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Abstract
The large flexibility of meshfree solution schemes makes them attractive for many kinds of engineering applications, like
AdditiveManufacturing or cutting processes. While numerous meshfree methods were developed over the years, the accuracy
and robustness are still challenging and critical issues. Stabilization techniques of various kinds are typically used to over-
come these problems, but often require the tuning of unphysical parameters. The Peridynamic Petrov–Galerkin method is a
generalization of the peridynamic theory of correspondence materials and offers a stable and robust alternative. In this work,
the stabilization free approach is extended to three dimensional problems of finite elasticity. Locking-free mixed formulations
for nearly incompressible and incompressible materials are developed and investigated in convergence studies. In general, an
efficient implicit quasi-static framework based on Automatic Differentiation is presented. The numerical examples highlight
the convergence properties and robustness of the proposed formulations.

Keywords Peridynamic Petrov–Galerkin method · Meshfree methods · Mixed methods · Peridynamic correspondence
formulation · Interpolating moving least squares · Nonlinear elasticity

1 Introduction

In last decades many different methods for the approximate
solution of partial differential equations were developed and
applied to various engineering problems. The Finite Ele-
ment Method (FEM) is well accepted for the solution of
a wide range of problems in industry. However, for com-
plex evolving domains it is advantageous to have a more
flexible discretization scheme. For instance in the fast grow-
ing field of Additive Manufacturing like Selective Laser
Melting, the production process is accompanied by evolving
surfaces, large deformations and phase changes. A promis-
ing discretization approach consists in meshfree methods
which include the Smoothed Particle Hydrodynamics (SPH)
introduced by Lucy [24] and Gingold and Monaghan [13],
the Reproducing Kernel Particle Method (Liu et al. [23]),
the Element Free Galerkin method (Belytschko et al. [2])
and the more recent non-ordinary state-based peridynamic
correspondence approach (see Silling et al. [31]) where
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each of them has their specific advantages and drawbacks.
Peridynamics is a non-local field theory based on integro-
differential equations which is idealized and widely used to
model discontinuities as occurring in fracture simulations
(see e.g. Silling [28] and Silling [29]) and in recent years
the area of applications rapidly increased. For a review on
Peridynamics the reader is referred to Javili et al. [17].

Besides the advantage of flexibility in discretization, the
efficiency and accuracy of the meshbased FEM is hard to
achieve. Some reasons are consistency, stability and the
imposition of boundary conditions which are challenging
aspects in the scope of meshfree methods. Rank deficiency
which result in spurious zero or low energy modes is
often addressed by corrections to gain stability (see e.g. the
works of Littlewood [22], Breitenfeld et al. [5], Silling [30],
Weißenfels andWriggers [35]). However, unphysical param-
eters have to be determined that can be case sensitive and
reduce the accuracy of the solution.

In the context of the peridynamic correspondence model,
approaches were developed to overcome the rank defi-
ciency without the use of such corrections in the last years.
Tupek and Radovitzky [33] proposed an extended corre-
spondence formulation based on Seth-Hill strains. A higher
order approximation using modified weight functions has
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been developed in Yaghoobi and Chorzepa [38]. Chowd-
hury et al. [11] adressed the low-energy modes by means
of separation of the so-called family which is the neighbor-
hood of a particle (see Fig. 1) into subdivisions. The use
of bond-level and bond-associated deformation gradients is
studied in Breitzman and Dayal [6], Chen [9], Gu et al. [14],
Madenci et al. [27] and Chen and Spencer [10]. A stress-
point method to overcome the rank deficiency was presented
in Luo and Sundararaghavan [25]. Hillman et al. [15] unified
the peridynamic deformation gradientwith the implicit gradi-
ent approximation, studied the convergence of the differential
operations and proposed a reproducing kernel peridynamic
method.

In a further approach the Peridynamic Petrov–Galerkin
(PPG) method was introduced, see Bode et al. [4]. It is
based on the principle of virtual displacements applied to the
peridynamic momentum equation and depicts good accu-
racy and suffers no oscillations when applied within large
deformations. In case of linear ansatz functions it reduces to
the commonly used correspondence formulation of Peridy-
namics. Hence it is applicable to any local material models.
In addition, the Petrov–Galerkin formulation enables to a
certain extent knowledge transfer from the well established
FEM.

In this paper the PPG method is extended to three dimen-
sions and more efficient interpolating Moving Least Square
shape functions are utilized. Furthermore, the regime of
incompressible material behavior is investigated. Like in
the FEM, pure displacement-based peridynamic approaches
exhibit locking phenomenas as e.g. a stiffer response or
divergence. Mixed displacement-pressure formulations are
known to overcome these problems and possess good con-
vergence rates (see Simo et al. [32]). Therefore, mixed PPG
formulations for weakly compressible and incompressible
material behavior are presented and the convergence and
robustness is compared to Finite Elements. The resulting
formulations can be viewed as a non-ordinary state-based
correspondence model incorporating local constraint equa-
tions by means of Lagrange multipliers. The structure of the
paper is as follows. The governing equations for nonlinear
elasticity are presented in Sect. 2. Section 3 presents the PPG
discretization and formulates the mixed formulations based
on Automatic Differentiation (AD). Numerical convergence
studies for compressible and incompressible benchmark test
as well as a numerical inf-sup test are considered in Sect. 4.
The paper closes with concluding remarks in Sect. 5.

2 Governing equations for finite elasticity

The peridynamic correspondence theory is based on the non-
local peridynamic momentum equation. However, it can be
applied to constitutive models from the local theory. There-

fore, the local kinematic description of the continuum can
be used (see e.g. Wriggers [36] and Holzapfel [16]). For an
elastic body � the current position of a material point x is
given by

x = X + u (1)

with the initial positionX and the displacement u. The defor-
mation gradient is defined as

F = ∂x
∂X

= Grad x with J = det F (2)

where the Jacobian J describes the volumetric part. We
also define the right Cauchy-Green tensor C by

C = FT · F (3)

and its isochoric part as

Ciso = J− 2
3C. (4)

The body � is subject to the momentum equation at each
particle X. It states in the non-local peridynamic form

∫
H

(
t − t′

)
dH + ρ0b = 0 (5)

as an integral over momentum transfers with neighboring
material points. Herein, t and t′ are called the pairwise force
densities. While t stands for the force acting on X exerted
by a neighboring material point X′ inside the family H (see
Fig. 1), the pairwise part t′ arises from the collective defor-
mation of family H ′ of X′ and is considered by means of
Newton’s third law. ρ0b is a body force acting on X. The
local counterpart is defined with respect to the initial config-
uration as

Div P + ρ0b = 0 (6)

with the first Piola–Kirchhoff stress tensor P. A correspon-
dence formulation t = t (P) links the first Piola–Kirchhoff
stress with a state of pairwise force densities in the dis-
cretized form (see for instance Silling et al. [31], Madenci
and Oterkus [26] and Bode et al. [4]). By applying the prin-
ciple of virtual displacements on equations (5) and (6) the
peridynamic virtual strain energy yields

∫
H

(
t − t′

)
dH · δu + ρ0b · δu = 0 (7)

and the local counterpart excluding surface forces

− P : δF + ρ0b · δu = 0. (8)
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Using the correspondence formulation, the constitutive
laws can be based on the local theory for elastic finite defor-
mations. In case of incompressible material behavior the
Neo-Hookean strain energy function

� i = μ

2

(
tr

(
Ciso

)
− 3

)
(9)

is used and in case of compressible material behavior
extended to

� = μ

2

(
tr

(
Ciso

)
− 3

)
+ K

4
(J − 1 − 2 ln J ) . (10)

The bulk modulus K and the shear modulus μ can be cal-
culated from theYoung’smodulus E and the Poisson’s ratio ν

or lame constants λ andμ. The derivation of the strain energy
function with respect to the deformation gradient yields the
first Piola–Kirchhoff stress

P = ∂�

∂F
. (11)

3 Formulation of the peridynamic
Petrov–Galerkin method

The PPGmethod is based on a subdivision of the body� into
a finite number of discrete particles. Considering collocation,
these particles serve both as material points and nodes (see
Fig. 1). The connectivity between particles is established by
so-called families which define the surrounding neighbor-
hood of each particle. A particle k interacts only with the
neighbors inside its family Hk . The local linear momentum
preservation is ensured if these interactions are always pair-
wise, i.e. each particle j inside family Hk has to have particle
k in its own family H j . Such a pairwisity is usually fulfilled
by having spherical families with a radius of the so-called
horizon δ which is constant inside body �. However, the
PPG method is not restrictive to spherical family shapes. In
this work, for irregular particle distributions the families are
made up of the nearest N = 20 particles (for three dimen-
sions). To ensure pairwisity, all pairwise particles which are
not already inside a family are added afterwards. In case of
uniform particle patterns, a horizon δ of 1.51 times the par-
ticle spacing is used.

The non-local kinematics of a family Hk consists of the
bonds	Xk j = X j −Xk , i.e. the distance vector from particle
k to its neighbor j . Analogously, the deformed bonds	xk j =
x j −xk and the displacement differences	uk j = u j −uk =
	xk j − 	Xk j are defined. For enforcing local constitutive
laws, the non-local kinematics have to be transformed to a
local defined measure like the deformation gradient F. This
transformation is performedby the following approximations
for the actual and virtual deformation gradient:

Fig. 1 The connectivity between particles with their representative vol-
ume V is established by the family H and the bonds	X. Internal forces
acting on a particle are considered in terms of the pairwise force densi-
ties t

Fk j = 1 +
Nk∑
i=0

ui ⊗ ∂Nkji
u

∂X
and

δFk =
Nk∑
j=0

	δuk j ⊗ ∂Nkkj
δu

∂X
(12)

where Fkj stands for the deformation gradient at the posi-
tion of particle j with respect to family Hk . As the virtual
deformation gradient is evaluated only at the master parti-
cle k a single superscript is used. The i-th ansatz function
of family Hk at the position of particle j is written as Nkji ,
where the subscript u and δu stand for the trial and test shape
function, respectively. With this ansatz, the aforementioned
correspondence formulation can be derived. It relates the first
Piola–Kirchhoff stress tensorPk j froma localmaterialmodel
to the non-local pairwise force densities tk j . This relation is
based on the equivalence of the virtual work of Eq. (7) and
(8) and states

tk j = − 1

V k
Pk j · ∂N j jk

δu

∂X
. (13)

Inserting the pairwise force density relation into the
peridynamic momentum equation and integrating over the
particle volume V k yields the discretized form in the PPG
method at particle level

Nk∑
j=0

(
V jPk j · ∂N j jk

δu

∂X
− V kP jk · ∂Nkkj

δu

∂X

)
= ρk

0b
k
V k . (14)
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3.1 PPG shape functions

The choice of shape functions for test and trial functions
is a crucial point in the PPG method. It can decide over
rank deficiency, stability, the accurate imposition of Dirichlet
and Neumann boundaries and the convergence rate. In Bode
et al. [4] it was shown that in case of a linear Weight Least
Square (WLS) functions, the PPGmethod reduces to the non-
ordinary state based peridynamicmethod for correspondence
materials.

The key features for convergence to an accurate solution
consists of consistency, i.e. the property to exactly reproduce
a polynomial space (see Krongauz and Belytschko [20] and
Belytschko et al. [3]). Further necessary requirements on dis-
cretization schemes consist in the absence of rank deficiency
and an exact imposition of boundary conditions. While at
least linear consistency is fulfilled by most meshfree shape
functions, the second and third aspects are more challeng-
ing for meshfree methods. Rank deficiency and the resulting
low-energy modes are oftentimes addressed by stabilization
techniqueswhich usually include a tuning parameter and lead
to an artificial stiffness. In general the PPG method does not
need a stabilization, provided that the trial function ansatz is
not linear which would lead to a constant deformation gradi-
ent inside a family. This is the case for many shape functions
as e.g. second order WLS functions, Moving Least Square
(MLS) functions, Local Maximum Entropy (LME) approx-
imants (see Arroyo and Ortiz [1]).

Regarding the exact imposition of boundary conditions,
one has to differentiate between Dirichlet and Neumann
boundaries. The latter one can be imposed accurately by
fulfilling the integration constraint (see Bode et al. [4] and
Weißenfels [34]). The peridynamic form states

Nk∑
j=0

V k ∂Nkkj
δu

∂X
− V j ∂N

j jk
δu

∂X
= Nk Ak =

{
0 on �

AkNk on ∂�
,

(15)

where Ak is the surface of particle k. This value is only
non zero, if the particle is located at the surface of the body�.
The vector Nk is the corresponding unit normal vector at the
boundary node. Dirichlet boundaries can be imposed accu-
rately by using the Kronecker-δ property of the test functions
(see also Bode et al. [4]). In the following, an interpolating
MLS approach based on differences is proposed.

WLS and MLS are fitting techniques for arbitrary point
clouds (see Lancaster and Salkauskas [21]). Within these
techniques, a field is approximated by a linear combination
of shape functions, like for instance monomials. The coef-
ficients are determined in such a way that the squared error
at the data points is minimized. In case of WLS the errors
are weighted statically and in case of MLS dependent on the

evaluation point. For the evaluation at particle j inside family
Hk this is performed via the minimization of the functional

Ekj :=
Nk∑
i=0

ω j i
(
εki

)2
V i (16)

where the approximation errors εki = 	ûk
(
	Xk j

) − 	uki ,
volume weights V i and distance weights ω j i were intro-
duced.As in the PPGmethod shape functions are only used to
approximate derivatives, the fitting can be done with respect
to differences which leads to an enforcement of the interpola-
tion at the reference particle. In aMLS sense, this perspective
X j can move with the according weights ω j i which results
in the ansatz monomials of first order

p j i =
[
	X ji ,	Y ji ,	Z ji

]T
. (17)

The distance weights ω j i regulate the influence of the neigh-
boring particles. A localized fitting can be introduced by a
weighting function that decreases with increasing distance.
The weights can be set to

ω
j i
p =

{
1

(	X j i ·	X j i)
p ∀ i �= j

0 ∀ i = j
(18)

with p = 2, or in case of regular meshes even more localized
with p = 5. From Eq. (16), applied to the displacement
difference field in family Hk , follows the approximation

	uk j =
Nk∑
i=0

[
ω j ip j i · Mk j−1 · p j j V i

]
	uki

=
Nk∑
i=0

Nkji	uki (19)

where Nkji is the i-th ansatz function of family Hk evaluated
at particle j . The mass matrix, which is also called shape
tensor in Peridynamics or correction matrix in SPH, ensures
consistency up to the order of completeness of the ansatz
monomials. It depends on the position inside the family and
is given by

Mk j =
Nk∑
i=0

ω j i p j i ⊗ p j i V i . (20)

Utilizing zeroth order consistency, to the gradient of the dis-
placement difference approximation (19) yields the standard
approach for the displacement gradient with respect to the
reference configuration
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Gradk j u =
Nk∑
i=0

	uki ⊗ ∂Nkji

∂X
=

Nk∑
i=0

ui ⊗ ∂Nkji

∂X
. (21)

The gradient of the shape functions ∂Nkji

∂X at data points
follows from (19) and the application of the zeroth order
consistency condition

∂Nkji

∂X
=

{
ω j i V ip j i · Mk j−1 · ∂p j j

∂X ∀ i �= j

−∑Nk

l=0,l �= j
∂Nkjl

∂X ∀ i = j
. (22)

3.2 Mixed PPG formulations

By integrating the peridynamic virtual strain energy (7) over
the body �, a general weak form can be formulated:

δU =
∫

�

[∫
H

(
t − t′

)
dH − ρ0b

]
· δu d�. (23)

With this an implicit quasi-static framework can be
derived from the discretized form by separating the body
� into a set of n p particles with the corresponding volume
of V k . Then, the approximate weak form yields

δUh =
n p

A
k=1

V k
[
δWk − ρk

0b
k · δuk

]
. (24)

The discretized virtual strain energy δWk is based on the
concept of pairwisity exploiting the correspondence formu-
lation of Eq. (13)

δWk =
Nk∑
j=1

V j
(
tk j − t jk

)
· δuk = −

Nk∑
j=1

V j tk j · 	δuk j

=
Nk∑
j=1

V j

(
1

V k
Pk j · ∂N j jk

δu

∂X

)
· 	δuk j . (25)

Utilizing the extended strain energy function (10) yields a
displacement based PPG formulation. In case of using MLS
trial and test functions of first order, this formulation will
be termed “PPG Unl”, since the approach for the actual dis-
placements u is nonlinear (nl).

Next, a mixed displacement-pressure-dilation formula-
tion motivated by the Q1P0/H1P0 finite elements (see Simo
et al. [32]) is presented. It is based on an additive split of
the strain energy into an isochoric and volumetric part which
leads to an additive split of the pairwise force densities

tk j = tk jiso + tk jvol . (26)

The isochoric part is handled analogously to the pure
displacement based formulation using the isochoric Neo-

Hookean strain energy function of Eq. (9). The volumetric
part is now derived from the Hu-Washizu potential

Uh vol =
∫

�

[
p (J − �) + K

2
(� − 1)2

]
d�. (27)

By applying particle discretization the discrete form states

Uh vol =
n p

A
k=1

V k
[
pk

(
J k − �k

)
+ K

2

(
�k − 1

)2]
(28)

where the pressure pk and the dilation �k are independent
variables of particle k. The resulting formulation will further
be denoted as “PPGUnlP0”. In case of incompressible mate-
rial behavior, i.e. ν = 0.5, the dilation �k = 1 which yields
the “PPG IUnlP0” formulation. Both formulations satisfy the
conservation of linear momentum as the volumetric residual
results in pairwise force densities tk jvol . A proof is provided
in “Appendix A”, which also shows the additive split of the
pairwise force densities into

tk jiso = − 1

V k
Pk j
iso · ∂N j jk

δu

∂X
and

tk jvol = − 1

V k
P j

vol · ∂N j jk

∂X
. (29)

Table 1 summarizes the presented formulations and abbrevi-
ations.

3.3 Residual and tangent

The weak form (24) is minimized by means of the Newton-
Raphson method. Therefore, the global residual vector and
the tangent matrix can be either computed numerically (see
e.g. Brothers et al. [7]) or by a consistent linearization (see
Bode et al. [4]). In this work, the residual and tangent matrix
are assembled family-wise where the linearization is per-
formed with the symbolic Automatic Differentiation (AD)
tool AceGen, see Korelc and Wriggers [19]. Hence, for the
PPGUnl formulation the residual and tangent matrix follows

RHk = ∂δUk
h

∂δuHk and KHk = ∂RHk

∂uHk . (30)

Note, that the first derivation of the weak form leads back
to the residual of Eq. (14). In addition to the family-wise
residual and stiffness matrix (30), the part due to volumetric
forces for the mixed PPG UnlP0 and PPG IUnlP0 formula-
tions can again be derived with AD to

RHk

vol = ∂Uk
h vol

∂pk
and KHk

vol = ∂RHk

vol

∂pk
with
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Table 1 Overview of
abbreviations and involved
equations of the presented PPG
formulations

Abbreviation Involved equations

Formulation Unl: Displacement based;
Nonlinear MLS1 approach
for both test- and trial
functions

(10), (11), (12), (24), (25),
(30)

UnlP0: Mixed displacement-
dilation-pressure approach;
Constant pressure and
dilation

(9), (11), (12), (24), (25),
(30), (28), (31)

IUnlP0: UnlP0 with � = 1 and
ν = 0.5

(9), (11), (12), (24), (25),
(30), (28), (31)

Discretization Regular, distorted (−d)

Shape function derivatives MLS1: First order difference
based MLS

(22)

Weight function ω2 (regular and distorted), ω5
(regular)

(18)

pk =
[
uHk T

, pk,�k
]T

. (31)

Therefore, the family-wise stiffness matrix for the PPG
UnlP0 and PPG IUnlP0 approach yields

KHk

PPG Unl P0 =
⎛
⎝Kuu Kup 0
Kpu 0 Kp�

0 K�p K��

⎞
⎠ and

KHk

PPG IUnl P0 =
(
Kuu Kup

Kpu 0

)
. (32)

In the first case on the left of Eq. (32), the pressure and the
dilation can be eliminated at family-level by means of static
condensation which leads to a higher efficiency and a better
conditioning.

4 Numerical examples

In this section, the new formulations are tested by means of
several examples. First, the locking behavior is investigated.
Second, the convergence is compared to FEM solutions for
regular and irregular particle distributions. Third, the robust-
ness is demonstrated in a torsion test and finally, a numerical
inf-sup test is performed.

4.1 Punch problem

The first example investigates a punch into a block of
solid material as shown in Fig. 2 (cf. Wriggers [37]). The
block has the dimensions 0.1m × 0.1m × 0.05m and a
Young’s modulus of E = 4.8293 N

m2 . The locking behav-
ior is investigated for four different Poisson’s ratios of ν =
{0.4, 0.499, 0.49999, 0.5}. A load of q = 9 N

m2 is applied

in negative z-direction on an additional layer of particles
(red). These particles are fixed in x- and y-directions (see also
Fig. 2). At the bottom an additional layer of wall particles
(purple) is used tomodel awall where the z-direction is fixed.
Free moving particles are colored green. When applying the
load, the block undergoes large deformations. In Fig. 2 the
final configuration as well as a cross section is depicted for
the PPG IUnlP0 formulation with a discretization of 24948
particles. The displacement in z-direction is colored, see leg-
end in Fig. 2d.

The convergence of the nodal displacement in z-direction
in the middle of the block at the upper surface is analyzed.
Figure 3 depicts the convergence behavior for the differ-
ent formulations using MLS1 with ω5 as both test and trial
functions, see Table 1. The displacement based PPGUnl for-
mulation is only pictured for a Poisson’s ratio of ν = 0.4 as
it fails to converge or does almost not deform due to lock-
ing in the incompressible regime. However, the PPG UnlP0
formulation as well as the incompressible PPG IUnlP0 for-
mulation are free of locking and converge at about the same
rate as those of FEM H1P0.

4.2 Cook’s membrane problem

The second example is Cook’s membrane problem. As
depicted in Fig. 4, a tapered cantilever beam is clamped on
the left (fixed purple particles) and loaded at the right (red
particles) in a single step with a load of q = 4 N

m2 in pos-
itive z-direction. The block is modeled as a Neo-Hookean
solid with the Lame constants μ = 40 N

m2 and λ = 100 N
m2 .

The final configuration in case of the PPGUnlP0 formulation
with a regular discretization using 95, 904 particles is shown
in Fig. 4 where the displacement in z-direction is colored.

In a convergence study the PPG UnlP0 formulation com-
pares regular meshes, usingω2 andω5 distance weights, with
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(a) Initial configuration (b) Final configuration (c) Cross section (d) Legend

Fig. 2 On the left: Geometry and boundary conditions of the punch
problem. Dirichlet boundary conditions are prescribed for purple par-
ticles and external forces are applied to the red particles. On the right:

Exemplary deformed configuration and cross section for N = 9 for the
PPG IUnlP0 formulation. The vertical displacement in meter is colored

(a) (b)

Fig. 3 Convergence study: The minimal vertical displacement is plotted over the number of nodes. Different approaches of the PPG method are
compared to the mixed H1P0 Finite Element for various Poisson’s ratios

Fig. 4 On the left: Geometry
and boundary conditions of the
three dimensional Cook’s
membrane problem consisting
of free moving (green), fixed
(purple) and force applied (red)
particles. On the right: Vertical
displacement field on the
deformed body in case of a
regular discretization into
72 × 72 × 18 free moving
particles. (Color figure online)

Initial configuration Final configuration Legend(a) (b) (c)
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Fig. 5 Deformed configuration
of the Cook’s membrane for the
finest irregular and regular
discretization using n p particles.
The contours of the von Mises
stress in Newton per square
meter are depicted by the
particle colors

np = 101726 np = 95904 Legend(a) (b) (c)

Fig. 6 Convergence study: The vertical displacement at the upper right
front edge of Cook’s membrane is plotted over the number of nodes.
Different discretizations and weight functions in the PPG method are
compared to the mixed H1P0 Finite Elements

an irregular particle distribution (PPGUnlP0-d) using the ω2

weight function. The finest irregular and regular particle dis-
tribution are depicted inFig. 5 showing thevonMises stress in
the final configuration. The stresses are highly concentrated
at the weak singularity at the upper left edge and exhibit a
smooth transition over the whole beam.

Figure 6 shows the displacement of the right upper front
edge over the number of nodes. The convergence rate of the
PPG formulations is comparable to the H1P0 Finite Element
while it converges from the opposite side. In case of strongly
localized ω5 distance the converged displacement matches
the one of FEM, for more smoothing ω2 weights a slight
discrepance is observed.

4.3 Torsion problem

The third example demonstrates the robustness of the mixed
PPG UnlP0 in a torsion test given in Kadapa et al. [18]. The

beamof dimensions 0.001m×0.001m×0.005m is clamped
at the top and bottom and rotated at the top end (see Fig. 7).
Asmaterial parameters a bulkmodulus of K = 5·108 N

m2 and

a shear modulus of μ = 1.61148 · 108 N
m2 are used. In Fig. 7

the von Mises stress is depicted for a rotation angle of 360
degrees both for the PPG UnlP0 and FEM H1P0 solutions.
The stress distribution looks very similar and has a minimum
in the center and maximal values in the middle of each side.

Via adaptive load stepping, the twisting angle is increased
until the convergence fails for a further increment of at least
one degree. The total angle as well as the maximal angle that
can be applied in a single load step are shown in Table 2
for a discretization into 16 × 16 × 5 · 16 particles and ele-
ments, respectively. Both measures show the superiority of
the mixed formulations over the pure displacement based
approaches. While the FEM H1 and PPG Unl formulations
need small load steps which soon fall below one degree, the
FEM H1P0 and especially the PPG UnlP0 approaches can
deal with very large load steps. The peridynamic approach is
even more robust and effective for large deformations com-
pared to standard finite element methods.

4.4 Numerical inf-sup test

In mixed FE methods, the inf-sup or Ladyzhenskaya-
Babuška-Brezzi condition ensures together with the ellip-
ticity condition the existence, uniqueness and stability of the
regarding discretization. For nearly incompressible material
behavior in linear elasticity, the inf-sup condition (see Fortin
and Brezzi [12]) states

inf
ph∈Ph

sup
uh∈Uh

∫
�
ph Div uh d�

||ph ||L2 ||uh ||H1
≥ β > 0 , (33)
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(a) Initial configuration (b)PPG UnlP0 (c) FEM H1P0 (d)PPG UnlP0 (e) FEM H1P0 (f) Legend

Fig. 7 On the left: Geometry of the torsion problem where particles
underlying displacement boundary conditions are colored purple and
free moving particles green. On the right: Exemplary configuration for

a twisting angle of 360 degrees with the mixed PPG UnlP0 and FEM
H1P0 formulations. The von Mises stress in Newton per square meter
is colored

Table 2 Robustness study: failure angle andmaximal converging angle
in a single load step in degrees for displacement based and mixed PPG
and FE approaches

FEM H1 FEM H1P0 PPG Unl PPG UnlP0

Total failure
angle

9 739 12 1597

Maximal
Twisting
angle in one
step

9 42 12 65

where Ph and Uh are finite dimensional spaces of trial
pressure and displacement fields, respectively. Due to the
complexity of meshless shape functions, an analytical proof
whether the condition is satisfied is difficult to state. How-
ever, Chapelle and Bathe [8] proposed a numerical test which
can give a prediction for the satisfaction. Therefore, a bloc
of material with the applied essential boundaries as shown in
Fig. 9a is discretized by a series of regular and distorted par-
ticle distributions consisting of N × N particles or elements
with N = {2, 4, 8, 16, 32} (see Fig. 9b, c).

The limit β of the inf-sup condition of Eq. (33) can be
determined from the following generalized eigenvalue prob-
lem:

Th · Uh = λSh · Uh , (34)

where Uh is the global vector of nodal displacements. The
matrix Sh results from the H1 norm of the discrete displace-
ment field

||uh ||2H1 = Uh · Sh · Uh (35)

and Th corresponds to the discrete pressure projection

||ph ||2L2 = Uh · Th · Uh . (36)

Considering the range of small strains and using static con-
densation, it states

Th =
n p

A
k=1

KupK
−1
�p

K��

K
K−T

�p · KT
up. (37)

The inf-sup value of a particular resolution computes to the
smallest non-zero eigenvalue of the generalized eigenvalue
problem defined in Eq. (34):

β̃ = √
λk . (38)

where k − 1 is the number of zero-eigenvalues. The number
of spurious pressure modes can be determined from

kpm = k − (
nu − n p + 1

)
(39)

with the number of global displacement and pressure degrees
of freedom nu and n p. Figure 8 depicts the inf-sup values of
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Fig. 8 Inf-sup values of the model problem of Fig. 9, where the loga-
rithm of the inf-sup value is plotted over the logarithm of the inverse of
the number of particles in each dimension for regular and distorted (-d)
particle and node distributions, respectively. While the Q1P0 element
exhibits an inf-sup value converging towards zero, the inf-sup value of
the PPGUnlP0 formulation is bounded from below by a non-zero value

the model problem of Fig. 9.Whereas the Q1P0 element vio-
lates the inf-sup condition, the UnlP0 formulation passes the
numerical inf-sup test as the inf-sup value is bounded from
below and kpm = 0 for both uniform and irregular particle
distributions. In case of the distorted particle distribution, the
same neighborhood as in the according regular distribution
is choosen. The satisfaction of the numerical inf-sup test is
in agreement with the presented examples where no locking
phenomenas in the range of nearly incompressible material
behavior were observed.

5 Summary

In this work, the novel Peridynamic Petrov–Galerkin method
is extended to three dimensional problems and a special
kind of interpolating Moving Least Square approximation
of derivatives based on differences is proposed. The locking

behavior of a pure displacement based formulation is investi-
gated and by transferring knowledge from the Finite Element
technology mixed displacement-dilation-pressure formula-
tions are developed. An implicit quasi-static framework
based on efficient Automatic Differentiation is presented.
The numerical examples show that the proposed approach
achieves good performance concerning robustness and con-
vergence while maintaining the advantages of meshfree
particle methods.
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A Proof of momentum preservation

The preservation of linear momentum is ensured by the con-
cept of pairwise forces. As the isochoric part of the strain
energy is handled in the standard pure displacement based
way, the momentum preservation is automatically fulfilled
and it remains to show that the volumetric part of the resid-
ual can also be written in terms of pairwise force densities.
Thus, starting from the local volumetric potential

Uk
vol = V k

[
pk

(
J k − �k

)
+ K

2

(
�k − 1

)2]
, (40)

Plane strain

Unit thickness

N = 8(a) Model problem (b) Regular, (c) Distorted, N = 8

Fig. 9 On the left: Model problem for numerical inf-sup test. On the
right: exemplary discretizations for regular and irregular particle distri-
butions. TheDirichlet boundary conditions are applied by and additional

layer of wall particles. The displacements of blue colored particles are
fixed horizontally and the purple particle is fixed in both horizontal and
vertical direction
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the residual contribution to particle j can be computed as the
derivative with respect to the particles displacement

∂Uk
vol

∂u j
= V k pk

∂ J k

∂Fk
: ∂Fk

∂u j
(41)

where the chain rule is used. Inserting the deformation gra-
dient approach (12) and switching to index notation yields

∂Uk
vol

∂u j
a

= V k pk J k Fk
bc

−T
Nk∑
i=0

∂uib
∂u j

a

∂Nkki

∂Xc
. (42)

The resulting pull-back of the volumetric Cauchy-stress
can be exchanged by the first Piola–Kirchhoff stress tensor.

∂Uk
vol

∂u j
= V k pk J kFk−T · ∂Nkkj

∂X
= V kPk

vol · ∂Nkkj

∂X
(43)

Analogous to the contribution to the nodal residual of par-
ticle j , the corresponding contribution to particle k follows

∂Uk
vol

∂uk
= V kPk

vol · ∂Nkkk

∂X
= −

Nk∑
j=1

V kPk
vol · ∂Nkkj

∂X
(44)

where the zeroth order consistency conditions is utilized. The
internal force acting on particle k can now be assembled from
the potentials of its neighboring particles and rearranged to

Rk
vol =

Nk∑
j=1

V jP j
vol · ∂N j jk

∂X
− V kPk

vol · ∂Nkkj

∂X

= −V k
Nk∑
j=1

[
tk jvol − t jkvol

]
V j (45)

where the volumetric pairwise force density states

tk jvol = − 1

V k
P j

vol · ∂N j jk

∂X
. (46)

As the inner forces acting on a particle can be expressed
with pairwise force densities, the linear momentum preser-
vation holds if pairwisity is fulfilled.
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