
i=1
i 	=a

#N∑
j=1
j 	=i
j 	=a

2C2
∂

∂xb

( [
1

|�| × �||| − 1

|ξ | × ξ |||
]

[
[ξ || · ξ ||] ξ | − [ξ || · ξ |] ξ ||] )

V2.

(68)

To proceed, we use the chain rule

∂{•}
∂xb

= ∂{•}
∂ξ | · ∂ξ |

∂xb
+ ∂{•}

∂ξ || · ∂ξ ||

∂xb

= ∂{•}
∂ξ | ·

[ [
δib − δab

]
i
]

+ ∂{•}
∂ξ || ·

[ [
δ jb − δab

]
i
]

=
[
δib − δab

] ∂{•}
∂ξ | +

[
δ jb − δab

] ∂{•}
∂ξ || ,

(69)

and the identities

∂

∂ξ |

(
1

|ξ | × ξ |||
)

= 1

|ξ | × ξ |||3
[
[ξ || · ξ |] ξ || − [ξ || · ξ ||] ξ |],

∂

∂ξ ||

(
1

|ξ | × ξ |||
)

= 1

|ξ | × ξ |||3
[
[ξ || · ξ |] ξ | − [ξ | · ξ |] ξ ||],

∂

∂ξ |
(
ξ || · ξ | ξ || − ξ || · ξ || ξ |) = ξ || ⊗ ξ || − [ξ || · ξ ||] i,

∂

∂ξ ||
(
ξ || · ξ | ξ || − ξ || · ξ || ξ |) = ξ || ⊗ ξ | + [ξ || · ξ |] i − 2 ξ | ⊗ ξ ||,

(70)

the derivations of which are omitted for the sake of brevity.
Inserting relations (70) into (69), the discretised tangent for
the points Pa and Pb due to two-neighbour interactions
reads

Kab
2 =

#N∑
i=1
i 	=a

#N∑
j=1
j 	=i
j 	=a

2C2

[
δib − δab

] 1

|ξ | × ξ |||3

[
[ξ || · ξ |] ξ || − [ξ || · ξ ||] ξ |]

⊗
[
[ξ || · ξ |] ξ || − [ξ || · ξ ||] ξ |] V2

+
#N∑
i=1
i 	=a

#N∑
j=1
j 	=i
j 	=a

2C2

[
δib − δab

]

[
1

|ξ | × ξ ||| − 1

|�| × �|||
]

[
ξ || ⊗ ξ || − [ξ || · ξ ||] i

]
V2

+
#N∑
i=1
i 	=a

#N∑
j=1
j 	=i
j 	=a

2C2

[
δ jb − δab

] 1

|ξ | × ξ |||3

[
[ξ || · ξ |] ξ || − [ξ || · ξ ||] ξ |]

⊗
[
[ξ | · ξ ||] ξ | − [ξ | · ξ |] ξ ||] V2

+
#N∑
i=1
i 	=a

#N∑
j=1
j 	=i
j 	=a

2C2

[
δ jb − δab

]

[
1

|ξ | × ξ ||| − 1

|�| × �|||
]

[
ξ || ⊗ ξ | + [ξ || · ξ |] i − 2 ξ | ⊗ ξ ||] V2.

(71)

One may attempt to rewrite the tangent (71) in a more
compact form since similar terms appear on different lines.
However, for the sake of clarity, we retain this expanded ver-
sion as it immediately follows from the previous derivations.
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Finally, the discretised tangent matrix for the points Pa and
Pb due to three-neighbour interactions

Kab
3 = ∂Ra

3

∂xb
, (72)

can be expressed using the relation

∂Ra
3

∂xb
= ∂

∂xb

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

#N∑
i=1
i 	=a

#N∑
j=1
j 	=i
j 	=a

#N∑
k=1
k 	= j
k 	=i
k 	=a

3C3 [ξ || × ξ |||]

[
1∣∣[�| × �||] · �|||∣∣ − 1∣∣[ξ | × ξ ||] · ξ |||∣∣

]

(
[ξ | × ξ ||] · ξ |||) V3

⎞
⎟⎟⎟⎟⎟⎠

=
#N∑
i=1
i 	=a

#N∑
j=1
j 	=i
j 	=a

#N∑
k=1
k 	= j
k 	=i
k 	=a

3C3
∂

∂xb

(
[ξ || × ξ |||]

[
1∣∣[�| × �||] · �|||∣∣ − 1∣∣[ξ | × ξ ||] · ξ |||∣∣

]

[
[ξ | × ξ ||] · ξ |||]) V3.

(73)

To proceed, we once again use the chain rule

∂{•}
∂xb

= ∂{•}
∂ξ | · ∂ξ |

∂xb
+ ∂{•}

∂ξ || · ∂ξ ||

∂xb
+ ∂{•}

∂ξ ||| · ∂ξ |||

∂xb

= ∂{•}
∂ξ | ·

[ [
δib − δab

]
i
]

+ ∂{•}
∂ξ || ·

[ [
δ jb − δab

]
i
]

+ ∂{•}
∂ξ ||| ·

[ [
δkb − δab

]
i
]

=
[
δib − δab

] ∂{•}
∂ξ | +

[
δ jb − δab

] ∂{•}
∂ξ ||

+
[
δkb − δab

] ∂{•}
∂ξ ||| ,

(74)

and the identities

∂

∂ξ |
(
ξ || × ξ |||) = 0,

∂

∂ξ |
(
[ξ | × ξ ||] · ξ |||]

)
= ξ || × ξ |||,

∂

∂ξ |

(
1∣∣[ξ | × ξ ||] · ξ |||∣∣

)
= −

[[ξ | × ξ ||] · ξ |||]
∣∣[ξ | × ξ ||] · ξ |||∣∣3 ξ || × ξ |||,

∂

∂ξ ||
(
ξ || × ξ |||) = ε · ξ |||,

∂

∂ξ ||
(
[ξ | × ξ ||] · ξ |||]

)
= ξ ||| × ξ |,

∂

∂ξ ||

(
1∣∣[ξ | × ξ ||] · ξ |||∣∣

)
= −

[[ξ | × ξ ||] · ξ |||]
∣∣[ξ | × ξ ||] · ξ |||∣∣3 ξ ||| × ξ |,

∂

∂ξ |||
(
ξ || × ξ |||) = −ε · ξ ||,

∂

∂ξ |||
(
[ξ | × ξ ||] · ξ |||]

)
= ξ | × ξ ||,

∂

∂ξ |||

(
1∣∣[ξ | × ξ ||] · ξ |||∣∣

)
= −

[[ξ | × ξ ||] · ξ |||]
∣∣[ξ | × ξ ||] · ξ |||∣∣3 ξ | × ξ ||,

(75)

the derivations of which are omitted for the sake of brevity.
Inserting relations (75) into (73), the discretised tangent for
the points Pa and Pb due to three-neighbour interactions
reads
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Kab
3 =

#N∑
i=1
i 	=a

#N∑
j=1
j 	=i
j 	=a

#N∑
k=1
k 	= j
k 	=i
k 	=a

3C3

[
δib − δab

] 1∣∣[�| × �||] · �|||∣∣
[
[ξ || × ξ |||]

⊗[ξ || × ξ |||]
]
V3

+
#N∑
i=1
i 	=a

#N∑
j=1
j 	=i
j 	=a

#N∑
k=1
k 	= j
k 	=i
k 	=a

3C3

[
δ jb − δab

]

[
1∣∣[�| × �||] · �|||∣∣ − 1∣∣[ξ | × ξ ||] · ξ |||∣∣

]

[
[ξ | × ξ ||] · ξ |||] [

ε · ξ |||] V3

+
#N∑
i=1
i 	=a

#N∑
j=1
j 	=i
j 	=a

#N∑
k=1
k 	= j
k 	=i
k 	=a

3C3

[
δ jb − δab

] 1∣∣[�| × �||] · �|||∣∣
[
[ξ || × ξ |||] ⊗ [ξ ||| × ξ |]

]
V3

−
#N∑
i=1
i 	=a

#N∑
j=1
j 	=i
j 	=a

#N∑
k=1
k 	= j
k 	=i
k 	=a

3C3

[
δkb − δab

]

[
1∣∣[�| × �||] · �|||∣∣ − 1∣∣[ξ | × ξ ||] · ξ |||∣∣

]

[
[ξ | × ξ ||] · ξ |||] [

ε · ξ ||] V3

+
#N∑
i=1
i 	=a

#N∑
j=1
j 	=i
j 	=a

#N∑
k=1
k 	= j
k 	=i
k 	=a

3C3

[
δkb − δab

] 1∣∣[�| × �||] · �|||∣∣
[
[ξ || × ξ |||] ⊗ [ξ | × ξ ||]

]
V3.

(76)

Again, since similar terms appear on different lines of the
tangent (76), it could be written in a more compact form.
However, for the sake of clarity, we retain this expanded
version.

The stiffness components due to one-neighbour (66), two-
neighbour (71) and three-neighbour (76) interactions, are all

symmetric for the variationally consistent mechanical prob-
lem of interest here wherein the residuals derive from a
potential. While in some cases, such as the first and second
terms of Eq. (71), the symmetric structure of the stiffness is
obvious, in other cases, such as the third and fourth terms of
Eq. (71) the symmetry is not evident. The reason for this is
that, for instance, the term ξ | ⊗ ξ || is calculated twice for any
given set of {i�, j�} for which i = i� and j = j� for the first
time but i = j� and j = i� for the second time. This property
could indeed allow us to reduce the number of loops over the
neighbours and avoid multiple counting. For instance, the
index j instead of counting from 1 could start from i + 1 if
the associated implications are accounted for. However, for
the sake of brevity, we do not include these additional steps
in the presentation. This procedure is essentially a techni-
cal programming detail also relevant in molecular dynamics
simulations and associated methods. An efficient implemen-
tation to avoidmultiple counting reduces the number of loops
over the neighbours by a factor of 2 in two-dimensional simu-
lations and by a factor of 6 in three-dimensional simulations.

4 Numerical examples

The objective of this section is to illustrate the proposed the-
ory through a set of numerical examples. In addition to the
examples that follow, we confirmed that the conditions (35)
hold within numerical precision. Four different studies are
conducted. In Sect. 4.1, a comparative study is carried out to
investigate the influence of the horizon size and grid-spacing
on the material response. Then, the properties of the stiffness
matrix are analysed for various parameters and geometries in
Sect. 4.2. This is followed by a two-part example in Sect. 4.3
to study the Poisson effect in CPD for both two-dimensional
and three-dimensional problems and also to compare CPD
withCCM.This comparison not only emphasises the similar-
ities between CPD and CCM but it also provides a tangible
case study to better understand the physical interpretation
of the CPD material parameters and their role in describ-
ing common mechanical behaviour of materials. Finally, in
Sect. 4.4, a series of simulations at finite deformations are
performed for both two-dimensional and three-dimensional
domains. These simulations demonstrate the influence of
multi-neighbour interactions on the material response and
illustrate the robustness of the framework and its consistent
quadratic convergence even at very large deformations.

4.1 Convergence and non-locality in CPD

Themain goal of this section is to investigate the convergence
behaviour and the inherent non-locality of the proposed
framework. This numerical example is carried out at small
deformations in order to focus on the main objectives of this
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Fig. 3 Schematic of a convergence study versus a non-locality study. For the convergence study, the horizon size δ remains constant while the
grid-spacing is decreased. For the non-locality study, the ratio of the horizon-over-grid size δ/
 is fixed while the horizon is decreased to obtain a
more local solution

Fig. 4 Schematic illustration of the specimens and the prescribed defor-
mation. The first specimen is a full unit square and the second specimen
is a unit square with a square hole at its centre. A lateral extension of

0.1% is applied to the specimens. The exaggerated deformed shapes are
depicted schematically on the right

study. A schematic of the investigation and a depiction of
the horizon size δ and grid-spacing 
 is illustrated in Fig. 3.
Furthermore, for all the computations in this section we uti-
lize only one-neighbour interactions, for the sake of clarity.
We have carried out similar studies including, in addition,
two-neighbour interactions and have observed similar trends.
The influence of two-neighbour interactions as well as three-
neighbour interactions are studied separately in Sects. 4.3
and 4.4.

The details of the two boundary value problems stud-
ied are shown in Fig. 4 with an exaggerated deformation
depicted. For both examples, the grid points are uniformly
distributed with horizontal and vertical spacing
. In the first
row of Fig. 4, a solid unit square is extended by 0.1% in the
horizontal direction. In the second row, 40% of the central
region of the specimen is removed and the domain again

extended by 0.1% in the horizontal direction. For each of
the two domains, we carry out two separate studies. For the
first we fix the horizon size δ and decrease the grid-spacing

 resulting in more neighbours within the horizon of each
point. This study demonstrates that, by increasing the number
of grid points within the horizon, the solution of CPD con-
verges, as expected. In otherwords, for a given horizon size δ,
decreasing the grid-spacing
 results in amore accurate solu-
tion. In the second set of examples, the number of neighbours
within the horizon remains constant but the horizon size itself
varies. More precisely, we change δ for a given δ/
 to study
the non-locality associated with CPD. We expect to observe
decreased non-local effects with diminishing horizon size δ.
In the limit of δ → 0, we expect the solution of CPD to
converge to the solution of CCM. We include the solution
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Fig. 5 Illustration of the horizontal and vertical displacements throughout a full specimen and a specimen with a square hole under 0.1% lateral
extension. In this example, the horizon size δ is fixed and the grid-spacing 
 varies
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Fig. 6 Illustration of the horizontal and vertical displacements through-
out a full specimen and a specimen with a square hole under extension.
In this example, the horizon size δ is varied together with the grid-

spacing 
 while maintaining a fixed ratio of δ/
 = 8.5. The solution
corresponding to CCM included for the sake of comparison
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from CCM, obtained using the finite element method, for
comparison.

Figure 5 shows the results for the convergence study. The
graphs and coloured distributions show the displacements in
both horizontal and vertical directions due to the prescribed
extension. Four different values for the grid-spacing (0.025,
0.0125, 0.01 and 0.00625) are considered and the horizon
size is fixed at δ = 0.05. The upper segment displays the
horizontal displacement and the lower segment the vertical
displacement. The distribution of the displacement through-
out the specimen is depicted at the centre of each row. The
distribution of the solution over the lines AA′ and BB ′ is
investigated; AA′ is located at the top of the hole and BB ′
is located on the upper edge of the specimens. The figures
on the left and right side of each row show the displacement
along these two lines. For both domains, the computational
results are in excellent agreement with our previously stated
expectations. In short, the results converge upon reduction in
the grid-spacing 
 for a given horizon δ. Reducing the grid-
spacing while fixing the horizon size increases the number of
neighbours for each point leading to amore accurate solution,
hence the convergence observed. It should be emphasised
that the vertical displacement occurs solely due to the Pois-
son effect. The vertical displacement of the full specimen
decreases from zero to an extremum in the middle and are
symmetric about both AA′ and BB ′. In addition, the vertical
displacement over the line BB ′ is greater than over AA′, due
to its increased distance from the centreline. The vertical dis-
placement behaviour of the specimen with a square hole is
more complicated. Over the line BB ′, we observe a decrease
from the edge to the middle of the domain, whereas the ver-
tical displacement along AA′ increases at the beginning and
then decreases to an extremum in the middle. This trend is
not an artifice of our CPD formulation and is also observed in
CCM. Moreover, the vertical displacements along both lines
exceed those obtained for the full specimen, which again can
be explained due to the more pronounced Poisson effect for
a specimen with a hole at its centre.

In the second set of numerical studies, the horizon-over-
grid size δ/
 is fixed and the horizon size δ varies to highlight
the non-local nature of CPD. Figure 6 shows both the verti-
cal and horizontal displacements throughout the specimens.
To facilitate comparison, the problem is designed to have the
same features as the first numerical study depicted in Fig. 5.
Four different horizon sizes (δ = 0.21, δ = 0.17, δ = 0.08
and δ = 0.04) are considered and δ/
 = 8.5. The solu-
tions associated with CCM, obtained using the finite element
method with a sufficiently fine mesh, are included for com-
parison. The solutions obtained from CPD are denoted by a
dashed line whereas a solid black line represents the solution
corresponding to CCM. Similar to the previous example, the
distribution of the displacements throughout the specimens
is depicted at the centre of each row and the two figures to the

left and right depict the displacements along the lines AA′ and
BB ′, respectively. For all cases, decreasing the horizon size
results in less deviation from the local solution associated
with CCM thereby demonstrating the expected behaviour.
That is, we observe a decrease in non-local effects with
diminishing horizon size δ and asymptotically, in the limit
of δ → 0, the solution of CPD converges to the solution of
CCM.

4.2 Properties of the stiffness matrix

This section elaborates on properties of the stiffness matrix
K such as sparsity and symmetry. Figure 7 shows the sparsity
pattern of the stiffness matrix for the full specimen and the
specimen with a square hole. Two different grid-spacings

 = 0.02 and 
 = 0.05 are examined and for each case
several horizon-over-grid ratios δ/
 are considered. The
horizontal and vertical axis in each figure corresponds the
columns and rows of the stiffness matrix, respectively. As
expected, the stiffness matrix is symmetric for all the cases.
The colours in Fig. 7 correspond to the absolute values of the
components of the stiffnessmatrix. For the specimenwith the
square hole, the stiffness matrix has a narrower bandwidth
in the vicinity of the hole since fewer neighbours are present
for each point in that region. Increasing the ratio δ/
 results
in a larger bandwidth and more non-zero values (decreased
sparsity) in the stiffness matrix. This can be explained as by
increasing δ/
,more points contribute to eachdegree of free-
dom. For the case with
 = 0.02, although the pattern seems
visually narrower than the case with 
 = 0.05, the number
of degrees of freedom are different. There is a significant dif-
ference between the ranges for these two cases indicating that
the stiffness matrix is considerably larger when 
 = 0.02,
which is intuitive since a smaller grid-spacing 
 translates
to more points, and hence more degrees of freedom.

4.3 Interplay between Poisson effect and the
material parameters

This section provides a detailed comparison between CPD
and CCM with a focus on the Poisson effect and its relation
to the material parameters associated with each theory. The
material parameters of CCM are the Lamé parameters λ and
μwhile for CPD they areC1,C2 andC3. The parametersC1,
C2 and C3 correspond to one-neighbour, two-neighbour and
three-neighbour interactions, respectively. Conceptually,C1,
C2 andC3 can be interpreted as resistance against the change
of length, area and volume, respectively. Both two- and three-
dimensional analyses are carried out and the significance
of C2 and C3 for two-dimensional and three-dimensional
problems explained. To perform this study, the specimen is
subject to an extension at small deformations and the effec-
tive Poisson ratio is calculated. It should be emphasised that

123



Computational Mechanics (2020) 66:795–824 813

Fig. 7 Depiction of the sparsity patterns of the stiffness matrix for both the full domain and the domain with a square hole for different grid-spacings

, as well as different horizon-over-grid size δ/
 ratios. The stiffness matrix is clearly symmetric. The colours correspond to the absolute values
of the components
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Fig. 8 Variation of the Poisson ratio versus material properties in
continuum-kinematics-inspired peridynamics and classical continuum
mechanics for a two-dimensional case. The left figures correspond to

continuum-kinematics-inspired peridynamics (CPD) and the right fig-
ures correspond to classical continuum mechanics (CCM)

the effective Poisson ratio for both CPD and CCM is treated
as a geometrical feature computed via numerical simulation.
That is, the Poisson ratio is calculated by dividing the lat-
eral contraction by the extension at the centre of the domain.
Note that for the CPD analysis, the specimen is discretised
into grid (collocation) points, whereas for the CCM analysis
the specimen is discretised by finite elements. The finite ele-
ments are bilinear quadrilaterals and trilinear hexahedrals for
the two-dimensional and three-dimensional computations,
respectively.

Remark 3 It is important to recall that both CPD and CCM
require three constants for isotropic elasticity at finite defor-
mations. However, the linearisation process at small strains
reduces the number of independent parameters from three to
two in CCM. The CPD formalism accounts directly for finite
deformations and is not a linearised theory, and hence the
three constants are present. It would be feasible to establish
a linear CPD theory in which only two independent param-
eters contribute to the material behaviour. ��
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Fig. 9 Variation of the Poisson ratio versus material properties in
continuum-kinematics-inspired peridynamics and classical continuum
mechanics for a three-dimensional case. The left figures correspond to

continuum-kinematics-inspired peridynamics (CPD) and the right fig-
ures correspond to classical continuum mechanics (CCM)

Figure 8 illustrates the Poisson ratio versus the mate-
rial parameters for a two-dimensional problem. The two top
figures are a magnified portion of the bottom two and are
provided for the sake of clarity. The bottom figures sweep
a broader range of the material parameters so as to cover
the whole range of permissible Poisson ratios including the
auxetic regime. For the CPD analysis, the horizontal axis rep-
resents the ratio of the two-neighbour elastic coefficient to
the one-neighbour elastic coefficient C2/C1 whereas for the
CCM analysis it corresponds to the ratio of the first to the
second Lamé parameter λ/μ. The parameters C1 and μ are

set to 1 and we vary C2 and λ to generate the desired range
for the ratios. Setting C2 = 0 implies that two-neighbour
interactions do not contribute. Thus only the one-neighbour
interactions of CPD are active corresponding to bond-based
peridynamics. It is observed that a Poisson ratio of 1/3 is
obtained in CPD when C2 = 0. This is well-known for
bond-based PD [58]. A Poisson ratio of 1/3 is obtained in
CCM when λ = μ as expected according to the relation
ν = λ/[λ+2μ] for two-dimensional local (linear) elasticity.
Increasing C2 or λ results in a higher resistance to a change
of area, and hence we approach the incompressible limit. In
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Fig. 10 Schematic illustration of the two finite deformation example problems. The first specimen is a unit square and the second a unit square
with a square hole at its centre. Both specimens are subject to an extension of 100%

Fig. 11 Illustration of the
original specimens and their
deformed shapes for the two
dimensional example at finite
deformations. Zoom boxes are
included to elucidate the
distribution of the points
throughout the specimens

the limits of C2 → ∞ and λ → ∞, the two-dimensional
incompressibility limit ν = 1 is obtained. It is observed that
although there is a one-to-one relation between the graphs on
the right and the ones on the left, for a given Poisson ratio,
C2/C1 does not coincide exactlywith the samevalue forλ/μ.
However, the Poisson ratio corresponding to C2/C1 = 0 is
identical to that associated with λ/μ = 0.

Figure 9 shows the Poisson ratio versus the material
parameters for a three-dimensional domain. The horizontal
axis for CPD, in contrast to the two-dimensional problem

presented previously, corresponds to the ratio of the three-
neighbour to the one-neighbour elastic coefficient C3/C1.
The horizontal axis for CCM, similar to the two-dimensional
problem, is the ratio λ/μ. Similar to the previous case, the
parameters C1 and μ are set to 1 and C3 and λ are calcu-
lated according to the desired range for the ratios on the
horizontal axis. Note that in order to examine the effect of
three-neighbour interactions, the two-neighbour elastic coef-
ficient C2 is set to zero here. In CPD, the Poisson ratio 1/4
is recovered when C3 = 0; this corresponds exactly to the
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Fig. 12 Large deformations of a unit square without and with a square hole at its centre for different C2/C1 ratio associated with different levels
of incompressibility
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Fig. 13 Schematic illustration of the two study cases undergone and the applied deformation type. The first specimen is a full unit cube and the
second specimen is a unit cube with a cubic hole at its centre. Both specimens are subject to 100% extension

Table 3 Quadratic convergence
in CPD

Increment 1 Increment 5 Increment 10 Increment 15 Increment 20 Increment 25

One-neighbour interactions

1 1 1 1 1 1

8.97e−02 7.43e−02 5.91e−02 4.72e−02 3.80e−02 3.08e−02

1.14e−03 6.08e−04 2.88e−04 1.42e−04 7.38e−05 3.98e−05

2.41e−07 5.36e−08 9.46e−09 1.92e−09 4.51e−10 1.20e−10

1.23e−14 6.36e−15 6.83e−15 7.23e−15 7.69e−15 8.13e−15

One- and two-neighbour interactions

1 1 1 1 1 1

8.23e−02 7.12e−02 6.02e−02 5.16e−02 4.57e−02 4.23e−02

9.73e−04 6.48e−04 4.17e−04 3.00e−04 3.45e−04 1.34e−03

1.94e−07 8.35e−08 3.43e−08 2.07e−08 8.34e−08 2.83e−06

1.17e−14 6.91e−15 7.27e−15 7.67e−15 1.19e−14 1.56e−11

One- and three-neighbour interactions

1 1 1 1 1 1

8.97e−02 7.43e−02 5.91e−02 4.72e−02 3.80e−02 3.08e−02

1.14e−03 6.07e−04 2.88e−04 1.43e−04 7.51e−05 4.09e−05

2.40e−07 5.35e−08 9.47e−09 1.97e−09 4.82e−10 1.31e−10

1.24e−14 6.35e−15 6.83e−15 7.13e−15 7.85e−15 8.07e−15

The numbers indicate the normalised norm of the residual R at different increments for various types of
interactions
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Fig. 14 Large deformation of a cube for different types of interactions

bond-based PD, as expected. In CCM, the same Poisson ratio
is obtainedwhenλ = μwhich agrees directlywith the classi-
cal relation ν = λ/[2λ+2μ]. Similar to the two-dimensional
study, in the limits of C3 → ∞ and λ → ∞, the incom-
pressibility limit is obtained. The incompressibility limit now
corresponds to ν = 0.5 due to the three-dimensional nature
of the problem. As demonstrated in these two examples, our
methodology can not only exactly recover bond-based peri-

dynamics but it is also capable of covering the whole range
of possible Poisson ratios including the auxetic regime.

4.4 CPD at finite deformations

As shown in the previous section,CPD is capable of capturing
any Poisson ratio by incorporating two-neighbour and three-
neighbour interactions. In this section, we carry out a series
of computational studies at finite deformations to compare
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Fig. 15 Large deformation of a cube with a cubic hole at its centre for different types of interactions

the influence of multi-neighbour interactions on the material
response for both two-dimensional and three-dimensional
frameworks. Furthermore, we demonstrate the robustness of
the proposed framework. For the two-dimensional analysis,
two different specimens are considered with the geometry
and loading conditions illustrated in Fig. 10. Both specimens
are subject to 100% extension in the horizontal direction and
are free in the lateral direction. We consider a unit square
without and with a square hole at its centre as shown in the

first and second rows of Fig. 10, respectively. The hole is
in the shape of a square with the sides of length 0.4. For
the three-dimensional analysis that follows, we mimic simi-
lar conditions and dimensions. First we detail the numerical
simulations for a two-dimensional domain.

Thediscretised specimensused in the analysis are depicted
in Fig. 11 together with their deformed shapes obtained
from computational simulations. The shading corresponds
to the vertical displacements and zoom boxes are provided
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Fig. 16 A toy example to
explain the necessity of
accounting for one-neighbour
interaction, in contrast to
two-neighbour and
three-neighbour interactions

for further clarity. Figure 12 illustrates the deformed discrete
domain for both specimens and for various values of C2/C1.
The transparent shapes depicts the undeformed configura-
tion. Prescribing displacement-type boundary conditions in
CPD is similar to PD. That is, we prescribe the displace-
ments for a few layers of points on the boundary as shown.
The number of the layers over which the boundary condi-
tions are imposed depends on the horizon size. Prescribing
boundary conditions on a finite size boundary layer is inher-
ent to nonlocal models such as CPD. In Fig. 12, one can
see the three boundary layers on the left and right edges of
the domain. In the first row of Fig. 12, C2 = 0 and thus,
only one-neighbour interactions are active. The remaining
rows involve both one-neighbour and two-neighbour interac-
tions where C2/C1 provides a measure of incompressibility
and hence, given the loading and geometry, larger values of
C2/C1 lead to increased lateral contraction.

Figure 13 presents a schematic illustration of the speci-
mens and the prescribed deformations for the three-dimensi
onal analysis. Similar to the two-dimensional analysis, both
specimens are subject to 100% extension in the horizontal
direction and are free in both lateral directions. We consider
a unit square without and with a cubic hole at its centre as
shown in the first and second rows of Fig. 13, respectively.
The hole is also in the shape of a cubewith sides of dimension
0.4.

Figures 14 and 15 show the deformed shapes as well as
the distribution of the vertical displacement on both domains.
Three different interaction types are examined. The first
column is associated with one-neighbour interactions. The
results in the first column provide an excellent reference
against which to compare the results in the second and third
columns. The second column takes one-neighbour and two-
neighbour interactions into accountwhereas the third column
accounts for one-neighbour and three-neighbour interac-
tions. These simulations are devised to distinguish between

two-neighbour interactions and three-neighbour interactions.
We emphasise that it is not possible to have only two-
neighbour interactions or only three-neighbour interactions.
This important observation will be contextualised later via
a geometrical example. In the first row, the reference con-
figuration is illustrated where the colours correspond to
the vertical displacement. The deformed shapes are illus-
trated in the subsequent rows. On the second row, both
deformed and undeformed configurations are shown. The
smooth colour pattern is produced by interpolating the dis-
placements between the points. Hence, the third row is more
representative of what we obtain from the simulations as no
interpolation between points is assumed. In the last row the
deformed set of points on a vertical plane is extracted to
highlight the difference between the three interaction types.
Since only one-neighbour interactions are considered in the
1st column, the least contraction is obtained which leads
to increased compressibility when compared to the second
and third columns. It is important to note that although both
two-neighbour interactions and three-neighbour interactions
result in decreased compressibility, the solutions are different
indicating that they indeed correspond to a different defor-
mation.

As mentioned, one-neighbour interactions are necessary
for the stability of the computation. In addition to the required
one-neighbour interactions, two- and three-neighbour inter-
actions can be included. However, the opposite cannot
be done. More precisely, we cannot run simulations in
which only two-neighbour or three-neighbour interactions
are active and one-neighbour interactions are absent. That
is, while two-neighbour and three-neighbour interactions
are important to capture the Poisson effect correctly, one-
neighbour interaction are necessary to avoid instabilities. The
requirement for one-neighbour interactions is a physical one.
Consider Fig. 16. In the upper part of the image three tri-
angles are shown with equal area. In the lower half three
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pyramids are depicted with identical volumes. Although the
areas of the various triangles and the volumes of the various
pyramids are the same, the length of their edges differ among
them.Hence in the absence of one-neighbour interactions one
could have multiple configurations with identical energies
that would in turn cause instabilities. However, it is not possi-
ble to change a configuration without changing the distances
between the pairs of points. Thus one-neighbour interactions
guarantee that different configurations correspond to differ-
ent energies, which does not hold for only two-neighbour and
three-neighbour interactions.

Finally, to illustrate the robustness of the proposed frame-
work and its ability to simulate large deformations, we study
the convergence behaviour. Table 3 gathers the convergence
of the normalized residual for the three-dimensional sim-
ulations at large deformations shown in Fig. 14 for various
interactions at different increments. The domain in this study
is subject to 100% extension in 25 increments and the �2-
norm of the residual |R| recorded every fifth increment.
Despite the large deformation, consistent quadratic conver-
gence is obtained consistently at every increment.

5 Conclusion

Continuum-kinematics-inspired peridynamics (CPD) was
recently proposed by Javili et al. [72] as a geometrically
exact alternative to peridynamics (PD) to formulate non-local
continuum mechanics at finite deformations. Computational
aspects of the CPD formulation have been presented for the
first time. The potential of the method has been made clear
via a series of numerical examples.

A key feature of the proposed methodology is that it is
fully implicit. Furthermore, the tangent stiffness is computed
directly and not via numerical differentiation schemes, unlike
the commonly accepted strategy in classical state-based
peridynamics. The numerical implementation and solution
procedure is robust and shows the asymptotically quadratic
rate of convergence associated with the Newton–Raphson
scheme. For the first time, specific constitutive laws for CPD
have been presented. Their numerical implementations has
been discussed in detail together with analytical forms for
their associated tangents. The utility and reliability of the
proposed strategy is illustrated via a broad range of numeri-
cal examples including three-dimensional problems at large
deformations.

As stated in the introduction, a key feature of PD formu-
lation is that it can inherently account for singularities such
as fracture. Fracture analysis in PD is commonly carried out
by calculating a point-wise damage ratio as an indicator of
possible crack formation, particularly relevant to brittlemate-
rials. For a detailed discussion on the existing crack growth
criterion and the related damage model in PD, e.g. the criti-

cal bond stretch in the prototype micro-elastic brittle (PMB)
material model and its implications, see the very recent con-
tribution [84] and references therein.One logical extension of
this work therefore is to account for damage in CPD.Another
aspect for further investigation is to study the role of the
influence function [85] which can be embedded in the inter-
action energies of CPD. Moving forward, we plan to extend
this work to account for elasto-plasticity. Another interest-
ing extension of CPD, and our next immediate plan, is to
consider thermomechanical problems.
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