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Abstract
Thin membranes are notoriously sensitive to instabilities under mechanical loading, and need sophisticated analysis methods.
Although analytical results are available for several special cases and assumptions, numerical approaches are normally needed
for general descriptions of non-linear response and stability. The paper uses the case of a thin spherical hyper-elasticmembrane
subjected to internal gas over-pressure to investigate how stability conclusions are affected by chosen material models and
kinematic discretizations. For spherical symmetry, group representation theory leads to linearized modes on the uniformly
stretched sphere, with eigenvalues obtained from the mechanics of a thin membrane. A complete three-dimensional geometric
description allows non-axisymmetric shear modes of the sphere, and such instabilities are shown to exist. When the symmetry
of the continuous sphere is broken by discretized models, group representation theory gives predictions on the effects on
the critical states. Numerical simulations of the pressurized sphere show and verify stability conclusions for sets of meshing
strategies and hyper-elastic models.

Keywords Spherical geometry · Hyperelastic model · Stability · Symmetry · Discretization

1 Introduction

A large variety of thin pressurized membranes are common
in biology and engineering [31,32,34,39]. The mechanical
definition of a membrane implies that the structure will carry
all loads acting on it by establishing normal force resultants.
With the exception of cases where a plane membrane is sub-
jected to tensile forces, this means that the membrane can
only carry forces of distributed transversal intensities, i.e.,
pressure loads. With such loading situations, the response of
a membrane to loading is fundamentally non-linear, when a
combination of increasing stresses and increasing deforma-
tions carry an increasing pressure. This implies a need for
smoothness and continuity in the deformed configuration of
the membrane.

Rubber-likematerials are commonly considered formem-
branes, and are then described by hyper-elastic material
models. Due to computational convenience, the Mooney–
Rivlin model, [35,43], is often used in a two-parameter form
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related to the first two strain invariants [26]. Several studies
have shown that the relation between the two constitutive
parameters significantly affects the qualitative response of
simulated membranes [14,40]. Many other material models
for the simulation of membrane structures exist in literature,
where a common one is given by Ogden [38]. Comparisons
of models are given in, e.g., [8]. Parametric material mod-
els give large flexibility in describing materials, but can also
cause unexpected results, e.g., non-intuitive instabilities [15].

Being thin structures, membranes are strongly affected
by instabilities. Common views demand for static stability
a minimum total potential energy at the equilibrium state
[4,19,30,47]. Stability is, however, fundamentally dynamic,
and can be evaluated fromaLiapunov stability condition, i.e.,
a capacity to remain close to the static equilibrium situation
after a minor disturbance [33]. A special aspect of mem-
brane stability is wrinkling, when compressive forces create
wavy transversal deformations with crest lines orthogonal to
the principal compressive stress [18]. Relaxed strain energy
forms allow the calculation of wrinkling as an average stress
field, but lead to ill-defined problems under pressure loads
[41].

For the stability of thin membranes, analytical results
can be obtained only for simple geometries [23,37,45], but
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general treatments are also available [5,7,21]. Of particular
interest has been the stability of pressurized spheres. This
problem is frequently studied in literature [29,36,37,48,50,
and many others]. An extensive treatment of this problem
is given by Haughton and Ogden [24,25], where an axi-
symmetric analytical model and two hyperelastic material
models provide detailed stability conclusions from the total
potential energy in the deformed state. The first part of the
present work can be seen as a review and an extension of this,
with a more general kinematic description, a wider range of
material models, and a stability analysis based on vibration
properties [17]. As a motivation, the latter part of the work
is also directed towards the representation of instabilities by
numerical simulation models.

The stability analysis is in the present work restricted to
the isolation of critical equilibrium states on the primary
sequence, while secondary paths emanating from these are
not a main objective. Both stable and unstable equilibria are
thereby sought, as the treatment of bi-stable structures is con-
sidered as an interesting area for membranes [1,2,6].

The description of the geometry of a spherical surface
is a well-known and frequently studied problem, not least
in cartography, meteorology and oceanography [22,42,49,
as examples]. When physical phenomena need be described
on the spherical surface, the parameterized mapping of the
surface causes problems [44], which can be handled by the
Cubed sphere approach, with six local mappings together
forming the sphere [46]. Another approach is to base the
description of physics on the spherical harmonics functions
[10]. The latter will be used in the present analysis, while
the former is used as a tool to create one form of discretized
mesh.

Nature showsmany aspects of symmetry, and engineering
frequently uses symmetric or repetitive designs, from both
aesthetical and functional optimality reasons [11]. Symme-
tries of an object can be analyzed by group theory [9,12,13],
where the elements of the symmetry group are the rigid
transformations which bring a point on the sphere surface
to another, leaving the center point unmoved, and keeping
the spherical geometry [11].

In numerical simulations, symmetry is often introduced
as mirror reflections in the main coordinate planes, or as
rotational symmetry in axi-symmetric situations. A special
aspect of symmetry is when an unsymmetric meshing of a
fully symmetric domain can lead to surprising results [16].As
the present work utilizes flat triangular membrane elements
to cover the complete sphere, this approximates the geome-
try by meshes of lower symmetry, which contain some, but
not all, symmetry properties [28,51]. Classifying the result-
ing meshes with respect to their respective symmetry groups
gives further insights into how a discretized mesh can signif-
icantly affect simulation results.

The analytical treatment of an isotropic hyper-elastic uni-
formly pressurized sphere is given in Sect. 2, discussing the
combination of geometric properties and material models,
and deriving stability conclusions from the vibration fre-
quencies of the pressurized sphere. The relation between the
spherical continuum and discretized element meshes is given
in Sect. 3. Section 4 presents results from numerical experi-
ments with finite element models, focussing on two common
incompressible hyper-elastic material models, and on effects
from the discretization. Section 5 draws a set of conclusions
from the study. Appendices give further details.

2 Analysis of pressurized sphere

This section considers the linearized problem of small incre-
mental motions for a spherical membrane of original radius
a and uniform thickness t , when inflated to a radius λa by an
internal constant over-pressure p; λ is then a uniform stretch.
The membrane is assumed to be described by an isotropic
hyper-elastic material model. For the dynamics, the inertia is
assumed to come only from the membrane itself, with origi-
nal uniform density ρ.

The motion around the equilibrium state is analyzed by
finding all the eigenmodes of the membrane and the asso-
ciated eigenvalues. The analysis is related to the primary
equilibrium solution of uniform stretch, where critical solu-
tions are found, with zero eigenvalues. At these, modes
corresponding to vanishing eigenvalues exist, but secondary,
non-spherical solutions are only very brieflymentioned here.

The discussion is related to two parts, where the first con-
siders the conclusions that can be drawn from the geometry
of the sphere alone, and the second considers the mechanics
of a thin membrane formulation. These are brought together
in a stability formulation, where stability of an equilibrium
state is defined through the existence of vibrationmodes, i.e.,
positive eigenvalues for all modes of incremental displace-
ments from the equilibrium state.

2.1 Spherical symmetry

The uniformly stretched sphere maintains the full spherical
symmetry group O(3) of the original shape. The infinite-
dimensional space of all small incremental displacements
from this state can be split into a direct sum of finite-
dimensional subspaces, each invariant under the spherical
symmetry. For example, the 1-dimensional space of equal
and purely radial displacement is clearly such a subspace.
Group representation theory for O(3) classifies these sub-
spaces as each corresponding to one of a list of known
irreducible representations of the group, cf. “Appendix A”.

On the other hand, the subspace of eigenmodes belonging
to a particular eigenvalue is clearly also an invariant subspace
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under spherical symmetry. The end result is that the space of
small incremental displacements can be split into a direct
sum of invariant eigenmode subspaces, each of which cor-
responds to a particular irreducible representation of O(3).
These eigenmode spaces have finite dimensions, and thus
eigenvalue multiplicities, given by the representation. For
the stretched sphere, the degree of symmetry is so high that
themode shapes are almost entirely determined by symmetry
alone.

When considering all possible modes of the sphere, and
not only axi-symmetric ones, a small incremental displace-
ment vector for a point of the stretched sphere will be
representedby a scalar outwardnormal componentu together
with a 2D vector v in the tangent space of the sphere. A
basis for scalar functions is given by the set of real-valued
scalar spherical harmonics Y�m , where � = 0, 1, 2, 3, . . . and
m = −�,−� + 1, . . . , � − 1, �, cf. “Appendix A”. If further
∇(S) denotes the surface gradient of a scalar function on the
stretched sphere, and ∗ is the operation of rotating a tangent
vector clockwise a right angle about the outward normal, then
a basis for vector-valued functions on the stretched sphere is
given by∇(S)Y�m and ∗∇(S)Y�m , where now � = 1, 2, 3, . . .,
as a zero value for � gives a zero gradient.

This basis is convenient since it corresponds to the
irreducible representations of the group O(3). The represen-
tations will here be denoted D�g , D�u for � = 0, 1, 2, 3, . . ..
In particular, for any given even �, the set of 2� + 1 scalar
functions Y�m transforms as the representation D�g , as does
the set of vector functions ∇(S)Y�m (for � > 0), whereas
the set ∗∇(S)Y�m (for � > 0) transforms as D�u . For odd �,
the first two sets instead transform as D�u , while the third
set transforms as D�g . Since each eigenspace can be taken to
correspond to one of the irreducible representations, the basis
above is already close to an eigenmode basis, the exception
being where a scalar and a vector set both transform accord-
ing to the same representation. To summarise:

The D0g representation gives a radial mode

u = α0Y00, v = 0, (1)

where the mode amplitude α0 is an arbitary scaling, so this
mode is unique. While this mode shape is fully determined
by symmetry, the corresponding eigenvalue depends on the
physics of the problem. The representation D0u would give
u = 0, v = 0, which means there are no modes for this
representation.

For � ≥ 1, we first get modes corresponding to the repre-
sentations D�u for even �, and D�g for odd �, of the form

u = 0, v = γ�1 (λa)∗∇(S)Y�m, (2)

— a (2�+ 1)-fold shear mode for each �, again with an arbi-
trary scaling γ�1 andwith a corresponding physics-dependent

Table 1 Correspondence
between representations D�s of
O(3) and mode types of
incremental displacements for
uniformly stretched sphere

� s
g u

0 R –

1 S C

2 C S

3 S C

4 C S

.

.

.
.
.
.

.

.

.

R a single radial mode, S a (2� +
1)-fold shear mode, and C two
different (2� + 1)-fold coupled
modes

eigenvalue for each �. The factor (λa) compensates for the
size of the stretched sphere and makes u and v have the same
physical dimension. Secondly, we get modes corresponding
to the representations D�g for even �, and D�u for odd �, of
the form

u = α�i Y�m, v = β�i (λa)∇(S)Y�m, (3)

two different (2� + 1)-fold coupled modes (for i = 2, 3).
Here, physics determines not only the two eigenvalues for
each �, but also the ratio of the amplitude constants α�i and
β�i . The relation between representations and mode types is
summarised in Table 1.

2.2 Isotropic hyper-elastic membranes

The eigenproblem for solving the coefficients α�i , β�i , and
γ�i in Eqs. (2)–(3) needs the consideration of the physics of
a particular problem on the sphere. This section gives the
general equations for an isotropic hyper-elastic membrane,
and specializes them for a uniformly stretched sphere.

An isotropic hyper-elastic material is characterized by a
strain energy density We, i.e., per material volume. This is a
function of invariants of the right Cauchy–Green tensor C .
For a membrane, two coordinates Xα , such as the two spher-
ical angles θ and ϕ for the sphere, are introduced to describe
points in its surface, while the third direction is taken to be
its outwards normal. We will use the convention that lower
case component indices run over the two in-plane directions,
whereas an upper case index runs over all three directions.
Using local plane stress, the covariant components of C then
have the propertyC3α = Cα3 = 0, andC33 can be solved for
in terms of the in-plane components Cαβ from either incom-
pressibility or plane stress, cf. the material model examples
below. Thus, We can be expressed in terms of Cαβ and by
isotropy, from two invariants of the in-plane part C2 contain-
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ing the components Cαβ

J1 = Tr(C2)/2, and J2 = √
Det(C2), (4)

The two invariants allow the definition of the strain energy
density as

We = We(J1, J2). (5)

The general equation can be specialized for a spherical
membrane of initial thickness t isotropically stretched by λ,
for which J1 = J2 = λ2. This is expanded up to second
order in small incremental displacements. As further shown
in “Appendix B”, the first order terms in both J1 and J2 are
equal, but the second order terms are not. This means that to
find the second order terms in variations in We, it is enough
to know the values of the fundamental material functions

e(λ) = t
∂We

∂ J1
(λ2, λ2),

f (λ) = t
∂We

∂ J2
(λ2, λ2),

g(λ) = tλ2
[

∂2We

∂ J1∂ J1
+ 2

∂2We

∂ J1∂ J2

+ ∂2We

∂ J2∂ J2

]
(λ2, λ2), (6)

with t the initial thickness, and the arguments showing that
the strain energy density derivatives should be evaluated for
the arguments (J1 = λ2, J2 = λ2).

The description based on three functions was also used in
[25], using the linearly transformed forms

Σ1 = λ2

t
(e + f ) (7)

Σ2 = λ2

t
(e + g) (8)

Σ3 = 2
λ2

t
e (9)

In Eq. (6), the expressions e, f , and g have the same
physical dimension, force per length. For the unstretched
material with λ = 1, f = −e for a material in equilibrium,
and e and gmust both be positive for a stable material model.
It is also obvious that the expressions in Eq. (6) are easily
obtained for any hyper-elastic material model which can be
written in the form of Eq. (5).

The three functions in Eq. (6) express the dependence on
a particular material model, given the particular stretch state
existing in the pressurized sphere. It is not surprising that
the derived functions are identical to the ones for a bi-axially
isotropically stretched plane square given in [15], but with
other expansions of J1, J2.

A few common material models are elaborated below.

2.3 Equation of motion for small deviations of the
inflated sphere

Starting from the spherical geometry and symmetry, and
introducing the mechanics of a uniformly stretched mem-
brane, the equations of linearized motion around an equilib-
rium state are now presented.

The uniform tension needed to keep themembrane in equi-
librium at radius λa is

ψ(λ) = pλa

2
, (10)

related to the internal over-pressure p. As shown in
“Appendix B”, this can be related to the tension defined as the
integral of the Cauchy normal stress over the current thick-
ness as

ψ(λ) = e(λ) + f (λ). (11)

with the fundamental material functions from Eq. (6).
The linearized equations of motion for the small incre-

mental displacements described by u and v are derived in
“Appendix B” as

−h(λ)ü − 2g(λ)

λa

(
2u/(λa) + ∇(S) • v

)

+ψ(λ)
(
2u/(λa)2 + Δ(S)u

)
= 0,

−h(λ)v̈ + e(λ)

(
1

(λa)2
v + �(S)v

)

+g(λ)∇(S)
(
2u/(λa) + ∇(S) • v

)
= 0, (12)

where �(S) is the surface Laplacian, and the uniform mass
per stretched area is

h(λ) = tρ

λ2
. (13)

The equations of motion are converted to an eigenvalue
problem by replacing the second time derivatives through
multiplication by −κ (if κ is positive, this corresponds to a
harmonic time variation with angular frequency ω = √

κ),
yielding one scalar and one vector equation

κh(λ)u − 2g(λ)

λa

(
2u/(λa) + ∇(S) • v

)

+ψ(λ)
(
2u/(λa)2 + �(S)u

)
= 0,

κh(λ)v + e(λ)

(
1

(λa)2
v + �(S)v

)

+g(λ)∇(S)
(
2u/(λa) + ∇(S) • v

)
= 0. (14)
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2.3.1 Eigensolutions to equations of motion

The eigenmodes from Eqs. (1), (2) or (3) can be used to
compute the corresponding eigenvalues. Using the proper-
ties of the spherical harmonics Y�m , cf. “Appendix A”, the
eigenvalues are dependent on the index �, but not on m.
As in “Appendix A”, the short-hand notation q = Y�m ,
r = (λa)∇(S)q, s = ∗r is used in this section.

First, considering the radial mode � = 0 gives the single
eigenmode u = α0q, v = 0 fromEq. (1). After some algebra,
cf. “Appendix A”, two equations are obtained, according to

1

(λa)2

[
(λa)2κ0h + (2ψ − 4g)

]
α0q = 0,

0 = 0, (15)

when dropping the λ arguments to g, h and ψ , and noting by
the index on κ that the single eigenvalue belongs to � = 0.
Equation (15) gives, by introduction of Eq. (13), the eigen-
value

κ0 = 2(2g(λ) − ψ(λ))

a2tρ
, (16)

corresponding to thismode. The eigenvalue is thereby related
to the current stretch and the fundamental material functions
in Eqs. (6) and (11), i.e., the material model and its parame-
ters.

Next, the case � ≥ 1 with the first form of eigenmodes
from Eqs. (2), is considered. Again, after some algebra, the
eigenvalue equations in Eq. (14) then become

0 = 0,

1

(λa)2

[
(λa)2κ�1h − θ�e

]
γl1 s = 0, (17)

— where a simplified notation

θ� = �(� + 1) − 2, (18)

is introduced.
This gives the final expression for the eigenvalue

κ�1 = θ�e(λ)

a2tρ
, (19)

now dependent on the mode order �. As these eigenvalues
κ�1 do not depend on m, they have multiplicities 2� + 1.
Since the corresponding eigenmodes have zero divergence,
they were called pure shear modes above and correspond to
purely circumferential incremental displacement in an axi-
symmetricmodel. As a special case, when � = 1, i.e., θ� = 0,
the triple eigenvalue κ11 is vanishing, corresponding to three
modes of rigid rotation.

Finally, the coupled modes u = α�2,3q, v = β�2,3 r from
Eq. (3) are considered. Equation (14) then gives the two cou-
pled equations

1

(λa)2

{[
(λa)2κ�2,3h − 4g − ψθ�

]
α�2,3

+ [2g�(� + 1)]β�2,3

}
q = 0,

1

(λa)2

{
[2g]α�2,3 +

[
(λa)2κ�2,3h − e (θ�)

−g�(� + 1)]β�2,3

}
r = 0, (20)

where indices on κ , α, and β include both the order � and
the 2, 3 notation, which indicates that two new eigenvalues
are obtained, each of multiplicity 2� + 1. They require the
solution to the 2 × 2 eigenvalue problem

(
4θ�ψ + 4g −2(θ� + 2)g

−2g θ�(e + g) + 2g

) (
α�2,3

β�2,3

)
= λ2a2hκ�2,3

(
α�2,3

β�2,3

)
.

(21)

which can be ensured to give real eigenvalues.
For � = 1, θ1 = 0, the triple eigenvalue

κ12 = 0 for

(
α12
β12

)
=

(
1
1

)
(22)

corresponds to three modes of rigid translation. Another
triple mode is found from Eq. (21) for � = 1 as

κ13 = 6g(λ)

a2tρ
for

(
α13
β13

)
=

(−2
1

)
, (23)

The modes in Eq. (23) are commonly described as pear-
shaped, as they primarily consist of an axial deformation
where one pole moves outwards, and the opposite one
inwards.

For � ≥ 2, the eigenvalues and eigenmodes can be com-
puted by solving a second order algebraic equation from
Eq. (21). It may, however, be easier to discuss the eigenvalues
in terms of the trace and determinant of Eq. (21), which can
be written

a2tρ(κ�2 + κ�3) = θ�(ψ + e + g) + 6g

(a2tρ)2κ�2κ�3 = θ� [θ�ψ(e + g) + 2g(2e + ψ)] . (24)

By considering Eqs. (16), (19) for � > 1, (23) for � = 1,
and Eqs. (24) for � > 1, it is noted that all eigenvalues at
a specific uniform stretch value λ can be easily evaluated
through the order number �, and the three fundamental mate-
rial functions coming from the hyper-elasticmodel. This, and
in particular when any of these eigenvalues vanishes, will be
used for stability investigations below.
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2.3.2 Wave-speed interpretation

As a further interpretation of the above expressions, it is seen
that asymptotically for large �, and thus large θ�, the two
equations (24) provide the solutions

a2tρκ�2 ≈ θ�ψ(λ), a2tρκ�3 ≈ θ�(e(λ) + g(λ)), (25)

while Eq. (19) is still valid and can be expressed as

a2tρκ�1 = θ�e(λ). (26)

The expressions for the eigenvalues

κ�1 = θ�e(λ)

a2tρ
,

κ�2 ≈ θ�ψ(λ)

a2tρ
= θ�(e(λ) + f (λ))

a2tρ
,

κ�3 ≈ θ�(e(λ) + g(λ))

a2tρ
(27)

are thereby all valid in high � and arbitrarym, i.e., in the limit
of short wave length, where curvature is unimportant. The
three expressions correspond to transverse in-plane, trans-
verse out-of plane, and longitudinal in-plane shortwaveswith
wave speeds (on the deformed sphere)

c1(λ) =
√
e(λ)

h
,

c2(λ) =
√

ψ(λ)

h
,

c3(λ) =
√
e(λ) + g(λ)

h
, (28)

respectively, and depending on the material model. The form
of the equations is chosen to emphasize the similarity to com-
mon wave speed expressions for solids as the square root of
a quotient of stiffness to density.

2.4 Stability

Rather than investigating the definiteness of the total poten-
tial energy, stability of an equilibrium state for a pressurized
sphere is judged by the existence of vibration frequencies for
linearized small motions around the state, considering the
mass distribution of themodel [17]. Stability thereby requires
all eigenvalues to correspond to time harmonic modes, i.e.,
all κ�i = ω2 positive, except the two sets of triple zero eigen-
values κ11 and κ12 , which are related to rigid body motions.

The signs of the eigenvalues from Eqs. (16), (19), (23)
and (24) only depend on the stretch and the material model
through the values of e(λ), ψ(λ), and g(λ). With e, ψ and g

considered as independent quantities, the signs of the eigen-
values can be computed for any point in (e, ψ, g) space. This
will give regions in (e, ψ, g) space corresponding to stabil-
ity, and surfaces corresponding to critical stability with any
vanishing eigenvalue. Once these regions and surfaces have
been established, the increasing stretch λ of a sphere of any
particular material will correspond to a curve in (e, ψ, g)
space. These curves will pass through the regions and sur-
faces, thus giving the stability intervals and critical values for
that material, in the particular situation of uniform stretch.

First, Eq. (27) is used to show that, with large enough �,
there are an infinite number of negative eigenvalueswhenever
any of e,ψ , or e+g is negative. Thus, any stable region must
lie within a set A given by e ≥ 0, ψ ≥ 0, g ≥ −e. Within
this set A, critical states are sought, for all �.

The single mode for � = 0 is critical according to Eq. (16)
when

g = g0(e, ψ) = ψ

2
, (29)

The non-rigid-body mode for order � = 1 is critical
according to Eq. (23) when

g = g1(e, ψ) = 0. (30)

The critical surfaces for the �2,3 modes with � ≥ 2 is
given by the vanishing determinant in Eq. (24), which for
increasing � is

g = g�(e, ψ) = − θ�ψe

(θ� + 2)ψ + 4e
. (31)

As both e > 0 and ψ > 0 in the interior of the set A,
the values g�(e, ψ) form a decreasing sequence with � for
fixed e and ψ . As � becomes large, g�(e, ψ) converges to
g∞(e, ψ) = −e. Thus, for given e > 0 andψ > 0, a relation
holds:

−e = g∞ < · · · < g�+1 < g� < · · ·
< g2 < g1 = 0 < g0 = ψ

2
. (32)

The relation shows that the critical surfaces g = g�(e, ψ)

never intersect in the interior of A, but lie monotonously
stacked below each other in (e, ψ, g) space for increasing �,
and bound by the simple surfaces g = ψ/2 and g = −e, as
shown in Fig. 1.

It can also be shown from Eq. (19) that no surfaces of type
�1 exist in the interior of A.

The conclusion from Fig. 1 is that only the region above
g = g0(e, ψ) is stable. For any point with e > 0, ψ = 0,
and g > 0, e.g., the undeformed sphere, Eqs. (19) and (24)
immediately show that all non-rigid-body eigenvalues are
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e=0

g0= 0

g1

g2

g4

g10

t

e t

g 
t

Fig. 1 Critical surfaces in (e, ψ, g) space. Plotted are the surfaces
g�(e, ψ) for � = 0, 1, 2, 4, 10,∞, Eqs. (29)–(32), but also the criti-
cal surfaces e = 0, and ψ = 0. The quantity μt in the axis labels is the
product of linearized shear stiffness and thickness

stable The surface g = g0 does, however, not belong to the
stable region, nor does the boundary e = 0, as all modes of
type �1 are critical there. This also shows that the more stable
side of each of the surfaces g = g� is the upper side, in the
sense that the number of negative eigenvalue is increased by
2� + 1 on the lower side.

To conclude, the stable region consists of points where

ψ ≥ 0, e > 0, and g > g0(e, ψ) = ψ

2
, (33)

while there are
∑n

�=0(2�+ 1) = (n+ 1)2 negative eigenval-
ues, all others being positive, in the region

ψ > 0, e > 0, and gn+1(e, ψ) < g < gn(e, ψ), (34)

formed between the gn and gn+1 surfaces. Finally, an infinite
number of eigenvalues are negative for

ψ < 0, e < 0, or g < −e. (35)

This result agreeswith thework in [25], except in the numbers
of negative eigenvalues in the sub-regions, which are now
higher due to themore comprehensive kinematic description.

As afinal remark, it is noted that these stability conclusions
are valid for the case of given pressure. Other situations, for
example controlling the pressure implicitly by prescribing
the gas amount or gas volume are possible. As long as these
indirect ways of specifying the pressure retain full spherical
symmetry, the only eigenvalue that could be influenced is
κ0, which would result in a different—or possibly absent—
limit state surface g0. For example, for fixed volume, the
surface g0 disappears, and the stability region is bounded by
g > g1 = 0 instead.

2.4.1 Response to increasing stretch

The above treatment, and Fig. 1, have assumed that e, g and
ψ are independent variables. Attention is now given to the
curve in (e, ψ, g) space corresponding to a particular mate-
rial when stretch λ increases from λ = 1 at a state with
e(1), g(1) > 0, ψ(1) = 0. This belongs to the stable region,
but is on the boundary, which defines the demands for an ini-
tially stable material. As the stretch λ increases from 1, the
valueψ(λ) becomes positive, so the curve initially points into
the stable region. Continuing on the curve with increasing λ,
giving e(λ), g(λ), and ψ(λ), stability can be lost through
three different mechanisms.

The first is related to g(λ) passing through g0(e(λ), ψ(λ))

from above, when the single critical mode is the spherically
symmetric one, according to Eq. (1). This corresponds to a
limit state, where the pressure p has a local maximum with
respect to the stretch λ, cf. [25]. If g(λ) further decreases
through g1(e(λ), ψ(λ)) = 0, a bifurcation with a 3-fold
zero eigenvalue occurs for � = 1. If g(λ) continues to move
towards g∞(e(λ), ψ(λ)) = −e(λ), bifurcations occur, with
an increasing number of unstable modes for � = 2, 3, . . .,
with increasing multiplicity. It is, however, fully possible
that the function g(λ) could reduce instability by starting to
pass back through the g�(e(λ), ψ(λ)) values from below for
increasing �. It is even possible to regain stability at further
increased stretch, cf. the Ogden model below.

A second mechanism for loss of stability is related to e(λ)

becoming negative. As this, through Eq. (27)1, is related to
shear modes according to Eq. (2), this makes all in-plane
shear modes become unstable at the same value of the stretch
λ, and the material thereby collapses in shear.

A third mechanism is related to ψ(λ) becoming nega-
tive. As this, through Eq. (27)2, is related to coupled modes
according to Eq. (3), this makes all short wavelength out-of-
plane modes unstable through a wrinkling behavior, which
is also a collapse.

Figure 2 shows how the e(λ), ψ(λ), and g(λ) functions
vary during a uniform stretch variation λ for a few specific
material models discussed below. The models show qual-
itatively very different responses, as clearly seen from the
crossings with the critical surfaces and the vanishing e and
ψ values. Note how the curve ‘Case 1’ will cross all criti-
cal surfaces before simultaneously reaching the g = −e and
ψ = 0 surfaces.

2.5 Common hyper-elastic material models

The discussion above has considered a general hyper-elastic
material model, where the strain energy density is written as
a function of the two invariants of the in-plane strain tensor,
Eq. (5). Stability conclusions can thereby be drawn for the
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Fig. 2 Examples of stretch-dependent fundamental material function
values, allowing stability conclusions for increasing stretch λ of the
sphere. Case 1: Mooney–Rivlin material with c2/c1 = −1/2, μ =
2(c1 + c2). Case 2: Mooney–Rivlin material with c2/c1 = −2, μ =
2(c1 + c2). Case 3: Ogden material with μ1 = 630 kPa, α1 = 1.3,
μ2 = 1.2 kPa, α2 = 5, μ3 = −10 kPa, α3 = −2, cf. Sect. 2.5.3. Case
4: Ogden material with μ1 = 803.2 kPa, α1 = 1.05, μ2 = −0.8032,
kPa, α2 = −2, μ3 = 0, cf. Sect. 4.2.2

pressurized sphere under uniform stretch, for three common
material models.

2.5.1 Saint Venant–Kirchhoff model

The Saint Venant–Kirchhoff material model extends the lin-
ear elastic material model to the non-linear Green-Lagrange
strains

E A
B = 1

2

(
CA
B − δAB

)
(36)

with capital letters denoting 3D indices (A, B = 1, 2, 3),
and δAB theKronecker delta function. Introducing local plane-
stress assumptions and formulating deviatoric strains gives
the strain invariants

Ei
i = J1 − 1, Ē i

j Ē
j
i = 1

2
((J1)

2 − (J2)
2), (37)

with lower case letters denoting 2D indices, and overbars 2D
deviatoric strains Ē j

i = E j
i − (1/2)Ek

k δ
j
i . The strain energy

density is then

We = G

2
((J1)

2 − (J2)
2) + K2D

2
(J1 − 1)2, (38)

with G the shear modulus and K2D = (9GK3D)/(4G +
3K3D) the 2D plane stress version of the bulk modulus K3D.

The fundamental material functions in Eq. (6) then become

e(λ) = t
[
Gλ2 + K2D(λ2 − 1)

]

f (λ) = −tGλ2

g(λ) = t K2Dλ2. (39)

At unit stretch λ = 1, this leads to e(1) = tG, f (1) =
−e(1), ψ(1) = 0, and g(1) = t K2D, identifying e(1) and
g(1) as shear and 2D plane stress bulkmoduli integrated over
thickness.Also note, comparing to the cases below, that plane
stress, but not incompressibility, is assumed here.

An example Since the constants G, K2D > 0, the sphere is
stable for all λ ≥ 1 as

e(λ) > 0,

ψ(λ) = t K2D(λ2 − 1) ≥ 0,

g(λ) − g0(e(λ), ψ(λ)) = t K2D
λ2 + 1

2
> 0. (40)

2.5.2 Two-parameter incompressible Mooney–Rivlin model

A two-parameter Mooney–Rivlin model utilizes the incom-
pressibility relation I3 = 1, and defines a strain energy
density as

We = c1(I1 − 3) + c2(I2 − 3). (41)

with two constants and the strain invariants, identified with
the ones in Eq. (4),

I1 = C I
I = 2J1 + 1

(J2)2

I2 = 1

2
(C I

I C
J
J − C I

JC
J
I ) = (J2)

2 + 2
J1

(J2)2
, (42)

using that incompressibility gives C3
3 = 1/(J2)2. The strain

energy density for the incompressible Mooney–Rivlin mate-
rial model is thereby

We = c1

(
2J1 + 1

(J2)2
− 3

)

+ c2

(
(J2)

2 + 2
J1

(J2)2
− 3

)
, (43)

and the fundamental material functions become

e(λ) = 2t
c1λ6 + c2λ2

λ6
,

f (λ) = −2t
c1 + c2λ2(2 − λ6)

λ6
,
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g(λ) = 2t
3c1 + c2λ2(2 + λ6)

λ6
. (44)

For a uniform stretch of λ = 1, this gives e(1) = 2t(c1 +
c2), f (1) = −e(1), and g(1) = 3e(1), which identifies μ =
2(c1 + c2) as the linearized shear modulus at unit stretch.

An example Stability at unit stretch demands c1 + c2 > 0.
Further

ψ(λ) = e(λ) + f (λ) = 2t
λ6 − 1

λ6
(c1 + c2λ

2). (45)

When both c1, c2 > 0, then
g(λ) > g1(e(λ), ψ(λ)) = 0 for λ ≥ 1, but limit states
g(λ) = g0(e(λ), ψ(λ))will be encountered twoor zero times
depending on whether c2/c1 is smaller than or larger than
(
√
396 − 9)/(15(

√
396 + 19)1/3) ≈ 0.21446.

When c1 > 0, c2 < 0, the system will pass through
all g(λ) = g�(e(λ), ψ(λ)) values and finally reach g(λ) =
−e(λ) andψ(λ) = 0 at the same stretch. For larger stretches,
the material collapses. As an example, when c2/c1 = −1/2,
then g(λ) = g0(e(λ), ψ(λ)) at λ = 1.1447, g(λ) =
g1(e(λ), ψ(λ)) at λ = 1.1611, and g(λ) = g2(e(λ), ψ(λ))

at λ = 1.1874. For higher �, e.g., g(λ) = g10(e(λ), ψ(λ))

at λ = 1.3205, while g(λ) = −e(λ) (and ψ(λ) = 0) at
λ = √

2 ≈ 1.4142. This is Case 1 in Fig. 2.
When c1 < 0, the systemwill not pass any surface g(λ) =

g� (e(λ), ψ(λ)), but instead pass through e(λ) = 0 at some
stretch, when the material suddenly collapses. For example,
when c1 < 0, c2/c1 = −2, this happens at λ = 4

√
2 ≈

1.1892. This is Case 2 in Fig. 2.
As will be further shown by numerical examples below,

the two-parameter Mooney–Rivlin material model can show
three qualitatively different behaviors for positive c1, in addi-
tion to the sudden collapse for c1 < 0: a monotonously
increasing pressure under stretch, a pair of pressure limit
states, or one pressure limit state followed by an infinite
sequence of bifurcations. To what extent these instabilities
can be reproduced by discretized models will be further dis-
cussed below.

2.5.3 Incompressible Ogdenmodel

The strain energy density for the incompressible N -term
Ogden material model is expressed using the three princi-
pal stretches λJ , [38],

We =
N∑

i

μi

αi

(
λ

αi
1 + λ

αi
2 + λ

αi
3 − 3

)
, (46)

and 2N constitutive parameters μi , αi .

As incompressibility gives λ1λ2λ3 = 1, and, since λ21 +
λ22 = 2J1 and λ1λ2 = J2, the relation between principal
stretches and the sought invariants are expressed as

λ1 =
√
J1 +

√
(J1)2 − (J2)2,

λ2 =
√
J1 −

√
(J1)2 − (J2)2,

λ3 = 1/J2. (47)

The derivative expressions need be evaluated as limits
J2 → J1, due to the mild singularity at J2 = J1, giving

e(λ) = t

2

N∑

i

μiαiλ
αi−2,

f (λ) = − t

2

N∑

i

μi

[
(αi − 2)λαi−2 + 2λ−2αi−2

]
,

g(λ) = t

2

N∑

i

μi

[
(αi − 2)λαi−2

+2(αi + 1)λ−2αi−2
]
. (48)

At λ = 1, the expressions give
e(1) = t/2

∑N
i μiαi , f (1) = −e(1), and g(1) = 3e(1),

which identifies μ = ∑N
i μiαi/2 as the linearized shear

modulus at unit stretch.

An example For the well-known parameter values μ1 =
630 kPa, α1 = 1.3, μ2 = 1.2kPa, α2 = 5, μ3 = −10 kPa,
α3 = −2 [26], the system will become unstable by pass-
ing through a limit state as g(λ) = g0(e(λ), ψ(λ)) at
λ = 1.3741. For further stretches, there is a bifurcation when
g(λ) = g1(e(λ), ψ(λ)) at λ = 1.7719 with g(λ) decreas-
ing, and one when again g(λ) = g1(e(λ), ψ(λ)), but now
with g(λ) increasing, at λ = 2.5453. Finally, the system
will become stable again by passing through a limit state as
g(λ) = g0(e(λ), ψ(λ)) at λ = 4.3203. This is Case 3 in
Fig. 2.

A one-term restricted form of the model in Eq. (46) was
studied in both [25,37] with conclusions in Table 2. Results
are numerically confirmed below.

In two-term form, with four parameters, the Ogden mate-
rial model can give a more complex behavior than the
Mooney–Rivlin material model, and is then strongly depen-
dent on the αi exponents. This will be further shown by
numerical examples below. One example is Case 4 in Fig. 2.
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Table 2 Stability properties for
pressurized sphere, modelled by
one-term Ogden material
models with different exponents
α1 in Eq. (46), μ2 = μ3 = 0

α1 < −3/2 or 3 < α1: All modes are stable at large stretch

−3/2 < α1 < −1 or 2 < α1 < 3: Only the � = 0 mode is unstable at large stretch

1 < α1 < 2: A finite number � = 0, 1, . . . , �max modes are

unstable at large stretch

−1 < α1 < 0 or 0 < α1 < 1: Modes are unstable for all � at large stretch

3 Symmetries of structures andmodels

Previous work [16,17] has shown how symmetry proper-
ties of a discretization can significantly affect the calculated
response to loading. In discretized modelling, symmetry
aspects will essentially appear in two contexts, where the first
relates to a complete structure represented by a mesh which
has, or does not have, particular symmetry properties. The
second aspect is related to the modeling of a minimal part of
the full structure, where sets of conditions are introduced on
the subdomain boundaries [16]. For example, using a mesh
with icosahedral symmetry, only a fundamental domain of
1/120 of the sphere need be modelled, but with a significant
amount of bookkeeping needed to reconstruct the solutions
and eigenmodes on the full sphere. The present work only
considered modeling of the full sphere, and this section will
discuss how the symmetry groups of a discretized mesh will
affect the description of the critical eigenvectors of order �

on the sphere.

3.1 Splitting of representations

The representations D�g and D�u for � = 0, 1, 2, . . . in
Table 1 are irreducible for the full spherical symmetry group
O(3). As noted above, the symmetry of a discretized mesh
must be that of a finite subgroup G of O(3). While D�g and
D�u are still representations for G, they are not necessarily
irreducible, since the subset of group elements belonging to
G also implies a subset of linear operators when testing for
invariance. Like any reducible representation, it will split into
a direct sum of irreducible representations of the group G.

“Appendix C” reviews how to use published character
tables to compute the splitting. The conventional names
for the irreducible representations follow a pattern, where
A and B are one-dimensional representations, E two-
dimensional, T three-dimensional, G four-dimensional, and
H five-dimensional. Numerical indices denote different rep-
resentations of the same dimension, whereas the indices (·)g
and (·)u denote symmetry and anti-symmetry with respect to
inversions.

As an example, “Appendix C” shows that a mesh with
tetrahedral symmetry will split the 11-dimensional represen-
tationD5u into E+T1+2T2 with dimensions 2+3+2·3 = 11.
This shows that, for any reasonably finemesh, a group of four

close eigenvalues of multiplicities 2, 3, 3, 3 (in some order)
will be observed instead of one eigenvalue of multiplicity
11. The same reasoning shows that the zero-crossings of the
eigenvalues will not coincide.

For critical eigenvalues and modes, it is of special interest
to identify whether a mode corresponds to the trivial repre-
sentation1 where each group element is associated with the
one-dimensional identity operator. The eigenmode then has
full symmetry, the same as the equilibrium solution. In gen-
eral, a zero eigenvalue then shows a limit state on the primary
branch. On the other hand, critical eigenmodes correspond-
ing to non-trivial representations imply a symmetry-breaking
bifurcation, where one or more secondary branches of lower
symmetry can cross the primary branch.

Although several response aspects converge as expected
with fineness of the meshing, some aspects like the capacity
to reproduce bifurcations of higher orders are independent
of the mesh refinement, and are purely effects from the mesh
symmetry properties.

3.2 Meshes from regular geometries

A basic method to create a mesh on the sphere starts from a
simple regular geometry, and refines it systematically. Only
a few realistic instances exist, and the symmetry properties
of three regular geometries are discussed below.

3.2.1 Icosahedron-based meshes Ih

The best modelling of the sphere based on a triangle mesh,
i.e., the one with highest symmetry is using the icosahedron
symmetry group Ih . The analysis of ameshwith Ih symmetry
results in the representation splittings in Table 3. Any mesh
based on icosahedral symmetry will then represent the criti-
calities up to � = 2 as isolated stateswith correctmultiplicity,
while the states for � = 3, 4, 5will be split into 2, 2, 3 closely
spaced but separate bifurcations of lower orders, respectively.
The presence of the trivial representation Ag in the entry
for � = 6, corresponding to eigenvalues κ62 and κ63 , shows
that the Ih models will here give a limit state—instead of a
bifurcation—and thereby fail to follow the correct sequence
of uniform stretch.

1 The trivial one-dimensional representation is typically named A, A1,
Ag , or A1g for the finite subgroups.
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Table 3 Splitting of out-of-plane and in-plane modes by an Ih (icosa-
hedral) mesh, cf. Table 1

� D�g D�u

0 Ag Au

1 T1g T1u

2 Hg Hu

3 T2g , Gg T2u , Gu

4 Gg , Hg Gu , Hu

5 T1g , T2g , Hg T1u , T2u , Hu

6 Ag , T1g , Gg , Hg Au , T1u , Gu , Hu

The trivial representation Ag is highlighted

Table 4 Splitting of out-of-plane and in-plane modes by a Td (tetrahe-
dral) mesh, cf. Table 1

� D�g D�u

0 A1 A2

1 T1 T2

2 E , T2 E , T1
3 A2, T1, T2 A1, T1, T2
4 A1, E , T1, T2 A2, E , T1, T2
5 E , 2T1, T2 E , T1, 2T2
6 A1, A2, E , T1, 2T2 A1, A2, E , 2T1, T2

The trivial representation A1 is highlighted

3.2.2 Tetrahedron-based meshes Td

Conclusions can be reached similarly for discretizations
based on the tetrahedron symmetry group Td , Table 4. A
tetrahedron-basedmeshwill therefore show vanishing eigen-
values of at most multiplicity 3. A conclusion is also that any
mesh based on tetrahedral symmetry will split the � = 2
bifurcation into two bifurcations of multiplicities 2 and 3,
respectively, and will fail to represent the � = 3 bifurcation
state correctly.

3.2.3 Octahedron-based meshes Oh

The analysis of meshes with Oh symmetry is similar, and
shows that any such mesh will split the � = 2 and � = 3
bifurcations into isolated bifurcations of multiplicities 2+ 3
and 1+3+3, respectively, andwill fail to represent the � = 4
bifurcation state correctly.

It is noted that a cube, which could be another possibility
to create the mesh, is also of symmetry group Oh .

3.3 Axis-basedmeshes

Symmetry aspects are in engineering practice most com-
monly observed through mirror planes. This corresponds to
the creation of a well-defined subdomain, followed by a rep-

etition of this through simple geometric transformations. In
the present context, it is rather natural to introduce an equa-
tor mirror plane, and to define as the basic subdomain one
sector, limited by mirror planes of constant longitude, of
the half-sphere. This introduces an axial direction, around
which the initial mesh is rotated. Consequently, the meshes
are not equal in the three global axis directions, and are of
lower symmetry. With n sectors around the circumference,
the symmetry will be from the dihedral group Dnh . In the
present work, a basic mesh was created for n = 8, i.e., from
one eighth of the half-sphere, introducing eight vertices in
the mirror plane, together with one apex point on each side.
The symmetry group for these meshes was thereby D8h .

3.3.1 Dihedral meshes D8h

An analysis of ameshwith D8h symmetry will give results of
the same form as above, and indicate that any mesh based on
the D8h symmetry splits already the � = 1 bifurcation into
two bifurcations of multiplicities 1 and 2, respectively, and
will fail to represent the � = 2 bifurcation state correctly.

3.4 Systematic mesh refinement

With either of the two approaches above, a minimal basic
mesh is created, consisting of a set of triangles. This mesh
introduces the symmetry properties which will also be valid
for recursive refinements to computationalmeshes. The basic
meshes used here were created as a set of identical surfaces,
but it is noted that meshes created from regular geometries
consisted of equilateral triangular surfaces, while the axis-
based mesh consisted of isosceles triangles.

A requirement for kept symmetry is a systematic proce-
dure for the refinement from the basic mesh. Aiming at a
general method for any domain, a recursive process divided
each existing triangle into four, by introducing nodes at the
midpoints of existing triangle edges.All newnodeswere then
radially moved to the unit sphere, before going to the next
recursive step. This is essentially similar to the approaches
in [3,42]. It is noted that, although all vertices are correctly
placed on the sphere, the recursive introduction of new ver-
tices will lead to a hierarchy of nodes

Two steps of refinement of an equilateral triangle in Fig. 3
shows how new generations of nodes are created, with differ-
ent positions in relation to the symmetry of the initial mesh;
nodes with the same notation are symmetrically identical in
the uniform stretch. Figure 4 shows how the initial regu-
lar tetrahedron with four flat surfaces and four vertices was
refined to a Td mesh with 1024 surfaces and 514 vertices,
keeping the initial symmetry.

As discussed in [27], this method for meshing on the
sphere is not perfect, as the sphere surfacewill be divided into
elements of unequal sizes, with larger elements in the central
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Fig. 3 Two steps of recursive refinement of an equilateral triangular
element, showing 1 + 1 + 2 = 4 hierarchical classes of nodes. For an
isosceles triangle, a similar refinement will give 2+2+5 = 9 different
classes of nodal placements

Fig. 4 Initial and refined tetrahedron-based Td meshes with 4 and 1024
flat surfaces, respectively

regions of initial triangles. The effect is particularly visible
for the tetrahedron-based meshes in Fig. 4. For the present
purposes, and primarily focussing on the icosahedron-based
meshes, the effects from non-uniform meshing are limited,
as long as symmetry is kept.

Another non-iterative method for mesh generation is sim-
ilar to the method shown in [46]. A cube is then regularly but
non-uniformly divided into six side meshes. When the cube
sides are mapped onto a circumscribed sphere, this mesh
becomes slightly more uniform in element sizes.

A practical aspect ofmesh refinement is that very high pre-
cision must be used, in order to keep the intended symmetry;
a relative inaccuracy in nodal coordinates of ≈ 1 · 10−6 was
in [17] shown to destroy symmetry in results.

3.5 Meshes for numerical tests

Simulations of the gas-pressurized spherical membrane were
primarily performedwithmeshes of triangular elements from
four different symmetry classes. These meshes are below
denoted using the symmetry group name followed by the
number of elements within parentheses. The four classes
were:

– A regular icosahedron mesh Ih(20) was created, using
12 nodes. The primarily used Ih(5120) mesh with 2562
nodes needed 4 refinement steps, giving nodes of 30 hier-
archical classes.

– A regular tetrahedron mesh Td(4) was created, using
4 nodes. The used Td(4096) mesh with 2050 nodes
needed 5 refinement steps, which gave 102 different
nodal classes.

– A regular octahedron mesh Oh(8) was created, using
6 nodes. The used Oh(8192) mesh with 4098 nodes
needed 5 refinement steps, which gave 102 different
nodal classes.

– A D8h(16) mesh was created according to the descrip-
tion above, and using 10 nodes. The used D8h(4096)
mesh with 2050 nodes needed 4 refinement steps, which
gave 81 different nodal classes, due to the isosceles initial
triangles.

In addition, a variation of the cubed sphere mesh from
[46] was created. The mesh was created from an internally
symmetric mesh of 2N × N (N even) triangular elements
on each side of a cube, with the nodes then moved radially
to correct radius. In particular, a C(3072) mesh was created
with N = 16 giving 1538 nodes of 45 different nodal classes.
The resulting cube-based mesh maintains the Oh symmetry
of the cube.
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4 Numerical verification

The previous sections have given an analytical treatment of
the stability of gas-pressurized hyper-elastic spheres, and
discussed how different discretizations for the continuous
sphere will affect the obtained results. The present section
will demonstrate how the analytical results and predictions
are reproduced in element-based discretizations. Results are
presented for parameter variations within two hyper-elastic
material models discussed above, and for different meshes.

4.1 Problem setting, and basic formulation

The case studied was a thin sphere of midplane radius
a = 50mm and thickness t = 0.05mm pressurized by
an internal over-pressure p. Incompressible material mod-
els were considered, with linearized shear stiffness for the
unstressed membrane μ = 422.5 kPa. The material models
were included in the formulation of a faceted triangular thin
membrane element with linear interpolation of translations
and local plane stress conditions [14]. No handling of wrin-
kling was included, but all presented results were verified to
be wrinkling-free.

The numerical tests used meshes described in Sect. 3.5
above, with the Ih(5120)mesh as default, andwith one initial
node at (0, 0, a). The radial displacement ua of this node is
used to quantify stretch as λ = (a + ua)/a in results.

Mainly solutions on the primary solution path for the dis-
cretized problemwere obtained, i.e., the pathwhere solutions
maintain the full symmetry of the mesh. Results are repre-
sented by the relation between stretch λ and over-pressure p.
The non-linear equilibrium problem was set up as described
in [17]. Stability of equilibrium states was evaluated from
the Jacobian matrix, with no inertia associated to constraint
equations. Bisection was used to high precision, in order to
isolate states giving a change of stability. Evaluation of sec-
ondary paths was only occasionally performed, even if this
could be done in the present setting.

4.2 Material models

4.2.1 Mooney–Rivlin models

Simulationswere performed forMooney–Rivlinmodelswith
different values for k = c2/c1 in μ = 2(c1 + c2). Results
are given in Fig. 5, as pressure-stretch curves for six values
0.18 ≤ k ≤ 0.23, and a critical sequence for a larger range.

The critical sequence verifies that the double limit states
only exist for k ≤ 0.21446. To given accuracy, the same
limiting value for k was obtained with the coarser Ih(1280)
and Ih(320)models, but the stretch at this limiting value was
slightly different for the three meshes.
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Fig. 5 Pressure-stretch curves forMooney–Rivlinmaterialmodelswith
positive constitutive constants k = c2/c1, all with μ = 2(c1 + c2) =
422.5 kPa. Curves are for k = 0.18(0.01)0.23 from below. Isolated
critical states on equilibrium sequences are marked by ‘+’. Dashed line
shows the evaluated critical equilibrium sequence, connecting the limit
states. Subfigure b is a zoom-in of marked box in a

Negative constants For a constitutive constant k < 0, also
bifurcations appeared for the Mooney–Rivlin models [17].
The first bifurcations were well represented by the Ih(5120)
model. For c1 > 0, c2/c1 = −1/2, the limit state was found
at λ = 1.1441, and the two first bifurcations at λ = 1.1606
and λ = 1.1871, respectively, cf. Sect. 2.5.2. Equilibrium
sequences obtained for a few different negative k constants
are shown in Fig. 6.

A magnified view on the case k = −0.2 is also given
in Fig. 6b. The figure shows how the � = 5 bifurcation was
split into three distinct bifurcation states for thismodel, while
the � = 6 bifurcation was incorrectly represented. Higher
order bifurcations � > 6, although existing in the analyti-
cal solution, were not reached (but could be evaluated for
a sequence restarted at larger stretch). The pressure-stretch
relation shows how the solution deviates from the correct
relation for the continuous sphere. This deviation occurs
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Fig. 6 Pressure-stretch curves forMooney–Rivlinmaterialmodelswith
negative constitutive constants k = c2/c1, all with μ = 2(c1 + c2) =
422.5 kPa. Curves are for k = −0.5(0.1) − 0.1 from below. Isolated
critical states on equilibrium sequences before the maximum stretch are
marked by ‘+’. Subfigure b is a zoom-in of marked box in a for the
case k = −0.2. Numbers in b indicate multiplicity of zero eigenvalue

through a limit state, and original symmetry of the model
is kept also on the return path after the maximum stretch
state. As shown by Fig. 7, the deformation of the sphere
then consists of an additional local expansion within each of
the original facets of the icosahedron; no symmetry-breaking
bifurcation has thus been passed.

4.2.2 Ogdenmodels

Simulations were also performed with an Ogden model for
different constitutive parameters. Initially, these were based
on the ’well-known’ six parameters discussed above, aiming
at a qualitative description of the influences from the con-
stants μi , (i = 1, 2, 3), but keeping the constants αi . Results
are given in Fig. 8, showing also caseswhereμ2 = 0,μ3 = 0
or μ2 = μ3 = 0.

Fig. 7 Deformation mode of the pressurized sphere, modelled with
an Ih(5120) mesh, for the final equilibrium state shown for the case
k = −0.2 in Fig. 6a (λ ≈ 1.56, 1000p/μ ≈ 0.728). Stars mark ver-
tices in original icosahedron mesh. Deformations in calculated size, not
magnified

[-]

0.5

1

10
00

 p
/

 [-
]

Case 3

Case 1

Case 2

Case 4

2 6

Fig. 8 Pressure–stretch curves for Ogden material models with differ-
ent constitutive constants. For all cases α1 = 1.3, α2 = 5, α3 = −2.
Case 1: μ1 = 630, μ2 = 1.2, μ3 = −10 kPa. Case 2: μ1 = 630, μ2 =
0, μ3 = −13 kPa. Case 3: μ1 = 630, μ2 = 5.2, μ3 = 0 kPa. Case 4:
μ1 = 650, μ2 = μ3 = 0 kPa. Isolated critical states on equilibrium
sequences marked by ‘+’

The results in Fig. 8 show qualitatively that the two addi-
tional terms gave similar effects on the overall response
when compared to Case 4 with only μ1 non-zero, as the
incompressibility condition makes either the in-plane or the
transversal stretches above 1, with the other below 1. The
examples below only considered at most two terms in the
Ogden formulation.

It is noted in Fig. 8 that bifurcations appeared for all cases.
For Case 1, the two limit states were found at λ = 1.3733
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and λ = 4.3179, respectively, while bifurcations appeared
for λ = 1.7739 and λ = 2.5383, which agrees perfectly with
the analysis in Sect. 2.5.3, and well with numerical results in
[48].

One-term Ogden models Tests were then performed for a
one-termOgdenmodel, where only the exponent α1 was var-
ied, withμ1 = 2μ/α1. Results are given in Fig. 9, and verify
that large positive and negative exponents gave monotonous
responses, but that values closer to zero gave more complex
responses, cf. Sect. 2.4.1. Further experiments showed that
values 0 < |α1| < 1 gave an infinite number of bifurcation
states for the continuous case, but that only a finite set of
these were shown by the discretization, while 1 < α1 < 2
gave a limited number of bifurcations. For α1 = 1.5, only the
� = 1 bifurcation was found, while α1 = 1.3 in Fig. 8, Case
4, gave the � = 1, 2 cases, and a further case with α1 = 1.1
was correct up to � = 3 (split into one 4-fold and one 3-fold
bifurcation). The α1 = ±0.5 cases both showed the � = 5
bifurcations, before the Ih(5120)model was unable to follow
the continuous solution, cf. Fig. 7.

Two-term Ogden models More complex behaviors can
result for cases with more than one term in the Ogden mate-
rial model, and interest was focussed on two-term models.

Based on Fig. 9, parameters were chosen according to
α1 = 1.05, α2 = −2, with μ2 = −kμμ1 , μ = (μ1α1 +
μ2α2)/2. Some results are given in Fig. 10, showing that
even for a very small positive value for kμ (i.e., a negative
μ2 together with the negative α2), the response eventually
regained stability. While the case kμ = 0 (not drawn) passed
through the limit pressure state � = 0, and then successively
up to � = 5 (but no higher) for increasing stretch, a case
with kμ = 10−5 passed � = 5, and then successively went
back through lower � values until a stable solution was again
reached atλ = 62.09, fromwhich stretch only positive eigen-
valueswere present. For kμ = 0.1, only the two limit pressure
states were found, and for all kμ > 0.17694, the sphere was
always stable, as seen from a critical equilibrium sequence,
similar to the one in Fig. 5. An evaluation for the � = 1
bifurcation showed that this 3-fold critical state only exists
for kμ ≤ 0.03053.

4.3 Discretization

Results above were all obtained with the Ih(5120) model,
which is considered to be an accurate representation of the
continuous sphere. Even this discretization, however, has
shortcomings.

The main aspects coming from the discretization of the
continuous sphere into a finite number of flat linearly inter-
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Fig. 9 Pressure–stretch curves for 1-term Ogden material models.
Variable α1, with μ1 = 2 μ

α1
. Isolated critical states on equilibrium

sequences are marked by ‘+’. Numbers on curves indicate α1. Subfig-
ure b is a zoom-in of marked box in a

polated finite elements are shown by Fig. 6, showing how the
bifurcations for � ≥ 3 were distorted into either a splitting of
a high order bifurcation (with many simultaneously vanish-
ing eigenvalues) into several lower order ones, or an inability
to represent a bifurcation existing for the continuous sphere.
These aspects were studied for different discretizations, with
a focus on the symmetry properties and the fineness of the
meshes.

4.3.1 Fineness of Ih model

Referring to Fig. 6, showing result from an Ih(5120) model
with a Mooney–Rivlin material with k = c2/c1 = −0.2,
icosahedron meshes of different finenesses were analysed,
with respect to critical states. Results are given in Table 5, as
the number of vanishing eigenvalues and the corresponding
stretches λ. The four finer meshes show the same orders and
splittings of the bifurcations for � ≤ 5, and the same fail-
ure to represent the bifurcation at � = 6, where analytical
results show that the critical modes should be of multiplic-

123



420 Computational Mechanics (2020) 66:405–430

10
0

1

0.2

0.1

0.01

10-3

10-5

1
[-]

10
00

 p
/

 [-
]

1

1.5

1.5 2

0.1

0.01

10-5, 10-3

[-]

10
00

 p
/

 [-
]

(a)

(b)

Fig. 10 Pressure–stretch curves for 2-term Ogden material models,
with α1 = 1.05, α2 = −2 with μ2 = −kμμ1, always with μ =
422.5 kPa. Isolated critical states on equilibrium sequences are marked
by ‘+’. Numbers on curves indicate kμ. Subfigure b is a zoom-in of
marked box in a

ities 1 + 3 + 4 + 5, cf. Table 3. The Ih(80) model rather
severely misrepresents the critical states for � ≥ 2, even if
the splittings are similar to the finer meshes for � < 5.

4.3.2 Symmetry properties of the mesh

The casewith a two-termOgdenmodel for kμ = 10−5 shown
in Fig. 10 was used to compare the effects of meshes with
different symmetry properties. For the Ih(5120) mesh, criti-
cal states up to � = 5, and then down to � = 0 were found,
Fig. 11. No other meshes were able to reproduce the critical
states up to order � = 5, i.e., the two 11-fold bifurcations.

Not only did themodels with lower symmetry fail to reach
the � = 5 bifurcation, but they also split the lower order
critical states in different ways, cf. Sect. 3.1. Table 6 shows
how the critical states for increasing � were represented as
one or more critical states of lower multiplicities.

It is noted from the table that the � = 4 bifurcation
was split into another sequence, 4 + 5 rather than 5 + 4,

compared to the Mooney–Rivlin model reported in Table 5,
showing that the splitting sequence order is both problem
and mesh dependent. It is also noted that the cubed sphere
meshC(3072), as expected, showed a similar behavior as the
octahedral Oh mesh, even if the deviation from the purely
spherical stretch took another direction, Fig. 11.

Figure 12 shows how the original symmetry of the meshes
was kept during stretch, even when the results in Fig. 11
seem to indicate that the fundamental paths were left by the
simulations. The subfigures show, for the icosahedral and
the tetrahedral meshes, how all nodal radii of the models
developed with increasing stretch. The figures verify that the
meshes consisted of 30 and 102 nodal classes, respectively.
The response curves in Fig. 12 are therefore primary solution
sequences for the discretized meshes, and no symmetry-
breaking bifurcations were introduced in the solutions. The
imperfect spherical stretch is thus due to the inability of the
discretizations to represent all displacement modes of the
sphere.

From the figures can be noted the significantly different
scales of the radial values, and also that the stretch of the
sphere was outwards between the initial icosahedral vertices,
while it was inwards for the tetrahedral mesh. This, however,
might be different for other meshes with the same symmetry.
The Td model simulation reported in Fig. 12b returned to an
almost perfect spherical shape after a very severe deviation,
where equatorial radius was less than 10% of the polar for
stretches around 10.

As noted above, the symmetry of a mesh can be very sen-
sitive to disturbances. A practical consequence relates to the
effects of rounding nodal coordinates. In the Ih(20) mesh of
the unit sphere, the nodal coordinates consisted of six differ-
ent values (except 0 and1),with either sign. In the simulations
presented above, these valueswere givenwithmachine preci-
sion. Rounding all these values to a lower number of decimal
places would keep a certain regularity in nodal placement,
but break the Ih symmetry. It was by simulations verified that
a rounding of all unit sphere coordinate values to six deci-
mals before refinement was enough to destroy the correct
instability behavior.

4.4 Secondary paths

The present work has focussed on the presence, isolation
and identification of critical states along the primary solution
sequence for the pressurized sphere, noting the difference
between analytical and discretized models. Obviously, the
bifurcation states will be origins for secondary branches. For
bifurcations of multiplicities higher than one, several sec-
ondary paths will normally exist, and group theory can be
used to provide a list of such branches [20]. As an example,
the � = 1 bifurcation, with the axi-symmetric ‘pear-shaped’
mode, gives a 3-dimensional critical eigenspace of zero
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Table 5 Critical equilibrium
states isolated for different
icosahedron-based meshes of
pressurized sphere, modelled
with a Mooney–Rivlin material
model with k = c2/c1 = −0.2,
cf. Fig. 6

� Ih(80) Ih(320) Ih(1280) Ih(5120) Ih(20480) Analytical

0 1.2533(1) 1.2590(1) 1.2626(1) 1.2640(1) 1.2645(1) 1.2649(1)

1 1.3776(3) 1.3564(3) 1.3542(3) 1.3543(3) 1.3545(3) 1.3545(3)

2 1.6404(5) 1.5344(5) 1.5152(5) 1.5113(5) 1.5105(5) 1.5103(5)

3 1.8950(3) 1.7087(4) 1.6711(4) 1.6630(4) 1.6611(4) 1.6606(7)

1.9063(4) 1.7120(3) 1.6723(3) 1.6633(3) 1.6612(3)

4 2.0860(5) 1.8385(4) 1.7859(4) 1.7747(4) 1.7722(4) 1.7715(9)

2.1272(4) 1.8435(5) 1.7884(5) 1.7755(5) 1.7724(5)

5 2.2143(3) 1.9327(3) 1.8665(3) 1.8533(3) 1.8505(3) 1.8496(11)

1.9339(5) 1.8678(5) 1.8538(5) 1.8506(5)

1.9415(3) 1.8732(3) 1.8555(3) 1.8511(3)

6 1.9875(4) 1.9156(4) 1.9038(4) 1.9034(4) 1.9062(13)

1.9894(5) 1.9196(5) 1.9063(5) 1.9047(5)

1.9974(4) 1.9290(4) 1.9149(4) 1.9121(4)

1.9968(3) 1.9274(1) 1.9135(1) 1.9107(1)

1.9752(5)

1.9741(1)

Stretch value based on stretch of top node, λ = 1 + ua/a. Multiplicity of zero eigenvalue given within
parentheses. Analytical results, based on Sect. 2.5.2 and with the same constitutive constants, as comparison
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Fig. 11 Pressure–stretch curves formeshes of different symmetry prop-
erties. Isolated critical states on equilibrium sequence for the Ih(5120)
mesh are marked by ‘+’

eigenvalues, expressed by a basis of three arbitrary but
orthogonal eigenvectors. While an infinite number of rota-
tion axes exist for the continuous sphere, the discretized
models will only be able to yield pear-shaped modes along
certain symmetry axes of the mesh. As all Ih meshes have
6 axes through initial icosahedron vertices, 15 axes through
midpoints of the initial edges and 10 axes through initial
side centers, each of these 31 symmetry axes was verified
to define a secondary sequence, which could be easily fol-
lowed between the bifurcations. Due to the nodal hierarchy,
the three types of sequencesweremarginally different in their
representations of the spherical mode.

The Td meshes similarly give four axes through a vertex
and a side center, and three axes through two edgemidpoints,
giving a total of 7 secondary paths passing through the � = 1
bifurcation, which is correctly reproduced. It is also noted
that these conclusions are completely independent of the lev-

Table 6 Splitting of critical
states for meshes of different
symmetry properties

Order � Ih(5120) Oh(8192) Td (4096) D8h(4096) C(3072)

0 1 1 1 1 1

1 3 3 3 1 + 2 3

2 5 3 + 2 2 + 3 – 2 + 3

3 4 + 3 3 + 3 + 1 – 3 + 3 + 1

4 5 + 4 – –

5 3 + 5 + 3

The numbers indicate the multiplicities of isolated critical states
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Fig. 12 Nodal radii during stretch of sphere in two meshes of differ-
ent symmetry conditions. a Ih(5120) mesh. b Td (4096) mesh. Stretch
measure from ua , Normalized radii in relation to ua . Isolated critical
states on equilibrium sequence are in a marked by ‘+’ on the trivial
radius curve

els of refinement, and only reflect the symmetry properties
of the mesh.

The higher order bifurcations lead to even more complex
secondary path situations.

5 Conclusions

The paper has discussed the numerical evaluation of stability
for hyper-elastic membranes, with the pressurized sphere as
an example, and focussed on the dependence on the material
model and the discretization of the complete geometry.

The material description has developed a general frame-
work for hyper-elastic material models, wheremost common
models can be introduced, the only demand being that a
strain energy density can be formulated from first and sec-
ond invariants of in-plane strain. The derivation shows that
three fundamental material functions describe the material
response for the case of uniform stretch of the sphere. From

these, considering the case of infinitely small stretch, con-
ditions on the material parameters for initial stability can be
formulated. Stability conditions for the stretched equilibrium
can also be expressed in these functions, for the particular
material model. For common material models, the possible
instability responses are thereby considerably more complex
than previously found, in particular for cases where wider
ranges of material parameters can be allowed within the
requirements of initial stability. For instance, two-parameter
Mooney–Rivlin models with one negative constitutive con-
stant can show an infinite number of bifurcation states in
the response to pressurization, whereas a two-term Ogden
material model can give a response with a high but limited
number of bifurcations followed by a return to stable condi-
tions at larger stretches. The developed expressions allow a
straight-forward evaluation of critical states.

For the continuous modelling of the sphere by spherical
harmonics functions, an infinite series of such functions can
completely represent the incremental deformations from the
deformed sphere. The eigenmodes, representing either vibra-
tion or instability modes, are constructed by vector analysis
from the spherical harmonics functions, introducing the fun-
damental material functions.

Symmetry in representation of the spherical membrane
is a key aspect in discretization. The main aspects deciding
what instabilities can be correctly identified by a discretized
element model of the complete sphere are described through
group theoretical concepts. One main conclusion is that
meshes derived from a basic icosahedral geometry will give
the best possibilities to represent the instabilities of a pres-
surized sphere, but that some limitations exist also for these.

Numerical experiments were used to verify analytical
results, and in particular to show how variations in material
and geometry are represented by the modelling. Performed
simulations thereby accurately verified the analytical pre-
dictions of the critical sequences for the Mooney–Rivlin
and Ogden material models, showing also the higher order
bifurcations existing for certain sets of constitutive param-
eters. The numerical simulations allowed the prediction of
parameter ranges where specific instabilities exist. Based on
triangular flat elements on the spherical surface, simulations
also showed that symmetry properties of the used mesh will
affect the obtained results in a manner predicted by the group
theoretical analyses. The main conclusion is that symme-
try aspects of a studied problem must be carefully and very
accurately considered if a full instability investigation of a
structure is the aim. In particular is shown how simplified
considerations of symmetries can be misleading in this con-
text. The results also clearly show that a lack of symmetry in
the mesh can not in all aspects be compensated for by a finer
mesh.
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A Symmetry

A.1 Group representations

A brief review of how representations naturally come out of
the eigenvalue problem follows. Each transformation from
the group O(3) maps the stretched sphere onto itself, but
alsomaps any small incremental displacement to a new small
incremental displacement, and this latter mapping is lin-
ear. Each element of the group is thereby associated with
a linear mapping on the space of small incremental dis-
placements. Further, two elements of the group successively
applied will correspond to composition of the linear opera-
tors. To conclude, each group element g is associated with
a linear operator Lg , and composition is preserved in that
Lg◦h = LgLh . This composition-preserving association
between a group element and a linear operator is termed a
representation of the group.

This representation is reducible in the sense that there are
subspaces of the tangent space that are invariant under all
of the Lg . One example is the one-dimensional subspace of
all radial and equal displacements given by a small uniform
change in radius, which is invariant under full spherical sym-
metry.

The infinite-dimensional full space of small incremen-
tal displacements will split into a direct sum of finite-
dimensional invariant subspaces. On each such subspace of
dimension n, the association of a group element g with the
restriction of the linear operator Lg is an irreducible rep-
resentation of the group. Given a set of n basis vectors for
the subspace, each linear operator will be represented by a
square n × n matrix, and the basis can be taken such that
the matrix is orthogonal for every operator. In such an irre-
ducible representation, group compositions thus correspond
to matrix multiplication: Mg◦h = MgMh , with no further
splitting then possible.

This splitting of the small incremental displacement
space into invariant finite-dimensional subspaces and cor-
responding representations also splits the fully symmetric
eigenproblem, as any eigenmode must be transformed into
a new eigenmode with the same eigenvalue under the group
operations. Thus, any invariant subspace must correspond
to a single eigenvalue, which will have a multiplicity at
least equal to the dimension of the subspace. In general, one
can expect different subspaces to have different eigenvalues,
withmultiplicities precisely the dimensions of the subspaces.
Knowing the irreducible representations for a group thus
gives direct information about themultiplicity of eigenvalues
and eigenmode shapes. Complete lists of irreducible repre-
sentations are known and published for all groups considered
here, cf. “Appendix C”.

A.2 Representations and eigenmodes for the
spherical membrane

Since the full spherical symmetry group O(3) is the direct
product of the group SO(3) of 3D rotations and the inversion
group Ci , its representations are products of one of the rep-
resentations of SO(3) with one of the two representations of
Ci .

If first the rotation symmetry group SO(3) is considered,
group representation theory shows that the representations
are indexed by a non-negative integer �. The representation
named2 D� has dimension 2� + 1. The basis constructed
from real-valued spherical harmonics introduced in Sect. 2.1
directly corresponds to these representations, since the set of
2� + 1 functions Y�m transforms as D�, as (for � > 0) does
both the set of ∇(S)Y�m and the set of ∗∇(S)Y�m . Thus, a full
set of eigenmodes is given by

u = α0Y00, v = 0 for � = 0,

u = α�i Y�m, v = β�i (λa)∇(S)Y�m

+ γ�i (λa) ∗∇(S)Y�m for � ≥ 1 (49)

where i = 1, 2, 3 denotes the three solutions to a physics-
and �-dependent 3×3 eigenvalue problem for the amplitude
constants α, β, and γ . Also, by varying m, 2� + 1 basis
eigenmodes with the same eigenvalue exist for given (�, i).

Without the consideration of physics, only themode shape
corresponding to � = 0 is fully determined. For higher values
of �, the amplitudes given by α, β, and γ needs the actual
physics to be determined, and will give three possibilities for
each � from a 3 × 3 matrix eigenvalue problem.

These three can be separated into two groups of one and
two, respectively, by next considering the inversion symme-
try group Ci . Here there are two irreducible representations.

2 Other notations exist in literature.
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In the representation named Ag , inversion leaves the shape
unchanged, while in the representation named Au , inver-
sion causes a sign change. The spherical harmonics can be
expressed as homogeneous polynomials of degree � in the
variables x , y, and z. Since inversion means changing the
sign of all coordinates, it is easy to see that for even �, both
Y�m and∇(S)Y�m are unchanged by the inversion. The ∗ oper-
ator on the other hand will change from a rotation clockwise
by a right angle to a rotation counter-clockwise. Since rotat-
ing a vector counter-clockwise by a right angle is the same
as rotating the vector clockwise followed by a multiplication
by −1, ∗∇(S)Y�m changes sign under inversion if � is even.
For odd �, the sign changes follow the opposite pattern. This
means that the eigenmodes in Eq. (49) are obtained by taking
either γ = 0 or α = β = 0.

As the modes in Eq. (2) are fully described for any �,
the symmetry considerations have reduced the eigenmode
problem to a set of 2×2 problems for the amplitudes α�i and
β�i in Eq. (3), giving two possibilities i = 2, 3 for each �.
Formulation and computation of the eigenvalues for the then
known mode shapes requires the actual equations of motion,
i.e., the physics of the problem on the sphere geometry.

A.3 Scalar spherical harmonics

The scalar spherical harmonic functions are the basis for the
symmetry consideration above. The Laplace spherical har-
monics functions Y�m constitute a complete set of orthogonal
functions defined on the surface of a sphere. They may be
organized by angular frequency, and are basis functions for
representations of functions on the sphere, somewhat similar
to the functions in a Fourier series. The shapes of the used
functions can be roughly visualized as a two-dimensional
product of trigonometric functionswith crests and node lines,
corresponding to ameshwith �−|m|+1 half-waves between
the north and south poles, and 2|m| half-waves along the lat-
itudes [10]. As an example of how each sperical harmonic
function generates mode shapes for small incremental dis-
placements of the sphere, we can consider the case of � > 0,
m = 0,whereY�0 is independent of the longitude angle. Then
the shear mode displacements are along curves of constant
latitude and radius, whereas the coupledmode displacements
lie in planes of constant longitude, and all displacements are
axially symmetric.

A.3.1 Function and operator expressions

In the further description below, a number of differential
operator expressions on the spherical harmonics functions
are used. The operators are all definedon the stretched sphere.
In particular, all operators can be constructed from the sur-
face gradient ∇(S) and the quarter turn rotation operator ∗,
in combination with the surface divergence operator ∇(S)•.

As these are homogeneous and isotropic operators on the
stretched sphere, so are all operators constructed from them.

For the operator expressions used, it can first be shown
that for a general scalar function d

∇(S) • ∗∇(S)d = 0, (50)

and

�(S)d = ∇(S) • ∇(S)d. (51)

Further, for a general vector function e

∗∗e = −e, (52)

and

�(S)e = ∇(S)(∇(S) • e) − ∗∇(S)(∇(S) • ∗e) + 1

(λa)2
e.(53)

The spherical harmonics functions also have the funda-
mental property

∇(S) • ∇(S)Y�m = −�(� + 1)

(λa)2
Y�m . (54)

From these basic expressions, it is straight-forward to
obtain a set of relations for scalar and vector functions based
on the spherical harmonics. For a scalar function

q = Y�m, (55)

one obtains, based on Eqs. (51) and (54),

�(S)q = ∇(S) • ∇(S)Y�m = −�(� + 1)

(λa)2
q (56)

— the operator gives a scalarmultiplication for the argument.
For vectors of the format

r = (λa)∇(S)q = (λa)∇(S)Y�m, (57)

and

s = ∗r = (λa) ∗∇(S)q = (λa) ∗∇(S)Y�m, (58)

a series of expressions give the needed results. From
Eqs. (52), (58), (57), (54), and (55)

− ∇(S) • ∗s = ∇(S) • r = (λa)∇(S) • ∇(S)Y�m

= −�(� + 1)

(λa)
q, (59)

and from Eqs. (58), (57) and (50)

∇(S) • s = ∇(S) • ∗r = (λa)∇(S) • ∗∇(S)q = 0. (60)
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Finally, Eqs. (53), (59), (60) and (57) give

�(S)r = ∇(S)(∇(S) • r) − ∗∇(S)(∇(S) • ∗r)

+ 1

(λa)2
r = −�(� + 1) + 1

(λa)2
r, (61)

while Eqs. (53), (59), (60) and (58) give

�(S)s = ∇(S)(∇(S) • s) − ∗∇(S)(∇(S) • ∗s)

+ 1

(λa)2
s = −�(� + 1) + 1

(λa)2
s, (62)

— again with results which are scalar multiplications of the
arguments, with the scalar dependent on the mode order �

and the stretch value λ.

B Derivation of the equations of motion

This appendix derives the equations of linearized small
motion around a uniformly stretched pressurized spherical
membrane, using the fundamental material functions for a
hyper-elastic material model.

B.1 Small displacements of a curved surface

Wefirst review somebasic notions concerning the differential
geometry of surfaces. Consider a surface given by R(X),
where Xα (α = 1, 2) is an arbitrary coordinate system for the
surface. Let N(X) be a unit normal vector to the surface. The
normal direction should be consistently chosen so it varies
continuously. The shape (up to rigid motions) of the surface
is completely described by two tensors. The first fundamental
form, or metric tensor, is

gαβ(X) = R,α • R,β , (63)

where ,α denotes partial derivation with respect to Xα . The
second fundamental form is

Lαβ(X) = −N ,α • R,β = N • R,αβ, (64)

where the second expression shows that Lαβ is symmetric.
While the metric deals with properties of the 2D space itself,
the L tensor deals with how the space is imbedded in 3D.
As with any space with a metric tensor, the metric tensor
and its inverse gαβ can be used to raise and lower tensor
indices, Christoffel symbols Γ α

βγ can be computed and thus
the covariant derivative ;α can be defined.

Now, let us at each point X take a vector vα(X) in the
tangent planeof the surface and a scalaru(X), anduse these to
define a finite displacement of the surface in two steps. First,
we follow a geodesic starting at X and with initial tangent

vector v for a unit value of the affine parameter, to reach a
point in the surface with coordinates xα(X , v(X)). For this
point wemove along the normal vector N(x)with coefficient
u(X) (note that this is u as a function of the original point X ,
not the new point x). Thus, the displaced point is

r(X , v(X), u(X))

= R (x(X , v(X))) + u(X)N (x(X , v(X))) . (65)

The right Cauchy–Green tensor is

Cαβ = ∂

∂Xα
r(X , v(X), u(X))

• ∂

∂Xβ
r(X , v(X), u(X)), (66)

and C is needed up to second order in v and u to obtain the
linearized equations of motion about a stationary solution.
The result is, with terms of third and higher orders neglected,

Cαβ = gαβ + gαiv
i
;β + gβiv

i
;α − 2Lαβu

+ gi jv
i
;αv

j
;β + Rαi jβviv j

− 2
[
Lαiv

i
;β + Lβiv

i
;α + Lαβ;ivi

]
u

+ Lαi L
i
βu

2 + u;αu;β,

where Rαi jβ is the Riemann curvature tensor, and every-
thing is evaluated at the point X . Raising one index to
Cα

β = gαiCiβ , we can compute the two invariants

J1 = Tr(Cα
β )/2 = 1 + vi;i − Li

i u

+gi j g
klvi;kv

j
;l/2 + Ri jv

iv j/2

−
[
2L j

i v
i
; j + L j

j;iv
i
]
u

+Li
j L

j
i u

2/2 + gi j u;i u; j/2,

J2 =
√
Det(Cα

β ) = 1 + vi;i − Li
i u

+
[
vi;iv

j
; j − vi; jv

j
;i + Ri jv

iv j
]
/2

−
[
L j
jv

i
;i + L j

j;iv
i
]
u

+
[(

Li
i L

j
j − Li

j L
j
i

)
u2 + gi j u;i u; j

]
/2,

where Rαβ = Ri
αβi is the Ricci tensor, which may alterna-

tively be computed as Rαβ = −gαβDet(Li
j ). Alternatively,

we can express J2 as

J2 = 1 + vi;i − Li
i u +

[
viv

j
; j − v jvi; j

]

;i /2

−
[
L j
jv

i
]

;i u

123



426 Computational Mechanics (2020) 66:405–430

+
[(

Li
i L

j
j − Li

j L
j
i

)
u2 + gi j u;i u; j

]
/2,

where both terms involving only v are divergences.

B.2 The elastic energy for small displacements of a
an unstressedmembrane

Consider an elastic membrane where the undeformed ref-
erence configuration is without any tension or strain. The
elastic energy per unit material volume for an isotropic mate-
rial under plane stress conditions is a function We(J1, J2) of
J1 and J2. The energy density per unit material area is tWe,
where t is the membrane thickness. Using the definitions of
the fundamental material functions

e(λ) = t
∂We

∂ J1
(λ2, λ2)

f (λ) = t
∂We

∂ J2
(λ2, λ2)

g(λ) = tλ2
[

∂2We

∂ J1∂ J1
+ 2

∂2We

∂ J1∂ J2
(67)

+ ∂2We

∂ J2∂ J2

]
(λ2, λ2), (68)

we have for deviations from the undeformed material (where
λ = 1), up to first order

tWe = tWe(1, 1) + (e(1) + f (1))
[
vi;i − Li

i u
]
. (69)

Since thematerial is in equilibrium in the undeformed con-
figuration, the variation of the first order terms must vanish,
so f (1) = −e(1). Using this, the energy can be compactly
expressed to second order using the linear strain tensor

εαβ =
[
gαiv

i
;β + gβiv

i
;α

]
/2 − Lαβu (70)

and the deviatoric linear strain tensor

ε̄αβ = εαβ − εii gαβ/2 (71)

which gives, to second order,

tWe = tWe(1, 1) + e(1)ε̄ij ε̄
j
i + g(1)εii ε

j
j /2. (72)

Thus, e(1) can be interpreted as the 2D shear modulus and
g(1) as the 2Dbulkmodulus integrated over thickness, giving
the contributions from area preserving shear deformation,
and shear-free area deformations, respectively.

B.3 The elastic energy for small displacements of a
uniformly stretched surface

Now we will try to relate the expressions derived for small
displacements of an undeformed membrane, to the corre-
sponding expressions for small displacements of an already
deformed membrane, where stretches are different from 1.
The same coordinates can still be used for the deformed
membrane. We will use superscript (M) (for material) to
denote quantities computed in the reference configuration,
and superscript (S) (for spatial) or no superscript for the
deformed configuration. The values of the Cauchy–Green
tensor only depends on the coordinates, so C (M)

αβ = Cαβ .

When raising one index to form the invariants J (M)
1 and J (M)

2 ,
the material inverse metric tensor g(M)αβ must, however, be
used, and thus J (M)

1 and J (M)
2 are no longer close to 1.

For the special case of a surface deformed using a uniform
isotropic stretch λ, the difference between material and spa-
tial quantities is a simple scaling involving λ. For example
g(M)αβ = λ2g(S)αβ , which gives

J (M)
1 = λ2 J (S)

1 , J (M)
2 = λ2 J (S)

2 . (73)

The elastic energy per unitmaterial area is, to second order
in u, v,

Φ(M)
e = tWe(J

(M)
1 , J (M)

2 ) = tWe(λ
2, λ2)

+λ2
[
e(λ)

(
J (S)
1 − 1

)
+ f (λ)

(
J (S)
2 − 1

)

+g(λ)
(
J (S)
1 − 1

)2
/2

]
, (74)

where in the last term we have used that J (S)
2 = J (S)

1 to first

order, and J (S)
1 = 1 to zeroth order. If we instead compute

the elastic energy per unit spatial area and ignore the constant
term, we get

Φe = e(λ) (J1 − 1) + f (λ) (J2 − 1)

+ g(λ) (J1 − 1)2 /2. (75)

Whilewemust have e(1) = − f (1) for anymaterial, so the
material is in equilibrium when unstressed and unstrained,
there is no reason why e and f should be equal for λ �= 1.
Thus, the first order part of the elastic energy is not zero,
and some loading is required to keep the membrane in equi-
librium. We will use an internal over-pressure to supply the
needed loading.

B.4 Over-pressure loading on amembrane

For a closed membrane subjected to a constant over-pressure
p from the inside, we can define a pressure energy −p(V −
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V0), where V is the enclosed volume, and V0 a reference vol-
ume. To relate a small displacement u, v to a volume change,
we note that for any v, r(X , v(X), ξ) defines a 3D coordinate
system (X , ξ) for points near the surface.We can thenfind the
volume change per unit area by integrating the Jacobi deter-
minant of the coordinate system from ξ = 0 to ξ = u(X), to
get

u + vi;i u − Li
i u

2/2 (76)

to second order in v, u. The pressure energy per unit area is
thus

Φp = −p(u + vi;i u − Li
i u

2/2). (77)

The same expression can actually be used for both a closed
membrane, and an orientable membrane with fixed bound-
aries, since the surface can be closed by adding suitable fixed
portions.

Returning to the uniformly stretched membrane, we have
the total potential energy per unit spatial area Φ = Φe +
Φp and variations of the terms linear in u, v must vanish in
equilibriumwhen integrated over the surface. To linear order,
this gives

Φ = [e(λ) + f (λ)] (vi;i − Li
i u) − pu. (78)

Now, any term which is a divergence can be converted
to an integral over the boundary, and the contribution to
the variation will be zero since u, v are fixed on the (possi-
bly non-existing) boundary. Thus, terms that are divergences
can be ignored. Here, the term involving vi;i is of that type,
since e, f are constant. Then, the u terms give for the over-
pressure

p = − [e(λ) + f (λ)] Li
i . (79)

Since p is constant, so must Li
i (twice themean curvature)

be. We may then measure the loading using

ψ(λ) = −p(λ)/Li
i = e(λ) + f (λ), (80)

the constant surface tension per unit spatial length, instead
of the pressure p. If f is replaced by ψ − e and terms in the
energy coming from e, g, and ψ are collected, we get

Φ = e(λ) (J1 − J2) + g(λ) (J1 − 1)2 /2

+ψ(λ)
[
L j
j

(
u + vi;i u − Li

i u
2/2

)
+ (J2 − 1)

]
(81)

Ignoring terms that are pure divergences (of which
the second expression for J2 contains several), we conclude
that

Φ = e(λ)ε̄ij ε̄
j
i + g(λ)εii ε

j
j /2

+ψ(λ)
[
gi j u;i u; j/2 − Li

j L
j
i u

2/2
]
. (82)

The expression for Φ has formally the structure of small
deviations of a linear, isotropic 2D material in equilibrium
with 2D shear and bulk moduli e(λ) and g(λ), cf. Eq. (72),
with an extra stiffness coming from the tensionψ load, but it
should be remembered that theψ contribution includes some
terms from the elastic energy.

B.5 Variation of the potential energy

Contributions to the equations of motion can be obtained
by computing the variations with respect to u and v of the
potential energy. The covariant derivative from the variation
of v can be removed by partial integration, since divergences
can be ignored. Writing L̄α

β for the deviatoric part of L , the
result is

−δ(Φ) = δ(u)
[
e(λ)2L̄ j

i

(
vi; j − Li

j u
)

+ g(λ)L j
j

(
vi;i − Li

i u
)

+ ψ(λ)
(
Li
j L

j
i u + gi j u;i j

)]

+ δ(vα)

[
e(λ)

(
−Rαiv

i + gαi g
jkvi; jk −

[
2L̄i

αu
]

;i

)

+ g(λ)
(
vi;i − Li

i u
)

;α

]

Finally, specializing to a sphere uniformly stretched from
original radius a to radius λa, taking the origin at the center
and choosing an outwards normal, N = R/(λa), we get

Lαβ = −gαβ/(λa), (83)

and thus L̄α
β = 0. We also have

Rαβ = −gαβ/(λa)2 (84)

whereby the variation simplifies to

−δ(Φ) = δ(u)
[
−2g(λ)

(
2u/(λa) + vi;i

)
/(λa)

+ψ(λ)
(
2u/(λa)2 + gi j u;i j

)]

+ δ(vα)
[
e(λ)

(
gαiv

i/(λa)2 + gαi g
jkvi; jk

)

+ g(λ)
(
2u/(λa) + vi;i

)

;α

]
.

In vector notation, using ∇(S) for spatial surface gradient,
�(S) for the spatial surface Laplacian, and v for a vector
tangent to the surface, this can be written
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−δ(Φ) = δ(u)
[
−2g(λ)

(
2u/(λa) + ∇(S) • v

)
/(λa)

+ψ(λ)
(
2u/(λa)2 + �(S)u

)]

+ δ(v) •
[
e(λ)

(
v/(λa)2 + �(S)v

)

+ g(λ)∇(S)
(
2u/(λa) + ∇(S) • v

)]
.

B.6 Kinetic energy contribution

We assume that all kinetic energy comes from the membrane
itself, not from themotion of the fluid providing the pressure.
If the constant density in reference configuration is ρ, the
kinetic energy per material unit area is

T (M) = tρ
(
u̇2 + g(S)

i j v̇i v̇ j
)

/2. (85)

For the uniformly stretched membrane, the kinetic energy
density per spatial unit area is

T = h(λ)
(
u̇2 + g(S)

i j v̇i v̇ j
)

/2, (86)

using the mass density per spatial unit area h = tρ/λ2. Vari-
ation, and using partial integration in time to remove the time
derivative from the variation of u and v, gives

δ(T ) = −δ(u)h(λ)ü − δ(vα)h(λ)gαi v̈
i , (87)

or, in vector notation,

δ(T ) = −δ(u)h(λ)ü − δ(v) • h(λ)v̈. (88)

Combining the contributions to the variation from kinetic
and potential energy, the equations of motion for small dis-
placements of a uniformly stretched sphere are found as

−h(λ)ü − 2g(λ)

λa

(
2u/(λa) + ∇(S) • v

)

+ψ(λ)
(
2u/(λa)2 + �(S)u

)
= 0,

− h(λ)v̈ + e(λ)

(
1

(λa)2
v + �(S)v

)

+ g(λ)∇(S)
(
2u/(λa) + ∇(S) • v

)
= 0. (89)

C Using character tables to compute
representation splitting caused by
lowering symmetry

When symmetry is lowered by restricting to a subgroup,
any irreducible representation of the supergroup is typically
a reducible representation of the subgroup, i.e., it can be

split into a direct sum of irreducible representations of the
subgroup. For the spherical membrane, the symmetry group
O(3) of the continuousmodel is lowered to that of a subgroup
like Td by the introduction of a discretized mesh. Conse-
quently, an irreducible representation like the11-dimensional
D5u of O(3) will be split into a direct sum of the irre-
ducible representations of Td : the one-dimensional A1, A2,
the two-dimensional E , and the three-dimensional T1, T2.
This splitting can be easily computed using published char-
acter tables for the two groups [12].

The character χα for a representation α of a group is a
complex valued function over the elements of the group.
Specifically, if the representation α maps the group element
g to the orthogonal matrix R(g), then

χα(g) = Tr (R(g)) , (90)

which can be shown to be independent of which particular
orthogonal matrix was used. Further, all group elements in
the same conjugate class have the same value of the charac-
ter. Thus, the character tables typically would be rectangular,
with rows corresponding to different representations and
columns to different conjugate classes of the group. Any con-
jugate class of a subgroup thereby corresponds to a unique
conjugate class of the supergroup, but not the other way
around.

The formula for computation of the splitting is given as

I (α, β) = 1

N

∑

g∈G
χα(g)χβ(g) (91)

where N is the number of elements in the subgroup, α is
a possibly reducible representation, β an irreducible repre-
sentation for the subgroup, and the overbar denotes complex
conjugate. The number I (α, β) will be a non-negative inte-
ger, denoting the number of times thatβ occurs in the splitting
of α.

As an example, the number of times the representation T2
occurs when splitting the representation D5u is computed.
The representation D5u is reducible for Td , so we will typi-
cally not find it tabulated. To compute the character values of
D5u , we note that O(3) is the direct product of the rotation
groupSO(3) and the inversion groupCi ,whichmeans that the
character values of D5u are the products of the correspond-
ing values of the rotation representation D5 and the inversion
representation Au . Since SO(3) is a continuous group, the
character values of its representations can not be tabulated in
a finite table, but a formula can be found as

χDl (g) =
l∑

m=−l

cos(mφ). (92)
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Table 7 Character table of some representations for the tetrahedron
symmetry group Td

E 8C3 3C2 6S4 6σd

D5u 11 − 1 − 1 − 1 1

A1 1 1 1 1 1

T2 3 0 −1 −1 1

Here, φ is the angle of the rotation corresponding to the ele-
ment g. The representation Au has the character values 1
for the identity element and −1 for the inversion. Thus, to
compute the character values of D5u for elements in Td , the
corresponding rotation angle is found, and also whether it is
an inversion or not. The character values of the rotation and
inversion parts are multiplied.

The conjugate classes of Td can be denoted: E (the iden-
tity element, no rotation, no inversion), C3 (rotation by
φ = 2π/3, no inversion, 8 different axes), C2 (rotation by
φ = π , no inversion, 3 different axes), S4 (rotoreflection by
a quarter turn, φ = π/2, inversion, 6 different axes), and σd
(reflection, φ = π , inversion, 6 different axes), giving a total
of 24 elements. Taking an element g belonging to the class
S4 as an example gives

χD5u (g) =
⎛

⎝
5∑

m=−5

cos(mπ/2)

⎞

⎠ (−1) = −1. (93)

Similarly, the other conjugate classes can be computed to
give the first row of Table 7.

For the irreducible representations, the character tables
are published in several sources. The rows for A1 and T2 are
included in the table as examples. From this, the number of
times T2 occurs when D5u splits are easily calculated using
Eq. (91) as

I (D5u, T2) = 1

24
[1 · 11 · 3 + 8 · (−1) · 0

+ 3 · (−1) · (−1)

+ 6 · (−1) · (−1) + 6 · 1 · 1] = 2, (94)

showing that the splitting of D5u contains T2 twice. Using
the trivial A1 row instead, gives I (D5u, A1) = 0, so A1

does not occur in the splitting. Checking the other irreducible
representations verifies that D5u is split into E , T1, and T2
(twice). As a small check, it can be seen that the dimensions
match: 2 + 3 + 2 · 3 = 11.
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44. Roşca D, Plonka G (2011) Uniform spherical grids via equal area
projection from the cube to the sphere. J Comput Appl Math
236:1033–1041

45. Rodríguez J, Merodio J (2011) A new derivation of the bifurcation
conditions of inflated cylindrical membranes of elastic material
under axial loading. Application to aneurysm formation.Mech Res
Commun 38(3):203–210

46. Ronchi C, IaconoR, Paolucci PS (1996) The “cubed sphere”: a new
method for the solution of partial differential equations in spherical
geometry. J Comput Phys 124(1):93–114

47. Thompson JMT, Hunt GW (1973) A general theory of elastic sta-
bility. Wiley, New York

48. WangT,XuF,HuoY, Potier-FerryM (2018) Snap-through instabil-
ities of pressurized balloons: pear-shaped bifurcation and localized
bulging. Int J Non Linear Mech 98:137–144

49. Williamson DL, Drake JB, Hack JJ, Jakob R, Swarztrauber PN
(1992) A standard test set for numerical approximations to the
shallow water equations in spherical geometry. J Comput Phys
102(1):211–224

50. Xie Y, Liu J, Fu Y (2016) Bifurcation of a dielectric elastomer bal-
loon under pressurized inflation and electric actuation. Int J Solids
Struct 78–79:182–188

51. Zingoni A (2014) Group-theoretic insights on the vibration of
symmetric structures in engineering. Philos Trans R Soc A
372:20120,037

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Computational stability investigations for a highly symmetric system: the pressurized spherical membrane
	Abstract
	1 Introduction
	2 Analysis of pressurized sphere
	2.1 Spherical symmetry
	2.2 Isotropic hyper-elastic membranes
	2.3 Equation of motion for small deviations of the inflated sphere
	2.3.1 Eigensolutions to equations of motion
	2.3.2 Wave-speed interpretation

	2.4 Stability
	2.4.1 Response to increasing stretch

	2.5 Common hyper-elastic material models
	2.5.1 Saint Venant–Kirchhoff model
	2.5.2 Two-parameter incompressible Mooney–Rivlin model
	2.5.3 Incompressible Ogden model

	3 Symmetries of structures and models
	3.1 Splitting of representations
	3.2 Meshes from regular geometries
	3.2.1 Icosahedron-based meshes Ih
	3.2.2 Tetrahedron-based meshes Td
	3.2.3 Octahedron-based meshes Oh

	3.3 Axis-based meshes
	3.3.1 Dihedral meshes D8h

	3.4 Systematic mesh refinement
	3.5 Meshes for numerical tests

	4 Numerical verification
	4.1 Problem setting, and basic formulation
	4.2 Material models
	4.2.1 Mooney–Rivlin models
	4.2.2 Ogden models

	4.3 Discretization
	4.3.1 Fineness of Ih model
	4.3.2 Symmetry properties of the mesh

	4.4 Secondary paths

	5 Conclusions
	Acknowledgements
	A Symmetry
	A.1 Group representations
	A.2 Representations and eigenmodes for the spherical membrane
	A.3 Scalar spherical harmonics
	A.3.1 Function and operator expressions


	B Derivation of the equations of motion
	B.1 Small displacements of a curved surface
	B.2 The elastic energy for small displacements of a an unstressed membrane
	B.3 The elastic energy for small displacements of a uniformly stretched surface
	B.4 Over-pressure loading on a membrane
	B.5 Variation of the potential energy
	B.6 Kinetic energy contribution
	C Using character tables to compute representation splitting caused by lowering symmetry
	References











