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Abstract
Understanding the failure of brittle heterogeneous materials is essential in many applications. Heterogeneities in material
properties are frequently modeled through random fields, which typically induces the need to solve finite element problems
for a large number of realizations. In this context, we make use of reduced order modeling to solve these problems at an
affordable computational cost. This paper proposes a reduced ordermodeling framework to predict crack propagation in brittle
materials with random heterogeneities. The framework is based on a combination of the Proper Generalized Decomposition
(PGD) method with Griffith’s global energy criterion. The PGD framework provides an explicit parametric solution for
the physical response of the system. We illustrate that a non-intrusive sampling-based technique can be applied as a post-
processing operation on the explicit solution provided by PGD.We first validate the framework using a global energy approach
on a deterministic two-dimensional linear elastic fracture mechanics benchmark. Subsequently, we apply the reduced order
modeling approach to a stochastic fracture propagation problem.

Keywords Brittle fracture · Crack propagation · Model order reduction · Proper Generalized Decomposition · Random
fields · Monte Carlo method

1 Introduction

One of the important goals in engineering design is to avoid
catastrophic failure. Besides, in many applications, it is often
crucial to understand the failure processes. To realistically
model failure processes in engineering systems it is often
essential to study the impact of uncertainties in the system
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parameters, such as loading conditions, specimen geometry,
material properties, etc. Taking into account such uncertain-
ties in an analysis typically implies that the number of times
that a solution must be computed increases rapidly with an
increase in the number of uncertain parameters. The use of
reduced order models is then indispensable as these make it
practical to solve the problem for many parameter realiza-
tions at an affordable computational effort.

While Reduced Order Modeling (ROM) is a well-estab-
lished concept in the field of linear elastic solid mechanics
[4,6,19], its application to fracture mechanics problems has
remained essentially unexplored, with Ref. [25] providing a
notable exception. In the present work, a new ROM tech-
nique for fracture propagation is presented which allows
failure to be studied as a post-processing operation of a
parameterized solution that incorporates varying loads, crack
lengths and material uncertainties. We propose a parame-
terization of the crack on the one hand, and a method to
take into account the fracture propagation criterion in the
reduced order model setting on the other hand. Furthermore,
we extend the framework to include random heterogeneities
in the material properties.
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The reduction method of choice in this work is the
Proper Generalized Decomposition (PGD) method, which is
a reduced order modeling technique specifically designed to
counter the curse of dimensionality induced by the increase in
system parameters to be considered in an analysis [10]. The
key idea of the PGD technique is to represent the general-
ized solution in thewhole computational vademecum [28,31]
(i.e., the high-dimensional parameter space) as a finite sum
of terms that involve the product of functions of the system
parameters. The computation of this generalized solution is
referred to as the offline stage. Once the generalized solu-
tion has been obtained, the solution space can be browsed
in a computationally efficient way, making it suitable for
real time computations [8,22]. This evaluation of the solu-
tion space for a particular set of system parameters is referred
to as the online stage.

Our work is based on the concept of linear elastic frac-
ture mechanics (LEFM), which is a frequently used model
for brittle fracture [20]. We consider Griffith’s fracture prop-
agation criterion, which evaluates the stability of a fracture
based on an energy balance between the work done by exter-
nal loads, the elastic energy stored within the system, and
the energy dissipated through the fracture surface. Griffith’s
theory in its basic form is restricted to elastic brittle materials
in which there is no plastic deformation near the crack tip.
The simulation of fracture evolution in the LEFM frame-
work typically involves a stepwise incrementation of the
crack path based on the evaluation of the fracture criterion,
which implies that a linear elasticity problem (with a tip
singularity) must be solved at each step in the propagation
process. This finite element procedure is typically compu-
tationally expensive because, on account of accuracy and
stability requirements, the crack length incrementsmust gen-
erally be small, and because some form of mesh adaptation
is required to accommodate changes in fracture geometry.
The PGD approach in this work conveniently bypasses these
problems, as the fracture length is considered as one of the
coordinates of the obtained parametric solution, and differen-
tiation with respect to the fracture length provides a suitable
propagation measure in the form of the energy release rate at
all configurations in the parametric domain.

This paper is organized as follows. The model problem
considered in this work is introduced in Sect. 2. Section 3
demonstrates how a separable form of the problem can be
obtained in regard to the fracture length, which is a pre-
requisite for the application of the PGD method discussed
in Sect. 4. We herein adapt the PGD formulation to solve
a linear system of equations, which we refer to as the PGD
solver [27]. Sect. 5 studies the accuracy of the fracture length
parametrization in the setting of a stationary fracture. Sec-
tion 6 then describes the application of the PGD framework
to Griffith’s fracture model, along with the consideration of
an LEFM benchmark test case [26]. Section 7 then presents

an application in the stochastic setting, where we use the
Karhunen-Loève expansion [15,23] to discretize random
field material properties. A Monte Carlo based stochastic
analysis is then performed that demonstrates the efficiency
of the PGD framework. Conclusions are presented in Sect. 8.

2 Model fracture problem

As a model problem we consider a straight fracture in a
homogeneous linear elastic two-dimensional (d = 2) con-
tinuum, see Fig. 1. The crack propagates in response to an
external traction imposed on the system. Inertia, gravity and
body forces are neglected. Assuming small deformations and
deformation gradients, along with plane strain assumptions,
the solid deformation is governed by the momentum balance

∇ · σ = 0 in �,

where theCauchy stress,σ , followsHooke’s law for isotropic
materials

σ = 2μ ε + λ tr(ε) I,

ε = ∇su = 1

2
(∇u + (∇u)T),

(1)

where u = (ux , uy) denotes the displacement field, and ε the
infinitesimal strain field. The Lamé parameters μ and λ are
directly related to the Young’s modulus, E , and Poisson’s
ratio, ν. Exploiting the symmetry of the two-dimensional
model, the boundary conditions are given by

σn = t on �top,

σn = 0 on �right ∪ �crack,

u · n = 0 on �bottom ∪ �left,

σn × n = 0 on �bottom ∪ �left,

where n is the outward pointing normal vector and t is the
imposed boundary traction.

Defining the function space for the vector-valued displace-
ment field as

V := {u ∈ [H1(�)]d : u · n = 0 on �bottom ∪ �left},

the weak form of the problem reads as follows:

{
find u ∈ V such that,

a(u, v) = �(v) ∀v ∈ V.
(2)

The bilinear and linear operators in (2) are defined as,

a(u, v) :=
∫

�

∇v : C : ∇su d� and �(v) :=
∫

�top

v · t d�
(3)
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Fig. 1 Setup of the model
fracture problem. Note that the
computational domain, �, is
taken as a quarter of the
specimen because of symmetry
conditions

where C is the fourth-order elasticity tensor in accordance
with Hooke’s law (1), i.e., σ = C : ε.

The finite element discretization of the displacement field
is given by

u(x) =
n∑

i=1

Ni (x)ûi , (4)

where {Ni (x)}ni=1 denotes the set of n vector-valued finite
element basis functions that conform to the space V , and
{ûi }ni=1 are the corresponding coefficients. Discretization of
the weak problem (2) then yields the linear system of equa-
tions

Kû = f, (5)

where the vector û = (û1, . . . , ûn) contains the solution
coefficients, and the coefficients of the stiffness matrix K
and load vector f are given by:

Ki j = a(Ni ,N j ), fi = �(Ni ). (6)

Evidently, the finite element problem (5) depends on the
parameters of the model. In the case that one is interested in
a single parameter configuration, this would simply require
the assembly of the finite element system for that particular
setting, and then to solve that system to find the approximate
solution. In the context of this work, however, the central idea
is that the system (5) must be assembled and solved for many
different parameters. To this end,we introduce the parametric
solution to the problem, u(x;μ), where the (scalar) problem

parameters μ = (μ1, . . . , μnμ) are defined over the param-
eter domains Iμ = Iμ1 × · · · × Iμnμ

.
The pivotal idea of the PGD method is to attain u(x;μ)

as the solution to a problem posed on the higher-dimensional
domain �×Iμ, the spatial semi-discretization of which can
be written as:

K(μ)û(μ) = f(μ) ∀μ ∈ Iμ. (7)

The general PGD strategy to obtaining this solution is
to formulate a higher-dimensional weak form problem
corresponding to (2), and then to discretize this higher-
dimensional problem in space and in the parametric dimen-
sions; see, e.g., [9,10] for the fundamentals of PGD. An
essential aspect of the PGD framework is that in order to
efficiently compute the parametric solution, a separable form
of the weak form problem (or its discrete version) must be
available. With respect to the spatially discretized system (5)
this means that the stiffness matrix and force vector should
be of the form,

K(μ) =
nk∑
i=1

Ki
nμ∏
j=1

φi
j (μ j ), (8a)

f(μ) =
n f∑
i=1

f i
nμ∏
j=1

ψ i
j (μ j ), (8b)

where nk and n f denote the total number of terms needed
to represent the parametric stiffness matrix and parametric
force vector, respectively. Note that when these affine repre-
sentations are not available, it is possible to construct affine
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Fig. 2 Mapping from a unit
reference domain �ref with a
fracture of length 0.5 to the
physical domain � with variable
fracture length lc

separable forms that approximate the stiffness matrix and
force vector.

A non-standard aspect in relation to the fracture problem
considered in this work, is that the crack length parameter,
lc, enters the problem through the definition of the domain.
As a consequence, the separable forms (8), with lc as one of
the parameters, will not follow naturally from (5). Obtaining
separable forms instead requires recasting of the formulation
in a canonical form through a pull back of the problem to a
reference configuration. This reformulation of the problem
is considered in the next section.

3 Fracture length parametrization

In this section we consider the parametrization of the system
of equations with respect to the fracture length, lc ∈ Ilc =
[lmin
c , lmax

c ]. For the sake of simplicity, we here consider this
fracture length to be the only parameter, such that (8) reduces
to:

K(lc) =
nk∑
i=1

Ki φi (lc) and f(lc) =
n f∑
i=1

f i ψ i (lc). (9)

The matrices Ki and the vectors f i do not depend on the
parameter lc, and the functions φi (lc) and ψ i (lc) depend on
the parameter only.

In order to determine the parametric forms in (9), a ref-
erence domain and a mapping function are introduced as
illustrated in Fig. 2. The mapping function, M : �ref → �,
which depends on the parameter lc, transforms the parameter-
independent reference domain, �ref � X = (X ,Y ), into a
physical domain, Ω � x = (x, y), where the length of the
crack is equal to lc. Through this mapping, the crack length
can be described by applying the corresponding mapping to
the reference domain. We here consider the following choice
for the mapping x = M(X, lc):

x =
{
2 lc X for X ≤ 0.5,

Hx + 2(Hx − lc)(X − 1) for X > 0.5,

y = Hy Y .

(10)

The Jacobian of this mapping follows as:

J(X; lc) = ∂x
∂X

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
2lc 0

0 Hy

]
X ≤ 0.5,

[
2(Hx − lc) 0

0 Hy

]
X > 0.5.

(11)

The inverse of this Jacobian can be obtained analytically and
allows for an exact separable representation as the sum of
products of matrices that do not depend on the parameter lc
and functions that depend only on that parameter:

J−1(X; lc) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
0 0

0 1
Hy

]
+ 1

lc

[
1
2 0

0 0

]
for X ≤ 0.5,

[
0 0

0 1
Hy

]
+ 1

(Hx−lc)

[
1
2 0

0 0

]
for X > 0.5.

(12)

A separable form of the determinant of the Jacobian can
similarly be obtained:

det J(X; lc) =
{
2Hylc for X ≤ 0.5,

2Hy(Hx − lc) for X > 0.5.
(13)

The matrix and vector components in Eq. (6) can now be
transformed via the mappingM(X, lc) into equivalent inte-
grals over the reference domain as

Ki j =
∫

�ref
J−1∇Ni : C : J−1∇sN j det (J) d�ref, (14a)

fi =
∫

�ref
top

Ni · (t ◦ M)
∂x

∂X
(X; lc) d�ref , (14b)

where use has been made of the operators defined in (3),
and where �ref

top = [0, 1] is the top boundary of the refer-
ence domain. The basis functions N here are defined over
the reference domain. Note that the mapping function affects

123



Computational Mechanics (2020) 65:451–473 455

Fig. 3 Schematic representation
of the finite element mesh
constructed over the reference
domain. The crack tip coincides
with a mesh line in the X
direction by virtue of the fact
that an even number of elements
is used in that direction. The
mapping onto the physical
domain results in non-uniformly
spaced elements in the physical
mesh

the entire domain and that therefore the traction at the top
boundary needs to be mapped onto the reference domain to
be integrated via the surface measure d� = ∂x(X;lc)

∂X d�ref .
The linear system of equations corresponding to (14) is

discretized using a finite element mesh constructed over the
reference domain �ref. A regular, uniformly spaced, mesh is
used, with an even number of elements in each direction (see
Fig. 3). As a result, the boundary at X = 0.5, across which
the mapping function (10) is non-smooth, coincides with an
element boundary. This has been found to be advantageous
from an implementation point of view, as an element is either
completely in the left side of the reference domain, �ref

left =
{X ∈ �ref | X ≤ 0.5}, or completely in the right side of
the reference domain, �ref

right = {X ∈ �ref | X > 0.5}.
Although this particular choice of the reference-domainmesh
is favorable from the vantage point of implementation and
accuracy, the methodology presented herein is not restricted
to this choice of the mesh, and could equally well be applied
to unstructured meshes.

A fundamental difference between the finite element
discretization over the reference grid, Eq. (14), and the sys-
tem obtained using a direct discretization over the physical
domain, equation (6), is that the crack length parameter in
(14) appears inside the integrands of the matrix components,
and not in the domain boundary (and constraints) definitions.
This makes it possible to obtain the separable forms of the
stiffness matrix and force vector required for the PGD frame-
work.

Substitution of the definitions of the inverse Jacobian (12),
and the determinant of the Jacobian (13) into Eq. (14) yields
a system of the form (9). From this substitution it directly
follows that the separable form of the stiffness matrix is com-
posed of nk = 4 parametric basis functions:

φ1(lc) = 1,

φ2(lc) = lc,

φ3(lc) = 1

Hx − lc
,

φ4(lc) = 1

lc
. (15)

The corresponding stiffness matrices are obtained as:

K 1
i j =

∫
�ref

[
Hy 0
0 0

]
∇Ni : C :

[
0 0
0 2

]
∇sN j d�

ref, (16a)

K 2
i j =

∫
�ref

[
0 0
0 2

]
∇Ni : C :

[
0 0
0 2

]
∇sN j d�

ref, (16b)

K 3
i j =

∫
�ref
left

[
Hy 0
0 0

]
∇Ni : C :

[
Hy 0
0 0

]
∇sN j d�

ref
left, (16c)

K 4
i j =

∫
�ref
right

[
Hy 0
0 0

]
∇Ni : C :

[
Hy 0
0 0

]
∇sN j d�

ref
right.

(16d)

Similarly, n f = 2 parametric shape functions are found for
the force vector:

ψ1(lc) = 1, ψ2(lc) = lc.

The corresponding vector components are found as:

f 1i =
∫

�ref
topright

2Hx Ni · (t ◦ M) d�ref
topright, (17a)

f 2i =
∫

�ref
topleft

2Ni · (t ◦ M) d�ref
topleft

−
∫

�ref
topright

2Ni · (t ◦ M) d�ref
topright. (17b)

The system composed of these separable forms for the stiff-
ness matrix and force vector assumes the canonical form (7).

4 The Proper Generalized Decomposition
(PGD) method

The parametric problem (7) is solved here using the Proper
Generalized Decomposition (PGD) method [2,3,8]. The par-
ticular use of the PGD method considered here follows the
idea presented in [13,27], where the method is applied to a
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discretized (in both space and parametric dimensions) sys-
tem of linear equations. This differs from the standard use of
PGD, where the method is applied to the weak form of the
problem (e.g., [12,24,28,31]).

The separated form of the PGD approximation, ûpgd(μ),
takes a form similar to the separated versions of the stiffness
matrix, K, and external force vector, f , in Eq. (8), viz.:

ûpgd(μ) =
n pgd∑
i=1

ûi
nμ∏
j=1

Gi
j (μ j ) =

n pgd∑
i=1

β i ūi
nμ∏
j=1

Ḡi
j (μ j ),

(18)

where the vectors ûi , for i = 1, . . . , n pgd , are constant vec-
tors of the same size as a standard spatial finite element
solution, and the scalar functions Gi

j (μ j ) are independent of
space with μ1, μ2, . . . , μnμ as parameters and nμ being the
total number of parameters. Note that the parametric func-
tions Gi

j (μ j ) are represented discretely by a nodal vector
associated with a mesh over the parameter domains Iμ j in
accordance with

Gi
j (μ j ) =

m j∑
k=1

Mj,k(μ j )Ĝ
i
j,k, (19)

where {Mj,k}m j
k=1 is the set of linear finite element basis

functions over the parameter domain Iμ j , and where ĝij =
(Ĝi

j,1, . . . , Ĝ
i
j,m j

) is the corresponding vector of coeffi-

cients. In Eq. (18) the vectors ūi and functions Ḡi
j (μ j ) are

the spatial and parametric modes normalized with respect to
the Euclidean norms ‖ûi‖ and ‖ ĝij‖, respectively, such that
the modal amplitudes, β i , are given by:

β i = ‖ûi‖
nμ∏
j=1

‖ ĝij‖. (20)

We employ the PGD solver algorithm as presented in Ref.
[27], the main ingredients of which are:

– The PGD algorithm requires the determination of sep-
arable forms of the stiffness matrix and force vector
as input. As discussed in detail in Sect. 3, the discrete
operatorK(lc) for the parametric problem with the crack
length lc as a parameter admits an exact separable rep-
resentation. This is not generally the case, as we will
discuss, for example, in the stochastic test case con-
sidered in Sect. 7. In situations where the linear system
cannot be separated analytically, it is often replaced by
a separable approximation (e.g., [30,31]). There exist
several methods to compute such separated approxima-
tions. For higher-dimensional parameter domains various

methods have been proposed in the literature, such as: an
approximation based on the PGD concept [14], Singular
Value Decomposition (SVD) type approximations [11],
approximations based on the CANDECOMP/PARAFAC
methods [7,18], and Tucker decomposition type approx-
imations [29]. An overview of these techniques can be
found in, e.g., Ref. [21]. It is noted that in the case of
high-dimensional parameter domains, the computation
of separable forms can be computationally demanding.

– A greedy algorithm [1,8] is used to sequentially compute
the terms to the PGD approximation ûpgd in Eq. (18).
Given the PGD approximation with n pgd −1 terms, here
denoted by

û
n pgd−1
pgd (μ) =

n pgd−1∑
i=1

ûi
nμ∏
j=1

Gi
j (μ j ). (21)

an enrichment term ûn pgd
∏nμ

j=1 G
npgd
j is computed as to

obtain the PGD approximation with n pgd terms:

û
n pgd
pgd (μ) = û

n pgd−1
pgd (μ) + ûn pgd

nμ∏
j=1

G
npgd
j (μ j ). (22)

Each enrichment term is computed one at a time, con-
structing the summation progressively until the conver-
gence criterion

βn pgd

β1 = ‖ûn pgd‖∏nμ

j=1 ‖ ĝn pgd
j ‖

‖û1‖∏nμ

j=1 ‖ ĝ1j‖
≤ εglob, (23)

is met with a user-defined tolerance of εglob. Each step in
the greedy algorithm, i.e., computing each of the enrich-
ment terms, involves the computation of the enrichment
modes in space, ûi in discrete form, and in the parameter
spaces, Gi

j (μ j ). We herein compute these enrichments
iteratively using an alternate direction solver, which is
discussed in detail below.

– An alternating direction solution strategy [9] is used to
compute the enrichment terms ûn pgd

∏nμ

j=1 G
npgd
j . Lever-

aging the separable forms, in this alternating direction
strategy the spatial and parametric directions are treated
sequentially as to reduce the higher-dimensional para-
metric problem to a series of low dimensional problems.
This iterative process is repeated until a fixed point is
reached within a defined tolerance. For the explanation
of this alternating direction strategy we will consider
nμ = 1 with the fracture length μ1 = lc as the only
parameter.
For the alternate direction solution strategy, the paramet-
ric problem (7) is considered in its weighted residual
form:
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∫
Ilc

δv̂(lc)
T
[
K(lc)

(
û
n pgd−1
pgd (lc) + ûn pgd G

npgd
lc

(lc)
)

−f(lc)] dlc = 0 ∀δv̂(lc). (24)

The unknowns in this system are the spatial and paramet-
ric enrichment modes, ûn pgd and G

npgd
lc

(lc), respectively.
The corresponding test functions are defined as:

δv̂(lc) = δ
(
ûn pgd G

npgd
lc

(lc)
)

= δûn pgd G
npgd
lc

(lc)

+ûn pgd δG
npgd
lc

(lc). (25)

In the alternate direction strategy, the system (24) is
solved per spatial or parametric dimension:

– Given an approximation (or initial guess) for the
parametric enrichment mode G

npgd
lc

, the system (24)
reduces to the linear system:

∫
Ilc

G
npgd
lc

(lc)
[
K(lc)

(
û
n pgd−1
pgd (lc) + ûn pgd G

npgd
lc

(lc)
)

−f(lc)] dlc = 0. (26)

Using the separable forms for the stiffness matrix
and force vector in equation (9), this system can be
rewritten as

[ nk∑
i=1

Ki
∫
Ilc

G
npgd
lc

(lc)φ
i (lc)G

npgd
lc

(lc)dlc

]
ûn pgd

=
n f∑
i=1

f i
∫
Ilc

G
npgd
lc

(lc)ψ
i (lc)dlc

−
nk∑
i=1

Ki
∫
Ilc

G
npgd
lc

(lc)φ
i (lc)û

n pgd−1
pgd (lc)dlc.

(27)

with nk = 4 and n f = 2. An essential idea of the
PGD method is that the parametric integrals in this
equation can be evaluated efficiently on account of
the fact that these are low-dimensional integrals (in
this particular case one-dimensional). We herein use
a standard trapezoidal integration rule for the evalu-
ation of these integrals.

– Given the spatial enrichment mode ûn pgd computed
through the system (27), the parametric enrichment
mode G

npgd
lc

can be obtained from the system (24).

From (24) it follows that for all δG
npgd
lc

(lc):

∫
Ilc

δG
npgd
lc

(lc)
[(
ûn pgd

)TK(lc)
(
û
n pgd−1
pgd (lc)

+ûn pgd G
npgd
lc

(lc)
)

− f(lc)
]
dlc = 0.

(28)

Equivalently, it holds that for each fracture length lc[(
ûn pgd

)TK(lc)
(
û
n pgd−1
pgd (lc)

+ûn pgd G
npgd
lc

(lc)
)

− f(lc)
]

= 0,
(29)

from which the parametric enrichment mode follows
directly as:

G
npgd
lc

(lc) =
(
ûn pgd

)T (f(lc) − K(lc)û
n pgd−1
pgd

)
∥∥ûn pgd

∥∥2 . (30)

Substitution of the separable forms for the stiffness
matrix and force vector then finally yields:

G
npgd
lc

(lc)

=
(
ûn pgd

)T (∑n f
i=1 f

iψ j (lc) −∑nk
i=1 φi (lc)Ki û

n pgd−1
pgd

)
∥∥ûn pgd

∥∥2 .

(31)

This expression for the parametric enrichment mode
can be evaluated quickly by virtue of the fact that
the dimensions are separated in the sense that it is
not required to reassemble the finite element system
for each fracture length. The parametric enrichment
mode is represented discretely by projection onto the
parametric basis in Eq. (19). Since this discretiza-
tion pertains to a linear finite element basis, the
coefficients ĝ

n pgd
lc

can be computed by evaluation of
Eq. (31) in the parametric nodes.

The above alternate direction steps are repeated until
the relative difference between two successive steps is
smaller than a prescribed tolerance, εlocal ,

∥∥∥∥ ûn pgd G
npgd
lc

(lc)
∣∣∣
i ter+1

− ûn pgd G
npgd
lc

(lc)
∣∣∣
i ter

∥∥∥∥∥∥∥∥ ûn pgd G
npgd
lc

(lc)
∣∣∣
i ter+1

∥∥∥∥
< εlocal ,

(32)

with the subscript i ter denoting the alternate direction
step, and with the norms defined as:

∥∥∥ûn pgd G
npgd
lc

(lc)
∥∥∥ = ∥∥ûn pgd

∥∥ ∫
Ilc

|Gnpgd
lc

(lc)|dlc. (33)

5 Numerical analysis of the PGD
approximation behavior

Before considering the application of the PGD framework to
fracture problems, in this section we first present a numerical
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Table 1 Convergence study parameter settings

Domain width Hx 4 m

Domain height Hy 4 m

Young’s modulus E 1 GPa

Poisson ratio ν 0.1

Traction on top boundary t (0, 100) MPa

Parameter domain Ilc [1,3] m

Enrichment tolerance εglob 10−3

Fixed-point tolerance εlocal 10−6

study on the approximation properties of the PGD expan-
sion introduced above.We specifically study the convergence
behavior of the approximation under finite element mesh
refinement, and the approximation behavior with respect to
the number of PGD terms, n pgd . All results presented in this
section are based on the consideration of the fracture length,
lc, as the single quantity to be parametrized. Table 1 lists all
parameters that are fixed throughout this section.

In the setting considered here, the separable form derived
in Sect. 3 is exact up to integration accuracy. Since the inte-
grals are herein evaluated with Gauss schemes of sufficiently
high degree, the separable forms are accurate up to floating
point precision. In general, however, the separable form (9)
is not exact, as we will consider, for example, in the context
of the stochastic analysis presented in Sect. 7. An important
first step in studying the approximation behavior of the PGD
approximation is then to study the accuracy of the separable
form (9). This accuracy can be assessed by comparison of
the matrix and right hand side obtained through the separa-
ble form (9) with their corresponding original finite element
counterparts. Evidently, one has to perform this accuracy
assessment in such away that the parameter variations admit-
ted by the PGD expansion are properly taken into account.

5.1 Spatial mesh size dependence

We first study the dependence of the PGD approximation
(18) on the spatial finite element mesh size parameter, h,
defined as the average element size in horizontal direction
(h = Hx/nelems,x ). For the discretization of the parameter
domain, Ilc , we consider 136 elements, and we use the PGD
solver presented above to obtain an expansion comprising
n pgd = 10 terms. In Fig. 13 the various components of this
expansion are illustrated, viz. (a) the spatial modes ûi , (b)
the parameter modes Gi

lc
(lc), and (c) the amplitudes β i . The

amplitudes convey that the influence of the modes decreases
significantly for increasing mode numbers, indicating that
the displacement of the system is well characterized in the
considered setting with 10 modes. A detailed study of the
dependence of the PGD approximation on the modes is con-
sidered below (Fig. 4).

To study the approximation behavior of the PGD expan-
sion, we consider the relative energy error with respect to the
original finite element solution:

epgd(lc) =
∥∥ûpgd(lc) − û(lc)

∥∥
K∥∥û(lc)

∥∥
K

,

=
√[

ûpgd(lc) − û(lc)
]TK(lc)

[
ûpgd(lc) − û(lc)

]
√
û(lc)TK(lc)û(lc)

,

(34)

where ûpgd(lc) is the parametric solution provided by PGD
and û(lc) is the solution provided by the direct FE analysis
(5)when the parameter is fixed to the value lc. Note that while
the evaluation of ûpgd(lc) for a certain crack length lc involves
merely the evaluation of the PGDexpansion (18), the compu-
tation of û(lc) involves the assembly and solution of a finite
element system. In addition to the parameter-dependent error
(34) we consider the mean energy error over the parameter
domain:

Epgd = 1

lmax
c − lmin

c

∫
Ilc

epgd(lc) dlc. (35)

In contrast to (34), this error measure provides one scalar
error value for the complete parametric solution and has no
dependency on lc. Figure 5 displays both error measures for
various spatial mesh sizes, h, and a fixed parametric mesh
size hlc ≈ 0.015m. The parameter dependent error (34) dis-
played in Fig. 5a conveys that for a certainmesh size, the error
in the PGD solution is dependent on the crack length. The
reason for this is that the uniformity of the mesh in the phys-
ical domain is affected by the parameter-dependent mapping
function (10), which in general causes the error to increase
when the crack tip position deviates from lc/Hx = 0.5 (i.c.,
lc = 2) provided that the mesh resolution is of sufficient
accuracy. The error epgd(lc) is especially significant at the
boundaries of the parameter domain, Ilc, because at those
points the non-uniformity caused by the mapping onto the
physical domain (see Fig. 3) is largest.

When we compute the mean of the error epgd(lc) over
the complete parameter domain, i.e., error measure (35), we
observe fromFig. 5b that thismean energy error is essentially
independent of themesh size for the finermeshes (h � 0.25).
This conveys that for these meshes the studied error is dom-
inated by the PGD approximation, which is expected, as we
compare the PGD solution with the FE solution on the same
mesh.

To study the mesh size contribution to the PGD approxi-
mation error, in Fig. 6 we display the mean L2 error between
a PGD approximation upgd(x; lc) computedwithmesh size h
and a PGD approximation, u�

pgd(x; lc), with a high resolution
mesh with h� = 0.03125:
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i = 1 i = 2 i = 3

i = 6 i = 7 i = 10

(a) Normalized displacement modes ūi(x) of the PGD expansion. Note that only a selection
of modes is shown.

(b) Normalized parametric modes Ḡi(lc). (c) Modal amplitudes βi.

Fig. 4 The three components of the upgd(lc) solution for n pgd = 10. Only a selection of modes is shown for conciseness. Note that all plotted
functions are normalized

Eh = 1

lmax
c − lmin

c

∫
Ilc

∥∥∥upgd(lc) − u�
pgd(lc)

∥∥∥ dlc. (36)

Both the number of PGD terms and the discretization of the
parametric mesh are identical for both of the compared solu-

tions, so that this error measure pertains to the mesh size
contribution only. For comparison the finite element conver-
gence plots for various settings of the fracture length are
displayed in Fig. 6. This comparison conveys that the PGD
solution converges with the mesh size with the same rate as
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Fig. 5 Energy errors of the PGD approximation with respect to the original finite element solution as defined in Eqs. (34) and (35)

Fig. 6 Convergence of the mean L2 error, Eh of the PGD approxima-
tion (markers) under mesh refinement with respect to the PGD solution
computed with a high resolution spatial mesh (h� = 0.03125). The
convergence results for direct FE analyses with various fracture lengths
(lines) are shown for comparison

the finite element approximation. The observed error offsets
for various settings of the fracture length in the finite ele-
ment simulations are a result of the non-uniformity of the
mesh resulting from the geometric mapping considered in
this work.

In Fig. 7 the mean energy error Epgd is plotted versus the
number of PGD terms, n pgd , for various mesh sizes. The
observed systematic decrease in this error with the increase
in number of terms is as expected, as the PGD approxima-
tion (18) converges toward the finite element solution. The
fluctuations with respect to the mesh size are in agreement
with the errors plotted in Fig. 5.

Fig. 7 Mean energy error for various numbers of PGD modes and
different mesh sizes

5.2 Parametric mesh size dependence

All results presented above were based on a fixed paramet-
ric mesh size of hlc ≈ 0.015 and variations in the spatial
mesh size. We now consider the influence of variations in
the parametric mesh size under a fixed spatial mesh size of
h = 0.0625m.

Figure 8 shows that both the parameter-dependent energy
error (34) and mean energy error (35) are virtually indepen-
dent of the parametric mesh size even on parametric meshes
as coarse as hlc = 0.125m (8 elements). This conveys that,
in the setting considered here, the accuracy is governed by
the number of PGD modes rather than by the resolution of
the parametric mesh.
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Fig. 8 Energy errors of the PGD approximation with respect to the original finite element solution as defined in equations (34) and (36), considering
various parametric mesh sizes

6 Application of the PGD framework to
propagating fractures

In this sectionweapply thePGDframeworkoutlined above to
the simulation of fracture propagation usingGriffith’s energy
criterion [16]. In Sect. 6.1we commencewith the formulation
of the propagation criterion based on the PGD solution. Since
the evolution of the fracture is driven by the external load,
we herein use the PGD framework to compute the parametric
solution with respect to both the fracture length (as already
considered above) and with respect to the external load,

û
n pgd
pgd (lc , λ) =

n pgd∑
i=1

β i ûi Gi
1(lc)G

i
2(λ), (37)

where λ denotes a load scale parameter such that t = λ t̂
with t̂ being a load vector defined as t̂ = (0, 1)MPa. For
simplicity in notation, from hereon we denote ûpgd for û

n pgd
pgd .

The separable forms of the stiffness matrix and force vector
are a straightforward extension of those in Sect. 3 as a conse-
quence of the fact that the external force vector scales linearly
with the load scale λ. As a result, we only have to consider
a single linear parametric shape function for the load scale
parameter for the force vector in Eq. (8b), such that:

ψ1(lc) = λ, ψ2(lc) = λlc.

In Sect. 6.2 we will demonstrate the application of the
PGD framework to a fracture propagation benchmark prob-
lem, where the advantages of the PGD framework become
apparent as it allows for the fast evaluation of the fracture

propagation criterion throughout the evolution process of
the fracture, without the need for solving additional finite
element problems. For all the simulations we assume plane
strain conditions with Young’s modulus E = 2 GPa and the
other input values taken from Table 1. For the parametric
domain of the load scale we use Iλ = [6.25 , 62.5]. Further-
more, we define the resultant force F = ∫

�top
t · n d� as a

quantity of interest, where we assume the specimen to be of
unit thickness.

6.1 The fracture propagation criterion

We consider Griffith’s model [16] for crack propagation in
brittle materials. The conceptual idea of this model is that a
fracture will propagate if the energy stored in the material is
sufficiently large to overcome the fracture energy associated
with the creation of new fracture surface. For linear elastic
materials an equivalent interpretation of this energy-based
model is provided through the concept of stress intensity
factors [5]. In the context of the PGD framework we find the
energyperspectivemost suitable, as it provides the possibility
to evaluate the propagation criterion directly based on the
parametric solution (37).

For a fracture in a given configuration, i.e., with a cer-
tain length lc and a given load scale λ, it can be determined
whether or not the fracture will propagate by evaluation of
the energy release rate. To derive the PGD form of the energy
release rate, we consider the energy of the system:

P(lc, λ) = 1

2
ûpgd(lc, λ)TK(lc)ûpgd(lc, λ)

−ûpgd(lc, λ)Tf(lc, λ). (38)
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The energy release rate is then defined as :

G(lc, λ) = −∂P

∂lc
(lc, λ)

= −∂ûpgd(lc, λ)

∂lc

T

[K(lc)ûpgd(lc, λ) − f(lc, λ)]

= −1

2
ûpgd(lc, λ)T

∂K(lc)

∂lc
ûpgd(lc, λ)

+ ûpgd(lc, λ)T
∂f(lc, λ)

∂lc
.

(39)

When the parametric problem K(lc)(lc, λ)ûpgd ≈ f(lc, λ)

is solved using the PGD solver with sufficient accuracy, i.e.,
with small enough tolerances, the energy release rate is given
by,

G(lc, λ) = −1

2
ûpgd(lc, λ)T

∂K(lc)

∂lc
ûpgd(lc, λ)

+ûpgd(lc, λ)T
∂f(lc, λ)

∂lc
. (40)

According to Griffiths energy balance, a crack will propagate
when the energy release rate surpasses the critical energy
release rate or fracture toughness, Gc, i.e.:

G(lc, λ) ≥ Gc. (41)

This implies that for any crack configuration in the paramet-
ric space, i.e., (lc, λ) ∈ Ilc × Iλ, it can be readily evaluated
whether or not the crack propagates. The PGD expansion
(37) is crucial in this regard as: (i) The expansion allows
for the analytical evaluation of the shape derivatives

(
∂

∂lc

)
in Eq. (40), this in contrast to the traditional FE setting, in
which this derivative is typically evaluated using alternative
techniques (e.g., J -integrals [5]). (ii) Evaluation of the frac-
ture criterion at an arbitrary parametric coordinate is merely
an evaluation of the expansion, and hence, does not require
the solution of an FE model.

6.2 Numerical example: a center-crack under tensile
loading

The numerical example discussed here demonstrates the
PGD-based evaluation of the energy release rate G in two
ways: (i) the energy release rate, G, is used to compute the
stress intensity factor; (ii) PGD is used to mimic the fracture
propagation process while loading the specimen.

6.2.1 Stress intensity factors

As a means to assess the PGD approximation of the energy
release rate, we study the stress intensity factor for a given

fracture length lc, and various ratio’s of horizontal and ver-
tical specimen dimensions, Hx and Hy , respectively. The
results presented in this section consider the parameters
Hx and Hy as additional parameters in the PGD expan-
sion. The separable forms based on these parameters can
be obtained without special treatment, and are omitted here
for the sake of brevity. The stress intensity factor is defined
as

K1(lc, Hx , Hy) =
√
G(lc, Hx , Hy)E ′, (42)

and hence is directly related to the energy release rate (40).
The material parameter E ′ in Eq. (42) is defined as E ′ =
E/(1− ν2) for the plane strain problems considered herein.

Figure 9 shows the dimensionless stress intensity factors
K1/K0 for various parameter configurations, i.e., different
lc/Hx and Hx/Hy (see Ref. [26] for a benchmark result).
Note that the plotted factors are non-dimensionalized using
K0 = (λ t̂ · n)

√
πlc, where λ t̂ · n gives the magnitude of

the applied tensile traction. Figure 9 compares the PGD
results based on the settings mentioned in Table 1 for a
mesh size h = 0.0625m. However, note that this plot of
non-dimensional stress intensity factors is independent of
the input values, i.e., even for different values of geome-
try and load, similar curves for K1/K0 are obtained. This
figure conveys that for the given PGD settings, the stress
intensity factor can be computed accurately using the PGD
expansion (37). While each point in Fig. 9 would typically
represent a finite element simulation in the traditional FEM
setting, in the PGD case these are all mere evaluations of the
expansion.

Fig. 9 Dimensionless stress intensity factors K1/K0 for various crack
lengths in specimens of various dimensions loaded in tension. The solid
lines represent the results computed through the PGD framework, while
the markers indicate the reference values reported in Ref. [26]
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6.2.2 Fracture propagation

Now that we have established that the PGD expansion accu-
rately approximates the stress intensity factor, we will here
use it to predict the evaluation of the loading force under frac-
ture propagation. To this end, we define the energy functional

E(lc, λ) = P(lc, λ) − lcGc, (43)

such thatwe can distinguish between three cases in the energy
landscape over the Ilc × Iλ parameter domain:

1. The region where the crack is stable:

∂E
∂lc

< 0 or G(lc, λ) < Gc.

2. The region where the energy balance is critical:

∂E
∂lc

= 0 or G(lc, λ) = Gc.

3. The unstable propagation region:

∂E
∂lc

> 0 or G(lc, λ) > Gc.

The energy landscape is plotted in Fig. 10a along with the
values indicating the energy in kJ of the system. Note that
plotting this landscape is computationally feasible using the
PGD expansion, but would require a large number of FE
solves in the case of a non-reduced model. The presented
results are based on the assumption of plane strain conditions
withmaterial parameter E ′ = 2.01GPa and the other settings
listed inTable 1with a fracture toughness ofGc = 700kJ/m2,
and with the parameter ranges for lc and λ defined as Ilc =
[1, 3]m and Iλ = [6.25, 62.5] respectively (so the range of
the force F = [25, 250]MN).

For a particular load scale, until the critical point is reached
the crack is stable (green region in Fig. 10a), and beyond the
maximum point the crack is unstable (red region in Fig. 10a).
The critical energy states are connected in the form of a curve
which gives the critical load value for each fracture length.
This curve can be identified in Fig. 10a as the line separating
the green area from the red area. The key insight is to recog-
nize that, for a shorter crack length,which is left of the critical
value point, the total energy (43) of the system increases
with increasing crack length. Therefore, additional energy
must be stored into the material before the crack can propa-
gate, and hence the crack is stable. However, at longer crack
lengths, which is right of the maximum value, an increase
in crack length leads to a decrease in total energy, which
therefore leads to unstable crack propagation. Evidently, the
load-bearing capacity of the specimen decreases as the frac-
ture propagates.

Fig. 10 Representation of the loading and fracture evolution process in
terms of a the energy landscape andb the force-displacement curve. The
elastic loading branch is labeled as I.,whereas the softening/propagation
branch is labeled as II. The observed critical loading force of Fc ≈ 36.3
MN is in agreement with equation (44) and the corresponding stress
intensity factor reported in Fig. 9

A commonway of representing the fracture evolution pro-
cess is by plotting the load versus the average displacement
of the loading boundary, which is depicted in Fig. 10b for
a initial crack length of l0c = 2.495m. Note that the elastic
loading branch (label I. in Fig. 10) corresponds to the region
where the crack is stable, i.e, the force varies with ∂E

∂lc
< 0.

The resultant force at which the crack becomes unstable, i.e.,
when ∂E

∂lc
= 0, is defined as the critical loading force, Fc. This

corresponds to the maximum force in Fig. 10b. This critical
loading force is related to the dimensionless stress intensity
factors of Fig. 9 by:

Fc = K0

K1

Hx
√GcE ′

( t̂ · n)
√

πlc
. (44)
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The softening branch (label II. in Fig. 10) reflects the crit-
ical values in Fig. 10a for lc ≥ l0c . This part of the curve
resembles the unstable propagation part of the process. The
total area under the force displacement curve represents the
energy carried by the system, which, upon complete failure
is equal to the total energy dissipated by the fracturing, i.e.,
Gc(Hx − l0c ). Such force-displacement curves can be plotted
for all l0c ∈ Ilc by virtue of the explicit availability of the
energy functional in (43) in the PGD framework.

7 Application to fracture propagation in
random heterogeneousmaterials

In this section we extend the PGD framework for crack prop-
agation to a stochastic setting. We introduce randomness in
thematerial properties by representation of theYoung’smod-
ulus by a random field Ẽ(x), where the tilde indicates the
randomness. A truncated Karhunen-Loève expansion [15] is
used for the parameterization of the Gaussian field Ẽ(x),
which is defined as

Ẽ(x) = μE +
nkl∑
α=1

√
ξαrα(x)z̃α, (45)

where μE is the stationary mean of the Young’s modulus
and where ξα and rα(x) are the eigenvalues and eigen-
functions corresponding to the spatial covariance function
σ 2
EρE (x1, x2),withσE the stationary standarddeviation.The

autocorrelation function is taken as

ρE (x1, x2) = exp

(
−|x1 − x2|

lE

)
, (46)

where x1 and x2 are two points in the domain and lE
is the correlation length. The nkl Karhunen–Loève modes,
Rα(x) = √

ξαrα (x), in Eq. (45) are scaled by independent
standard normal random variables z̃α .

On account of (45) the Young’s modulus at any fixed
location, Ẽ(x), is normally distributed. The variation σ 2

E
is selected such that physically impossible negative real-
izations are avoided. Although not considered herein, the
PGD framework can be applied without modification to,
e.g., log-normal random fields. It is noted that we herein
construct the random field over the computational domain,
thereby implicitly assuming that the randommaterial proper-
ties adhere to the symmetries of the homogeneous problem.
Preservation of the symmetries is in line with the considered
parametrization of the fracture problem, as non-symmetries
would result in deviations of the fracture path from the x-axis.
Although such variations are evidently physical, considera-
tion of these within the PGD framework is beyond the scope
of this manuscript.

In the context of the stochastic analysis considered here,
we use the PGD framework to compute the parametric solu-
tion with respect to the fracture length, external load, and
with the random variables z̃α that parametrize the random
Young’s modulus field:

ûpgd(lc, λ, z̃) =
n pgd∑
i=1

β i ûi Gi
1(lc)G

i
2(λ)

nkl∏
α=1

Gi
α+2(z̃α).

(47)

A prerequisite to apply our framework is to express the stiff-
ness matrix and force vector also in this separated format.
The separable forms of the stiffness matrix and force vec-
tor required here cannot be obtained in an analytical way
like in Sects. 3 and 6. Therefore, in Sect. 7.1 we first discuss
how the random heterogeneities, which are parametrized by
the random variables z̃, can be expressed in a separable form
for the stiffness matrix numerically. Furthermore, in Sect. 7.2
we outline the computational procedure for a sampling-based
stochastic analysis based on the Monte-Carlo method. This
stochastic analysis is highly efficient as it leverages the PGD
approximation to quickly compute critical force values for
realizations of the heterogeneous field of elastic properties.
Numerical results for the stochastic test case are presented
in Sect. 7.3.

7.1 Separable representation of the random system
of equations

The random field (45) enters the formulation through the
elasticity tensor in the bilinear operator (14a), which, in the
context of the stochastic setting considered here, is expressed
as

C̃(X; lc, z̃) = Ẽ(X; lc, z̃)D

=
(

μE +
nkl∑
α=1

{R ◦ M}α z̃α
)
D, (48)

where the constant tensorD depends on the Poisson ratio and
on the assumed plane strain state. Since the elasticity tensor
is evaluated over the reference domain, the KL modes {R ◦
M}nklα=1 are pulled back to the reference configuration using
the geometric mapping function (10). Since this mapping
function is dependent on the fracture length parameter lc, the
random elasticity tensor (48) also becomes dependent on the
fracture length.

Substitutionof the random tensor (48) intoEq. (14a) yields
a random stiffness matrix of the form

K̃(lc, z̃) = K0(lc) +
nkl∑
α=1

Kα(lc)z̃α, (49)
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with the stiffness matrix contributions defined as

K0,i j =
∫

�ref
J−1∇Ni : [μED] : J−1∇sN j det (J) d�ref,

(50a)

Kα,i j =
∫

�ref
J−1∇Ni : [{R ◦ M}α

] : J−1∇sN j det (J) d�ref,

(50b)

where the index 0 corresponds to the mean contribution, and
the index α = 1, . . . , nkl to the stiffness contributions of the
KL modes.

The separable form (8a) of themean stiffnessmatrix (50a)
is identical to that presented in Eqs. (15) and (16) with the
elasticity tensor set to C = μED, which we denote by

K0(lc) =
nk∑
i=1

Ki
0φ

i (lc). (51)

The derivation of an analytical separable form for the KL
contributions to the stiffness matrix, Eq. (50b), is obstructed
by the appearance of the geometric mapping, M, in the
Karhunen–Loève modes, Ri . A semi-analytical separable
form can, however, be obtained through the singular-value
decomposition of the discretized KL modes. For the con-
struction of this decomposition, we first interpolate the KL
modes on the spatial mesh and crack length parameter
domain mesh used for the PGD approximation as:

Rα(X, lc) ≈
n∑

i=1

m∑
j=1

Ni (X)Mj (lc)Rα,i j . (52)

The coefficients of this interpolation, represented by the
matrix R̂α , are computed using the KL modes constructed
on a significantly refined mesh compared to that used for the
PGD approximation. Since (bi)linear Lagrangian basis func-
tions are used for both the spatial domain and the parameter
domain, the coefficients are determined by evaluation in all
nodal coordinates, (X, lc), in the higher-dimensional param-
eter domain, where the mapping (10) is used to transfer data
between the physical domain and the reference domain. The
interpolation (52) on the mesh used for the PGD approxima-
tion is convenient from an implementation perspective, but
the usage of this specific mesh is not necessary to attain the
separable form of the stiffness matrix.

A separable form of the discrete KL modes (52) is then
obtained through the singular-value decomposition

R̂α,i j =
min(n,m)∑

β=1

σ(α,β)ĥ(α,β),i m̂(α,β), j , (53)

where σ(α,β) is the β-th singular value for KL mode α, and
where ĥ(α,β) and m̂(α,β) are the corresponding spatial and
parametric modal vectors, respectively. For reasons of effi-
ciency this singular-value decomposition is truncated to a
number of terms, nsvd , that is significantly smaller than the
total system size. Substitution of this decomposition into Eq.
(52) then yields the singular-value decomposition for the KL
modal functions,

Rα(X, lc) ≈
nsvd∑
β=1

σ(α,β)h(α,β)(X)m(α,β)(lc), (54)

where the modal functions are defined as

h(α,β)(X) =
n∑

i=1

Ni (X)ĥ(α,β),i , (55a)

m(α,β)(lc) =
m∑
j=1

Mj (lc)m̂(α,β), j . (55b)

The singular value decomposition of the Karhunen–Loève
modes (54) involves two approximations, viz.: (i) an approx-
imation related to the interpolation step (52); and (ii) an
approximation associated with the truncation of the decom-
position (53).

Now thatwe have obtained an approximate separable form
for the KL modes in the form of Eq. (54), separation of the
stiffness matrix follows from substitution of this decompo-
sition into the KL stiffness matrix contributions (50b):

Kα(lc) =
nsvd∑
β=1

σ(α,β)m(α,β)(lc)K(α,β)(lc). (56)

The components of the matrices K(α,β)(lc) are given by:

K(α,β),i j (lc)

=
∫

�ref
J−1∇Ni : [h(α,β)(X)D

] : J−1∇sN j det (J) d�ref.

(57)

Since the spatial modes, h(α,β)(X), are independent of the
parameter lc, the matrices K(α,β) can be separated analo-
gously to the Eqs. (15) and (16) with the elasticity tensor
set to C = Dh(i,β)(X). Similarly to the separable form of
the mean stiffness contribution in Eq. (51), we express this
separable form as:

K(α,β)(lc) =
nk∑
j=1

K j
(α,β)φ

j (lc). (58)
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Substitution of this separable form for the SVD mode β into
Eq. (56) then yields

Kα(lc) =
nsvd∑
β=1

σ(α,β)m(α,β)(lc)
nk∑
j=1

K j
(α,β)φ

j (lc), (59)

with nk = 4 in accordance with Eq. (15). Further substitution
into the expansion of the random stiffness matrix (49) gives:

K̃(lc, z̃) =
nk∑
i=1

×
⎡
⎣Ki

0 +
nkl∑
α=1

nsvd∑
β=1

σ(α,β)m(α,β)(lc)Ki
(α,β) z̃α

⎤
⎦φ j (lc).

(60)

Note that this equation is of the same form as the separable
form (8a), with the parameter functions given by combina-
tions of the functions in (15), the random variables, z̃α , and
the singular-value modes for the length parameter, m(α,β).
From (60) it is observed that the total number of terms in
the separable form is equal to nk(1 + nklnsvd). Since the
stiffness contributions Ki

0 and K
i
(α,β) are independent of the

considered parameters, these can be precomputed. Hence,
construction of the stiffnessmatrix in thePGDsolver requires
evaluation of (60) only, and not the assembly of a finite ele-
ment system.

7.2 Monte Carlo analysis of the critical load

Using the separable form for the stiffnessmatrix as discussed
in Sect. 7.1, the PGD solver discussed in Sect. 4 is used to
attain the PGD solution (47). We here use this parametrized
solution to perform a Monte Carlo simulation to attain the
probability distribution and statistical moments of the criti-
cal loading force for specimens with various initial fracture
lengths.

To construct the PGD solution (47) it is necessary to con-
sider a finite dimensional domain for the random parameters,
z̃, which parametrize the Karhunen–Loève expansion for
the Young’s modulus (45). We herein truncate the random
domain to Iz̃i = [−5, 5] for i = 1, . . . , nkl , based on the
idea that realizations beyond this range are unlikely and will
have a minor effect on the mean and standard deviation of
the critical force. We generate realizations of the uncorre-
lated random variables z̃ using a random number generator,
and we discard realizations outside of the truncated random
domain.

Using the realizations of the random variables z̃ we then
employ Griffith’s fracture model as discussed in Sect. 6 to
compute the corresponding critical forces, Fc. The mean and

standard deviation for the critical force are then obtained as

μFc = 1

nsample

nsample∑
ı=1

Fc,ı ,

σFc =
√√√√ 1

nsample − 1

nsample∑
ı=1

(
Fc,ı − μFc

)2
, (61)

where nsample is the Monte-Carlo sample size.
In a typical FE-based Monte Carlo simulation, evaluation

of the critical loads is computationally demanding, which
practically restricts the sample sizes that can be considered.
Therefore, in such cases, a sample size is selected that strikes
an adequate balance between the confidence level of the
attained statistical moments and the required computational
effort. In the PGD setting considered here, the computational
effort involved in determining the critical force for a given
realization of the random field is negligible compared to the
corresponding full finite element simulation. This allows for
the consideration of sample sizes that are orders of magni-
tude larger than those that could be considered using direct
FE analysis, which in turn enables the computation of the sta-
tistical moments with confidence levels that are practically
beyond the reach of direct FE analyses. Evidently, the selec-
tion of the sample size should be based on a trade-off between
the error in the PGD approximation and the confidence level
of the Monte Carlo method.

7.3 Numerical example: a center-crack under tensile
loading

We consider the same numerical experiment as introduced in
Sect. 6.2 (see Table 1), but now with a random field of elastic
properties. For the randomfield (45)we set themean toμE =
2GPa and the standard deviation as σE = 0.2GPa (a coef-
ficient of variation of 10%). We consider moderate spatial
fluctuations in the random field by selecting the correlation
length in Eq. (46) as lE = 1.5 Hx = 6m. The parameter
domain for the load scale is taken as Iλ = [6.25, 62.5].

We consider a Karhunen–Loève discretization consisting
of nkl = 3 modes, which are shown in Fig. 11. In Fig. 12
we show two realizations of the KL expansion, as well as a
sampling-based reconstruction of the auto-correlation func-
tion (46). On account of the low spatial frequency of the
variations, the KL expansion with only 3 terms is observed
to already appropriately reproduce the auto-correlation func-
tion.

Using the tolerances specified inTable 1, the PGDsolution
(47) is truncated at n pgd = 27 terms. The various compo-
nents of the PGD solution are displayed in Fig. 13. From the
modal amplitudes it can be observed that the PGD approx-
imation based on 27 terms approximates the finite element
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Fig. 11 Karhunen–Loève modes for the Young’s modulus field (45) with nkl = 3

problemwell, in the sense that the amplitudes of even higher-
order modes will be negligible compared to the considered
modes.

Figure 14 displays the probability distribution of the crit-
ical load for various settings of the initial crack length. The
displayed results are based on a sample size of 5000. Note
that for each of the displayed subplots in Fig. 14 a sepa-
rate Monte Carlo simulation is required, which would be
computationally impractical using a direct FE approach. The
efficiency with which realizations can be computed from the
PGD approximation (47) allows us to perform Monte Carlo
analyses for different settings in the parameter space. This
results, for example, in the evaluation of the critical force

versus the initial crack length as displayed in Fig. 15a. The
confidence level of the mean values displayed in this plot is
approximately 98% based on a sample size of 5000 realiza-
tions. Such confidence levels are impractical to obtain using
direct FE Monte Carlo.

Figures 14 and 15 show that the average critical load
bearing capacity decreases with an increase in crack length,
while a decrease in the standard deviation is observed. The
deterministic result is plotted for reference, from which it is
observed that the computed mean is slightly smaller than the
deterministic value. The observed results from the Monte
Carlo simulation are in good agreement with perturbation
analysis results (see [17] for an overview) based on the ana-
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Fig. 12 (a, b) Examples of realizations of the random elasticity field in accordance with (45). c Reconstruction of the auto-correlation kernel (46)

lytical fracture loads for homogeneous specimens, which is
to be expected on account of the considered low spatial fre-
quency of the random input.

TheMonte Carlo analysis allows us to inspect which real-
izations of the input lead to a certain response in terms of
the fracture load. Figure 16 shows three interesting realiza-
tions for the case of an initial crack length of l0c = 1m and a
coefficient of variation of the Young’s modulus of 10%, viz.:

a. The realization closest to the mean fracture load of
77.5MNcorresponds to aYoung’smodulus fieldwhich is
very close to its mean value everywhere in the specimen.

b. The realization with the largest fracture load of 88.5MN
corresponds to a Young’s modulus field which is very

high throughout the specimen (on average approximately
25% higher than its mean value), and is particularly large
near the tip of the initial crack.

c. The realizationwith the smallest fracture load of 66.6MN
corresponds to aYoung’smodulus fieldwhich is very low
throughout the specimen (on average approximately 25%
lower than its mean value), and particularly near the tip.

In the context of the PGD approach employed in this work it
is noted that, in order to inspect these realizations, only the
parameters corresponding to the realization (random vari-
able realizations) have to be stored. The input and output
corresponding to these parameters is generated through post-
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Fig. 13 The seven components
of the upgd(lc, z̃1, z̃2, z̃3, λ)

solution for n pgd = 27. Only a
selection of modes is shown for
conciseness. Note that all plotted
functions are normalized

i = 1 i = 2 i = 3

i = 6 i = 7 i = 10

(a) Normalized displacement modes ūi(x) of the PGD expansion. Note that only a selection
of modes is shown.

(b) Parametric modes for lc. (c) Parametric modes for z̃1.

(d) Parametric modes for z̃2. (e) Parametric modes for z̃3.

(f) Parametric modes for λ. (g) Modal amplitudes βi.
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Fig. 14 Histograms of the critical force for different initial crack lengths l0c corresponding to a 10% variation in the Young’s modulus

processing of the PGD approximation. This contrasts the
direct FE setting, in which either the FE solution would have
to be stored, or the FE problemwould have to be solved again
to acquire all results corresponding to a realization.

8 Conclusions

In this work we have proposed a reduced-order modeling
technique for a prototypical linear elastic fracture mechanics
problem. An essential ingredient in the proposed approach is
to introduce the parametrization of the crack through a geo-
metric mapping. For the considered model problem it then
follows that a separable formof the stiffnessmatrix and exter-
nal force vector can be obtained analytically, which makes

it possible to apply the Proper Generalized Decomposition
method to obtain a solution to the parametric problem.

The suitability and performance of the proposed frame-
work is demonstrated using a series of numerical test cases,
starting with a convergence study for the parametric decom-
position. This study conveys that the introduced geometric
mapping function for the fracture parameter behaves in
accordance with the well-understood behavior of the PGD
framework. The PGD fracture framework is further demon-
strated using two propagating fracture test cases.

In the first test case it is demonstrated howGriffith’s prop-
agation criterion can be evaluated efficiently using the PGD
approximation. The representation of the fracture length in
the PGD solution enables the straightforward computation
of the energy release rate, which is in contrast with standard
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Fig. 15 Dependence of the mean critical force (solid blue line) on the initial crack length with a 98% confidence interval (shaded area) for 10%
variation and 5% variation in the Young’s modulus

finite element methods, which generally require dedicated
numerical techniques for the evaluation of the correspond-
ing shape derivative.

In the second test case the PGD approximation is used
to efficiently perform a fracture analysis in the presence
of random material heterogeneities. Using a singular value
decomposition for the interpolation of the random field
of elastic properties pulled back to the reference config-
uration, an approximate separable form of the stiffness
matrix is obtained. The random variable coefficients of the
Karhunun–Loève field for the modulus of elasticity appear
as parameters in this separable form. Since the fracture load
can be computed as a post-processing operation on the PGD
approximation, Monte-Carlo simulations can be performed
with sample sizes (and confidence levels) that are beyond
the typical reach of direct sampling-based stochastic finite
element analyses.

Although the presented study clearly demonstrates that the
PGD framework can be applied efficiently for the simulation
of fractures in the considered model problem, the question
naturally arises to what extend the proposed technique can
be generalized to more complicated fracture problems. In
this regard there are two aspects that must be considered in
particular:

– While the considered fracture is parametrized by a single
variable, namely the fracture length, this is evidently not
possible in the case ofmore complex fractures. Of course,
the range of applicability of the proposed technique can
be extended to a reasonably sized class of fracture prob-
lems using a relatively low dimensional parameter space
for the fracture geometry. Think for example of slanted

fractures in plane strain or plane stress settings, which,
besides the length, would require the fracture angle as an
additional parameter. In general, however, representing
more complex fracture geometries will rapidly increase
the number of parameters, which is detrimental to the
performance of the PGD framework. This is particularly
the case when one opts to consider a piecewise repre-
sentation of fractures, which is natural to finite element
methods.

– For more complex fracture patterns, constructing a suit-
able geometric mapping function will be considerably
more challenging than in the prototypical benchmark
considered in this work. Constructing a mapping analyti-
cally is very restrictive, but it is very well imaginable that
one can construct discrete mapping operators (mapping
nodal reference coordinates to nodal physical coordi-
nates). Such more advanced mappings – the construction
of which evidently warrants further investigation – will,
however, pose several difficulties. For example, the ana-
lytical separation of the system of equations as obtained
in thisworkwill not be generally obtainable, which hence
requires the consideration of potentially computation-
ally demanding approximations for the separable forms.
Moreover, an open research question remains how to deal
with fractures with changing topology (e.g., branching,
merging), as topological changes can in general not be
captured by the proposed mapping technique.

These complications when extending to more complex frac-
tures are evidently very serious. Although future research
developments can ameliorate some of these difficulties,
obtaining PGD approximations that are able to accurately
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Fig. 16 Realizations of the Young’s modulus field corresponding to the mean fracture load, maximum fracture load and minimum fracture load.
All results pertain to an initial fracture length of l0c = 1m

parametrize the complete high-dimensional solution space
for complex fracture patterns will likely remain impracti-
cal. It should, however, be noted that reduced-order models
typically do not serve the role of a direct replacement of high-
fidelity finite element models. Instead, reduced-order models
typically play the role of a relatively cheap surrogate to evalu-
ate approximations of the corresponding high-fidelitymodel.
In this regard it is imaginable that the high-dimensional
parameter space associated with the fracture geometry in the
finite element model can be reduced significantly, without

compromising the properties of the reduced-order model to
serve as a cheap approximation of the fullmodel or to provide
an improved prior.
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