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Abstract
Following the growing use of amorphous polymers in an expanding range of applications, interest for numerical modeling
of polymer behavior has greatly increased. Together with reliable constitutive models, stable, accurate and rapid integration
algorithms valid for large deformations need to be developed. Here, in the framework of hyperelasto-viscoplasticity and
multiplicative split formulation, three integration algorithms (explicit, fully implicit and forward gradient) are generated
for a constitutive polymer model and respective stability is investigated. The algorithms are furthermore implemented in a
commercial Finite Element code and simulation of a full field tensile test is shown to capture the actual deformation behavior
of polymers.

Keywords Amorphous polymers · Viscoplasticity · Finite element method · Stress update algorithm · Finite strain

1 Introduction

Three main groups of polymers have emerged since the dis-
covery of natural rubber: thermoplastics (also called glassy
polymers), thermosettings and elastomers. Thermoplastics
are made of long covalent chains only linked together by
weak Hydrogen and Van der Waals bonds. With increasing
temperature, these bonds gradually weaken and eventually
break, resulting in the existence of a so-called glass transi-
tion temperature Tg. Thermoplastics behave therefore like
solids below Tg and like viscous fluids above Tg. Thermoset-
tings on the other hand can be seen as three-dimensional
networks where numerous covalent bonds tie polymer chains
together; thermosettings are therefore by nature stiff. Finally,
elastomers lie in between the two previous groups as usually
being made of a soft thermosetting with very few covalent
bonds or a blend of two thermoplastics, one being used above
its glass transition temperature and the other one below. As
a result, elastomers show a pure elastic response up to very
high strains (∼ 400%).
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Thermoplastics can be further split into two sub-groups:
amorphous and semi-crystalline.Crystallinity depends on the
chains ability to align themselves and therefore polymers
with small and regular monomers are more prone to crys-
tallinity than large monomers with bulky side groups. Only
amorphous thermoplastics are considered here.

Amorphous thermoplastics being relatively new and
increasingly used, their mechanical behavior is currently a
field of active research. Noticeable progress has been made
by Boyce and coworkers in [1–7] as well as in [8], where a
newmechanical model is presented and the two distinct phe-
nomena occurring during deformation are identified, namely:
chain segment rotation and molecular alignment.

Intermolecular resistance to chain segment rotation by
surrounding chains occurs first and is responsible for the typ-
ical hardening–softening sequence observed at relatively low
strains, giving rise to a local stress maximum. Segment rota-
tion causes the rupture of previously mentioned Hydrogen
and Van der Waals bonds as well as an increase of the local
free volume which together result in micro-shear banding
(comparable to Piobert–Lüders bands in metals) and soft-
ening. Being non-directional by nature this phenomenon is
modeled as isotropic hardening–softening by anEyring dash-
pot.

Intramolecular resistance to molecular alignment occurs
at larger strains and comes from the polymer chain itself.
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In principle, elastic stretching of an elastomer is similar to
permanent orientation of molecular chains of glassy poly-
mers (where entanglements replace chemical cross-links).
Intramolecular resistance is therefore naturally modeled as
rubber elasticity by a Langevin spring leading to kinematic
hardening.

Whether a polymer behaves in a ductile or brittle manner
is influenced by stability issues in the hardening-softening-
rehardening sequence and is coupled to the relationship
between the magnitude of isotropic and kinematic harden-
ing. A high isotropic hardening peak combined to a weak
kinematic hardening imply that large strains must develop in
order to recover the peak stress level. This leads to localiza-
tion and possible formation of crazes and failure in a brittle
manner. Conversely, a low isotropic hardening peak com-
bined to a strong kinematic hardening result in stabilization,
as only small additional strains suffice to retrieve the peak
stress level, see Fig. 1.

Subsequent to and, to some extent, in parallel with Boyce
and coworkers, Anand and coworkers [9–16] have also made
notable contributions to the development of the mechani-
cal modeling of polymers. In an early paper [9], benefits of
using the Hencky strain for large deformations are presented.
In a series of publications devoted to metals subjected to
deformations at high temperatures [10–12],modeling aspects
subsequently applicable to polymers are developed; in par-
ticular, identification of state variables for large deformations
is carefully studied in [11]. The original polymer model from
Boyce is generalized in [13] to include both compressibility
and thermal expansion and resulting model predictions are
compared to a large amount of experimental data. In [14]
the original Boyce model is reformulated within a firm ther-
modynamical framework, where the consequences of frame
invariance on the principal of virtual power as well as con-
sequences of the dissipation inequality on the flow rule are
discussed. Note that both Boyce and Anand switch between
two back-stress definitions, one based on the plastic defor-
mation gradient (multiplicative split) and one based on the
total deformation gradient, see the two one-dimensional rhe-
ological models shown in Fig. 2. The model presented in
[14] is extended in [15] to a fully coupled thermomechan-

Fig. 1 Typical stress–strain curves for polymers: illustration of how
the relationship between isotropic and kinematic hardening of two dif-
ferent polymers influences the recovery strain and therefore the global
behavior
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Fig. 2 One-dimensional rheological models: a original model and b
modified model, (see [4,6])

ical theory, where also the response at large deformations
and unloading is addressed differently. A model based on
an elastic-viscoplastic mechanism and a hyperelastic net-
work mechanism is developed in [16] to specifically address
the response of thermoplastic polyurethanes. A large defor-
mation viscoelastic-viscoplastic constitutive framework that
also allows for a recovery strain at zero stress as observed
in experiments is presented in [17]. In addition, constitutive
models accounting for damage in thermoplastic polymers is
emerging as proposed in [18,19]. Numerical algorithms are
also provided in [19], as well as in [20].

In this work, numerical aspects of the constitutive model
for glassy polymers developed by Boyce and co-workers and
modified by Anand and Gurtin [14] are studied. Specifically,
three different integration schemes: explicit, fully implicit
and forward gradient are developed and their robustness
examined. The resulting algorithms are then implemented
into an explicit finite element code as user material routines.
The outline of the paper is therefore as follows: first, a sum-
mary of the constitutivemodel for glassy polymers according
to [14] is presented. A discussion to highlight key features
of the different integration schemes is then given. Finally, a
three dimensional model simulation illustrates the capability
of capturing typical polymer mechanical behavior.

2 Constitutive model

The constitutive model to be explored here, pertinent for
glassy polymers, is thoroughly described in [14]. In partic-
ular, a version suitable for large elastic stretches similar to
the one proposed in [21,22] is scrutinized in the following.
The material model is based on the multiplicative split of
the deformation gradient F = FeFp into an elastic part, Fe
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and a plastic part, Fp (Kröner–Lee decomposition [23,24])
and it contains two internal variables (s, η) representing an
intermolecular resistance to plastic flow and the local free
volume, respectively. A summary of the constitutive model
is given next.

The constitutive relations are expressed in the relaxed
configuration in terms of the elastic Hencky strain Ee and
the co-rotated Kirchhoff stress Te (conjugate to the elas-
tic Hencky strain). The relaxed configuration is taken to be
rotation free, i.e. Fe = ReUe = RUe, and Fp = Up, as pro-
posed in [14], where R is the rotation tensor and Ue and Up

is the elastic and plastic right stretch tensor, respectively.
The Hencky strain is defined as Ee = 1

2 log(C
e), where

Ce = FeTFe = (Ue)2 is the elastic right Cauchy–Green
deformation tensor. The co-rotated Kirchhoff stress tensor
Te is related to the Cauchy stress tensor by the pull-back
operation

Te = det(Fe )ReTTRe. (1)

The equation of stress derives from an elastic free energy
and can be expressed by use of the standard isotropic elas-
ticity tensor as

Te = 2GEe
0 + K (trEe)I, (2)

where Ee
0 = Ee − (trEe)I/3 and G and K are the shear and

bulk moduli, respectively.
As discussed above, resistance to plastic flow is initially

governed by isotropic hardening/softening and at higher
stretches by orientation hardening. The orientation harden-
ing is taken to be associated with plastic stretch and modeled
as kinematic hardening with a back-stress Sb defined as fol-
lows. From the left plastic Cauchy–Green deformation tensor
Bp = FpFpT, an effective plastic stretch governing the ori-
entation hardening (and thus the back-stress modulus) is
introduced as

λP = √
tr(Bp)/3. (3)

The back stress modulus μ is expressed by

μ = μR

(
λL

3λP

)
L−1

(
λP

λL

)
, (4)

where L−1 is the inverse of the Langevin function defined by
L(x) = coth(x) − 1/x for x > 0, μR is a material parame-
ter called the rubbery modulus and λL a material parameter
representing the network locking stretch.

Finally, withBp
0 = Bp− 1

3 tr(B
p)I being the deviatoric part

of Bp, the kinematic hardening or back stress Sb is defined
as

Sb = μBp
0. (5)

By assuming that the plastic flow is irrotational (zero plas-
tic spin) and incompressible on the relaxed configuration, the
evolution law for the plastic part of the deformation gradient
can be written as

Ḟp = DpFp, (6)

with Dp being deviatoric. Then, Dp directly corresponds to
the plastic part of the velocity gradient on the relaxed config-
uration, and is given by a standard Mises-type flow rule that
accounts for a back stress,

Dp = υp
(

S0 − Sb

2τ̄

)
, (7)

where S0 = dev(Cedet(Fe)Fe−1TFe−T) = 2GEe
0 is the

deviatoric part of the Mandel stress which is work conjugate
to Dp on the relaxed configuration, and τ̄ is the equivalent
shear stress defined as

τ̄ = 1√
2
|S0 − Sb|. (8)

Here, |A| = √
A : A denotes themagnitude of a 2nd order

tensor A. Thus, the magnitude of Dp defined in (6) is pro-
portional to the equivalent plastic shear strain rate, which is
defined by a viscosity law as

υp = υ0

(
τ̄

s + απ

) 1
m

, (9)

whereυ0 is a reference plastic shear strain-rate,m ∈]0; 1] is a
strain-rate sensitivity parameter, s represents the intermolec-
ular resistance to plastic flow and α is a pressure sensitivity
parameter governing the influence of the mean normal stress
π = tr(T)/3.

The evolution laws for the two internal variables gov-
erning the isotropic hardening/softening are given by the
coupled differential equations

{
ṡ = h0

(
1 − s

s̃

)
υp

η̇ = g0
(

s
scv−1

)
υp (10)

where s̃ = scv[1 + b(ηcv − η)] and {h0, g0, s0, scv, b, ηcv}
are additional material parameters. The initial conditions are
given by s(0) = s0 and η(0) = 0.

In summary, this model contains 13 model parameters:
two associated with elasticity {G, K }, three associated with
the rate of plastic flow {υ0,m, α}; two associated with kine-
matic (orientation) hardening {μR, λL}; and six associated
with isotropic hardening/softening {h0, g0, s0, scv, b, ηcv}.
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Fig. 3 Geometric interpretation in the stress space of a the generalized
trapezoidal rule and b the generalized midpoint rule for inviscid plas-
ticity. Subscripts n and n + 1 refer to two consecutive time steps and
n + α to an intermediate state. r is the plastic flow direction tensor, σ
the stress tensor and 	λ the plastic strain increment

3 Methods for integration of finite strain rate
constitutive equations: explicit, fully
implicit and forward gradient

The constitutive models presented in the previous section is
expressed in terms of rates and derivatives. The resulting sys-
tem of coupled differential equations is non-linear and must
be integrated numerically. Such an integration inevitably
raises the questions of stability, accuracy and efficiency. All
integration strategies are indeed a compromise between these
three issues. Two well-established integration methods: the
generalized trapezoidal rule and the generalized midpoint
rule are presented in [25] for inviscid plasticity. Both meth-
ods make use of known quantities at step n and a priori
unknown quantities at step n + 1, where a scalar coefficient,
say θ ∈ [0; 1], weights the influence of the two contributions.
An illustration of the generalized trapezoidal and the mid-
point rules is shown in Fig. 3 for elasto-plasticity. Depending
on the value taken by θ : θ = 0, θ = 1, or 0 < θ < 1,
the method is referred to as an explicit formulation, a fully
implicit formulation or a gradient forward formulation. The

fully implicit formulation reduces to the well-known radial
returnmethod for J2 plasticity.Note that for the extreme cases
to be considered here, i.e. θ = 0 or 1, the generalized mid-
point rule becomes the same as the generalized trapezoidal
rule.

The two integration methods can be shown to be first-
order accurate for all θ -values, except for θ = 1/2, where
second-order accuracy prevails. When it comes to stability,
the midpoint rule is unconditionally stable for θ ≥ 1/2,
whereas the generalized trapezoidal rule is unconditionally
stable for values of θ depending on the shape of the yield
surface but still always greater than 1/2. As opposed to
unconditionally stable, conditionally stable means that sta-
bility depends on the incremental step size. For conditionally
stable methods applied to viscoplasticity and creep, stability
issues are discussed in [26], where a critical time step is put
forward. This criterion is illustrated by several examples in
[27] and is shown to be verymuch case specific: the time step
increment limit depends on the viscoplastic properties of the
material, the current elastic state and the current viscoplas-
tic rate of deformation. To partially circumvent this time
step limitation, a forward gradient time integration scheme
is developed in [28], where the plastic strain directions are
taken from step n as in an explicit method but the effective
plastic strain increment is calculated from both step n and
a forward gradient estimation of step n + 1. This method,
which was applied in [29] to integrate the constitutive equa-
tions of the Boyce model, is explored in Sect. 4. Note that
this time step limitation is purely material related and has
nothing to do with the limitation imposed by the Courant
criterion derived in the context of explicit time integration
within finite element analysis.

Another issue of considerable importance when integrat-
ing constitutive equations in the context of finite deformation
is rotation neutralization. Roughly two main strategies have
been employed: one illustrated in [30,31] where quantities
are rotated by the small rotation increment between two
consecutive steps and one presented in [32] where all quan-
tities are systematically rotated to an additional rotation-free
configuration (pull-back), integrated and rotated back to the
current configuration (push-forward). The second strategy is
used in the following.

Iterative integrations schemes for hyperelasto-viscoplasti-
cityicity also aim at, from quantities at step n, calculating
quantities at step n + 1. Kinematic quantities known at the
beginning of the time step are the deformation gradients: Fn ,
Fe
n , Fp

n and Fn+1; in addition, the (Cauchy) stress Tn and the
internal variables are known. As for small deformations, it
seems natural to define trial quantities and, to begin with, a

trial elastic deformation gradient: Fe∗ = Fn+1Fp
n
−1

. Carry-
ing out the polar decomposition Fe∗ = Re∗Ue∗ and invoking
isotropy leads to two interesting results: Re

n+1 = Re∗ and
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Fig. 4 Kinematic interpretation
of the integration algorithms.
Dp = υ

p
n Nn leads to the explicit

formulation, Dp = υ
p
n+1Nn+1 to

the fully implicit formulation
and Dp = [(1 − θ)υ

p
n

+ θυ
p
n+1]Nn to the gradient

forward formulation

Box 1 Newton scheme for the
three formulations Loop over all element Gauss points

Initialization: Fn , Tn , Re
n , Fp

n , sn , ηn and Fn+1

Compute Dp:

Explicit formulation: Dp = υ
p
nNn

Fully implicit formulation: Dp = υ
p
n+1Nn+1

Forward gradient formulation: Dp = [(1 − θ)υ
p
n + θυ

p
n+1]Nn where θ ∈]0; 1]

Update: Cauchy stress Tn+1 as well as internal variables s and η.

End Loop

Ue
n+1 = Ue∗exp(−	tDp); see [32] for details and Fig. 4 for

an overview of the different configurations. With υp being

the plastic shear strain rate andN = (
Te
0−Sb

2τ̄ ) the plastic strain
directions,Dp readsDp = υpN. The step at whichDp is eval-
uated determines the nature of the algorithm (explicit, fully
implicit or forward gradient). Using the definition of the elas-
tic Hencky strainEe = log(Ue) and the isotropic elasticityL
tensor leads directly to: Te

n+1 = Te∗ −L : (	tDp). Note that
thanks to the use of the Hencky strain this expression is exact
(no approximation was made in the derivation) and that it is
precisely the same expression as for small strain plasticity.
The Newton scheme is outlined below in Box 1.

The explicit formulation is by far the simplest of the
three alternatives to implement. It makes straight-forward
use of quantities at step n; it does not require internal
Newton–Raphson iterations and it is therefore relatively fast
to execute. The fully implicit formulation is as expected of
much higher complexity as it contains an iterative Newton–
Raphson algorithmbuilt to converge towards the sought solu-
tion; this obviously increases the running time substantially.
Finally, the forward gradient formulation is of intermediate
complexity: it does not require additional internal Newton–
Raphson iterations but still the expression for υ

p
n+1 is quite

tedious and involves quite intricate algebra. Note that in this
formulation, according to [28], υp

n+1 is only an approxima-
tion of the effective value at n + 1. The three algorithms are
presented in detail in “Appendices A, B and C”.

At first glance, the explicit formulation of “Appendix A”
does not seem to follow the update scheme presented above
mainly because no trial stress is calculated. The explanation
is as follows: instead of first removing the rotation from Fe∗
and then removing the plastic strain from the total strain, it
is also possible to first remove the plastic contribution from
Fn+1 before removing rotation effects in Fe

n+1.
When it comes to practical implementation, two important

issues should be mentioned. Firstly, both the fully implicit
and the forward gradient algorithms make use of numerous
4th order tensors and of their inverse. As inversion of 4th
order tensors is very time consuming and can lead to numer-
ical instability, it was here chosen to rewrite all four order
tensors as 9 by 9 and subsequently 6 by 6 matrices which
are much more easily invertible. Secondly, care should be
taken when approximating derivatives of the exponential of
a matrix: use of less than four terms in the Taylor expansion
has proven to be inaccurate enough to jeopardize the whole
solution (see [33] for details).

4 Results

The algorithms presented above were implemented and
tested in two different software: Matlab [34]—for sim-
ple homogeneous deformation fields, and Abaqus Explicit
[35]—for full field solutions. The material parameters used
for Polycarbonate are listed in Table 1.
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Table 1 Material parameters for polycarbonate [14]

G (MPa) K (MPa) υ0 (s−1) m (–) α (–)

857 2240 0.0017 0.011 0.08

μR (MPa) λL (–) h0 (MPa) g0 (–) s0 (MPa)

11.0 1.45 2750 0.006 20.0

b (–) scv (MPa) ηcv (–)

825 24.0 0.001

4.1 Stability analysis

Toanalyze the characteristics of stability of the different algo-
rithms, a homogeneous solid subjected to uniform stretching
is considered. The directions of principal stretches are held
constant in time. Specifically, a deformation history of rel-
evance for uniaxial tension is examined, i.e. one stretch
amplitude increases, here denoted λ1, whereas the other two
decreases as λ2 = λ3 = 1/

√
λ1. During loading λ1 is

increased from 1 to 2. The total loading time is set to 1 s and
it is divided into equally long time steps. This implies that
the tensile stretch rate is constant and equal to 1/s whereas
the corresponding logarithmic strain rate decreases from 1/s
to 0.5/s. For figure clarity only the tensile stress is plotted
in the figures. For this first problem, direct integration of
the constitutive equation system is carried out for all three
algorithms: explicit, fully implicit and forward gradient. This
is accomplished by implementing the algorithms in Mat-
lab. Results for the explicit algorithm are given in Fig. 5
and show a gradual loss of stability between 1800 and 800

1200
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900
800

1800

1700

1600
1500
1400

1300

Fig. 5 Explicit algorithm results; uniaxial tension; Cauchy stress ver-
sus Hencky strain. Number of time steps: from 800 to 1800. The vertical
scale is only valid for the for lowest curve (800 time steps); all subse-
quent curves are translated upwards 10 MPa for clarity
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Fig. 6 Fully implicit algorithm results; uniaxial tension; Cauchy stress
versus Hencky strain. Number of time steps: 10, 20, 40, 80, 160, 320.
The vertical scale is only valid for the for lowest curve (10 time steps);
all subsequent curves are translated upwards 10 MPa for clarity

1200

1100
1000

900

1800

1700

1600
1500

1400
1300

800

Fig. 7 Forward gradient algorithm results; uniaxial tension; Cauchy
stress verus Hencky strain. Number of time steps: from 800 to 1800.
The vertical scale is only valid for the lowest curve (800 time steps); all
subsequent curves are translated upwards 10 MPa for clarity

steps eventually ending in fatal instability around 700 steps
(not shown in the figure). Results for the fully implicit algo-
rithm are given in Fig. 6 and as expected, complete stability
can be observed irrespective of the number of steps. Finally
results for the forward gradient algorithm are given in Fig. 7
and show no observable loss of stability between 1800 and
1000 steps. Some instability can be spotted at 900 steps and
fatal instability eventually occurs around 800 steps. Note that
compared to the explicit algorithm, the forwardgradient algo-
rithm improves the solution quality up the fatal instability but
it does not substantially change the limit number of steps at
which fatal instability occurs.
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4.2 FEM simulations of a dog bone specimen

To illustrate the ability of the algorithms developed for the
polymer material model to accurately capture mechanical
behavior in three-dimensional tensile loading, a standard
dog bone specimen is analyzed as a second problem, see
Fig. 8 for geometry and dimensions. For this full field anal-
ysis, the algorithms are implemented in Abaqus Explicit as
user defined material subroutines VUMAT. Full symmetry is
assumed allowing for only 1/8 of the geometry to be mod-
elled. The rate of loading is small enough to limit effects of
inertia and hence the time step imposed by theCourant condi-
tion is significantly smaller than the one required for a stable
solution based on the explicit stress integration algorithms.
For this reason, no difference is observed between the three
different algorithms and only the results from the implicit
algorithm are presented here. The force displacement curve
is plotted in Fig. 9 and a series of corresponding field results
(total strain in the loading direction) are shown in Fig. 10,
where the degree of loading increases from left to right. It can
be observed that localization sets in already at small strains
but instead of catastrophic localization (as would be the case
for metals) the region with smaller cross section gradually

12.45 mm

80
 m

m

6.35 mm

15
.7

5 
m

m

40
 m

m

Fig. 8 Dog-bone specimen geometry (thickness 10 mm) loaded in uni-
axial tension (displacement control)

Fig. 9 Force displacement curve showing that the force required for
necking propagation is nearly constant. Arrows indicate the displace-
ments at which field results are extracted

Fig. 10 Finite Element simulations of a dog-bone specimen submitted
to tensile loading at locations indicated in Fig. 9. Due to symmetry, only
a 1/8 of the specimen is modeled. The scale and colors quantify the total
strain in the loading direction

extends throughout the specimen in a stable manner since
material re-hardening overcomes area reduction causing the
deformed region to be stronger than the neighboring unde-
formed regions.

5 Conclusion

Three integration algorithms (explicit, fully implicit and for-
ward gradient) are developed and presented in this paper,
which all capture the specific behavior of amorphous poly-
mer at large deformations. As expected, higher degree of
complexity leads to higher stability: both the explicit and
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the forward gradient algorithms are only conditionally sta-
ble whereas the fully implicit algorithm is unconditionally
stable. Implementation in Abaqus of these algorithms is also
carried out as user defined subroutines. Due to the large num-
ber of time steps inherent to explicit solvers, simulation of a
tensile test gave the same results for all subroutines. To make
full use of the implicit algorithm, computation of the consis-
tent tangent stiffness matrix would need to be performed.
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Appendix

One first order and two second order tensor products are used
in the following.

(u ⊗ v)i j = uiv j

(A ⊗ B)i jkl = Ai j Bkl

(A � B)i jkl = Aik B jl

Inner product of two tensors A and B is noted A : B and
the deviatoric part of a tensor A is noted A0. The first and
second order identity tensors are noted I and I respec-
tively; the fourth order isotropic elasticity tensor is noted
L and the Langevin function L is definined according to:
L(x) = cot(x) − 1/x for x > 0. Square root, exponential
and logarithm of symmetric and real second order tensors M
are, as follows, defined through their spectral decomposition.

M =
3∑

i=1

λ(i)e(i) ⊗ e(i)

√
M =

3∑

i=1

√
λ(i)e(i) ⊗ e(i)

exp(M) =
3∑

i=1

exp(λ(i))e(i) ⊗ e(i)

log(M) =
3∑

i=1

log(λ(i))e(i) ⊗ e(i)

Appendix A: Explicit algorithm

Quantities known at the beginning of the time-step:

– Fn , Tn , Re
n , Fp

n , sn , ηn (saved as internal variables)
– Fn+1 (deformation gradient calculated at the end of the

step)

(a) Quantities at time step n:
Stress pull-back; Cauchy stress, Tn , to corotated Kirchhoff,
Te
n , stress transformation:

Te
n = det(Fn)Re

n
TTnRe

n (A1)

Left plastic Cauchy–Green deformation tensor:

Bp
n = Fp

nFp
n
T

(A2)

Deviatoric parts:

Te
0n = Te

n − 1

3
tr(Te

n)I (A3a)

Bp
0n = Bp

n − 1

3
tr(Bp

n)I (A3b)

Mean normal pressure and effective plastic stretch:

πn = −tr(Tn)/3 (A4a)

λPn =
√
tr(Bp

n)/3 (A4b)

Back stress modulus and back stress tensor:

μn = μR

(
λL

3λPn

)
L−1

(
λPn

λL

)
(A5a)

Sb
n = μnBp

0n (A5b)

Equivalent shear stress:

τ̄n = 1√
2
|Te

0n − Sb
n| (A6)

Equivalent plastic shear strain rate:

υ
p
n = υ0

(
τ̄n

sn + απn

) 1
m

(A7)

Plastic strain rate tensor:

Dp = υ
p
n

(
Te
0n − Sb

n

2τ̄n

)

(A8)

(b) Update from time-step n to time-step n + 1:
New plastic deformation gradient tensor:

Fp
n+1 = exp(	tDp)Fp

n (A9)
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New elastic deformation gradient tensor:

Fe
n+1 = Fn+1Fp

n+1
−1

(A10)

New elastic right Cauchy–Green deformation tensor:

Ce
n+1 = Fe

n+1
TFe

n+1 (A11)

New elastic stretch tensor:

Ue
n+1 =

√
Ce
n+1 (A12)

New elastic Hencky strain tensor:

Ee
n+1 = log(Ue

n+1) (A13)

New rotation tensor:

Re
n+1 = Fe

n+1Ue
n+1

−1 (A14)

New corotated Kirchhoff stress tensor:

Te
n+1 = L : (Ee

n+1) (A15)

Stress push-forward; corotated Kirchhoff stress to Cauchy
stress transformation:

Tn+1 = 1/det(Fn+1)Re
n+1Te

n+1Re
n+1

T (A16)

New isotropic hardening internal variables:

sn+1 = sn + h0

(
1 − sn

s̃n

)
	tυp

n (A17)

ηn+1 = ηn + g0

(
sn
scv

− 1

)
	tυp

n (A18)

s̃n = scv[1 + b(ηcv − ηn)] (A19)

Appendix B: Fully implicit algorithm

Quantities known at the beginning of the time-step:

– Tn , Fp
n , sn , ηn (saved as internal variables)

– Fn+1 (deformation gradient calculated at the end of the
step)

(a) Trial quantities:
Trial elastic deformation gradient tensor:

Fe∗ = Fn+1Fp
n
−1

(B1)

Trial elastic right Cauchy–Green deformation tensor:

Ce∗ = Fe∗
TFe∗ (B2)

Trial elastic stretch tensor:

Ue∗ = √
Ce∗ (B3)

Trial elastic Hencky strain tensor:

Ee∗ = log(Ue∗) (B4)

Deviatoric trial corotated Kirchhoff stress tensor:

Te∗ = L : (Ee∗) (B5a)

Te
0∗ = Te∗ − 1

3
tr(Te∗)I (B5b)

Trial elastic rotation tensor:

Re∗ = Fe∗Ue∗
−1 (B6)

(b) Initializations:

	λ(k=1) = 0 (B7a)

Te
0
(k=1) = Te

0∗ (B7b)

Fp(k=1) = Fp
n (B7c)

s(k=1) = sn (B7d)

η(k=1) = ηn (B7e)

(c) Iterations:
Deviatoric left Cauchy–Green deformation tensor:

Bp(k) = Fp(k)FpT (k)
(B8a)

Bp
0
(k) = Bp(k) − 1

3
tr

(
Bp(k)

)
I (B8b)

Mean trial normal pressure and effective plastic stretch:

π∗ = −tr(Te∗)/3 (B9a)

λP
(k) =

√

tr
(

Bp
0
(k)

)
/3 (B9b)

Back stress modulus and back stress tensor:

μ(k) = μR

(
λL

3λP(k)

)
L−1

(
λP

(k)

λL

)

(B10a)

Sb(k) = μ(k)Bp
0
(k)

(B10b)

Equivalent shear stress:

τ̄ (k) = 1√
2

∣∣∣Te
0
(k) − Sb(k)

∣∣∣ (B11)

123



1398 Computational Mechanics (2019) 64:1389–1401

Plastic strain increment tensor:

	tDp(k) = 	λ(k)

(
Te
0
(k) − Sb(k)

2τ̄ (k)

)

(B12)

Equivalent plastic shear strain increment:

	tυp(k) = 	tυ0

(
τ̄ (k)

s(k) + απ∗

) 1
m

(B13)

Deviatoric stress–strain relations residual and viscosity law
residual:

R1
(k) = Te

0
(k) − Te

0∗ + 2G	tDp(k) (B14a)

R2
(k) = 	λ(k) − 	tυ p(k) (B14b)

Residuals Taylor expansion:

R(k+1)
1 = R(k)

1 +
(

∂R1

∂Te
0

)(k)

: δTe
0
(k) +

(
∂R1

∂	λ

)(k)

δ	λ(k)

(B15a)

R(k+1)
2 = R(k)

2 +
(

∂R2

∂Te
0

)(k)

: δTe
0
(k) +

(
∂R2

∂	λ

)(k)

δ	λ(k)

(B15b)

Setting R(k+1)
1 and R(k+1)

2 to zero and solving for δ	λ(k)

gives:

δ	λ(k) =
R(k)
2 −

(
∂R2
∂Te

0

)(k) :
((

∂R1
∂Te

0

)(k)
)−1

: R(k)
1

(
∂R2

∂Te
0n+1

)(k) :
((

∂R1
∂Te

0

)(k)
)−1

:
(

∂R1
∂	λ

)(k) −
(

∂R2
∂	λ

)(k)

(B16)

where:

(
∂R1

∂Te
0

)(k)

= I + 2GM(k) (B17)

(
∂R1

∂	λ

)(k)

= 2G(P(k))
−1 : N(k) (B18)

(
∂R2

∂Te
0

)(k)

= −	tυ p(k)

mτ̄ (k)
N(k) (B19)

(
∂R2

∂	λ

)(k)

= 1

−	tυ p(k)

m

[
1

τ̄ (k)
N(k) : H(k) : (P(k))

−1 : N(k)

− 1

s(k) + απn

(
ds

d	λ

)(k)
]

(B20)

with:

N(k) = Te
0
(k) − Sb(k)

2τ̄ (k)
(B21)

M(k) = 	λ(k)

2τ̄ (k)
(I − 2N(k) ⊗ N(k)) (B22)

P(k) = I + 	λ(k)

2τ̄ (k)
(2N(k) ⊗ (N(k) : H(k)) − H(k))

(B23)

H(k) = H1
(k) : H2

(k) (B24)

H1
(k) = μ(k)

[
1

6λp2
(k)

Bp
0
(k) ⊗ I − I + 1

3
I ⊗ I

]

(B25)

H2
(k) =

dexp
(
	tDp(k)

)

d	tDp(k)
� Bp

n exp
(
	tDp(k)

)

+Bp
n exp

(
	tDp(k)

)
�

dexp
(
	tDp(k)

)

d	tDp(k)

(B26)
(

ds

d	λ

)(k)

= (s̃(k) − s(k)) − bg0
s(k)

s̃(k)
(s(k) − scv)	λ(k)

s̃(k)
h0

+
(
1 + bg0

s(k)

s̃(k)
	λ(k)

)
	λ(k)

(B27)

(d) Update from iteration k to iteration k + 1:
New plastic strain increment:

	λ(k+1) = 	λ(k) + δ	λ(k) (B28)

New isotropic hardening internal variables:

s(k+1) = s(k) +
(

ds

d	λ

)(k)

δ	λ(k) (B29a)

η(k+1) = η(k) + g0
scv

[

	λ(k)
(

ds

d	λ

)(k)

+ (s(k) − scv)

]

δ	λ(k)

(B29b)

New corotated Kirchhoff stress tensor:

Te
o
(k+1) = Te

o
(k)

−
⎛

⎝
(

∂R1

∂Te
0

)(k)
⎞

⎠

−1

:
(

R(k)
1 +

(
∂R1

∂	λ

)(k)
δ	λ(k)

)

(B30)

New plastic strain increment tensor:

	tDp(k+1) = 	tDp(k) + (P(k))
−1 : N(k)δ	λ(k) (B31)
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New plastic deformation gradient tensor:

Fp(k+1) = exp
(
	tDp(k+1)

)
Fp
n (B32)

(e) Final values when convergence criterion is met:

Te
0n+1 = Te

0
(k+1) (B33a)

Fp
n+1 = Fp(k+1) (B33b)

sn+1 = s(k+1) (B33c)

ηn+1 = η(k+1) (B33d)

(f) Stress push-forward; corotatedKirchhoff stress to Cauchy
stress transformation:

Tn+1 = 1/det(Fn+1)Re∗Te
n+1Re∗

T (B34)

Appendix C: Forward gradient algorithm

This algorithm differs from the explicit algorithm in the cal-
culation of equivalent plastic shear strain rate, υp, which is
presented below.
Quantities known at the beginning of the time-step:

– Fn , Tn , Re
n , Fp

n , sn , ηn (saved as internal variables)
– Fn+1 (deformation gradient calculated at the end of the
step)

– θ ∈]0; 1]

(a) Quantities at time step n:
Stress pull-back; Cauchy stress, Tn , to corotated Kirchhoff,
Te
n , stress transformation:

Te
n = det(Fn)Re

n
TTnRe

n (C1)

Left plastic Cauchy–Green deformation tensor:

Bp
n = Fp

nFp
n
T

(C2)

Deviatoric parts:

Te
0n = Te

n − 1

3
tr(Te

n)I (C3a)

Bp
0n = Bp

n − 1

3
tr(Bp

n)I (C3b)

Mean normal pressure and effective plastic stretch:

πn = −tr(Tn)/3 (C4a)

λPn =
√
tr(Bp

n)/3 (C4b)

Back stress modulus and back stress tensor:

μn = μR

(
λL

3λPn

)
L−1

(
λPn

λL

)
(C5a)

Sb
n = μnBp

0n (C5b)

Equivalent shear stress:

τ̄n = 1√
2
|Te

0n − Sb
n| (C6)

Equivalent plastic shear strain rate:

υ
p
n = υ0

(
τ̄n

sn + απn

) 1
m

(C7)

Variation of the equivalent plastic shear strain rate:

	υp = υ0

m

(
τ̄n

sn + απn

) 1
m −1

[
	τ̄

sn + απn
− τ̄

(sn + απn)2
(	s + α	π)

]
(C8)

Equivalent shear stress:

τ̄n = 1√
2
|Te

0n − Sb
n| (C9)

Variation of the equivalent shear stress:

	τ̄ = 1

2τ̄n
(Te

0n − Sb
n) : (	Te

0 − 	Sb) (C10)

Distortional part of the elastic right Cauchy–Green deforma-
tion tensor:

Ce
n = Fe

n
TFe

n (C11)

C̄e
n = det(Ce

n)
−1/3Ce

n (C12)

Distortional part of the trial elastic right Cauchy–Green
deformation tensor:

Ce∗ = Fe∗
TFe∗ (C13)

C̄e∗ = det(Ce∗)−1/3Ce∗ (C14)

Variation of the equivalent corotated Kirchhoff stress tensor:

	Te
0 = L : 1

2
[log(C̄e∗) − log(C̄e

n)] − 2G	tDp (C15)

Plastic strain increment tensor:

Dp = (υ
p
n + θ	υp)Nn (C16)
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Variation of the back stress tensor:

	Sb = −Hn : P−1
n : (Nn	t	υp + Mn	T e

0 ) (C17)

where:

Nn = Te
0n − Sb

n

2τ̄n
(C18)

Mn = 	tυp
n

2τ̄n
(I − 2Nn ⊗ Nn) (C19)

Pn = I + 	tυp
n

2τ̄n
(2Nn ⊗ (Nn : Hn) − Hn) (C20)

Hn = H1n : H2n (C21)

H1n = μ(k)
[

1

6λp2
(k)

Bp
0
(k) ⊗ I − I + 1

3
I ⊗ I

]
(C22)

H2n = dexp(	tDp)

d	tDp � Bp
n exp(	tDp)

+ Bp
n exp(	tDp) � dexp(	tDp)

d	tDp (C23)

Variation of the isotropic hardening internal variable:

	s =
(

ds

d	tυp

)

n

= (s̃n − sn) − bg0
sn
s̃n

(sn − scv)	tυp

s̃n
h0

+
(
1 + bg0

sn
s̃n

	tυp
)

	tυp
	t	υp (C24)

Variation of the mean normal pressure:

	π = −1

3
tr(	Te

0) = −1

3
tr

{
L : 1

2
[log(C̄e∗) − log(C̄e

n)]
}

(C25)

Inserting (C16) in (C15) and (C23); (C15) and (C17) in
(C10); (C10), (C24) and (C25) in (C8) and solving for 	υp

gives:

	υp =
ρ1n

sn+απn
− τ̄n

(sn+απn)2
α	π

m
υ0

(
τ̄n

sn+απn

)1− 1
m − ρ2n

sn+απn
	t + τ̄n

(sn+απn)2

(
ds

d	tυp

)

n
	t

(C26)

where:

ρ1n = Nn : {I + Hn : P−1
n : Mn}

:
{
L : 1

2
[log(C̄e∗) − log(C̄e

n)] − 2G	tυp
nNn

}

(C27)

ρ2n = Nn : {−2Gθ(I + Hn : P−1
n : Mn) + Hn : P−1

n } : Nn

(C28)

Equivalent plastic shear strain rate:

υ
p
n+1 = υ

p
n + θ	υp (C29)

Plastic strain rate tensor:

Dp = υ
p
n+1Nn (C30)

(b) Update from time-step n to time-step n + 1:
New plastic deformation gradient tensor:

Fp
n+1 = exp(	tDp)Fp

n (C31)

New elastic deformation gradient tensor:

Fe
n+1 = Fn+1Fp

n+1
−1

(C32)

New elastic right Cauchy–Green deformation tensor:

Ce
n+1 = Fe

n+1
TFe

n+1 (C33)

New elastic stretch tensor:

Ue
n+1 =

√
Ce
n+1 (C34)

New elastic Hencky strain tensor:

Ee
n+1 = log(Ue

n+1) (C35)

New rotation tensor:

Re
n+1 = Fe

n+1Ue
n+1

−1 (C36)

New corotated Kirchhoff stress tensor:

Te
n+1 = L : (Ee

n+1) (C37)

Stress push-forward; corotated Kirchhoff stress to Cauchy
stress transformation:

Tn+1 = 1/det(Fn+1)Re
n+1Te

n+1Re
n+1

T (C38)

New isotropic hardening internal variables:

sn+1 = sn + h0

(
1 − sn

s̃n

)
	tυp

n (C39)

ηn+1 = ηn + g0

(
sn
scv

− 1

)
	tυp

n (C40)

s̃n = scv[1 + b(ηcv − ηn)] (C41)
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