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Abstract
Ill-conditioning of the system matrix is a well-known complication in immersed finite element methods and trimmed isogeo-
metric analysis. Elementswith small intersectionswith the physical domain yield problematic eigenvalues in the systemmatrix,
which generally degrades efficiency and robustness of iterative solvers. In this contribution we investigate the spectral prop-
erties of immersed finite element systems treated by Schwarz-type methods, to establish the suitability of these as smoothers
in a multigrid method. Based on this investigation we develop a geometric multigrid preconditioner for immersed finite
element methods, which provides mesh-independent and cut-element-independent convergence rates. This preconditioning
technique is applicable to higher-order discretizations, and enables solving large-scale immersed systems at a computational
cost that scales linearly with the number of degrees of freedom. The performance of the preconditioner is demonstrated for
conventional Lagrange basis functions and for isogeometric discretizations with both uniform B-splines and locally refined
approximations based on truncated hierarchical B-splines.

Keywords Immersed finite element method · Fictitious domain method · Iterative solver · Preconditioner · Multigrid

1 Introduction

Immersed methods are useful tools to avoid laborious and
computationally expensive procedures for the generation of
body-fitted finite element discretizations or analysis-suitable
NURBS geometries in isogeometric analysis, specifically for
problems on complex, moving, or implicitly defined geome-
tries. Immersed finite element techniques, such as the finite
cell method [1–3], CutFEM [4,5], and immersogeometric
analysis [6,7], have been successfully applied to a broad
range of problems. Noteworthy applications include iso-
geometric analysis on trimmed CAD objects, e.g., [8–13],
fluid–structure interaction with large displacements, e.g.,
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[14–21], scan based analysis [22–27] and topology optimiza-
tion, e.g., [28–34].

An essential aspect of finite element methods and iso-
geometric analysis is the computation of the solution to a
system of equations. This is specifically challenging for sys-
tems derived from immersed methods, since such methods
generally yield severely ill-conditioned systemmatrices [35].
For this reason, many researchers resort to direct solvers,
e.g., [2,3,9–12,24], the efficiency of which is not affected
by the conditioning of the system matrix. Nevertheless,
the computational cost of direct solvers, both in terms of
memory and floating point operations, scales poorly with
the size of the system. With iterative solvers, the scaling
between the computational cost and the size of the sys-
tem is generally better, making these more suitable for
large systems of equations [36]. However, the efficiency
and reliability of iterative solution methods depends on the
conditioning of the system. Without dedicated treatments,
the severe ill-conditioning of linear systems derived from
immersed finite elementmethods generally forestalls conver-
gence of iterative solution procedures. Multiple resolutions
for these conditioning problems have been proposed, the
most prominent of which are the ghost penalty, e.g., [4,5,37],
constraining, extending, or aggregation of basis functions,
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e.g., [13,38–46], and preconditioning, which is discussed in
detail below.

Several dedicated preconditioners have been developed
for immersed finite element methods. It is demonstrated in
[47] that a diagonal preconditioner in combination with the
constraining of very small basis functions results in an effec-
tive treatment for systems with linear bases. With certain
restrictions to the cut-element-geometry, [48] derives that a
scalable preconditioner for linear bases is obtained by com-
bining diagonal scaling of basis functions on cut elements
with standard multigrid techniques for the remaining basis
functions. In [49] the scaling of a Balancing Domain Decom-
position by Constraints (BDDC) is tailored to cut elements,
and this is demonstrated to be effective with linear basis
functions. An algebraic preconditioning technique is pre-
sented in [35], which results in an effective treatment for
smooth function spaces. References [50] and [51] establish
that additive Schwarz preconditioners can effectively resolve
the conditioning problems of immersed finite element meth-
ods with higher-order discretizations, for both isogeometric
and hp-finite element function spaces and for both symmetric
positive definite (SPD) and non-SPDproblems. Furthermore,
the numerical investigation in [50] conveys that the condi-
tioning of immersed systems treated by an additive Schwarz
preconditioner is very similar to that of mesh-fitting systems.
In particular, the condition number of an additive Schwarz
preconditioned immersed system exhibits the same mesh-
size dependence as mesh-fitting approaches [52,53], which
opens the doors to the application of established concepts of
multigrid preconditioning. It should be mentioned that sim-
ilar conditioning problems as in immersed methods occur
in XFEM and GFEM. Dedicated preconditioners have been
developed for these problems as well, a survey of which can
be found in [50].

Multigridmethods effectively resolve themesh-size depen-
dence of the conditioning of linear systems and its effect on
the convergence of iterative solution methods. In particu-
lar, the use of overlapping Schwarz smoothers can lead to
multigrid methods with provably mesh-independent conver-
gence rates [54–56]. There exists a rich literature onmultigrid
techniques, and interested readers are directed to the ref-
erence works [57–60]. Multigrid methods have not been
studied extensively in the context of immersed finite ele-
ment methods, but detailed studies regarding closely related
aspects are available. In isogeometric analysis, multigrid
is an established concept, e.g., [61–68]. In regard of the
present manuscript [69–72] are particularly noteworthy, as
these all employ smoothers that are based on Schwarz-type
techniques. Another interesting contribution is [73], which
presents a multigrid technique for locally refined function
spaces with truncated hierarchical B-splines, that are also
employed in this manuscript. Further noteworthy references
aremultigrid preconditioners forXFEM[74,75], unfitted dis-

continuous Galerkin (UDG) and CutFEMwith ghost penalty
stabilization [76], unfitted interface problems [77], and an
algebraic multigrid (AMG) preconditioner that is applied to
immersed systemswhich have been treated by an aggregation
procedure [78].

Themain objective of this contribution is to develop a geo-
metric multigrid preconditioning technique that is applicable
to higher-order immersed finite element methods with con-
ventional, isogeometric, and locally refined basis functions.
This preconditioner enables iterative solutionmethods with a
convergence rate that is unaffected by either the cut elements
or the grid size, such that the solution is obtained at a compu-
tational cost that scales linearly with the number of degrees
of freedom (DOFs). The intrinsic dependence on mesh regu-
larity in geometricmultigrid approaches is non-restrictive for
immersed finite elementmethods, as thesemethods generally
employ structured grids. Based on the observations regarding
the mesh-size dependence of the additive Schwarz precondi-
tioner developed in [50], this contribution further investigates
the spectral properties of immersed systems treated with
Schwarz-type preconditioners, in order to establish the suit-
ability of these as smoothers in a multigrid method. This
results in a preconditioning technique with the desired prop-
erties, the performance of which is demonstrated on a range
of test cases with multi-million DOFs. This numerical inves-
tigation includes the discretization order, the application to
locally refined bases with truncated hierarchical B-splines,
and a detailed study of aspects that are specific for immersed
finite elements.

This contribution only considers SPD problems. Multi-
grid methods are an established concept in fluid mechanics
as well [60], however, and similar Schwarz-type meth-
ods have successfully been applied to flow problems with
both immersed finite element methods [50] and mesh-fitting
multigrid solvers [71], i.e., Vanka-smoothers [79]. Therefore,
it is anticipated that the presented preconditioning technique
extends matatis mutandis to non-SPD and mixed formula-
tions.

In Sect. 2 of this contribution the employed immersed
finite element method is presented, including the quadra-
ture on cut elements and the applied discretization spaces.
Section 3 investigates spectral properties of immersed finite
element methods and presents the developed geometric
multigrid preconditioner. In Sect. 4 this preconditioning tech-
nique is assessed on a range of test cases, and conclusions
are drawn in Sect. 5.

2 Immersed finite element formulation

We consider problems on a two-dimensional or three-
dimensional domain � ⊂ R

d (d ∈ {2, 3}), that is referred
to as the physical domain. The physical domain is encap-
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Fig. 1 The physical domain � defined by the level set function
ψ(x, y) = 0.5 + 0.1sin(5θ) − r(x, y) that is inspired by [80], with
θ = arctan2(y, x) and r(x, y)2 = x2 + y2. The physical domain is
encapsulated by the embedding domain (−1, 1)2 onwhich the grid with
grid size h = 1

8 is posed. Quadrature is performed by the integration
procedure that is outlined in [23]. This procedure recursively bisects cut

elements, until a maximum integration depth is reached. The bisected
elements are then triangulated, to obtain integration subcells. Standard
Gaussian integration points are applied on these subcells to evaluate
volumetric integrals (gray squares). Boundary integrals are computed
by Gaussian quadrature on the approximate boundary, formed by the
edges of the integration subcells (white circles)

sulated by a fictitious extension, to obtain an embedding
domain of simple shape, as illustrated in Fig. 1. Because
of the simple shape of the embedding domain, it is trivial
to generate a tensor product mesh. These structured meshes
render immersed finite elements ideally suitable for geomet-
ric multigrid approaches. The set of elements that intersects
the physical domain is referred to as the background grid,
and can serve as a substructure to construct different types of
basis functions. We denote this mesh by Th , where h refers
to the grid size, and the basis functions that are supported
on the physical domain span the approximation space Vh . A
non-trivial aspect of immersed finite element methods is the
integration over cut elements. Herein we employ the proce-
dure as outlined in [23], which is illustrated in Fig. 1.

The numerical examples in this contribution consider
problems in linear elasticity:

⎧
⎨

⎩

div (σ ) + f = 0 in �,

u = gD on �D,

σn = gN on �N ,

(1)

with Cauchy stress tensor σ = σ (u) = λdiv (u) I+ 2μ∇su,
Lamé parameters λ andμ,∇s denoting the symmetric gradi-
ent operator,n the exterior unit normal vector and�D∪�N =
∂� complementary parts of the boundary on which Dirichlet
and Neumann conditions are prescribed. The formulations

in this section are restricted to pure Dirichlet or Neumann
boundary conditions, but can easily be modified to mixed
boundary conditions with a prescribed normal displacement
and tangential traction orRobin-type conditions.Weconsider
approximations of (1) based on a symmetric and coercive
variational form:
{
Find uh ∈ Vh such that for all vh ∈ Vh :

ah (vh, uh) = bh (vh) ,
(2)

with the bilinear and linear operators defined as:

ah (vh, uh) =
∫

�

∇svh : σ (uh) dV

+
∫

�D

(
λβλ

h (vh · n)(uh · n) + 2μβ
μ
h vh · uh

)
dS,

bh (vh) =
∫

�

vh · f dV

+
∫

�D

(
λβλ

h (vh · n)(gD · n) + 2μβ
μ
h vh · gD

)
dS

+
∫

�N
vh · gN dS.

(3)

The weak formulation in (2) and (3) imposes the Dirich-
let conditions by the penalty method, which bypasses the
computation of local stabilization parameters. The analy-
sis of the conditioning of immersed finite elements in [35]
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Fig. 2 Illustration of an open, hierarchically refined, quadratic B-spline
basis. The local refinement level is denoted bym ≤ M , withM the num-
ber of local refinement levels. Active elements Km

i of levelm ∈ {0, 1, 2}
are indicated in gray, blue, and red, respectively. The set of all active
elements of levelm is denoted by T m

h , and the union of these sets forms
the hierarchically refined mesh Th = ∪m=M

m=0 T m
h . Refined elements, i.e.,

that have active elements at a finer level underneath, are shown blank

and inactive elements, i.e., that have an active element at a coarser level
above, are hatched. a Shows the active standard (non-truncated) hier-
archical B-spline basis functions. A basis function of level m is active
under the condition that: (i) it is supported on at least one active element
of level m, and (i i) it is not supported on inactive elements of level m,
i.e., the entire support is of local refinement level ≥ m. b Shows the
truncated basis, which is obtained by truncating the basis functions with
respect to active basis functions of finer levels. (Color figure online)

conveys that cut-element-specific conditioning problems are
not essentially affected by the type of weak enforcement of
the boundary conditions, provided that with a Nitsche-type
enforcement of Dirichlet conditions coercivity of the varia-
tional form is retained [81,82]. The parameters βλ

h and β
μ
h

are chosen inversely proportional to the grid size. This is rel-
evant in regard of multigrid techniques, since due to these
parameters the operators ah (·, ·) and bh (·) are mesh-size
dependent. The coarse problems in this contribution inherit
the parameters in the weak formulation from the finest grid,
see Remark 3.1 for details.

An advantageous property of immersed methods is that
different approximation spaces can relatively easily be
employed, by virtue of the regularity of the underlying mesh.
We herein consider uniform discretizations with both tradi-
tional Lagrange basis functions and B-splines [83], see e.g.,
[84] for a detailed introduction into B-spline based finite
element methods. In immersed finite element methods, it is
generally not known a priori which regions of the grid require
elevated approximation properties. Therefore it is important
that immersed grids facilitate local refinement strategies, to
provide sufficient accuracy in essential regions of the prob-
lem domain. For this reason [51] develops a preconditioning
strategy that is tailored to immersed hp-adaptive C0-bases,
and in this contribution we consider the preconditioning of
locally refined B-spline bases, by means of truncated hier-
archical B-splines (THB-splines) [85]. THB-splines are a
popular refinement strategy for B-splines in isogeometric
analysis, and fit naturally into the framework of immersed
methods. The construction of THB-splines is illustrated in

Fig. 2. THB-splines are posed on a hierarchy of meshes,
each of which has a certain number of active B-splines.
The truncated basis is then obtained by truncating active
B-splines with respect to the active B-splines on the finer
grids in which they are nested. We refer the reader to [85,86]
for details regarding the construction of THB-splines. Trun-
cating the basis functions reduces the computational cost,
because the truncated basis functions have smaller supports
than the standard (non-truncated) hierarchical basis func-
tions. This results in a sparser systemmatrix. In the context of
the multigrid preconditioner developed herein, THB-splines
have a particularly important advantage concerning the com-
putational cost. As will be elaborated in Sect. 3.4, the block
selection for the Schwarz-type smoother in the developed
preconditioner yields smaller blocks with THB-splines than
it would with a non-truncated basis, and results in a nearly
diagonal treatment of untrimmed basis functions. Further-
more, it is demonstrated in [73] that mesh-fitting systems
with truncated bases are generally better conditioned than
systems with non-truncated bases, and that multigrid meth-
ods with a diagonal smoother are effective for systems with
THB-splines.

3 Multigrid methods for immersed finite
element methods

This section presents the developed geometric multigrid pre-
conditioner for immersed finite elementmethods. Section 3.1
discusses the conditioning effects of both cut elements
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and the mesh size of the background grid. In Sect. 3.2
the employed preconditioning algorithm is introduced. Sec-
tion 3.3 considers the prolongation and restriction operators,
specifically in the context of locally refined grids, and
effective smoothers for immersed methods are discussed in
Sect. 3.4.

3.1 Conditioning aspects of immersed finite
element methods

Introducing the basis {φi }ni=1 for the approximation spaceVh ,
the variational formulation in (2) leads to the linear system:

Ax = b, (4)

with symmetric positive definite (SPD) matrixAwith Ai j =
ah

(
φi ,φ j

)
, solution vector x such that uh = ∑n

i=1 xiφi , and
right hand side vector b, with bi = bh

(
φi

)
. Immersed finite

element methods generally lead to systems of equations that
are fundamentally difficult to solve. Without dedicated treat-
ment of the cut-element-specific ill-conditioning of systems
derived from immersed finite element methods, in general
the convergence of iterative solvers is severely retarded
[35,50,51]. An important indicator of the feasibility of iter-
ative solution procedures for a linear system as in (4) is the
condition number, κ (A). For the symmetric positive definite
(SPD) systems considered in this contribution, the condition
number is equal to the quotient of the largest to the small-
est eigenvalue. It should be noted that the convergence of
iterative solution methods is not merely dependent on the
condition number, but rather depends on the entire spectrum
of the system matrix, i.e., on the distribution of the com-
plete set of eigenvalues. Systems with well-clustered spectra
generally lead to faster convergence than systemswith eigen-
values that are spread out. For a detailed discussion about
the aspects affecting the performance of iterative solvers, the
reader is directed to [52,87].

To elucidate the general characteristics of spectra emanat-
ing from immersed finite element methods, Fig. 3 displays
the Jacobi-preconditioned spectrum of an immersed approx-
imation of the Laplace operator on the star-shaped domain
from Fig. 1, as well as 4 characteristic eigenmodes. The
immersed approximation space is composed of quadratic
Lagrange basis functions on ameshwith h = 1

8 . This domain
and type of basis functions are used for all examples in this
section, but similar results can be obtained with B-spline
bases. Dirichlet boundary conditions are imposed by means
of a penalty method with parameter 2

h . Because symmetric
positive definite (SPD) systems only posses real and positive
eigenvalues, their spectra can be conveniently represented by
plotting the eigenvalues λi ∈ R

+ versus their index i ∈ N,
as in Fig. 3a. Figure 3b displays a very small eigenmode that
is only supported on a small cut element, which is exemplary

for eigenmodes that are common in immersed finite element
methods. As described in detail in [35], basis functions on
small cut elements can become almost linearly dependent,
which yields very small eigenvalues and is not repaired by
Jacobi preconditioning. It can be observed that this eigen-
mode is very similar to the largest eigenmode of the system,
plotted in Fig. 3c, as both eigenmodes consist of essentially
the same basis functions. However, while the almost linearly
dependent basis functions are subtracted from each other
such that these cancel out in Fig. 3b, the opposite happens
in Fig. 3c. Note that with the quadratic Lagrange basis, there
are 4 almost linearly dependent basis functions that are only
supported on the small cut elements, such that the largest
eigenvalue is bounded frombelowby approximately 4.Based
on an analysis of the typical small eigenmodes in immersed
finite element methods, an estimate of the condition number
of SPD systems for second-order PDEs is derived in [35]:

κ (A) = O
(
η−(2p+1−2/d)

)
, (5)

with p the polynomial degree of the approximation space, d
the number of dimensions and η the smallest volume fraction,
defined as the smallest relative intersectionof an elementwith
the physical domain:

η = min
Ki∈Th |Ki∩� 	=∅

|Ki ∩ �|
|Ki | . (6)

Since cut elements can be arbitrarily small, systems derived
from immersed finite element formulations can be arbitrar-
ily ill-conditioned. As a result, iterative solvers are generally
ineffective in case that no dedicated treatment for the cut-
element-induced conditioning problem is applied, see e.g.,
the introduction in Sect. 1. Figure 3d and e portray character-
istic eigenfunctions that are not exclusive to immersed finite
element methods. The smooth eigenmode in Fig. 3d is very
similar to the usual smallest eigenmode in mesh-fitting finite
elements, and is in close correspondence with the smallest
analytical eigenmode of the considered PDE. Figure 3e plots
the oscillatory eigenfunction with the highest frequency that
can be captured by the grid. This eigenmode is similar to the
usual largest eigenmode in mesh-fitting systems. The ratio
between the largest and smallest eigenvalue in mesh-fitting
systems, and with that the condition number, is therefore
mesh-size dependent. It can be shown that for second-order
PDEs it holds that [53]:

κ (A) = O
(
h−2

)
. (7)

This deteriorates the conditioning for very fine meshes,
which also retards the convergence of iterative solvers. In
particular, smooth eigenmodes as in Fig. 3d—which yield
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Fig. 3 Typical spectrum and characteristic eigenmodes of an immersed system that is preconditioned with Jacobi

small eigenvalues of O(h2) with Jacobi preconditioning—
converge slowly. For fixed point iteration methods a conver-
gence rate of 1 − O(h2) can be derived [59], and also plain
Krylov subspace methods generally require O

(
h−1

)
itera-

tions [52].
Multigrid methods are often applied to resolve the mesh-

dependence of the condition number according to (7) and
the corresponding slow convergence, and provide a condi-
tioning and convergence rate that is independent of the mesh

size. The reader is directed to [57–60] for reference works on
multigrid techniques. In [50] an additive Schwarz precondi-
tioner is presented that is tailored to immersed finite element
methods, and resolves the conditioning problems related to
cut elements. Furthermore, it is observed that the systems
treated with this preconditioner behave similarly to mesh-
fitting systems with respect to the grid size, both in terms of
the condition number and in terms of the number of iterations
with Krylov subspace methods. The computational cost of
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Fig. 4 A hierarchy of nested discretizations on which the problem in (2) can be solved

Schwarz-preconditioned iterative solvers scales better with
the size of the system than direct solvers, but is suboptimal in
the sense that it is not yet linear with the number of degrees of
freedom. In the following sections we therefore incorporate
aspects of this preconditioner in a multigrid framework, to
obtain a solution method that is robust to cut elements and
independent of the size of the system.

3.2 Multigrid V-cycle algorithm

This section introduces the elemental principles of multi-
grid techniques, and presents the V-cycle algorithm that is
employed in this contribution. We discuss the geometric
multigrid method in the context of the correction scheme
(CS), but the analyses, algorithms and results extend mutatis
mutandis to the full approximation scheme (FAS).

We consider an algebraic system of the form (4). Let x′
denote an approximation to the solution of (4) and let r denote
the corresponding residual according to:

r = b − Ax′. (8)

To obtain the solution to (4), the approximation x′ must be
corrected as x′ + x̄ with:

x̄ = A−1r. (9)

Multigrid methods are based on the notion that if A derives
from an elliptic operator, then A−1 can be approximated by
a combination of fixed point iterations and a coarse grid
correction. The fixed point iterations efficiently approximate
oscillatory components of the solution, as in Fig. 3e. Since
this reduces the oscillatory components of the error, these
are commonly referred to as smoothing [59]. The coarse grid
correction amends the approximation by the solution on a
coarser grid, which enhances the approximation of smooth
components of the solution, as in Fig. 3d. This again involves

the (approximate) inverse of a matrix, analogous to (9), but
corresponding to a coarser grid. This inverse can likewise
be approximated by smoothing operations and a coarse grid
correction on an even coarser grid, see Fig. 4. In multigrid
methods, the smoothing operations and coarse grid correc-
tion are therefore applied recursively, until a grid is reached
that is sufficiently coarse to enable direct inversion at a neg-
ligible computational expense. The result of the multigrid
cycle is denoted by x̃ and approximates the vector x̄ in (9).

The multigrid V-cycle that is considered in this contribu-
tion is outlined in Algorithm 1. The input parameters of the
algorithm are the number of (remaining) recursive multigrid
levels �, see Fig. 4, and the residual of the linear system r� at
the current level. It is emphasized that the number of multi-
grid levels follows a different convention than the number of
hierarchical refinement levels in locally refined discretiza-
tions. The coarsest multigrid level in the V-cycle is � = 1,
while the coarsest hierarchical refinement level is m = 0,
see Fig. 2. The algorithm initializes the vector x̃� in line 2,
and in line 4 conducts a pre-smoothing step,1 i.e., fixed point
iteration, with γ > 0 denoting a relaxation parameter for sta-
bility andM−1

� an approximate factorization or inverse ofA�,
e.g., Jacobi or Gauss–Seidel. Subsequently, smooth compo-
nents of the error—whichwere not effectively reduced by the
aforementioned smoothing operation—are treated by apply-
ing a coarse grid correction with coarser level � − 1 in lines
7–9. The recursive nature is implemented by applying the
V-cycle also to obtain an approximate solution to the coarse
grid correction problem. The direct solver in line 14 is only
applied at the coarsest level � = 1. Note that the residual
in the input of the algorithm should be interpreted as in (8)
only on the finest level, and is a restriction of a finer residual
in the recursive applications of the algorithm in line 8. To

1 Note that in this contribution we only apply a single pre-smoothing
and post-smoothing operation in each cycle, and do not consider the
possibility of multiple smoothing operations.

123



814 Computational Mechanics (2020) 65:807–838

enforce symmetry of the linear operator induced by the algo-
rithm, the post-smoothing operation in line 12 is performed
with the adjoint of M−1

� . This is relevant for Gauss–Seidel-
type smoothers as these are generally nonsymmetric, and is
realized by a reverse sweep. The approximate solution x̃� to
A−1

� r� is returned in line 16. The coarse grid correction is
treated in more detail in Sect. 3.3, and the smoothing opera-
tions are discussed in detail in Sect. 3.4.

Algorithm 1: V-cycle(�, r�)

1 if � > 1 then

2 x̃� = 0 # initialize approximation of A−1
� r�

3 # pre-smooth

4 x̃� = x̃� + γM−1
� r� # smooth

5 r� = r� − A�x̃� # update residual

6 # coarse grid correction
7 r�−1 = R�r� # restrict current residual to coarser grid
8 x̃�−1 = V-cycle(� − 1, r�−1) # compute correction
9 x̃� = x̃� + RT

� x̃�−1 # prolongate coarse grid correction
10 r� = r� − A�RT

� x̃�−1 # update residual

11 # post-smooth

12 x̃� = x̃� + γM−T
� r� # smooth

13 else if � == 1 then

14 x̃� = A−1
� r� # direct solve at coarsest level

15 end

16 return x̃�

Themultigrid V-cycle in Algorithm 1 can itself be applied
as a solver, by iteratively performing the cycle to reduce the
residual in every step, i.e., the approximation x′ is simply
updated by directly adding x̃. This is generally true for multi-
grid cycles, e.g., also the W-cycle or FMG-cycle [59]. We
consider the V-cycle, as this simple setup is already suit-
able to demonstrate the effectivity of the multigrid concept
in immersed FEM. Additionally, when the pre-smoothing
and post-smoothing operations are chosen such that these
are adjoint, the V-cycle algorithm yields a symmetric pos-
itive definite (SPD) linear operator. This has the advantage
that, instead of direct application of the V-cycle as a solver, it
can also be employed as a preconditioner in a conjugate gra-
dient (CG) algorithm. In the results presented in Sect. 4, this
multigrid-preconditioned CG-solver is applied. The advan-
tage of Krylov subspace solvers compared to multigrid as a
standalone solver is that the convergence of Krylov meth-
ods is not purely governed by the smallest eigenmode in the
system. Therefore, these are more robust to artifacts in the
spectrum resulting from e.g., geometrical complexities such
as the artificial coupling that is observed in Sect. 4.1 [88].

3.3 Restriction, prolongation, and coarse grid
correction

The restriction and prolongation operations to communicate
between different grid sizes, such as those in Fig. 4, are essen-
tial aspects of the coarse grid correction in lines 7–10 of
Algorithm 1. Under the usual assumption that the grid size is
doubled in the mesh coarsening, the grid lines of the coarser
level �−1 in Fig. 4b coincide with grid lines at the finer level
� in Fig. 4a. Therefore, the level � − 1 space is nested in the
level � space and the basis functions on level � − 1 can be
represented identically by linear combinations of the basis
functions on level �. Denoting by �� and ��−1 vectors of
basis functions on level � and level � − 1, respectively, there
exists a matrix of coefficients R� such that:

��−1 = R���. (10)

ThematrixR� defines the restrictionoperator. This restriction
operator is employed in line 7 to restrict the residual at level
� to the level � − 1 coarse mesh. In line 8 of Algorithm 1,
the solution to the level � − 1 problem is approximated by
recursive application of the V-cycle algorithm, except at the
coarsest level � = 1where a direct solution is carried out. The
(approximate) solution to the level �−1 problem constitutes
the coarse grid correction, which is prolongated and added
to x̃� at level � in line 9. Let us note, that by the nesting of the
approximation spaces at the different levels, the prolongation
from level �−1 to level � corresponds to injection. By virtue
of relation (10) between the basis functions, we have the
identities:

x̃T�−1��−1 = x̃T�−1 (R���) =
(
RT

� x̃�−1

)T
�� (11)

In termsof the coefficients, the prolongation thus corresponds
to the adjoint of the restriction operator. In line 10 the level
� residual is updated after the coarse grid correction.

Remark 3.1 The coarse grid correction in Algorithm 1 is per-
formed purely algebraically. Therefore, the coarse problem
inherits the weak formulation from the fine problem, without
adapting the mesh-dependent parameters in the operators in
(3). In essence, the finer level basis functions are replaced by
the coarser level basis functions, such that the system matrix
and residual at the coarser level can simply be obtained as
A�−1 = R�A�RT

� and r�−1 = R�r�. An alternative approach
is to adapt the operators in weak form (2) to the coarser
grid, as in e.g., [89,90]. The implementation of the algebraic
approach in Algorithm 1 is considerably simpler, however,
and has been observed to adequately resolve the smooth
eigenmodes in all considered cases. It should be noted that
the extension of this simple algebraic coarsening approach
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(a) Level � (b) Level � − 1 (c) Level � − 2

: T 0 : T 1 : T 2 : T 3

Fig. 5 Hierarchy of nested, non-uniform meshes with M = 3 levels
of local refinements. The different local refinement levels are indicated
by the colors illustrated at the bottom. Note that the gray elements in
a are of the same size as blue elements in b and the red elements in c,
and that the green elements of the highest local refinement level have
different sizes on the different grids. The grids contain, respectively,
100, 34, and 13 elements and the unrefined elements have a size of,

respectively, 1
4 ,

1
2 and 1 times the length of the domain. The coarser

grid of level � − 1 in b is obtained by applying Algorithm 2 to the finer
grid of level � in a. Note that elements of level m in b only intersect
elements of level m or lower in a. Recursively applying the algorithm
to the grid of level � − 1 results in the coarsest grid of level � − 2 in
c. Note that this coarsest mesh does not contain active unrefined gray
elements of refinement level m = 0. (Color figure online)

to other grid-size dependencies is not verified in this con-
tribution. Examples of other grid-size dependencies in the
weak formulation are the stabilization parameter in Nitsche’s
method, see [81,82] and for spectral effects specifically [91],
and the ghost penalty, see [4,37].

We have so far restricted ourselves to uniform meshes.
For hierarchically refined meshes, as illustrated in Fig. 5a,
the coarsening procedure in the multigrid method requires
reconsideration. To enable an adequate approximation of
functions that are smoothwith respect to the localmeshwidth
on level �, we apply a type of hierarchical derefinement to
obtain a nested coarse space on level � − 1. In practice, the
mesh on level � − 1 is the coarsest mesh for which the mesh
of level � can be obtained by a single level of hierarchical
refinements, i.e., one uniform subdivision of a certain set
of elements. The construction of such non-uniform coarser
spaces is summarized inAlgorithm2, and illustrated inFig. 5.
The algorithm denotes components of the mesh at level �

by: Km
i ∈ T m

h ⊂ Th . As introduced in Fig. 2, Km
i denotes

an active element at local refinement level m with index i .
The set of all active elements of local refinement level m is
denoted by T m

h = {Km
i }, and Th = ∪m=M

m=0 T m
h denotes the

full mesh, with M denoting the number of local refinement
levels. Elements of the coarsermesh at level �−1 are denoted
as kmi ∈ T m

2h ⊂ T2h . The subscript 2h for the coarse mesh
is to be conceived of as a symbolic notation. Note that the
elements in T m+1

2h are of the same size as the elements in
T m
h . In line 1 of the algorithm, the coarser mesh is initial-

ized as a uniformmesh with only unrefined elements of local
refinement level m = 0, i.e., T2h = T 0

2h . Line 3 initiates a

loop over the refinement levels 0 ≤ m ≤ M − 1. Within this
loop, the algorithm loops over all the elements kmi ∈ T m

2h ,
that are currently m times refined. If kmi intersects an ele-
ment of Th that is refined more than m times, element kmi
is refined in lines 7–9. Note that line 7 abuses notation to
simplify the expression, and that the refining of element kmi
implies removing kmi from T m

2h and adding the refinements
to T m+1

2h . Note that this hierarchical derefinement procedure
differs from the approach in [73], which employs an existing
hierarchy of refined grids for the coarse grid corrections.

Algorithm 2: Coarsen(Th)

1 initialize T2h # initialize coarse mesh T2h = T 0
2h with uniform

unrefined elements

2 # loop over local refinement levels
3 for m ∈ {0, ..., M − 1} do
4 # loop over coarse mesh elements of level m
5 for kmi ∈ T m

2h do

6 # check if kmi intersects elements of fine mesh Th of local
refinement level > m

7 if
(
∪m̃=M
m̃=m+1T

m̃
h

)
∩ kmi 	= ∅ then

8 refine kmi

9 end

10 end

11 end

12 return T2h

123



816 Computational Mechanics (2020) 65:807–838

3.4 Smoothers for immersed finite elementmethods

In lines 4 and 12 of Algorithm 1 smoothing operations, i.e.,
fixed point iterations, are performed to resolve the compo-
nents of the error that cannot be adequately captured by the
coarse grid. Effective application of the multigrid algorithm
requires that the eigenvalues of γM−1A that correspond to
non-smooth eigenfunctions are close to 1.Note that in the for-
mulations from here on, the subscripts indicating the level in
the multigrid solver are omitted to simplify the notation. All
these formulations are independent of the level �, however.
Stability of fixed point iterations requires:

0 ≤ λmin

(
γM−1A

)
≤ λmax

(
γM−1A

)
≤ 2, (12)

with λmin(·) and λmax(·) denoting the smallest and largest
eigenvalues, such that the spectral radius of the fixed point
iteration is bounded:

ρ
(
I − γM−1A

)
< 1, (13)

with I denoting the identity matrix with the same size as sys-
tem matrix A. In the case that λmax

(
γM−1A

)
> 2, the error

component in the direction of the eigenvector correspond-
ing to the largest eigenvalue will increase with smoothing,
which may result in divergence. For this reason, smoothers
such as Jacobi and additive Schwarz require a sufficiently
small relaxation parameter γ . Smoothers such as Gauss–
Seidel and multiplicative Schwarz are unconditionally stable
and do not require relaxation, see e.g., [52, Theorems 4.10
and 14.9]. As already mentioned in the description of Algo-
rithm 1 in Sect. 3.2, it should be noted that symmetry of
the linear operator that is induced by the V-cycle insists
that the post-smoothing operation is the adjoint of the pre-
smoothing operation. Furthermore, it should be mentioned
that the computational efficiency can potentially be improved
by performing multiple smoothing operations in each cycle.
Such enhancements are, however, not considered in this con-
tribution.

Jacobi iterations are not suitable as a smoother for
immersed finite elements, which is illustrated by the example
in Fig. 3. The smallest eigenmode in Fig. 3bwith a very small
eigenvalue is barely affected by the smoothing, and cannot
be captured on a coarser grid. Furthermore, the relatively
large eigenmodes caused by almost linear dependencies as
in Fig. 3c impose a small relaxation parameter, which further
impairs the conditioning. The following subsections examine
the suitability of a Gauss–Seidel smoother and Schwarz-type
smoothers based on the preconditioner for immersed finite
elements developed in [50].

Gauss–Seidel

A typical spectrum and characteristic eigenmodes with stan-
dard Gauss–Seidel preconditioning are shown in Fig. 6.
Similar to Fig. 3 for Jacobi preconditioning, these figures
correspond to the Laplace operator on the geometry in Fig. 1
with quadratic Lagrange basis functions and boundary condi-
tions imposed by the penalty method. To obtain a symmetric
preconditioner, a double fixed point iteration with adjoint
Gauss–Seidel operations is applied in these figures:

(
I − M−TA

) (
I − M−1A

)
yλi = (1 − λi ) yλi , (14)

with
(
I − M−1A

)
corresponding to the initial Gauss–Seidel

sweep,
(
I − M−TA

)
corresponding to the reverse sweep,

and yλi denoting the eigenvector corresponding to the i th
eigenvalue λi . Hence, Fig. 6 presents the eigenmodes of the
system

(
M−1 + M−T − M−TAM−1

)
A. As will follow in

(15), this is actually very similar to the V-cycle, except for
the omission of the coarse grid correction. To reduce the
computational cost, theGauss–Seidel routine is implemented
with a graph coloring algorithm2 [92], which has a negligi-
ble effect on the spectrum. In Fig. 6b a very small eigenvalue
is plotted, which is similar to the smallest eigenmode with
Jacobi preconditioning in Fig. 3b. Note that the eigenvalues
of these eigenfunctions differ by a factor of (approximately)
2, which is an expected consequence of the double iteration
with Gauss–Seidel versus the single iteration with Jacobi. In
Fig. 6c it is shown that also the spectrum with Gauss–Seidel
preconditioning contains an eigenmode that is in close cor-
respondence with the smallest analytical eigenmode of the
PDE, and is similar to the usual smallest eigenmode with
mesh-fitting techniques. Since the colors are selected such
that basis functions of the same color do not intersect, the
unit vectors corresponding to basis functions with the last
color of the graph coloring algorithm yield an eigenspace
with an eigenvalue of exactly 1. This can be observed in the
spectrum in Fig. 6a and is illustrated in Fig. 6d.

Gauss–Seidel is not suitable as a smoother for immersed
finite element methods, despite the unconditional stability
by which—in contrast to Jacobi—it does not require more

2 This algorithm divides the basis functions in sets, or colors, such that
the supports of basis functions with the same color do not intersect.
Footnote 2 continued
The union over the sets of all colors constitutes the full approximation
space. Note that, for Lagrange basis functions on uniform grids, this
requires (p+ 1)d different colors. As basis functions of the same color
do not intersect, updating the approximation of the solution, x̃, at an
index corresponding to a certain color, does not affect the residual, r,
at the other indices corresponding to that color. This enables a Gauss–
Seidel routine that sweeps over all indices of a certain color at once,
instead of sequentially updating each index of the approximation of the
solution and updating residual accordingly.
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Fig. 6 Typical spectrum and characteristic eigenmodes of an immersed system that is preconditioned by a double fixed point iteration with
Gauss–Seidel

relaxation in an immersed setting than in a mesh-fitting set-
ting. The problem that renders Gauss–Seidel ineffective for
immersed finite element methods is the small eigenmode
plotted in Fig. 6b. Similar to Jacobi, the eigenvalue of this
mode is too small to be adequately treated by the smoothing
operations, and it is also not resolved by the coarse grid cor-
rection. This is shown in Fig. 7, which displays the spectrum
of the same problem preconditioned by the V-cycle in Algo-
rithm 1 with � = 2 levels and a single Gauss–Seidel sweep
as smoother. This eigenvalue problem can be formulated as:

(
I − M−T

� A�

) (
I − RT

� A
−1
�−1R�A�

) (
I − M−1

� A�

)
yλi

= (1 − λi ) yλi , (15)

or as:

V-cycle
(
� = 2, r� = Ayλi

) = λiyλi . (16)

While a comparison of the spectra in Figs. 6a and 7a, i.e.,
without and with the coarse grid correction, reveals that
several small eigenmodes are resolved by the coarse grid cor-
rection, Figs. 6b and 7b demonstrate that both spectra contain

approximately the same small eigenmode. The eigenvalues
of this mode are barely affected by the coarse grid correc-
tion, with eigenvalue 3.20× 10−6 for the double fixed point
iteration and eigenvalue 3.78 × 10−6 for the full V-cycle.

Additive Schwarz

The spectra and eigenfunctions with Jacobi and Gauss–
Seidel in Figs. 3 and 6 clearly demonstrate that these are not
robust to cut elements. This is consistent with the analysis of
the conditioning problems in [35], which points out that diag-
onal preconditioners do not adequately mitigate the almost
linear dependencies that occur in immersed finite element
methods. In [50] it is derived that almost linearly depen-
dent basis functions can be effectively treated collectively,
when these are inverted in a block manner by a Schwarz-type
method. Based on the additive Schwarz lemma, [50] shows
that additive Schwarz preconditioning is actually a very nat-
ural approach to resolve the small eigenmodes caused by
almost linear dependencies. Furthermore, it is demonstrated
that in terms of the condition number and the number of
iterations in an iterative solution method, immersed meth-
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Fig. 7 Spectrum and a characteristic very small eigenmode of an immersed system that is preconditioned by a two-level V-cycle with Gauss–Seidel
as smoother

ods with additive Schwarz preconditioning behave similar to
mesh-fitting techniques. This section therefore examines the
spectrum of immersed methods with additive Schwarz pre-
conditioning, to establish the suitability as a smoother in a
multigrid method.

In additive Schwarz preconditioning, a set of N index
blocks is selected, which correspond to sets of basis func-
tions. For each index block j ≤ N , the system matrix
A ∈ R

n×n is restricted to the indices in the block, denoted
by A j ∈ R

n j×n j . The block matrices are then inverted and
prolongated to a matrix of size n × n. The additive Schwarz
preconditioner is obtained by summing these matrices:

M−1 =
N∑

j=1

P j

(
PT
jAP j

)−1

︸ ︷︷ ︸

A−1
j

PT
j , (17)

with P j ∈ R
n×n j a matrix that prolongates a block vector

y j ∈ R
n j to a vector P jy j = y ∈ R

n – with nonzero entries
only at the indices in block j—and the transpose of P j a
restriction operator that restricts a vector z ∈ R

n to a block
vector PT

j z = z j ∈ R
n j—containing only the indices in

block j .
An essential aspect of additive Schwarz preconditioners

is the choice of the index blocks. It is pointed out in [50]
that almost linearly dependent basis functions are required
to be in an index block together. Furthermore, it is demon-
strated that devising a block for each cut element with all
basis functions supported on it is an effective strategy to
satisfy this requirement for uniform grids. As demonstrated
in [51], however, it is not trivial to generalize this con-
cept to locally refined meshes. Therefore this contribution
applies an alternative strategy to select the Schwarz blocks
based on so-called encapsulating supports, which is inspired
by the Schwarz-type smoother developed for divergence-

conforming discretizations in [71]. Accordingly, for every
basis function a block is devised, containing all the basis
functions whose support completely lies inside the support
of the basis function associated to the block, see Fig. 8. Note
that in this contribution the support of a basis function refers
to the support within the physical domain. The block that is
associated to function φ j is defined as:

{
φk : supp� (φk) ⊆ supp�

(
φ j

) }
, (18)

with supp�(φk) denoting the support of basis function φk

within physical domain �. For vector-valued problems,
separate blocks are devised for basis functions describing
different vectorial components of the solution, similar to the
blocks in [50]. By construction, each block therefore con-
tains the basis function associated to it, and for untrimmed
(truncated hierarchical) B-splines this approach yields an
approximately diagonal preconditioner. Let us note here the
importance of the truncation of the basis functions in the
locally refined approximations. As non-truncated hierarchi-
cal bases yield a very large number of basis functions with
overlapping supports, this correspondingly results in very
large blocks in the additive Schwarz preconditioner, which
leads to significant computational costs. Trimmed basis func-
tions on small cut elements—which can be almost linearly
dependent—are also assigned to blocks associated to other
functions. This satisfies the requirement formulated in [50]
that almost linearly dependent basis functions need to be in a
block together, and therefore resolves the small eigenmodes
that are characteristic for immersed finite element methods.
This strategy to select the Schwarz blocks is directly appli-
cable to both B-splines on uniform grids and to truncated
hierarchical B-splines on non-uniform grids, in contrast to
the element-wise strategy in [50]. It is, however, not natural
to directly apply this strategy to Lagrange basis functions,
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Fig. 8 Greville abscissae and
supports of quadratic B-splines
assigned to a block. a Displays
the support within the physical
domain of the function
associated to the block in
orange. b Displays the supports
of the other functions assigned
to the block in purple. The
fictitious support of the
functions is not considered, but
is hatched to increase the clarity
of the figures. Note that the
supports of the functions in b
completely lie inside the support
of the function in a. (Color
figure online)

as these are not all supported on the same number of ele-
ments. For the Lagrange bases, blocks are therefore only
devised for the nodal basis functions.3 This implies that with
Lagrange bases a block is devised for every cluster of 2d

elements. Note that this yields approximately the same num-
ber of blocks for uniform Lagrange bases as for uniform
B-spline bases and even an identical treatment in case of
linear basis functions, but, in contrast, does not reduce to a
purely diagonal treatment of untrimmed basis functions for
higher-order Lagrange bases. It should be mentioned that the
block selection described here is not the only possible and
effective method to select blocks for immersed finite ele-
ments, and interested readers are directed to [69,70,72] for
a study of suitable block selections in isogeometric analysis
and to the reference works [56,93] for considerations regard-
ing the block selections with traditional finite element bases.

Efficiency and stability of additive Schwarz as a smoother
requires adequate selection of the relaxation parameter γ .
For the smoothing operations to efficiently reduce the error
components in the directions of modes with eigenfunctions
that can not be adequately captured on coarser grids, it is

3 In this contribution different Lagrange basis functions are indicated as
nodal, edge, face and volume functions. With d denoting the number of
dimensions: nodal functions attain the value 1 at a vertex of the grid and
span 2d elements, edge functions attain the value 1 on an edge and span
2d−1 elements, face functions attain the value 1 on a face and span 2d−2

elements, and volume or element internal functions attain the value 1
inside an element and span 1 element. Note that face functions are not
considered in the two-dimensional example.

required that the relaxed eigenvalues γ λi
(
M−1A

)
corre-

sponding to such eigenmodes are close to 1. The requirement
with regard to stability is formulated in (12), and states that
λmin

(
M−1A

) ≥ 0 and that γ λmax
(
M−1A

) ≤ 2. The positiv-
ity of the eigenmodes follows from the symmetric positive
definiteness of both M−1 and A. Since the eigenvalues of

M−1A coincide with the eigenvalues of M− 1
2AM− 1

2 , the
eigenmodes can be bounded from above by:

λmax

(
M−1A

)
= λmax

(
M− 1

2AM− 1
2

)

= max
y

yTM− 1
2AM− 1

2 y
yTy

= max
z

zTAz
zTMz

(19a)

= max
z

zTAz

min
∑N

j=1 P j z j=z

∑N
j=1 z

T
j P

T
jAP jz j

(19b)

= max
{z j }Nj=1

(∑N
j=1 P

T
j z

T
j

)
A

(∑N
j=1 P jz j

)

∑N
j=1 z

T
j P

T
jAP jz j

(19c)

≤ max
Ki

max
{z j }

NKi
j=1

(∑NKi
j=1 P

T
j z

T
j

)
AKi

(∑NKi
j=1 P jz j

)

∑NKi
j=1 z

T
j P

T
jA

KiP jz j
(19d)

≤ max
Ki

max
{z j }

NKi
j=1

NKi

∑NKi
j=1 z

T
j P

T
jA

KiP jz j
∑NKi

j=1 z
T
j P

T
jA

KiP jz j
= max

Ki
NKi ,

(19e)
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Fig. 9 Typical spectrum and characteristic eigenmodes of an immersed system that is preconditioned by a double fixed point iteration with additive
Schwarz

with AKi ∈ R
n×n the part of system matrix A that results

from the integration over element Ki , and NKi denoting
the number of blocks containing basis functions that are
supported on this element. Note that in (19b) the additive
Schwarz lemma is applied, see e.g., [56,93]. In (19d) the
maximal quotient with system matrix A is replaced by the
maximum over the quotients with the element contribu-
tions AKi , and in (19e) the Cauchy-Schwarz inequality is
applied. For Lagrange basis functions this bound is observed
to be considerably sharp, as volume basis functions are con-
tained in NKi blocks and form eigenfunctions similar to
the one in Fig. 9d. These functions are not captured in the
coarse grid correction, such that efficient smoothing requires
γ = N−1

Ki
= 4−1 for a two-dimensional Lagrange basis. This

relaxation parameter yields γ λmax
(
M−1A

) ≤ 1 < 2, such
that also the stability condition is satisfied.

Figure 9 presents the spectrum and characteristic eigen-
modes of the Laplace operator on the geometry in Fig. 1
with a quadratic Lagrange basis that is preconditioned by
a double fixed point iteration with additive Schwarz and
the relaxation parameter γ = 1

4 . The double fixed point
iteration is applied such that later on these results can eas-

ily be related to the results with the V-cycle with additive
Schwarz smoothing in Fig. 10. Figure 9b shows that the
smallest eigenvalue in the system with additive Schwarz
does not correspond to an eigenfunction on a small cut ele-
ment. Instead, the smallest eigenmode is similar to the usual
smallest eigenmode with mesh-fitting methods, which can
be considered as the smoothest possible mode satisfying the
boundary conditions. Figure 9c plots an example of an eigen-
function that almost entirely consists of nodal basis functions.
The spectrum contains multiple of such modes, and these are
important because these are the smallest eigenmodes that
cannot be adequately captured by the coarse grid correction.
Therefore, these nodal modes form the bottleneck for the
condition number of immersed systems preconditioned by
the V-cycle with additive Schwarz smoothing, as will fol-
low in Fig. 10. In fact, the eigenvalue of such modes can
be clarified. Since nodal basis functions are in only 1 index
block, a fixed point iteration reduces the contribution of such
functions by approximately a factor 1 − γ = 3

4 . The dou-
ble fixed point iteration therefore results in an eigenvalue of
approximately 1 − (1 − γ )2 = 7

16 ≈ 0.438. The largest
eigenmodes in the spectrum have an eigenvalue of approxi-
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Fig. 10 Spectrum and eigenmode of an immersed system that is preconditioned by a two-level V-cycle with additive Schwarz as smoother

Fig. 11 Spectra of immersed systems that are preconditioned by a double fixed point iteration with additive Schwarz (single-grid) and by a two-level
V-cycle with additive Schwarz as smoother (multigrid)

mately 1, and correspond to eigenfunctions consisting almost
entirely out of basis functions that are only supported on 1
element and therefore are contained in 4 index blocks. On the
interior this only involves volume basis functions, resulting
in the volume mode in Fig. 9d. By virtue of the eigenvalue
of approximately 1, error components in the direction of the
eigenvectors of these modes are effectively eliminated by the
additive Schwarz smoother.

Based on the smallest eigenmodes in the spectrum with
additive Schwarz, this technique is suitable as a smoother in a
multigridmethod for immersedfinite elements. The results of
this smoother in a two-level V-cycle are presented in Fig. 10.
It can be observed from the spectra in Figs. 9a and 10a—
i.e., respectively without the coarse grid correction and with
the coarse grid correction—that the smooth eigenmodes are
effectively resolved, such that a method is obtained that is
robust to both cut elements and the grid size. It is notewor-
thy that the smallest eigenvalues with the multigrid method
correspond to nodal modes, see Fig. 10b. The limited effec-

tiveness of the multigrid procedure for these modes derives
from the fact that these modes are relatively insensitive to the
smoothing operations, see Fig. 9c, and that these modes can-
not be adequately captured on a coarser grid. With multigrid
as a standalone solver, these modes would yield a conver-
gence rate between 0.5 and 0.6. This rate can be improved by
applying the multigrid cycle as a preconditioner in a Krylov
subspace solver.

Figure 11 presents the spectra of the same problem with
finer grids, preconditioned by a double fixed point iteration
with additive Schwarz and preconditioned by the full V-cycle
with additive Schwarz smoothing. Comparing these, and also
the spectra with a grid of 16 × 16 elements in Figs. 9a and
10a, conveys that systems without the coarse grid correction
closely follow the grid-size dependence of the conditioning
formulated in (7), and thatwith the fullV-cycle a conditioning
is obtained that is independent of the grid size, with for this
problem eigenvalues 0.4 < λmin < 0.5 and λmax = 1.
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While smoothing with additive Schwarz results in a con-
ditioning that is independent of the grid size, the method
is affected by the small relaxation parameter. This will be
even more severe in three dimensions and for B-spline bases,
which are supported on more elements and therefore require
smaller and degree-dependent relaxation parameters, i.e., for
B-splines NKi = (p+1)d with p the spline degree and d the
number of dimensions. Therefore, the next section considers
multiplicative Schwarz as a smoother, which is uncondition-
ally stable [52] and thereby circumvents the small relaxation
parameter required for stability. It should be mentioned that,
alternatively, other smoothing schemes such as restricted
additive Schwarz [94,95] can also be considered. The sta-
bility of such schemes with immersed finite elements does
require verification, however.

Multiplicative Schwarz

Multiplicative Schwarz can be considered as the block equiv-
alent of Gauss–Seidel. While with additive Schwarz all
the locally inverted block matrices are applied to the same
residual—similar to the diagonal elements in Jacobi—with
multiplicative Schwarz the residual is updated after each
block—similar to the update of the residual after each diag-
onal element in Gauss–Seidel. Multiplicative Schwarz can
be formulated by initializing the zero vector ỹ0 = 0, defin-
ing the initial residual r̃0 = r, and looping over the blocks
j ≤ N :

δỹ j = P jA
−1
j PT

j r̃
j−1,

ỹ j = ỹ j−1 + δỹ j ,

r̃ j = r̃ j−1 − Aδỹ j .

(20)

The linear operator of multiplicative Schwarz is then defined
as M−1r = ỹN . Similar to Gauss–Seidel, multiplicative
Schwarz does not require stabilization [52], which is themost
important motivation to examine multiplicative Schwarz as a
smoother in multigrid methods for immersed finite elements.

The linear operator induced by a fixed point iteration with
multiplicative Schwarz is not symmetric. Therefore, it is
important that in the post-smoothing the direction in the loop
over the index blocks is reversed, to restore symmetry of the
linear operator induced by the V-cycle. As can be observed
in (20), the application of multiplicative Schwarz requires
updating the residual at every step, which is computationally
expensive and impedes parallelization. Therefore, similar to
standard Gauss–Seidel, the index blocks are ordered by a
graph coloring algorithm [92], which has a negligible effect
on the spectrum. To this end, the blocks are divided in C
colors indicated by c ≤ C . The basis functions in a block of
a certain color do not intersect functions in a different block
with the same color. Therefore, blocks of the same color

are not affected by each other’s update of the residual. As a
result, the residual only needs to beupdated after executing all
blocks of a certain color. This reduces the computational cost
and enables parallelization of the routine. The multiplicative
Schwarz procedure with graph coloring can be formulated
by initializing the zero vector z̃0 = 0, defining the initial
residual again as r̃0 = r, and looping over the colors c ≤ C :

δz̃c =
∑

j∈Jc

P jA
−1
j PT

j r̃
c−1,

ỹc = ỹc−1 + δỹc,

r̃c = r̃c−1 − Aδỹc,

(21)

with Jc denoting the set of blocks with color c. The lin-
ear operator of multiplicative Schwarz with graph coloring
is defined as M−1r = z̃C . The required minimal num-
ber of colors can be deduced by considering the overlap
between the supports of basis functions. Because the sup-
ports of identically-colored basis functions are not allowed to
intersect, for scalar problems and uniform grids the required
number of blocks equals the number of elements on which
basis functions are supported. For Lagrange bases, uniform
B-spline bases, and truncated hierarchical B-spline bases, the
employednumber of colors therefore amounts to 2d , (p+1)d ,
and M(p+1)d , respectively. For hierarchical bases the num-
ber of colors required for a uniform grid is multiplied by the
number of hierarchical levels and for vector-valued problems
the number of colors is multiplied by the number of compo-
nents of the vector.

Figure 12 presents typical spectra of immersed systems,
preconditioned by a symmetric double fixed point iteration
with multiplicative Schwarz and preconditioned by a two-
level V-cycle with multiplicative Schwarz smoothing. These
results again pertain to the Laplace operator on the domain in
Fig. 1 with quadratic Lagrange basis functions. The single-
grid results without the coarse grid correction show a largest
eigenmode of 1 and amesh-dependent smallest eigenmode of
orderO(h2), such that the condition number follows the rela-
tion formesh-fitting systems in (7). Similar to the results with
additive Schwarz in Fig. 11, the results with the two-level V-
cycle show a spectrum that is robust to both cut elements and
the mesh size of the background grid. The conditioning with
multiplicative Schwarz is much better and even nearly opti-
mal, however, because it is not compromised by the small
relaxation parameter that was required for the stability of
additive Schwarz. Therefore, we conclude that multiplicative
Schwarz is the most suitable smoothing procedure for multi-
grid methods for immersed systems. In view of its superior
smoothing properties over additive Schwarz, in the numer-
ical examples in Sect. 4 we restrict our considerations to
multiplicative Schwarz.
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Fig. 12 Spectra of immersed systems that are preconditioned by a double fixed point iteration with multiplicative Schwarz (single-grid) and by a
two-level V-cycle with multiplicative Schwarz as smoother (multigrid)

Remark 3.2 The resulting preconditioning techniques for
Lagrangebases andB-splines havemuch in common, but also
small differences are to be noted. As mentioned previously,
Lagrange bases require a considerably smaller number of col-
ors in the implementation. Also, the solver for the Lagrange
bases requires fewer iterations, as can be observed in the
results in Sect. 4. While both bases require approximately
the same number of Schwarz blocks on the same grid, an
advantage of the B-splines is that untrimmed basis functions
result in a diagonal treatment, while untrimmed Lagrange
basis functions still result in blocks with size (2p − 1)d .
Also the considerably smaller number of degrees of free-
dom with B-splines is an aspect to consider. The methods
for both bases, however, can be further optimized in regard
of the computational efficiency. Therefore, we would like
to emphasize that this contribution is intended to demon-
strate the feasibility of multigridmethods for immersed finite
elements and immersed isogeometric analysis, and not as a
qualitative comparison between the different bases. Further-
more, while the computation time is linear with the number
of degrees of freedom for both bases, the absolute CPU times
reported in Fig. 15 are highly dependent on the implementa-
tion.

Remark 3.3 Similar to the Schwarz-type methods for
immersed finite elements presented in [50] and [51], it is pos-
sible that block matrices contain eigenvalues of the order of
themachine precision.Directly inverting such blockmatrices
is unstable, as due to round-off errors these inverses can be
inaccurate and can even contain negative eigenvalues for pos-
itive definite systems. As described in detail in [50, Remark
3.3], in case a block matrix contains an eigenvalue that is
a factor 1016 smaller than the largest diagonal entry of the
matrix, the basis function that is dominant in the correspond-
ing eigenvector is removed from the block. Because this only
pertains to basis functions with extremely small contribu-

tions, this does not affect the convergence of the iterative
solver or the accuracy of the solution.

Remark 3.4 In principle, the ill-conditioning effects of small
cut elements only need to be resolved on the finest grid, as
the coarser levels are only required to resolve smooth compo-
nents of the error.Diagonal smoothers therefore suffice on the
coarser levels, and Schwarz-type smoothing is only required
on the finest level. Furthermore, this opens the possibility
to apply black-box coarsening algorithms as used in alge-
braic multigrid techniques (AMG). Applying Schwarz-type
smoothing on all levels, however, retains the natural recur-
sive character of the multigrid algorithm. For conciseness,
we have therefore opted not to include results with diagonal
smoothing on the coarser levels in the numerical results in
Sect. 4.

4 Numerical examples

In this section we assess the developed geometric multi-
grid preconditioning technique for immersed finite element
methods on a range of numerical examples. First, Sect. 4.1
considers three-dimensional elasticity problems on uniform
grids with both B-splines and Lagrange basis functions. The
goal of these simulations is to demonstrate the performance
of the preconditioner on increasingly complex geometries.
An aspect that is not covered in this section is the treat-
ment of localmesh refinements. Therefore the preconditioner
is applied to a level set based topology optimization prob-
lem with truncated hierarchical B-splines in Sect. 4.2. Our
implementation is based on the open source software pack-
age Nutils ([96], www.nutils.org). The code to construct the
multigrid preconditioner and data to reproduce the most
prominent results can be downloaded from https://gitlab.
com/fritsdeprenter/multigrid-immersed-fem.
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In all examples, the systems are solved by a conjugate
gradient solver that is preconditioned with the multigrid
V-cycle in which the pre-smoothing and post-smoothing
operations consist of a single multiplicative Schwarz sweep,
as described in Sect. 3.4. Furthermore, all simulations are
performed with quadratic discretizations, except for the
investigation into the effects of the discretization order for
the first example in Sect. 4.1. This is sufficient to demon-
strate the difference between Lagrange basis functions and
B-splines, and quadratic function spaces already result in
severely ill-conditioned systems in case a dedicated treat-
ment is not applied. The assembly of quadratic systems is
considerably less expensive than systems of third degree or
higher, however, enabling finer grids to be assessed.

4.1 Linear elasticity problems

We first consider the deformation of a tooth-shaped domain
subject to a distributed boundary traction. Next, an apple-
shaped geometry containing two geometrically singular
points is presented, which is deformed by a gravitational
load. The third example considers a complex geometry of a
μCT-scanned trabecular bone specimen, that is compressed
by a prescribed displacement at the boundary. In this third
example an effect regarding the number of levels in the pre-
conditioner is observed. This effect is further investigated in
the specifically designed test case in the last example, which
is posed on a geometry in the shape of a triple helix.

Tooth-shaped geometry subject to a distributed traction

This first example considers a dimensionless problem posed
on an immersed geometry with the shape of a tooth, see
Fig. 13. The embedding domain is the cube (−2, 2)3, and
the tooth-shaped geometry is obtained by trimming with the
level set function:

ψ1(x, y, z) = 16

(

1 −
6∑

i=0

e−ρi (x,y,z)

)

− x4 − y4 − z4,

(22)

with:

ρ0(x, y, z) = x2 + y2 + (z − 2)2,

ρ1(x, y, z) = (x − 2)2 + (y − 2)2 + ( z+2
2

)2
,

ρ2(x, y, z) = (x − 2)2 + (y + 2)2 + ( z+2
2

)2
,

ρ3(x, y, z) = (x + 2)2 + (y + 2)2 + ( z+2
2

)2
,

ρ4(x, y, z) = (x + 2)2 + (y − 2)2 + ( z+2
2

)2
,

ρ5(x, y, z) = x2 + ( y
2

)2 + ( z+2
2

)2
,

ρ6(x, y, z) = ( x
2

)2 + y2 + ( z+2
2

)2
.

In this level set ρ0(x, y, z) creates the dent in the surface of
the tooth, ρ1(x, y, z), ρ2(x, y, z), ρ3(x, y, z), and ρ4(x, y, z)
create the dents in the sides of the tooth and the roots are
obtained by ρ5(x, y, z) and ρ6(x, y, z). The tips of the roots
below z = −1 are trimmed by a second trimming operation
with the level set function:

ψ2(x, y, z) = z + 1. (23)

This creates four surfaces on which homogeneous Dirichlet
conditions are applied. On the rest of the boundary a normal
traction is applied with the magnitude:

gN (x, y, z) = −ne− 1
4

(
(x−2)2+(y−2)2+(z−2)2

)

, (24)

which concentrates around the corner of the tooth. The Lamé
parameters are set to λ = μ = 103, and the Dirichlet con-
ditions are enforced by the penalty method with penalty
parameters βλ

h = β
μ
h = 2

h . The resulting displacements and
stresses are shown in Fig. 13.

Todemonstrate the robustness of the preconditioning tech-
nique to the number of elements,wediscretize the embedding
domain with grids of 203, 403 and 803 elements. This results
in, respectively, 129×103, 874×103 and 6.43×106 degrees
of freedom (DOFs) with quadratic Lagrange basis functions
and 21.6×103, 129×103 and 878×103 DOFswith quadratic
B-splines. The integration depth as defined in Sect. 2 is set to
2 for the grid with 203 elements, 1 for the grid with 403 ele-
ments, and 0 for the grid with 803 elements. This implies that
the grid with 203 elements is first partitioned by 2 consecu-
tive bisectioning operations before it is triangulated, the grid
with 403 elements is first partitioned by 1 bisectioning oper-
ation before it is triangulated, and cut elements in the grid
with 803 elements are directly triangulated. Note that this
results in identical integrated geometries for all grid sizes.
The multigrid preconditioner is applied with 2 and 3 levels
as defined in Sect. 3 for the grid with 203 elements, 2, 3 and
4 levels for the grid with 403 elements, and 2, 3, 4 and 5 lev-
els for the grid with 803 elements. These numbers of levels
are chosen such that for all grid sizes, the largest number of
levels results in a direct solution in the preconditioner for a
system derived from a discretization with 53 elements.

The convergence of the multigrid-preconditioned con-
jugate gradient solver is plotted in Fig. 14. The results
demonstrate a convergence behavior that is virtually indepen-
dent of the number of elements.Also, the number of iterations
is nearly independent of the number of levels in the precon-
ditioner. This can be attributed to the simple compact shape
of the geometry, which is resolved well even on the coarsest
grid of 53 elements, such that with all numbers of levels the
coarse grid corrections provide an effective approximation
of the smooth eigenmodes. Finally, it can be observed that
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Fig. 13 Displacements and
stresses of the tooth-shaped
geometry. The displayed results
are computed on a discretization
with 803 elements and quadratic
B-spline basis functions

the systems with B-splines require more iterations than the
systems with Lagrange basis functions.

Figure 15 plots the measured CPU times to set up the
multigrid preconditioners and solve the linear systems versus
the grid size. These results pertain to the systems in Fig. 14
with the largest number of multigrid levels and a direct solve
on the grid of 53 elements. The CPU times correspond to
computations on a single core, but it should be noted that the
method is suitable for parallelization as demonstrated in [51].
It is clearly visible that the observed CPU times scale linearly
with the number of DOFs. An interesting observation is that
the setup time for B-spline bases is significantly lower than
that for Lagrange systems. This is explained by the com-
putationally inexpensive diagonal treatment of untrimmed
B-splines, which contrasts the block treatment of untrimmed
Lagrange basis functions. Asymptotically, the majority of
the computational workload for B-spline systems consists of
the diagonal scaling of these untrimmed basis functions. On
coarse grids, the relative number of cut elements is much
larger however, such that the CPU time to invert the blocks
associated to cut B-splines dominates. As the number of cut
elements does not scale linearly with the number of DOFs,
the scaling rate deviates in the preasymptotic regime. Note
that with Lagrange basis functions the construction of the
preconditioner for cut basis functions is very similar to that
of untrimmed basis functions, such that this deviation is not
observed. It is interesting to observe that the total CPU time
to obtain the solution with either Lagrange basis functions
or B-splines is comparable, with the Lagrange systems being
solved moderately faster. We attribute this to the number of
iterations and the number of colors in the coloring algorithm,
cf. the discussion on the computational cost of Lagrange and
B-spline bases in Remark 3.2.

The effect of the discretization order is investigated in
Fig. 16, which plots the convergence of systems with both

Lagrange bases and B-splines for different orders and dif-
ferent numbers of levels in the multigrid preconditioner. The
systems correspond to grids with 403 elements and a max-
imum integration depth of 1. The Lagrange bases contain,
respectively, 116×103, 874×103 and 2.89×106 DOFs and
the B-spline bases 116×103, 129×103 and 143×103 DOFs.
Note that the results with quadratic bases in Fig. 16c and d
are the same as those in Fig. 14c and d, but with the horizon-
tal axis rescaled to facilitate a comparison with the linear and
cubic systems. Additionally, both the bases and the treatment
of the first order systems in Fig. 16a and b are identical. It
is observed that, similar to the quadratic results in Fig. 14,
the number of levels in the multigrid preconditioner does not
significantly affect the convergence. Furthermore, the con-
vergence of the systems with Lagrange basis functions is
virtually unaffected by the discretization order, in contrast to
the convergence rate of the B-spline systems, which reduces
with an increase in the polynomial degree. This increase in
the number of iterations with the B-spline degree has been
previously reported in the literature, see e.g. [61], and can be
associated to oscillatory eigenmodes with small eigenvalues
that occur in high-order isogeometric discretizations, e.g.,
[64]. This effect can be mitigated by p-multigrid methods,
see e.g., [97,98], or by dedicated smoothers for isogeo-
metric analysis such as the multi-iterative method [63,64],
smoothers based on spline-space splittings [65–68], or mul-
tiplicative Schwarz smoothers with block sizes that increase
with the discretization order [72]. In this regard it should be
noted that, although for both bases the number of blocks is
essentially independent of the discretization order, the size of
the Schwarz blocks in the Lagrange systems increases with
the discretization order, while the treatment of untrimmed B-
splines is still diagonal. We have experienced that the CPU
times for Lagrange and B-spline systems of the same degree
are similar, which is in agreement with the observations on
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Fig. 14 Convergence plots of the problems on the tooth-shaped geometry with quadratic discretizations

quadratic systems in Fig. 15. Additionally, similar to the
results with quadratic bases on different grid sizes in Fig. 14,
for both types of basis functions the convergence rate with
linear and cubic bases has been found to be virtually inde-
pendent of the grid size and the number of DOFs.

Apple-shaped geometry subject to a gravitational load

This second example is designed to establish the suitabil-
ity of the preconditioner for non-convex geometries with

sharp reentrant corners where stress singularities are to be
expected, such that the effectivity of multigrid methods is
not generally evident [99]. A dimensionless problem is posed
on the geometry with the shape of an apple in Fig. 17. The
embedding domain is again the cube (−2, 2)3, and the shape
of the apple is derived through a trimming operation with the
level set function:

ψ1(x, y, z) = 1 −
( z

1.7

)2 −
(

r(x, y)

1 + z/17
− 0.7

)2

, (25)
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Fig. 15 CPU times for the setup
of the multigrid preconditioner
and for the iterative solving of
the systems with quadratic
discretizations and different grid
sizes. The dotted lines indicate
the linear scaling with the
number of DOFs

with r(x, y)2 = x2 + y2. A second level set function models
a bite being taken out of the apple:

ψ2(x, y, z) = (x − 2)2 + y2 + z2 − 1. (26)

Homogeneous Dirichlet conditions are imposed on the sur-
face of the bite, and a volumetric load f = (0, 0,−1) is
applied to model gravity acting on the apple. The Lamé
parameters are again set to λ = μ = 103 and the Dirich-
let conditions are again enforced by the penalty method with
parameters βλ

h = β
μ
h = 2

h . Figure 17 displays the resulting
displacements and stresses.

The problem is discretized with quadratic Lagrange basis
functions and quadratic B-splines on a background grid with
803 elements. This yields 4.87× 106 DOFs supported in the
physical domainwith theLagrange basis and 667×103 DOFs
with the B-splines. The integration depth on the cut elements
is set to 0, implying that the the cut elements are directly trian-
gulated and not first partitionedwith a bisectioning operation.
The convergence of the multigrid-preconditioned conjugate
gradient solver with 2, 3, 4 and 5 levels for both bases is
shown in Fig. 18. The obtained numbers of iterations do not
show an effect of the cusps in the geometry, and are similar to
those for the tooth-shaped geometry. Also, the convergence
is again virtually independent of the number of levels in the
multigrid cycle.

Trabecular bone specimen loaded in compression

This third three-dimensional test case considers the challeng-
ing geometry of a μCT-scanned trabecular bone specimen.
This geometry was first presented in [23], and is displayed
in Fig. 19, together with the embedding domain of dimen-
sion (0 mm, 1.28 mm)3. A linear elastic material model is
employed with Young’s modulus E = 10 GPa and Pois-
son’s ratio ν = 0.3. The specimen is compressed with an
average uniaxial compressive strain of 1%, by imposing a
homogeneous Dirichlet condition at the top boundary, and
at the bottom boundary prescribing a normal displacement

of 0.0128 mm while constraining the tangential displace-
ment. These boundary conditions are weakly enforced by
the penalty method with penalty parameters βλ

h = β
μ
h = 2

h .
We consider different grids on the embedding domain

with 323, 643 and 1283 elements. The linear systems derived
from these grids contain, respectively, 182×103, 1.03×106

and 6.65 × 106 DOFs with the quadratic Lagrange bases
and 39.9 × 103, 189 × 103 and 1.05 × 106 DOFs with the
quadratic B-splines. The integration depth is set to 2 for the
grid with 323 elements, 1 for the grid with 643 elements,
and 0 for the grid with 1283 elements. The multigrid cycle
by which the systems are preconditioned applies 2 and 3
levels for the discretizations with 323 elements, 2, 3 and 4
levels for the discretizations with 643 elements, and 2, 3, 4
and 5 levels for the discretizations with 1283 elements. With
these numbers of levels, the preconditioner with the largest
number of levels applies a direct solver to a system derived
from 83 elements for all three grid sizes, similar to the first
example. The convergence of the systems with the different
numbers of levels in the preconditioner is shown in Fig. 20.
It can be observed that the convergence of the systems with
323 elements and 2 levels, 643 elements with 2 and 3 lev-
els, and 1283 elements with 2, 3 and 4 levels is very similar
to that in the previous examples. For this test case, slightly
more iterations are required. This is conjecturally connected
with the complicated multiscale geometry, by which smaller
geometric features are less adequately represented on coarse
meshes. The convergence with the largest number of levels in
the preconditioner, i.e., the preconditioners in which a direct
solver is applied to a systemwith 83 elements, is significantly
slower. This is caused by underresolution and corresponding
nonphysical behavior in the systems with 83 elements, which
was also observed in [23]. Both with the Lagrange and the
B-spline bases, these coarse systems contain basis functions
with a disjoint support in the physical domain, i.e., basis
functions that cover the gap between disconnected parts of
the geometry as e.g., in the circle in Fig. 19a. Physically,
disconnected parts of the geometry should be able to move
freely with respect to each other. When a basis function is
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Fig. 16 Convergence plots of the problems on the tooth-shaped geometry with 403 elements and different discretization orders

supported on both parts, however, these disconnected parts
are artificially coupled in the numericalmodel. This results in
very different stiffness properties between the systems with
a mesh of 83 elements and systems with meshes of 163 ele-
ments and finer. Therefore, the coarse grid corrections with
83 elements do not approximate the smooth eigenmodes of
the finer meshes adequately, which retards the convergence
of the multigrid-preconditioned iterative solver. A similar
effect can be observed in nearly incompressible elasticity,

where the convergence deteriorates when the coarse grids
experience volumetric locking, as in e.g., [100].

To illustrate the artificial coupling, the eigenfunction with
the smallest eigenvalue in the three-level preconditioned sys-
tem with B-splines on a grid of 323 elements is shown in
Fig. 21. This function was obtained by 100 iterations in a
power algorithm, and it is clearly observable that this smallest
preconditioned eigenmode contains peaks in the displace-
ment and stress fields at points where basis functions of the
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Fig. 17 Displacements and
stresses in the geometry with the
shape of an apple. The results
are obtained with a B-spline
basis on a grid of 803 elements

Fig. 18 Convergence of the
problem on the apple-shaped
geometry with a grid of 803

elements and quadratic bases

coarse grid are supported on disconnected parts of the geom-
etry. Such an artificial-coupling mode does not occur if the
system is preconditioned with two levels, i.e., with a direct
solver applied to the system with 163 elements. While the
artificial-coupling effect only moderately increases the num-
ber of iterations in this test case, and the iterative solver still
converges in an acceptable number of iterations, it can not
be ruled out that it can potentially hinder the convergence in
other test cases more severely. Therefore, this effect is inves-
tigated in more detail in the next test case, which presents a
geometry that is specifically designed to study this effect.

Triple helix loaded in compression

This final three-dimensional example is specifically designed
to investigate the effect observed in the trabecular bone
specimen, by which disconnected parts of the domain are
artificially coupled on coarse grids. We consider a dimen-
sionless problem on the geometry in Fig. 22, which consists
of a triple helix that is connected by a half ring at the top and
bottom boundary. The embedding domain again consists of
the cube (−2, 2)3. The helixes are obtained by rotations of
the level set function:

ψ1(x, y, z) = r2inner − (r(x, y) − Router)
2

−
(

z − 2
arctan2(y, x)

π

)2

, (27)

with rinner = 0.25, Router = 1.5, and r(x, y)2 = x2 + y2.
For the half ring at the top and bottom boundary the level set
function:

ψ±
2 (x, y, z) = r2inner − (r − Router)

2 − (z ± 2)2 , (28)

is applied. The Lamé parameters are again set to λ = μ =
103. At the top boundary homogeneous Dirichlet conditions
are imposed, and at the bottom boundary a normal displace-
ment of 0.04 prescribed, resulting in an average compression
of 1%. It should be noted that, as opposed to the bottom
boundary condition on the trabecular bone specimen, the
tangential displacement at the bottom boundary is not con-
strained. The boundary conditions are again weakly imposed
by the penalty method with parameters βλ

h = β
μ
h = 2

h . The
solutionwithB-splines on a gridwith 1283 elements is shown
in Fig. 22.

The embedding domain is discretized with 1283 elements,
yielding 6.96 × 106 and 1.11 × 106 DOFs in the quadratic
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Fig. 19 Solution of the
elasticity problem on the
trabecular bone geometry

Fig. 20 Convergence plots of
the test case on the trabecular
bone specimen
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Fig. 21 Displacement and stress
of the smallest eigenmode of the
three-level preconditioned
system with quadratic B-splines,
formed on a grid of 323

elements. The eigenmode shows
an artificial stress state caused
by a nonphysical coupling
between disconnected parts of
the geometry and the resulting
deformation

Fig. 22 Solution of the
elasticity problem on the
triple-helix-geometry with
B-spline basis functions on a
grid of 1283 elements

Fig. 23 Convergence of the
triple helix geometry with 1283

elements

Lagrange and B-spline bases, respectively. The integration
depth is set to 0, and the preconditioner applies 2, 3, 4 and
5 levels in the V-cycle. The convergence plots are shown
in Fig. 23. It is clearly observable that the convergence is
severely retarded with 5 levels in the preconditioner. This
could be anticipated, because the separation of the helixes is
approximately equal to the mesh size on the coarsest level of

83 elements. Hence, artificial coupling between the helixes
will occur on the coarsest mesh, reducing the effectiveness
of the coarse grid correction. To further illustrate this effect,
Fig. 24 displays the smallest eigenmode in a system with B-
splines on 322 elements that is preconditionedwith 3 levels in
theV-cycle,whichbehaves similarly as it also contains 83 ele-
ments at the coarsest level. This mode is the equivalent of the
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Fig. 24 Smallest eigenmode of
a system with quadratic
B-splines on a grid of 323

elements that is preconditioned
by a V-cycle with 3 levels. The
stress clearly indicates the
artificial coupling that was also
observed in the test case on the
trabecular bone geometry.
Furthermore, it is visible that the
mismatch between the stiffness
properties of the coarsest and
the finer grids yields a smooth
eigenmode that is not captured
by the coarse grid correction

smallest mode with the trabecular bone geometry in Fig. 21,
as both these smallest eigenmodes clearly demonstrate the
aforementioned artificial coupling effect. The preconditioner
with 4 levels—for which approximately 2 elements of the
coarsest level fit between separate helixes—also converges
significantly slower. For the quadratic B-splines that span
3 elements this can obviously be attributed to the artifi-
cial coupling effect. For the Lagrange basis functions that
only span 2 elements, it should be noted that basis functions
covering the gap between a helix and a half ring can still
artificially increase the stiffness of the connection between
these. In the systems preconditioned by a V-cycle with 2 and
3 levels, the coarsest level contains 643 and 323 elements,
respectively, such that the nonphysical coupling effect is not
observed and the convergence is similar to that of the pre-
vious examples. We expect that the observed deterioration
of the convergence behavior can be mitigated by a dedi-
cated coarsening algorithm, which prevents disjoint supports
in coarse basis functions by applying local refinements or
XFEM-type enrichments on the coarse grid. In this regard
the work presented in [75] is noteworthy, since it considers
a multigrid approach in which a similar form of artificial
coupling through a crack on the coarse level is precluded.
Furthermore, it should be noted that this effect will not occur
with an algebraicmultigrid technique (AMG), as a black-box
coarsening algorithmwill not pick up a connectivity between
nonintersecting basis functions on different sides of the gap.

4.2 A level set based topology optimization problem
with truncated hierarchical B-splines

In this example we apply the developed multigrid precondi-
tioning technique to a dimensionless level set based topology
optimization problem, which is inspired by the classical
MBB beam [101]. This test case is of particular interest,

Fig. 25 Design space of 3×1 and boundary conditions of the topology
optimization problem. The vertical displacement is constrained at the
right bottom, and a vertical load is applied at the left top. The horizon-
tal displacement is constrained at the left boundary, which imposes a
symmetry condition, such that the problem setup resembles a simply
supported beam

because it demonstrates the robustness to evolving geome-
tries, and it establishes the suitability to locally refined grids
with truncated hierarchical B-splines. Because this involves
a large number of computations on an evolving geometry,
this numerical experiment is performed in two dimensions
to reduce the computational cost. The design space and
boundary conditions of the optimization problem are shown
in Fig. 25, and samples of the grids and geometries dur-
ing the procedure are presented in Fig. 26. The objective
of the design problem is to minimize the strain energy of
the structure, subject to a volume constraint that restricts the
volume to 30% of the design domain. The level set function
is discretized by linear basis functions, which are smoothed
by a linear filter [102]. To mitigate the dependence of the
optimization results on the initial level set function, a hole
seeding method is used that considers the co-evolution of a
density field [103]. The parameters of the discretized level
set and density fields are treated as optimization variables,
and are updated in the optimization process by the globally
convergent method of moving asymptotes (GCMMA) [104].
This test case is intended to establish that elasticity problems
on these geometries and grids can be robustly solved in an
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Fig. 26 Samples of grids,
geometries and solutions during
the optimization procedure
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Fig. 27 Number of DOFs and
required number of CG
iterations to reduce the residual
by 10−10 during the different
steps of the topology
optimization procedure

iterative manner by means of the developed multigrid pre-
conditioner. This opens the doors to level set based topology
optimization problems beyond the reach of direct solvers.

On the locally refined grids supplied by the topology
optimization procedure, quadratic truncated hierarchical B-
splines are constructed, which are trimmedwith the provided
level set functions. A uniform grid of 60 × 20 elements is
applied in steps 0–49 of the routine, as visible in Fig. 26a, b
and c. In steps 50–124, grids with a single level of hierarchi-
cal refinements are used, see Fig. 26d and e. The refinement
patterns on these grids are determined based on the designs
at iterations 49 (i.e., the final design on the uniform grid), 74
and 99. In steps 125–150, gridswith two levels of hierarchical
refinements are employed. The two-level refinement in steps
125–149 is based on the final design with a single level of
refinements in step 124, and is updated in step 150 based on
the design in step 149. After this mesh update, the topology
optimization algorithm reaches convergence and terminates.
The final design is displayed in Fig. 26f.

For each level set and eachmeshoccurring in the topology-
optimization procedure, we consider a linear elasticity prob-
lem with Lamé parameters λ = μ = 103. The Dirichlet
conditions are weakly imposed by the penalty method, using
the penalty parameters βλ

h = β
μ
h = 4 2

h , with h = 1
20 denot-

ing the unrefined element size and the factor 4 to cover for
the local refinements. The vertical support is applied over
the width of one unrefined element, and the load at the left
top is applied over the same width and has a normal trac-
tion with a magnitude of 20.We apply the conjugate gradient
solver, preconditionedby themultigrid cyclewith the tailored
multiplicative Schwarz smoother. Three levels are applied in
the preconditioner, such that the direct solver is applied to
a coarsest grid of 15 × 5 elements, with a similar pattern
of 0, 1, or 2 levels of local refinements as supplied by the
optimization procedure for that step.

Figure 27 plots the number ofDOFs and the number of CG
iterations during the procedure. The number of DOFs clearly
shows a sharp increase after 50 and 125 iterations, when the
number of local refinement levels is increased. The number of
iterations in Fig. 27b demonstrates that the preconditioning
technique is robust to cut elements, and is not sensitive to
changes in the geometry and topology. It can be observed

Fig. 28 Convergence plot of the samples of the level set based topology
optimization problem with truncated hierarchical B-splines in Fig. 26

that the number of iterations moderately increases from steps
25 and 50 and between steps 50 and 125, as the complexity
of the evolving physical domain increases. Furthermore, the
number of iterations is reduced when more levels of local
refinements are applied. These effects are similar to those
observed in the three-dimensional test cases; since the extra
levels of local refinements are also applied to the coarser
grids, the coarse grid correction terms resolve the smooth
eigenmodes of the finest gridmore accurately, which clarifies
the reduction in the number of iterations. Figure 28 shows
the convergence of the conjugate gradient solver for the same
steps as inFig. 26. It is visible that these systems showslightly
different initial behavior in roughly the first 10 iterations,
and converge with approximately the same convergence rate
after that, indicating that the convergence is only very mildly
affected by the local refinements.

5 Conclusion

This contribution develops a geometric multigrid precon-
ditioner that enables iterative solutions for higher-order
immersed finite element methods at a computational cost
that is linear with the number of degrees of freedom. This
preconditioning technique is robust to the cut elements in
immersed methods, and is applicable to traditional, iso-
geometric, and locally refined discretizations. This is an
improvement with respect to state-of-the-art precondition-
ing techniques for immersed finite element methods and
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immersed isogeometric analysis, as these are either restricted
to linear discretizations [47–49] or provide convergence rates
that are dependent on the grid size [35,50,51].

A spectral analysis of immersed finite element methods
reveals a spectrum that consists of a combination of (i)
generic modes that can also be observed in mesh-fitting
methods and (i i) modes that are characteristic to immersed
finite elements and are only supported on small cut ele-
ments. Furthermore, immersed systems that are treated by
a Schwarz-type preconditioner—with blocks selected such
that the linear dependencies on small cut elements are
resolved—possess essentially identical spectral properties as
mesh-fitting methods. This confirms the observations with
additive Schwarz preconditioners in [50], and opens the door
to the application of the established and highly efficient
framework of multigrid techniques in immersed formula-
tions.

The presented examples convey that the developed multi-
grid preconditioner results in a number of iterations that is (i)
independent of the mesh size, (i i) only very slightly affected
by the number of levels in the multigrid cycle, and (i i i)
only marginally affected by the geometry of the problem.
The computational effort to solve the systems does depend
on the discretization order through the size of the Schwarz
blocks (Lagrange) or the number of colors in the graph color-
ing algorithm and the number of iterations (Splines), which
is in agreement with observations regarding mesh-fitting
approaches in the literature. These observations indicate
that, while the examples in this contribution already con-
tain multi-million degrees of freedom, the preconditioned
iterative solution method enables large-scale computations
with immersed finite element methods. While the presented
results were obtained with a sequential implementation, fur-
ther upscaling of the number of degrees of freedom requires
an efficient parallel implementation, for which the procedure
is suitable.

The numerical results are obtained with a baseline multi-
grid algorithm and relatively straightforward selection of
the Schwarz blocks. While the scaling of the computational
cost is already optimal with respect to the system size, the
framework of multigrid preconditioners with Schwarz-type
smoothers allows for adjustments that can enhance the effi-
ciency even further. First of all, as observed in [69,70,72],
the efficiency of Schwarz-type smoothers in isogeomet-
ric methods is sensitive to the size and the overlap in the
selection of the blocks, and different block selections have
not been investigated in this contribution. Second, smooth-
ing with multiplicative Schwarz is computationally more
expensive than smoothing with additive Schwarz. While
multiplicative Schwarz generally results in superior spec-
tral properties and fewer iterations, a detailed comparison
between these in the context of the overall computational cost
has not been performed. Additionally, alternative smoothing

schemes such as restricted additive Schwarz can be con-
sidered [94,95]. The verification of the stability of such
alternatives in immersed finite element methods does, how-
ever, require further research. Finally, the V-cycle with a
single pre-smoothing and post-smoothing operation is the
simplest symmetric multigrid cycle, and it is anticipated that
improvements of the cycle design are possible.

Another recommendation pertains to the robustness with
respect to the geometrical complexity. Different grid sizes
can yield very different stiffness properties when coarse grid
basis functions cover the gap between disconnected parts of
the geometry, a feature that is a consequence of the geometric
coarsening and would not be present in algebraic multigrid
methods (AMG). This reduces the effectivity of the proposed
geometric multigrid method. This effect can be precluded by
a dedicated coarsening algorithm that identifies coarse grid
basis functions with disjoint supports, and resolves this with
a local refinement or an XFEM-type enrichment.

This contribution only considers symmetric positive defi-
nite problems. Based on the investigation of the conditioning
problems for different partial differential equations in [50],
this is representative for the specific cut-element-related con-
ditioning problems in immersed finite element methods and
immersed isogeometric analysis. While symmetric positive
definite problems cover a large variety of problems in compu-
tational mechanics, the developed preconditioning technique
is not immediately applicable to nonsymmetric and mixed
formulations in, in particular, flow problems. However,
multigridmethods are commonly applied inmesh-fittingflow
problems, see e.g., [60], and have been observed to be effec-
tive with very similar Schwarz (or Vanka [79]) blocks in [71].
Furthermore, it is demonstrated in [50] that Schwarz-type
methods can effectively resolve the cut-element-specific con-
ditioning problems in immersed flow problems. Therefore,
it is anticipated that the developed multigrid preconditioner
extends mutatis mutandis to problems that are not symmetric
positive definite.
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21. Kadapa C, Dettmer W, Perić D (2018) A stabilised immersed
framework on hierarchical B-spline grids for fluid–flexible struc-
ture interaction with solid–solid contact. Comput Methods Appl
Mech Eng 335:472–489

22. Ruess M, Tal D, Trabelsi N, Yosibash Z, Rank E (2012) The
finite cell method for bone simulations: verification and valida-
tion. Biomech Model Mechanobiol 11(3):425–437

23. VerhooselC,VanZwietenG,VanRietbergenB,DeBorstR (2015)
Image-based goal-oriented adaptive isogeometric analysis with
application to the micro-mechanical modeling of trabecular bone.
Comput Methods Appl Mech Eng 284:138–164

24. Elhaddad M, Zander N, Bog T, Kudela L, Kollmannsberger S,
Kirschke J, BaumT,RuessM,RankE (2017)Multi-level hp-finite
cell method for embedded interface problems with application in
biomechanics. Int J Numer Methods Biomed Eng 34(4):e2951

25. Duczek S, Berger H, Gabbert U (2015) The finite pore method:
a new approach to evaluate gas pores in cast parts by combining
computed tomography and the finite cell method. Int J Cast Met
Res 28(4):221–228

26. Würkner M, Duczek S, Berger H, Köppe H, Gabbert U (2018) A
software platform for the analysis of porous die-cast parts using
the finite cell method. Springer, Berlin, pp 327–341

27. Hoang T, Verhoosel CCV, Qin C-Z, Auricchio F, Reali A,
van Brummelen E (2019) Skeleton-stabilized immersogeomet-
ric analysis for incompressible viscous flow problems. Comput
Methods Appl Mech Eng 344:421–450

28. Parvizian J,DüsterA,RankE (2012)Topology optimization using
the finite cell method. Optim Eng 13(1):57–78

29. van Dijk N, Maute K, Langelaar M, van Keulen F (2013) Level-
set methods for structural topology optimization: a review. Struct
Multidiscip Optim 48(3):437–472

30. Nadal E, Ródenas JJ, Albelda J, Tur M, Tarancón JE, Fuenmayor
FJ (2013) Efficient finite element methodology based on cartesian
grids: application to structural shape optimization. Abstr Appl
Anal 2013:953786. https://doi.org/10.1155/2013/953786

31. Bandara K, Rüberg T, Cirak F (2016) Shape optimisation with
multiresolution subdivision surfaces and immersed finite ele-
ments. Comput Methods Appl Mech Eng 300:510–539

32. Groen J, Langelaar M, Sigmund O, Ruess M (2017) Higher-
order multi-resolution topology optimization using the finite cell
method. Int J Numer Methods Eng 110(10):903–920

33. Villanueva C, Maute K (2017) CutFEM topology optimization
of 3D laminar incompressible flow problems. Comput Methods
Appl Mech Eng 320:444–473

34. Burman E, Elfverson D, Hansbo P, Larson M, Larsson K (2018)
Shape optimization using the cut finite element method. Comput
Methods Appl Mech Eng 328:242–261

35. de Prenter F, Verhoosel C, van Zwieten G, van Brummelen E
(2017) Condition number analysis and preconditioning for the
finite cell method. Comput Methods Appl Mech Eng 316:297–
327

36. Barrett R, Berry M, Chan T, Demmel J, Donato J, Dongarra J,
Eijkhout V, Pozo R, Romine C, van der Vorst H (1994) Templates
for the solution of linear systems: building blocks for iterative
methods. SIAM, Philadelphia

123

https://doi.org/10.1155/2013/953786


Computational Mechanics (2020) 65:807–838 837

37. Burman E (2010) Ghost penalty. CR Math 348(21):1217–1220
38. Höllig K, Reif U, Wipper J (2001) Weighted extended B-spline

approximation of Dirichlet problems. SIAM J Numer Anal
39(2):442–462

39. Höllig K, Apprich C, Streit A (2005) Introduction to the WEB-
method and its applications. Adv Comput Math 23(1):215–237

40. Rüberg T, Cirak F (2012) Subdivision-stabilised immersed B-
spline finite elements for moving boundary flows. Comput Meth-
ods Appl Mech Eng 209:266–283

41. Rüberg T, Cirak F (2014) A fixed-grid B-spline finite element
technique for fluid–structure interaction. Int J Numer Methods
Fluids 74(9):623–660

42. Rüberg T, Cirak F, García-Aznar J (2016) An unstructured
immersed finite element method for nonlinear solid mechanics.
Adv Model Simul Eng Sci 3(1):623–660

43. Marussig B, Zechner J, Beer G, Fries T-P (2017) Stable isoge-
ometric analysis of trimmed geometries. Comput Methods Appl
Mech Eng 316:497–521

44. Badia S, Verdugo F, Martín A (2018) The aggregated unfitted
finite element method for elliptic problems. Comput Methods
Appl Mech Eng 336:533–553

45. Badia S,Martín A, Verdugo F (2018)Mixed aggregated finite ele-
mentmethods for the unfitted discretization of the stokes problem.
SIAM J Sci Comput 40(6):B1541–B1576

46. Marussig B, Hiemstra R, Hughes T (2018) Improved condition-
ing of isogeometric analysis matrices for trimmed geometries.
Comput Methods Appl Mech Eng 334:79–110

47. Lang C, Makhija D, Doostan K, Maute A (2014) A simple and
efficient preconditioning scheme for heaviside enriched XFEM.
Comput Mech 54(5):1357–1374

48. Lehrenfeld C, Reusken A (2017) Optimal preconditioners for
Nitsche-XFEM discretizations of interface problems. Numer
Math 135(2):313–332

49. Badia S, Verdugo F (2018) Robust and scalable domain decompo-
sition solvers for unfitted finite element methods. J Comput Appl
Math 344:740–759

50. de Prenter F, Verhoosel C, van Brummelen E (2019) Precon-
ditioning immersed isogeometric finite element methods with
application to flow problems. Comput Methods Appl Mech Eng
348:604–631

51. Jomo J, de Prenter F, Elhaddad M, D’Angella D, Verhoosel C,
Kollmannsberger S, Kirschke J, Nübel V, vanBrummelen E, Rank
E (2019) Robust and parallel scalable iterative solutions for large-
scale finite cell analyses. Finite Elem Anal Des 163:14–30

52. Saad Y (2003) Iterative methods for sparse linear systems. SIAM,
Philadelphia

53. Johnson C (1987) Numerical solution of partial differential equa-
tions by the finite element method. Cambridge University Press,
Cambridge

54. Arnold D, Falk R, Winther R (2000) Multigrid in H(div) and
H(curl). Numer Math 85(2):197–217

55. Schöberl J, Zulehner W (2003) On Schwarz-type smoothers for
saddle point problems. Numer Math 95(2):377–399

56. Smith B, Bjørstad P, Gropp W (1996) Domain decomposition:
parallel multilevel methods for elliptic partial differential equa-
tions. Cambridge University Press, Cambridge

57. Hackbusch W (1985) Multi-grid methods and applications.
Springer, Berlin

58. Wesseling P (1992) An introduction to multigrid methods. Wiley,
Hoboken

59. Briggs W, Henson V, McCormick S (2000) A multigrid tutorial.
SIAM, Philadelphia

60. Brandt A, Livne O, Techniques Multigrid (1984) Guide with
applications to fluid dynamics, Revised edn. SIAM, Philadelphia,
p 2011

61. Gahalaut K, Kraus J, Tomar S (2013) Multigrid methods for
isogeometric discretization. Comput Methods Appl Mech Eng
253:413–425

62. Buffa A, Harbrecht H, Kunoth A, Sangalli G (2013) BPX-
preconditioning for isogeometric analysis. ComputMethodsAppl
Mech Eng 265:63–70

63. Donatelli M, Garoni C, Manni C, Serra-Capizzano S, Speleers
H (2015) Robust and optimal multi-iterative techniques for
IgA Galerkin linear systems. Comput Methods Appl Mech Eng
284:230–264

64. Donatelli M, Garoni C, Manni C, Serra-Capizzano S, Speleers
H (2017) Symbol-based multigrid methods for Galerkin B-spline
isogeometric analysis. SIAM J Numer Anal 55(1):31–62

65. Hofreither C, Takacs S (2017) Robust multigrid for isogeometric
analysis based on stable splittings of spline spaces. SIAMJNumer
Anal 55(4):2004–2024

66. Hofreither C, Takacs S, Zulehner W (2017) A robust multigrid
method for Isogeometric analysis in two dimensions using bound-
ary correction. Comput Methods Appl Mech Eng 316:22–42

67. Takacs S (2018) Robust approximation error estimates and multi-
grid solvers for isogeometric multi-patch discretizations. Math
Models Methods Appl Sci 28(10):1899–1928

68. Sogn J, Takacs S (2019) Robust multigrid solvers for the bihar-
monic problem in isogeometric analysis. Comput Math Appl
77(1):105–124

69. Beirão DaVeiga L, ChoD, Pavarino L, Scacchi S (2012) Overlap-
ping Schwarz methods for isogeometric analysis. SIAM J Numer
Anal 50(3):1394–1416

70. Beirão Da Veiga L, Cho D, Pavarino L, Scacchi S (2013) Iso-
geometric Schwarz preconditioners for linear elasticity systems.
Comput Methods Appl Mech Eng 253:439–454

71. Coley C, Benzaken J, Evans J (2018) A geometric multigrid
method for isogeometric compatible discretizations of the gener-
alized Stokes and Oseen problems. Numer Linear Algebra Appl
25(3):e2145

72. de la Riva A, Rodrigo C, Gaspar F (2018) An efficient multigrid
solver for isogeometric analysis. arXiv:1806.05848 [math.NA]

73. Hofreither C, Jüttler B, Kiss G, Zulehner W (2016) Multigrid
methods for isogeometric analysis with THB-splines. Comput
Methods Appl Mech Eng 308:96–112

74. Berger-Vergiat L, Waisman H, Hiriyur B, Tuminaro R, Keyes D
(2012) Inexact Schwarz-algebraic multigrid preconditioners for
crack problems modeled by extended finite element methods. Int
J Numer Methods Eng 90(3):311–328

75. Hiriyur B, Tuminaro R,Waisman H, Boman E, Keyes D (2012) A
quasi-algebraic multigrid approach to fracture problems based on
extended finite elements. SIAM J Sci Comput 34(2):A603–A626

76. Nüssing A (2018) Fitted and unitted finite element methods for
solving the EEG forward problem. Ph.D. thesis, University of
Münster

77. Ludescher T, Gross S, Reusken A (2018) A multigrid method for
unfitted finite element discretizations of elliptic interface prob-
lems. arXiv:1807.10196 [math.NA]

78. Verdugo F, Martín A, Badia S (2019) Distributed-memory par-
allelization of the aggregated unfitted finite element method.
Comput Methods Appl Mech Eng 357:112583

79. Vanka S (1986) Block-implicit multigrid solution of Navier–
Stokes equations in primitive variables. J Comput Phys
65(1):138–158

80. LehrenfeldC (2016)High order unfittedfinite elementmethods on
level set domains using isoparametric mappings. Comput Meth-
ods Appl Mech Eng 300:716–733

81. Nitsche J (1971) Über ein Variationsprinzip zur Lösung von
Dirichlet-Problemen bei Verwendung von Teilräumen die keinen
Randbedingungen unterworfen sind. In: Abhandlungen aus dem
mathematischen Seminar der Universität Hamburg, pp 9–15

123

http://arxiv.org/abs/1806.05848
http://arxiv.org/abs/1807.10196


838 Computational Mechanics (2020) 65:807–838

82. Embar A, Dolbow J, Harari I (2010) Imposing Dirichlet boundary
conditionswithNitsche’smethod and spline basedfinite elements.
Int J Numer Methods Eng 83(7):877–898

83. Prenter P (1975) Splines and variationalmethods.Wiley,Hoboken
84. Cottrell J, Hughes T, Bazilevs Y (2009) Isogeometric analysis:

toward integration of CAD and FEA. Wiley, Hoboken
85. Giannelli C, Jüttler B, Speleers H (2012) THB-splines: the trun-

cated basis for hierarchical splines. Comput Aided Geom Des
29(7):485–498

86. BraccoC,BuffaA,GiannelliC,VazquezR (2019)Adaptive isoge-
ometric methods with hierarchical splines: an overview. Discrete
Contin Dyn Syst 39(1):241–261

87. GreenbaumA (1997) Iterativemethods for solving linear systems.
SIAM, Philadelphia

88. TrottenbergU,OosterleeC, SchüllerA (2000)Multigrid. Elsevier,
Amsterdam

89. Bramble J, Pasciak J, Xu J (1991) The analysis of multigrid algo-
rithms with nonnested spaces or noninherited quadratic forms.
Math Comput 56(193):1–34

90. Gopalakrishnan J, Kanschat G (2003) A multilevel discontinuous
Galerkin method. Numer Math 95(3):527–550

91. Harari I, Albocher U (2018) Spectral investigations of Nitsche’s
method. Finite Elem Anal Des 145:20–31

92. Adams M, Brezina M, Hu J, Tuminaro R (2003) Parallel multi-
grid smoothing: polynomial versus Gauss–Seidel. J Comput Phys
188(2):593–610

93. Toselli A, Widlund O (2005) Domain decomposition methods:
algorithms and theory. Springer, Berlin

94. Cai X, Sarkis M (1999) A restricted additive Schwarz precon-
ditioner for general sparse linear systems. SIAM J Sci Comput
21(2):792–797

95. Frommer A, Szyld D (2001) An algebraic convergence theory for
restricted additive Schwarz methods using weighted max norms.
SIAM J Numer Anal 39(2):463–479

96. van Zwieten G, van Zwieten J, Verhoosel C, Fonn E, Hoitinga W
(2018) Nutils v3.0. https://doi.org/10.5281/zenodo.1405137

97. Tielen R, Möller M, Vuik C (2018) Efficient multigrid based
solvers for isogeometric analysis. In: Proceedings of the 6th
European conference on computational mechanics and the 7th
European conference on computational fluid dynamics

98. Tielen R, Möller M, Göddeke D, Vuik C (2019) Efficient p-
multigrid methods for isogeometric analysis. arXiv:1901.01685
[math.NA]

99. Yserentant H (1986) The convergence of multilevel methods for
solving finite-element equations in the presence of singularities.
Math Comput 47(176):399–409

100. Wieners C (2000) Robust multigrid methods for nearly incom-
pressible elasticity. Computing 64(4):289–306

101. Olhoff N, Bendsøe M, Rasmussen J (1991) On CAD-integrated
structural topology and design optimization. Comput Methods
Appl Mech Eng 89(1):259–279

102. Kreissl S,MauteK (2012) Levelset based fluid topology optimiza-
tion using the extended finite element method. Struct Multidiscip
Optim 46(3):311–326

103. De S,Hampton J,MauteK,DoostanA (2019) Topology optimiza-
tion under uncertainty using a stochastic gradient-based approach.
arXiv:1902.04562 [math.OC]

104. Svanberg K (2002) A class of globally convergent optimization
methods based on conservative convex separable approximations.
SIAM J Optim 12(2):555–573

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.5281/zenodo.1405137
http://arxiv.org/abs/1901.01685
http://arxiv.org/abs/1902.04562

	Multigrid solvers for immersed finite element methods and immersed isogeometric analysis
	Abstract
	1 Introduction
	2 Immersed finite element formulation
	3 Multigrid methods for immersed finite element methods
	3.1 Conditioning aspects of immersed finite element methods
	3.2 Multigrid V-cycle algorithm
	3.3 Restriction, prolongation, and coarse grid correction
	3.4 Smoothers for immersed finite element methods
	Gauss–Seidel
	Additive Schwarz
	Multiplicative Schwarz


	4 Numerical examples
	4.1 Linear elasticity problems
	Tooth-shaped geometry subject to a distributed traction
	Apple-shaped geometry subject to a gravitational load
	Trabecular bone specimen loaded in compression
	Triple helix loaded in compression

	4.2 A level set based topology optimization problem with truncated hierarchical B-splines

	5 Conclusion
	Acknowledgements
	References




