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Abstract
Modelling of static structural stability problems is considered. Focus is set on problems where passive physical constraints
affect the response to applied forces, and where more than one free parameter describes the setting. The existence of vibration
frequencies at equilibrium states is investigated, as an indication of stability. The relevant Jacobian matrix is developed, with
an emphasis on the necessity to formulate the constraint equations from an energy form in a conservative problem. The
corresponding mass matrix is introduced, with zero mass contribution from constraint equations. Three different forms of
the relevant Jacobians are considered, and alternative methods for the eigenvalue extraction given. Stability is discussed in
a context of generalized equilibrium problems, where auxiliary parameters and equations can be included in a continuation
setting. Examples show the formulation, implementation and interpretation of stability.

Keywords Stability · Physical constraints · Parameterized model · Eigenvalue extraction · Equilibrium sequences

1 Introduction

Most structures react non-linearly to mechanical loading,
even if significant non-linear effects may only appear at
supra-operational loading situations. Non-linear response,
and the related instability effects have often been seen as
problems and failure mechanisms, but the phenomena are
increasingly studied for morphing structures, in which the
existence of multi-stable equilibrium solutions is the main
advantage, and can lead to new engineering solutions. So
does Reis discuss several situations where buckling is rather
an asset than a problem [38]. Rafsanjani, Akbarzadeh and
Pasini show how a meta-material with selected properties
can be designed from geometrically non-linear effects in a
non-homogeneous material [37]. Hamouche and co-workers
derive closed-form expressions for bi- or tri-stability of thin
shallow shells, and show how the shape of a structure can be
controlled by activematerials [25,26]. Emam and Inman give
an extensive review of the morphing and energy harvesting
potential in bi-stable composite laminates,wheremorphing is
an “interesting feature ofmodern structures that enables them
to change shape according to environmental or operational
conditions” [14]. Arena et al. demonstrate bi-stability as a
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concept and design an adaptive inlet regulator, which snaps
between open and closed configurations using morphing of
a bi-stable component [3]. Similarly, Abdullah et al. show
the bifurcation as the response of an activated bi-layer mem-
brane, with functional implications [1]. Bertoldi discusses
how architected cellular materials can be used for creating
auxetic materials, for controlling the propagation of elastic
waves, and for creating efficient energy-absorbers [7], and
with co-authors discuss mechanical meta-materials in gen-
eral terms [8]. Haghpanah et al. develop a designed material
with very high energy dissipation potential through unit cells
including elements with non-convex strain energy [24]. All
thementioned applications are related to sophisticated analy-
ses of large configuration-changing displacements, instabil-
ities and post-critical responses of structures.

Several types of non-linearities are inherently time-
dependent or at least depending on a sequential ordering
of phenomena. They are then stated without inertia effects
but with a fictitious time scale. Many important classes of
non-linearities are, however, time-independent, and static
equilibrium solutions can be sought as relevant representa-
tions. This is, for instance, the case for many geometrically
non-linear settings, including conservative displacement-de-
pendent forces.

Even if the mentioned problems are thereby by definition
strictly static when a particular loading situation is consid-
ered, engineering viewpoints often lead to a treatment of
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so-called quasi-static settings, where a variable load inten-
sity is parameterized by a fictitious time, aimed to mimic an
experimental situation [9]. These views contain no ingredi-
ent of real time, and solutions are just a set of independent
static equilibrium states. The view on the response as contin-
uous from an unstressed state up to an interesting load level,
is deeply rooted in engineering simulations of mechanical
response.

In the present work, it has been considered most appro-
priate to use the term sequence for the set of calculated
individual equilibrium states, not to over-emphasize an
assumed continuity between the states. This notation is
thereby also relevant for evaluations of the variations in
structural response, when the structure is parameterized in
geometry or properties [12]. A particular setting is then when
forces on a structure are multi-parametric, for instance, when
the coupling between gas pressure and electrical activation
can create unusual instability situations [34].

Stability is fundamentally dynamic in nature, but can
under many practically relevant conditions be evaluated for
static equilibrium states [6]. For a structure under acting
forces, stability is a capacity to remain close to the static
equilibrium situation after a minor disturbance. This view is
related to a Liapunov stability condition, where a dynamic
process starting near the equilibrium state stays close to it
[35]. In practice, this means that any damping existing in the
system will eventually bring the structure back to the static
equilibrium. This view on stability is needed in order to give
a basis for common stability investigations where otherwise
“the precise notion of stability, always tacitly assumed essen-
tially static in nature, is in fact, left undefined.” [11, p. 5] The
axiomatic definition of stability from the potential energy is
discussed by Godoy, who notes that this has been in many
cases an issue of “faith”, but that the definition has been “of
great value to improve our understanding of the buckling and
postbuckling of structures” [21, p. 73].

The concept of stability thereby refers to one particular
equilibrium state, and is a property of this state. Again, the
typical engineering viewpointswill focus interest on how and
when stability will be lost when following a parameterized
load regime. Common methods thereby study critical states,
by seeking the lowest force for which a deflected equilibrium
exists for the structure. The view on stability of equilibrium
thereby implicitly uses a simplified formulation of kinetic
energy and inertia, analysing only the potential energy at
equilibrium under fixed loads [43]. Although the reasoning
is strictly not valid in continuous cases [11], theories for
discrete systems lead to a conclusion that a sufficient condi-
tion for static stability is a minimum for the total potential
energy under the considered forces. This typically demands
a positive definiteness of the tangent stiffness, i.e., the second
differential of the strain energy, as this matrix is established
from all considered displacement components.

The present work focusses on the treatment of structures,
where, in addition to prescribed loads, a set of physical con-
straints are defined. As opposed to active constraints, which
are based on some external control strategy and addition
of energy to the system [10,22,32], passive constraints are
enforced by the considered system itself. Such systems are
thereby conservative, and a total potential energy can be for-
mulated, with the constraint considered.

The introduction of constraints inherently leads to the
existence of auxiliary parameters in the static equilibrium
setting. This implies that the positive definiteness of the tan-
gent stiffness matrix is no longer conclusive, as the passive
constraints introduce additions and modifications. The set-
ting demands a clear definition of which parameters are fixed
in the stability conclusion, and which are allowed to vary in,
e.g., the fulfilment of constraints.

This paper discusses in Sect. 2 the basic formulation for a
multi-parametric discretized system, affected by some pas-
sive physical constraints. Section 3 discusses the stability
of the established system, and the resulting eigenproblem,
while Sect. 4 briefly discusses the used parameterizations, the
solution method and the algorithmic implementation. Sec-
tion5gives twonumerical examples of the setting,whereafter
Sect. 6 draws some conclusions from the presented work.

2 Discrete formulations

2.1 Mechanical modelling

Sophisticated simulation algorithms are needed for the eval-
uation and interpretation of non-linear static equilibrium
solutions. The present work assumes that the structure and
its forces are defined in discretized form, e.g., in a finite
element context. The setting is thereby based on a displace-
ment formulation, without any tuning modifications, e.g., for
improving convergence.The formulation is assumed tobenot
overly sensitive to the numerical implementation, e.g., the
scaling of the problem. Further, a static non-linear equilib-
rium problem is considered, where the system and the forces
can be described through more than one free parameter, and
the stability of an equilibrium state related to this context.
A basic assumption is also that the problems considered are
conservative, in the sense that they can be formulated through
a total potential energy.

2.2 Basic problem setting

For the discretized conservative problems considered, the
basic equilibrium problem is preferably stated using a total
potential energy function

W = W (u,�) = Wp + W f , (1)
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where u consists of Nu discrete displacement values, and
� consists of NΛ problem parameters, which can be struc-
tural parameters and parameters describing independent load
effects. The splitting in the final part of Eq. (1) emphasizes
that the potential energy consists of the internal strain energy
Wp, and a potential energy W f from external loads. From
this, demanding stationarity of potential energy with respect
to displacements u, the basic equilibrium relation is obtained
as a set of Nu residual equations, being thedifferencebetween
internal and external forces

r(u,�) ≡ W,u = p(u,�) − f(u,�) = 0, (2)

corresponding to the terms in Eq. (1). A sub-index following
a comma denotes a derivative, and a column vector form is
used. In this form, Nu can be a high number, whereas NΛ is
typically low; the present work primarily focusses on cases
with NΛ ≥ 2.

In the present setting, internal forces p can be affected by
theparameters,whereas external forces f canbedisplacement-
dependent. The formulation in Eq. (2) thereby takes a more
general form than the most common setting of the equilib-
rium problem, where � just contains one load factor λ, p
is independent of � and f of u. In either situation, a large
number of necessary structural parameters are implicitly con-
sidered as fixed, and are hard-coded in the simulation model.

2.3 Physical constraints

In many relevant problems, the static equilibrium solutions
should fulfil additional physical constraints. These could, for
instance, be a prescribed displacement relation, or a specified
volume of liquid in a liquid-pressurized closed membrane,
when pressure is used as the load parameter [46]. In examples
below, physical constraints are also used to restrain rigid body
movements with an objective method.

Keeping the energy-based formulation from Eq. (1), the
basic energy expression can thereby be augmented by penalty
terms

ΔW� = μT
� g�(u,�x ), (3)

considering a set of constraint functionsg�, accompanied by a
corresponding set of Lagrange multipliers μ�. The functions
may be based on the displacements, but also a set of auxiliary
parameters �x . Even if the Lagrange multipliers are intro-
duced as a technical tool to enforce the needed constraints,
they are many times relevant results from the simulation.

Also other types of constraints can, however, be valid for
the equilibrium problem. These are expressed by additions
to the total potential energy function of the form

ΔWc = ΔWc(�
′
c,�x ), (4)

and dependent on a set of constraint parameters �′
c and the

auxiliary parameters �x , but are independent of displace-
ments, or they would be included in the term W f .

Combining all constraining parameters, μ� and �′
c, into a

set �c leads to a splitting of � into

� = [�T
c ,�T

x ]T, (5)

where �c are constraint-enforcing, and �x are auxiliary
parameters.With the terminology introduced, thismeans that
the total constrained potential energy is

Wc(u,�) = Wp + W f + ΔW� + ΔWc. (6)

It is noted that theseΔW terms are considered, as they rep-
resent two typical modelling situations, even if more general
expressions Wc(u,�) could be relevant. Such expressions
would not fundamentally modify the discussion below.

Differentiating the energy expression in Eq. (6) with
respect to the parameters�c, and demanding them to vanish,
gives a set of augmenting constraint equations

gc(u,�) = Wc,�c = 0, (7)

where functions gc depend on the discrete displacement com-
ponents u, but in general also on the parameters �. When
Lagrange multipliers are used to enforce constraints, the
equations set the penalty functions g� = 0, but constraints of
the form in Eq. (4) need be explicitly determined.

Energy terms of the form in Eq. (4) will not give any
contribution to the constrained residual. The added penalty
term in Eq. (3) will, however, affect it, giving from Eq. (6)

rc(u,�) = Wc,u = 0, (8)

including additions to the residual in Eq. (2) of the form
μT

� g�,u. As the penalty terms will give force-like contribu-
tions from theLagrangemultipliers, the resulting constrained
equilibrium equations are

rc = p(u,�x ) − f(u,�c,�x ) = 0, (9)

with internal forces independent of the constraint-enforcing
parameters.

As the equilibrium equations combined with the physical
constraints define the problem at hand, the setting demands
solutions to an augmented equilibrium set [16]

F(u,�) ≡
(
rc(u,�)

gc(u,�)

)
= 0, (10)

being Nu + Nc equations in Nu + NΛ variables. The differ-
ence Nx = NΛ − Nc, which is the dimension of �x , defines
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the dimension of the solution space to the constrained equi-
librium problem. Unless at least one parameter is included in
�x , the solution to the constrained static equilibrium prob-
lem is of dimension zero, and consists of one ormore isolated
single states.

When introducing Nx > 0 parameters in �x , and solving
for one particular equilibrium state, Nx selector equations
are needed to make the state unique. Varying the parame-
ters through these equations can be used to define subsets of
equilibrium states fulfilling the equations in Eq. (10). In a
solution algorithm, one of the functions demanded to vanish
is a sequence selector, which is a generalization of common
“arc-length” expressions. Other selector functions are further
discussed below.

As described below, the Nx ≥ 0 auxiliary parameters in
Eq. (5) do not affect stability conclusions. Stability properties
are, however, often evaluated as dependent on the parameters,
which can be of diverse types, not necessarily related to a load
case.

2.4 Differential response

Aconstrained static non-linear equilibrium solution demands
fulfilment of Eq. (9), connecting the displacements u to the
parameters�. Variations to the residual functions are thereby

δrc = (p,u − f,u) δu − f,�c δ�c − (f,�x − p,�x ) δ�x , (11)

where parameters in � are as in Eq. (5), and δ denotes a
variation.

Similarly, the variations to the physical constraint func-
tions in Eq. (7) are

δgc = gc,u δu + gc,�c δ�c + gc,�x δ�x . (12)

For the further considerations, the notation

z = [uT,�T
c ]T (13)

is introduced, which combines the state and the constraint-
enforcing parameters. For this form, the Jacobian matrix for
the constrained equilibrium problem in Eq. (10) is obtained
as

J(z) ≡ Wc,zz =
[

(p,u − f,u) −f,�c

gc,u gc,�c

]
, (14)

again with an obvious matrix form of the second derivative.
The top left submatrix is the tangent stiffness matrix

K = Wc,uu, (15)

which, if energy is stated in the form of Eq. (6), may contain
contributions fromWp ,W f andΔW� (if the penalty functions
g� are not linear in displacements), but not from ΔWc.

It is noted that a particular constraint can be stated in
several different forms gc, but as discussed in [46], physical
constraints can — and should, for computational reasons —
be formulated to give a symmetric Jacobian. This also comes
automatically when the problem formulation starts from a
total energy expression, when the Jacobian is symmetric in
the sense that

f,�c ≡ −(Wc,u),�c = −(gc,u)T, (16)

with the negative sign coming from the definition of external
forces in Eq. (8).

When the parameter space � is as in Eq. (5), the total
differential expression of the constrained equilibrium func-
tions in Eq. (10) also identifies the differential expressions
related to the auxiliary parameters �x . In order to obtain a
formulation similar to the form of common one-parameter
equilibrium problems, a load-like (Nu + Nc)-by-Nx matrix
is

h(u,�) ≡
(
f,�x − p,�x

−gc,�x

)
, (17)

which in general consists of several columns and can contain
diverse components.

This leads to an incremental constrained equilibrium
expression

δF =
(

δrc
δgc

)
= J δz − h δ�x = 0. (18)

With Nx = 1, this is a differential expression along the equi-
librium sequence, i.e., a rate expression in fictitious time

[żT, �̇
T
x ]T. For any Nx , this also defines the tangent space

of the equilibrium manifold at a solution [zT,�T
x ]T, which is

also the null space of the differential to the system in Eq. (10)
through vectors fulfilling

[J − h]ty = 0, (19)

with ty organized similarly as

y = [zT,�T
x ]T. (20)

a collection of all problem variables.

3 Stability

Stability is a fundamental issue in mechanical equilibrium
problems, and is here restricted to the consideration of static
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stability. The stability property thereby refers to one static
equilibrium state for a structure, and in essence relates to the
capacity of the structure to remain close to an equilibrium
state after a perturbation. The treatment below will discuss
this stability property from two different starting points.

3.1 Stability without constraints

Common views demand for static stability a minimum total
potential energy at the equilibrium state [20,29,42], which
is a sufficient condition for a discrete setting. For an un-
constrained problem with no gc, and thereby no �c, this
corresponds to positive definiteness of the tangent stiffness
matrix, which is now

K ≡ K(u,�) = rc,u = p,u − f,u, (21)

evaluated at a particular equilibrium state, with fixed val-
ues for all parameters in � = [�x ], and other problem
parameters hard-coded. To be precise, this only applies to
parameters which are present in the potentialWc. Additional
convenience parameters, e.g., Γ in Eq. (76) are not fixed, but
do not affect stability.

The positive definiteness of K is thereby defined from all
eigenvalues κK

i being positive in the one-matrix eigenprob-
lem

K�K
i − κK

i �K
i = 0. (22)

As an alternative view on the static stability criterion, the
eigenproblem can be related to an un-damped free vibration
equation, in the form of a two-matrix eigenproblem

K�i − κiM�i = 0. (23)

Given that all κi are positive, the solution to this setting
are modes �i and frequencies

√
κi of natural vibrations, for

1 ≤ i ≤ Nu , in small linearized vibrations around the equi-
librium state.With any κi ≤ 0, non-vibration responses exist.
Stability is thereby judged by the sign spectrum of the eigen-
values κi .

3.1.1 Comments and interpretation

The two seemingly very different views on the stability of
a static equilibrium state above reflect the two basic crite-
ria used. The positive definiteness of the potential energy
and the tangent stiffness matrix, corresponding to the eigen-
value problem in Eq. (22), are related to a diagonalization
of the current stiffness of the structure into its principal
directions, as described by the eigenvectors �K

i . The eigen-
values thereby express the stiffnesses against movements
along these directions, and positive eigenvalues show that

a positive force is needed to displace the structure. As the
eigenvectors span the incremental displacement space around
the current equilibrium, no additional displacement can occur
without an acting force. A zero eigenvalue also shows that
the structure can be displaced, at least in some directions,
without additions to the external force.

The vibration viewpoint, as expressed by the eigenvalue
problem in Eq. (23), focusses on whether the structure will
be able to sustain small linearized vibrations around the cur-
rent equilibrium state, if an initial disturbing displacement
is introduced, and the structure released from this state. The
positive values for κi , i.e., the real values for

√
κi , correspond

to frequencies in a vibration-type response, which will con-
tinue without any external action. With a zero eigenvalue,
introduction of a small incremental displacement in the cor-
responding eigenvector direction will not lead to vibration,
but to another equilibrium state. It is emphasized that the
vibration problem is evaluated at an equilibrium state, with
internal forces affecting the tangent stiffness matrix.

It is noted that either view is implicitly based on the obser-
vation that only the sign spectrum of the eigenvalues of the
tangent stiffness matrix is of importance for the stability con-
clusion, not the precise values.

The criteria for stability are evaluated for one particular
equilibrium state, where displacements u are corresponding
to some external forces as expressed by a fixed set of param-
eters in �x and hard-coded parameters in the model. This
means that not just load parameters are fixed in the stability
evaluation, when one equilibrium state is considered. This
aspect is of fundamental importance for the interpretation of
stability, when a multi-parametric setting is introduced.

For the common engineering setting, where a fixed struc-
tural model is considered when affected by some load case
described by a single load parameter �x = [λ], the non-
linear response evaluation implicitly sees the displacements
as functions of this single parameter. The stability conclu-
sions for the evaluated equilibrium states will thereby also be
parameterized. As most simulations of this type start from an
unloaded stable initial state, and focusses on finding the first
critical equilibrium state for the model, the view is typically
that the used load parameter is the one causing the instability,
and expressions of the form that stability given with respect
to this load are common. For the particular setting, this is
also a fully valid view, as the critical stability implies that
incremental displacements can occur without increments to
this load parameter.

In the more general setting used here, with several param-
eters in �x and possibly parameters of different kinds, the
view on an instability-causing load is no longer valid. The
basic definition of stability for one particular equilibrium
state — with all parameters fixed—must be used, disregard-
ing any parameterization which might have been used when
finding this state. The notion of a particular parameter caus-
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ing the instability is thereby in general not relevant. Along
a parameterized sequence of equilibrium states, the stabil-
ity conclusions relate to certain parametric regions, which
are delimited by critical states, where the stability properties
change. For instance, Fig. 1c related to a numerical example
below shows how a Mises truss will show different stability
properties under a fixed vertical force, when the height of the
truss is parameterized.

3.2 Stability with constraints

The stability of a constrained static equilibrium solution
can be similarly evaluated, based on the Jacobian matrix
in Eq. (14). As the constraint equations in Eq. (7) have no
attached masses, the relevant undamped free vibration equa-
tion is written as

K̃�̃i − κ̃iM̃�̃i = 0, (24)

where according to Eqs. (14), (21) and (16)

K̃ ≡ J =
[

K (gc,u)T

gc,u gc,�c

]
, (25)

and the relevant diagonal mass matrix is described in
schematic form as

M̃ ≡
[
M

0Nc

]
, (26)

with a zero matrix of indicated size.
Given that all κ̃i > 0, the constrained natural vibration

modes �̃i thereby describe vibration modes expressed by a
vector corresponding to z in Eq. (13).

The demand for stability of the constrained equilibrium
state is again that all κ̃i > 0. A critical state, representing a
transition in stability is characterized by κ̃i = 0. At a critical
state with one or more κ̃i = 0, Eq. (24) shows that linearized
solutions exist where K̃δz = 0, with δz any linear com-
bination of the critical eigenvectors. These are non-trivial
solutions to Eq. (18) with �x fixed.

3.2.1 Comments and interpretation

It is noted in a comparison to the unconstrained stability crite-
ria in the previous section, that no expression corresponding
to the one-matrix eigenproblem in Eq. (22) is obvious for the
constrained case, due to the massless constraint equations.
Only the vibration-type two matrix eigenproblem will thus
be considered.

The displacement components u thereby vary together
with the constraint-enforcing parameters�c needed tomain-
tain the physical constraint during the vibration cycle, with
the same angular frequency

√
κ̃i .

Major interest in a mechanical investigation of a structure
is focussed on the critical states, where the stability prop-
erties change under parametric variations. With more than
one component in�x , this is a generalization of the common
formulation without constraints and only one force parame-
ter. With an arbitrary number Nc of constraints and Nx = 1
auxiliary parameters in the problem formulation, similar con-
clusions regarding limit and bifurcation states can be drawn
as in a one-parametric unconstrained setting. For Nx > 1 a
more general interpretation must be introduced.

3.3 Constrained free vibrations

The stability investigation for a constrained conservative
equilibrium problem focusses on the eigenvalues of the prob-
lem in Eq. (24), based on matrices K̃ and M̃. For simplified
notation, the treatment below will see the Jacobian matrix as

K̃ =
[
K cT

c b

]
, (27)

with c = gc,u and b = gc,�c . As the evaluation is performed
at a specific equilibrium state, the matrices are constant. It is
in the treatment below assumed that the matrix c has, or has
been reduced to have, linearly independent rows, but also that
the matrix b is symmetric, which comes automatically from
the energy form. The treatment of the constrained problem is
dependent on properties of the blockb: if it is zero, singular or
has full rank, where zeroes typically come from the penalty
terms in Eq. (3). The treatment will be divided into three
cases below.

Utilizing that only the signs of eigenvalues κ̃i are interest-
ing for the stability conclusions, and that this sign spectrum
is not affected by the contents of the mass matrixM, as long
as it is positive definite, the treatment below will also set the
mass matrix in Eqs. (23) and (26) to M = INu . This corre-
sponds to the implicit assumption when the static stability
criterion is a demand for a positive definite tangent stiffness
matrix K.

With the present objectives, it is also assumed that the
number of constraints Nc is rather small, say in the order of
ten, even if the number of degrees of freedom Nu is several
thousands.

3.4 Treatment of eigensolutions

In a systematic investigation of static structural stability, the
evaluation of eigensolutions related to the relevant Jacobian
matrix is a main objective. Here, the eigenvectors are of
interest, as they can give a basis for the initiation of sec-
ondary equilibrium sequences, but a main focus is set on the
eigenvalue sign distribution, i.e., the numbers of negative,
(approximately) zero, and positive eigenvalues. With regard
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to precise values, the evaluation of eigenvalues close to zero
are of main interest, while the clearly positive and negative
ones are generally of lower importance. This agrees with the
notion of eigenvalues being the principal stiffnesses of the
considered system.

The efficiency of numerical methods for extraction of
matrix eigensolutions is highly dependent on the proper-
ties of involved matrices [5,45]. Methods are developed for
particular settings, where symmetry, sparseness and positive
definiteness of the involved matrices are main aspects, as is
an overall knowledge about the expected eigenvalue spec-
trum. Possibilities to handle a one-matrix setting may also
in many cases simplify treatment, as do options to define a
required accuracy in the eigenvalues.

The present setting, as described by Eq. (24), is character-
ized by symmetric matrices, normally sparse, a semi-definite
diagonal mass matrix, and often of clusters of identical or
very close eigenvalues, sometimes also situations where sev-
eral eigenvalues are simultaneously zero due to symmetries
in themodel. Normally, only a limited number of eigenvalues
are requested, sometimes only their signs, sometimes their
exact values and sometimes also the eigenvectors, depending
on the phase of the algorithm.

Even if it is conceivable to develop algorithms for handling
of this exact setting, it has in the present work been chosen
to set the problem in forms which can be handled by built-
in functions in Matlab,1 considered as industry standard for
basic linear algebra tools. The basic Eq. (24) with matrices
from Eqs. (25) and (26) is re-written with the objective to
allow reliable and efficient handling of the separate cases by
the available functions.

When evaluating eigenvalues without too high demands
on precision, a strategy based on a Sturm sequence [41] can
preferably be used, by an LDL-factorization of the Jacobian
matrix shifted by a multiplier of the relevant mass matrix.
This method is in the present implementation used to decide
the numbers of negative eigenvalues belowa certain tolerance
− γ and of zero ones within 0 ± γ , but also in non-critical
situations to give a coarse estimate to the eigenvalue closest
to zero, which can be used for predictions of approaching
critical states. A systematic usage of the same method in a
bisection strategy can give also the eigenvalues, but is inef-
ficient for an accurate determination.

3.4.1 The case b = 0

When b = 0 in Eq. (27) and a mass matrix according to
Eq. (26) is considered, a splitting

�̃i =
(

φi
ψ i

)
(28)

1 Release R2017b, MathWorks, Inc., Natick, MA.

gives a two-matrix eigenproblem system according to

(
K φi + cT ψ i
c φi

)
= κ̃iM̃�̃i = κ̃i

(
φi
0

)
. (29)

Due to the semi-definiteness of the matrix M̃, the system
will demand eigenvectors with displacement parts fulfilling
the orthogonality

c φi = 0, (30)

with an (Nu − Nc)-dimensional space remaining.
A pre-multiplication of Eq. (29)1 by φT

i gives

φT
i K φi + φT

i c
T ψ i = κ̃iφ

T
i φi , (31)

where the second term vanishes due to Eq. (30). Thereby,
ψ i does not affect the equation, and the eigenvalue could be
computed from

κ̃i = φT
i Kφi

φT
i φi

, (32)

if the eigenvector were known. This Rayleigh quotient
expressions shows that the eigenvalues of the constrained
problemare limited by theminimumandmaximumeigenval-
ues ofK [41,45], with consequences in constrained dynamics
[4].

It is, however, not obvious how to practically find the
eigenvectors φi under the constraint in Eq. (30). If these
could be obtained, the components of ψ i would be the
constraint-enforcing parameters needed to keep the vibra-
tions orthogonal to the constraints, and could be solved from
the over-determined Eq. (29)1 as

cTψ i = κ̃iφi − Kφi . (33)

The full eigenvectors, corresponding to eigenvalues κ̃i
would then be obtained by suitable normalization of �̃i in
Eq. (28).

As another approach, the orthogonality condition can be
introduced by a projection matrix

� = INu − cT
(
ccT

)−1
c, (34)

which makes any Nu-dimensional vector orthogonal to the
columns of cT . As this matrix has Nu − Nc unit eigenvalues
and Nc zero ones, the two-matrix eigenvalue problem

(�TK�)φ′
i = κ̃i (�

T�)φ′
i (35)

will give Nu eigensolutions (φ′
i , κ̃i ) for the constrained sys-

tem, and, after a re-projection of the obtained eigenvectors,
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φi = �φ′
i . (36)

The obtained eigenvectors will include Nc spurious ones,
characterized by (almost) zero components in φi after the
transformation in Eq. (36). They can therefore be easily
removed, leaving just the relevant eigensolutions, which are
then treated by Eqs. (33) and (28).

Although formally correct and useful for small problems,
the method becomes inefficient for practical problems, due
to the non-sparsity of the matrix � and consequently the
matrices in Eq. (35). As the mass matrix can also not be
assumed to be diagonal after the transformation, a two-matrix
eigenproblem need be solved.

Two more realistic methods for solving the constrained
eigenproblem are based on the discussion above. In addition,
it is also conceivable to develop methods similar to power or
subspace iterations which orthogonalize the iterative vectors
with respect to the constraints.

Fictitious small masses related to constraints
A numerically feasible method for solving the eigenvalue
problem described by Eqs. (24)–(27) is based on an introduc-
tion of small fictitious masses for the constraints. Replacing
the mass matrix in Eq. (26) by a matrix of the form

M̃ε =
[
INu 0
0 ε2 INc

]
, (37)

with ε a small value, the matrix M̃ε thereby is the square of
a diagonal matrix

mε =
[
INu 0
0 ε INc

]
. (38)

This leads to a two-matrix eigenproblem

K̃�̃
ε

i = κ̃iM̃ε�̃
ε

i (39)

of size (Nu + Nc), which can be solved with standard meth-
ods as the matrices are symmetric and the mass matrix
now positive-definite. The system can also be re-formulated
through a transformation of Eq. (24) into a one-matrix prob-
lem of the same size, and the form

[
K (1/ε) cT

(1/ε) c (1/ε2)b

]
�̃

ε

i = κ̃i �̃
ε

i , (40)

which in essence has multiplied K̃ and M̃ε bym−1
ε from both

sides. Here, the lower-right block of the Jacobian matrix is
zero, since b = 0 here. This eigenproblem can also be solved
with standard methods, utilizing the sparsity of the matrix.
The relevant eigenvectors from either of Eqs. (39) or (40) are
transformed into the final result by

�̃i = m−1
ε �̃

ε

i , (41)

and a normalization.
Either of the two above formulations will give a set of

2 Nc spurious eigenvalues of large magnitude. As these cor-
respond to eigenvectors with low values in all displacement
components, the irrelevant eigensolutions are easily dis-
carded. This removal of some obtained eigenvectors will
reduce the complete set of (Nu + Nc) eigenvectors to a num-
ber of (Nu−Nc). If only a subset of eigensolutions is needed,
the forms above allow this, if suitable basic eigensolution
algorithms are utilized.

Reduced basis solution A potentially efficient method for
solving a constrained eigenvalue problem of the considered
type is based on a projection of the eigenvalue problem in
Eq. (24). Similar to the projection matrix � in Eq. (34), an
Nu − by− (Nu − Nc) matrix P of linearly independent basis
vectors fulfilling cP = 0 is then created. The eigenvalue
problem for the displacement components,

(PTKP)φ
p
i = κ̃i (PTP)φ

p
i , (42)

is then a two-matrix eigenvalue problem of size (Nu −
Nc), which implicitly removes the irrelevant eigensolutions.
Although the eigenvalues κ̃i are immediately obtained, the
corresponding eigenvectors are re-constructed in two steps,
where the first back-projects the displacement components,
according to

φi = Pφ
p
i , (43)

and the second is identical to Eq. (33), givingψ i and leading
to the full eigensolution (κ̃i , �̃i ) to Eq. (28).

The efficiency of the presented method is completely
dependent on the possibilities to find a sparse matrix P with
columns spanning the orthogonal complement to the con-
straint matrix cT. As further discussed below, the creation of
the matrix is based on a trade-off between the sparsity of the
resulting matrices in Eq. (42) and the well-conditioning of
the basis vectors.

3.4.2 The case b �= 0, with non-singular b

The situationwhen the constraint equations explicitly involve
the constraint-enforcing parameters is fundamentally differ-
ent from the case above, as it is not just a restriction on the
displacements. The treatment of this situation is dependent
on the rank of the matrix b.

When the matrix b is non-singular, there exist Nu eigen-
solutions to Eq. (24), in the (Nu + Nc)-dimensional space
considered for z. Then, a formal treatment performs a part-
inversion of the Jacobianmatrix inEqs. (24)–(26), givingfirst
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a one-matrix eigenproblem of size Nu for the displacement
components

(
K − cTb−1c

)
φu
i = κ̃iφ

u
i . (44)

This is followed by the introduction of the constraint part

ψu
i = −b−1cφu

i . (45)

The whole eigenvector for the problem in Eq. (24) is then
obtained as

�̃i = [(φu
i )

T, (ψu
i )

T]T, (46)

which can be suitably normalized. It is noted that no elimi-
nation of irrelevant eigensolutions is needed here.

As the part-inversion in Eq. (44) will lead to a filled
although symmetric matrix, the method is only useful for
small problems.

The methods from above, with small fictitious masses ε2

associated to each of the constraints, leading to Eqs. (39)
or (40), but now with a non-zero b matrix, can also be used.
The obtained Nc eigenvectors to the full system with only
small displacement components are easily discarded.

Also, similar to the procedure described by Eq. (42), a
linearly independent basis matrix P̃ of size (Nu +Nc)-by-Nu

can be established. This is orthogonal to [c,b]T, and reduces
the Jacobian matrix K̃ to size Nu . This gives the two-matrix
eigenproblem

(P̃TK̃P̃)�̃
r
i = κ̃i (P̃TM̃P̃)�̃

r
i , (47)

which implicitly removes the irrelevant eigensolutions. The
final constrained eigenvectors, corresponding to the calcu-
lated eigenvalues are then obtained as

�̃i = P̃�̃
r
i . (48)

3.4.3 The case b �= 0, with singular b

The situation when b is non-zero but singular will need spe-
cial treatment, the reason seen from the formal expressions
in Eqs. (44), (45). This case is the most general one, and
the methods described are useful for also the special cases
discussed above, but then somewhat less efficient. For the
general setting, treatment of the full problem in Eqs. (24)–
(26) is possible, but this becomes demanding if the algorithm
used does not allow extraction of a limited number of eigen-
solutions to a two-matrix setting with a semi-definite mass
matrix.

The methods above with fictitious small masses attached
to the constraints, i.e, settings according to either of Eqs. (39)

or (40) are still possible. When followed by a transforma-
tion according to Eq. (41), and a subsequent elimination of
eigenvectors with very small displacement components, the
eigensolutions are obtained. The number of relevant eigen-
solutions will in this case be Nu − Ns , where Nr is the rank
and Ns = Nc − Nr the rank deficiency of the matrix b —
with Ns = 0 for regular b, and Ns = Nc for b = 0.

As a general method for treatment of this case, a singular
value decomposition of the symmetric small matrix b can be
used to obtain

b = v σ wT = v σ ∗ vT, (49)

where the pseudo-singular values σ ∗ are ordered in descend-
ing order of magnitude in the diagonal of matrix σ ∗. The
slight modification is needed as the matrix b is not neces-
sarily positive definite, and allowed as only the rank of the
matrix is sought.

Based on Eq. (49), the orthogonal matrix v is then used in
an orthogonal transformation matrix

�σ =
[
INu 0
0 v

]
, (50)

which, when operating on the full Jacobian matrix K̃ in
Eq. (27), gives a stiffness-like matrix together with the sin-
gular constraints, according to

K̃σ = �T
σ K̃�σ =

[
K̂ (c′)T
(c′) 0

]
, (51)

associating a rank-containing part of the constraint functions
to the tangent stiffness matrix, and pushing a set c′ of Ns

rows to the end of the set. As the mass matrix M̃ is un-
affected by this transformation, the transformed two-matrix
eigenproblem is

K̃σ �σ
i = κ̃iM̃�σ

i , (52)

where the form is now agreeing with the form discussed in
Sect. 3.4.1 above, as the lower-right block is zero.

Analogously to Eq. (42), a transformation matrix P̂ can be
found, but now spanning the orthogonal complement to (c′)T.
With the matrix P̂ of size (Nu + Nr )-by-(Nu + 2Nr − Nc),
the problem is defined as

(P̂TK̂P̂)φr
i = κ̃i (P̂TM̂P̂)φr

i , (53)

where M̂ appends Nr rows and columns of zeroes to M̃. The
eigenvectors are then back-transformed by

φ̂i = P̂φr
i . (54)
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A procedure similar to the one in Eq. (33), but now as

(c′)Tψ̂ i = κ̃iM̂φ̂i − K̂φ̂i , (55)

calculates the remaining Ns components in �̂i = [φ̂T
i , ψ̂

T
i ]T,

which, after one further transformation,

�̃i = �σ �̂i , (56)

and a subsequent normalization, gives the final eigenvectors
to the constrained system. It is, however, noted that the eigen-
values were obtained already by Eqs. (52) or (53).

3.5 Creating an orthogonal linearly independent
basis

The success of the methods involving a reduced basis
described by Eqs. (42), (47) or (53) is completely dependent
on the possibility to efficiently create a simple transforma-
tion matrix, which does not introduce extensive fill-in in the
operating matrices. With Eq. (42) as prototype, the task is to
create a matrix P which spans the vector space orthogonal
to the columns of matrix cT in Eq. (27), i.e., fulfills cP = 0,
where c is Nc-by-Nu and P should be Nu-by-(Nu − Nc). It
is noted that the columns of P need not be orthogonal, but
just not too close to parallel.

A practical implementation of this method starts with a
matrix P(0) = INu , and evaluates the matrix product cP(0).
The matrix P(0) is then successively updated to P(i), (i =
1, . . . , Nc) by orthogonalizing its columns to the columns of
cT, one by one.

The most straight-forward method for going from matrix
P(i−1) to P(i), when all columns of P(i−1) are orthogonal to
columns 1, . . . , i − 1 of cT, identifies all non-zero compo-
nents in row i of the product cP(i−1), i.e., indices �(i). Based
on the coefficients

α
(i)
k = −

(cP(i−1))
�
(i)
k

(cP(i−1))
�
(i)
k+1

(57)

where the notation emphasizes that row i of the matrix prod-
uct is considered—the indexed columns ofP(i−1) are updated
according to

P(i)
:,�k = P(i−1)

:,�k + α
(i)
k P(i−1)

:,�k+1
, (58)

where the colon index notation refers to the entire column.
The non-indexed columns are just transferred to the new
matrix (keeping the order of columns), as they already fulfil
orthogonality to column i of cT. The updating is performed
for all but the final index in �(i); the last of the columns is
discarded.

Due to the transformations in Eqs. (57), (58), the whole
row i in cP(i) is vanishing. After handling all the Nc rows of
c, the matrix P = P(Nc) is the sought matrix, with remaining
columns orthogonal to the matrix cT.

The method described above leads to a very low fill-in,
and is easily described in efficient algorithmic form. When
the number of non-zero components in the matrix c is high,
the matrix P, however, easily becomes ill-conditioned in the
sense that its columns becomeclose to parallel. In these cases,
a slightly more elaborate procedure is preferred. In this form,
the index vector �(i) is sorted such that it gives the non-zero
components of (cP(i−1)

i,: ) in ascending order of magnitude.

This re-ordering will in Eq. (57) lead to all |α(i)
k | ≤ 1, which

improves the orthogonality of the columns in P(i), but at the
cost of —sometimes significantly— increased fill-in. Also
the refined algorithm is easily algorithmically described,with
only the c matrix as input.

Practical experiences from experimentation with the
larger examples below, with well-filled c matrices, indicate
that the refined procedure is necessary for obtaining eigenso-
lutions of sufficient precision. For other problems, with more
point-wise constraints, the basic method has been deemed
sufficiently accurate, and also overall more efficient.

4 Parameterized equilibrium sequences

The above discussion focusses on the stability properties of
a constrained equilibrium state defined by z and with a fixed
set of auxiliary parameters �x . This section discusses the
introduction of such parameters in a multi-parametric struc-
tural model, and the solution of parameterized equilibrium
sequences.

4.1 Auxiliary parameters

When analyzing a multi-parametric equilibrium problem,
parameters might be hard-coded in the problem formulation
or variables in the simulation, i.e., introduced by the set�x of
size Nx . This is a generalization of the engineering approach,
which evaluates the response of a structure, and in particular
its stability, as dependent on a one-parameterization of a load
case.

The introduced parameters can be used to describe any
kind of properties of the structural model or the load cases
considered. Introduction of Nx auxiliary parameters �x will
give an Nx -dimensional solution space,which can be reduced
by a set of auxiliary equations

gx (u,�) = 0, (59)

where an (Nx − 1)-dimensional set of conditions leads to
response curves. The functions give conditions for relations
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between variables and parameters, without introducing any
constraints on the solution, and are often simple. Since they
are for each studied equilibrium state constant, they never
affect stability investigations. The following will discuss dif-
ferent auxiliary equations, and their relation to introduced
parameters.

4.2 Sequence parameterization

A common engineering setting of static equilibrium anal-
yses is to parameterize a main case by a load parameter
�x = [λ], with all other parameters hard-coded. Even if
other approaches have been suggested, e.g., based on asymp-
totic methods [30], the most common approach is to solve
displacements u j for a set of λ j , even if technically so-called
displacement or arc-length control [13,19,31,40] is often
used. Such strategies parameterize an equilibrium sequence
in the combined space (u, λ) [15], and can be described as
one selector function gx appended to the residual expres-
sions. Stability is judged based on the tangent stiffnessmatrix
at each state, and thereby related to the load level λ.

Similarly, with Nc constraint equations in Eq. (10), z
according toEq. (13), and an (Nc+1)-dimensional parameter
set � = [�T

c , λ]T, the first Nc parameters are constraint-
enforcing,whereas the parameterλ allows a parameterization
of the equilibrium sequence by any selector function involv-
ing the variables [zT, λ]T [15]. In a sequence-following
method, where each step finds one new static equilibrium
[zTi+1, λi+1]T for (i = 0, . . .), the selector function is updated
step-wise, demanding a vanishing

g∗(y) = gz(z − zi ) + gΛ(� − �i ) − Δτi , (60)

with y according to Eq. (20), and introducing a fictitious time
increment Δτi for each new solution state. The superscript
∗ shows that a function of this form is always introduced
automatically as part of the sequence-following algorithm.

4.3 Parameterized structural model

Geometric or material parameters for the considered struc-
tural model can be introduced by �x . A sequence of static
equilibrium solutions for a hard-coded load case is then
obtained as function of the parameter; examples are shown
below. Stability can then be evaluated for this load as depen-
dent on the parameter.

4.3.1 Convenience transformation

With several parameters in �x , any kind of auxiliary equa-
tions can be used to select specific parameterized equilibrium
states [16,23]. Addition of further parameters in �x and
related functions in gx are then used for transformations

between parameters in the simulation. This idea can be
used for, e.g., summation of some displacement components,
intended for post-processing of results, or for convenience
in interpretation. Below is shown how gas pressure and gas
amount in a closed membrane can be connected by a condi-
tion on the parameters, which allows different views on the
loading.

4.4 Criticality function

Critical equilibrium states when increasing a load intensity,
or when traversing a generalized equilibrium sequence, are
commonly characterized by zero eigenvalues of the tangent
stiffness matrix, as in Eq. (23), even if other similar defi-
nitions are sometimes used. When using physical constraint
equations as in Eq. (10), the criticality of the equilibrium state
can be similarly judged based on the vanishing of a function

gx (y) = κcrit(K̃(u,�)), (61)

the lowest magnitude eigenvalue of the Jacobian matrix in
Eqs. (24), (25). This is used in finding one critical equi-
librium state for a hard-coded structure and one-parameter
loading, replacing the arc-length function. It can also be used
in a two-parameter setting to obtain a sequence of critical
equilibriumstates for a variable parameter.Withmore param-
eters and selector functions, this is thereby amore systematic
approach, but similar in idea, to the specialized one used byLi
and Healey in order to find stability boundaries in parameter
space [33].

4.4.1 Critical sequence conditions

As further presented and discussed elsewhere, following of
critical equilibrium sequences is not always a robust proce-
dure if based on Eq. (61), and other methods are needed.

As one alternative, auxiliary conditions can keep the solu-
tions on a specific sequence. This is relevant for bifurcation
states, where themodel symmetry is broken on the secondary
sequences. When the sought critical equilibrium states are
situated on the primary sequence, conditions of the form

gx ≡ gs(u,�c) = 0 (62)

are introduced, expressing the desired symmetry by a set of
functions, and accompanied by forces fs . The inclusion of
a set of such auxiliary conditions will decrease the condi-
tion number of the iteration matrix, but will not affect the
equilibrium state, as the forces fs will converge to zero. The
differencebetween these symmetry-enforcing conditions and
the constraints introduced byEq. (3) is obvious. It is also clear
that the conditions in Eq. (62) must be chosen in relation to
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the specific symmetry conditions of a particular critical situ-
ation.

As another approach, in order o avoid iterating at the exact
critical state, the critical selector condition in Eq. (61) can be
replaced by the scalar function

g̃x (u,�) =
N0∑
c=1

(κc − κε) = 0 (63)

where κc are the N0 lowest magnitude eigenvalues, when a
sequence of N0-fold criticality is followed. The value κε is
a numerical tolerance for what is considered as a vanishing
eigenvalue. A sequence followed with this selector will thus
trace a border line for the zone of critical equilibrium states.
With a suitable value for κε, critical states very close to the
exact oneswill be solved, known also to be on themore stable
side of the critical border.

4.5 Implementation

The above setting is implemented in a further develop-
ment of the basic sequence-following algorithm [16]. The
main difference is the systematic distinction among the
added equations, as representing either physical constraints
or selector conditions in the multi-parametric solution space.
Following [46], the non-linear set of equations to solve for
one equilibrium state is stated as

G(y) =
⎛
⎝ rc(z,�x )

gc(z,�x )

gx (z,�x )

⎞
⎠ = 0, (64)

According to Eqs. (20) and (13), the variable vector
y contains the displacements u, the constraint-enforcing
parameters �c and the auxiliary parameters �x . The expres-
sions are the residual forces rc, the physical constraintsgc and
the selector functions gx . The problem specification thereby
must provide Nu+NΛ−1 function values from Nu+NΛ vari-
ables in a problem-specific code segment. Themajor part then
comes from general element functions and from the penalty
functions, but the constraint functions in gc, and all but the
final function in gx need be defined for a particular case.

Similarly, the corresponding differential expressions must
be provided for a specific problem setting, according to

G,y =
⎡
⎣rc,u rc,�c rc,�x

gc,u gc,�c gc,�x

gx,u gx,�c gx,�x

⎤
⎦ , (65)

where rc,u ≡ K is mainly formulated from general element
expressions.

The algorithm traverses a sequence of equilibrium states
with a continuation algorithm [2,16,39], assuming an initial

equilibrium solution [zT0 , λ0]T is known. When solving for a
new equilibrium solution yi+1 = yi + Δyi , from a previous
solution, the prediction to the increment in the new step is

Δy0i = Δsi ty(yi ), (66)

cf. Eq. (19) [16]. The step length Δsi is chosen before the
prediction step. This choice affects the sequence selector
function in subsequent iterations in the increment.

In an iterative formulation for Newton corrections j =
0, . . .,

Δy j+1
i = Δy j

i + δy j
i

= Δy j
i − (G,y)

−1G(y j
i+1),

(67)

the differentialG,y is also evaluated at y
j
i+1 = yi +Δy j

i . Iter-
ations according to Eq. (67) are performed to a low tolerance,
i.e., until

‖G(yi + Δy j
i )‖ < τ, (68)

whereafter solution yi+1 is stored, and its properties evalu-
ated.

The algorithm isolates and identifies special equilib-
rium states along the traversed sequence. The special states
include solutions where the number of negative eigenval-
ues of the relevant Jacobian matrix—K in Eq. (21), or K̃
in Eq. (25)—changes, but also solutions where any of the
problem parameters or their tangent components vanish. The
implementation utilizes the continuity of the current problem
class in an accurate isolation of special states on the sequence.

5 Numerical examples

5.1 A demonstration problem

The concepts above are first demonstrated for a Mises truss,
Fig. 1a. Neglecting the possibility for local buckling in this
demonstration example, which would demand a choice of
finite deflection beam formulation, the problem was mod-
elled as a truss, by analytical treatment of the non-linear
Green-Lagrange strains and linearly elastic second Piola-
Kirchhoff stresses with the unstressed state as reference.
For L = 1m, a scaled axial stiffness E A = 1N, left two
displacement components and the corresponding explicitly
applied forces (ui , fi ) (i = 1, 2) and a geometrical parame-
ter h as basic definition of the problem. The basic potential
energy for the system was

W = Wp(u1, u2, h) − f1 u1 − f2 u2. (69)
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Fig. 1 Point-loaded Mises truss. a Model; b force-deflection graph
(h = 1.5); c height-deflection graph ( f2 = − 0.15). Dashed curves
connect b and c. Numbers close to sequences show number of nega-
tive eigenvalues. Downwards force − f2, downwards deflection − u2,
height h. Critical states marked by “+”

Equilibrium sequences were obtained for a single param-
eter in �x together with a sequence selector function
g∗(y) automatically inserted. Results for hard-coded h =
1.5m, f1 = 0, and parameterized �x = [ f2] are shown in
Fig. 1b, and for hard-coded f1 = 0, f2 = − 0.15N with
�x = [h] in Fig. 1c. For both settings, primary solutions
with u1 = 0 were obtained without any conditions or con-
straints. Dashed lines in subfigures (b) and (c) emphasize
that the figures are different sections through the same man-
ifold. Isolated critical states are marked, and the numbers of
negative eigenvalues for the tangent stiffness matrix K are
shown.

As a perturbed, but not constrained, problem, two param-
eters �x = [ f1, f2]T were introduced, with a hard-coded
h = 2.5m. Introducing the selector functions

gx =
(
X − u1
g∗(y)

)
, (70)

equilibrium states with displacement u1 = X = 0.2m were
selected, cf. Fig. 2a. In general, f1 	= 0 for this sequence.
Special solutions were found for f2 = 0, for f1 = 0, and
from vanishing tangent components.

A singular tangent stiffness matrix was found at four equi-
libriumstates, ofwhich twowere close to, but not at, the states
with extremum f2, cf. Fig. 2b. The special states were found
by bisection to high accuracy without any particular formu-
lation. Similar situations were found when the critical state
appeared close to states with f1 = 0.

In order to find the parametric variation of critical states
with height h, three parameters �x = [ f1, f2, h]T, were
introduced.Demanding criticality togetherwith amaintained
symmetry, i.e., a condition u1 = 0, three selector functions

gx =
⎛
⎝ κcrit(K)

u1
g∗(y)

⎞
⎠ , (71)

were introduced, containing the lowestmagnitude eigenvalue
of the tangent stiffness matrix. Starting from isolated critical
states reported in Fig. 1b, critical sequences in Fig. 2c were
obtained, verifying that a bifurcation is reached before the
first limit state if h ≥ √

3.
Introducing a physical constraint on u1, the problem was

formulated through a Lagrange multiplier μ1 as

Wc = W (Eq. (69)) + μ1(X − u1). (72)

with f1 = 0 hard-coded.
The problemwas solved for X = 0.2m, introducing�c =

[μ1], gc(u) = X − u1, and a corresponding load-like vector
h = − gTc,u = [1, 0]T, giving a symmetric Jacobian. With
�x = [ f2], and one sequence selector function g∗(y), the
total external forces on the structure are f(�) = [μ1, f2]T.
The solution sequence obtained was identical to the one in
Fig. 2a, but only two critical states were found, coinciding
with extremum f2.

For a displacement constraint of the form u2 = Xu1, with
X a constant and f1 = 0 hard-coded, the potential energy
form was written

Wc = W (Eq. (69)) + μ1(Xu1 − u2). (73)

For �c = [μ1], �x = [ f2], and the sequence selector
function g∗(y), solution sequences were obtained for hard-
coded X . The total force acting on the structure was f(�) =
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Fig. 2 Point-loaded Mises truss with h = 2.5m and specified u1. a
Deflection − u2 for force − f2, with u1 = 0.2m. bMagnification of a.
c Critical equilibrium states, for u1 = 0. Singular matrix in a, bmarked
by “*”, extremum value by “+”, and zero force components by “o” (red
for f2 = 0, black for f1 = 0). Coinciding criticality marked by “+” in
c

[−Xμ1, μ1+ f2]T. Special solution states were found where
either of the two parameters was vanishing or extremum. A
singular Jacobian now coincided with extremum values for
f2.

It is noted that for neither of the two constrained settings,
the parameter in �x affected the tangent stiffness matrix,
as the penalty functions g� were linear in the displacement
components. With, e.g., a circular constraint function g� =
(u21 + u22 − (�∗)2), an addition to the basic tangent stiffness
K = W,uu would appear.

5.2 A large-scale example

The inflation by gas of a spherical membrane of unstressed
radius R = 50mm, and thickness t = 0.05mm was studied.
The material was assumed as an incompressible isotropic
Mooney-Rivlin model, with the constants related to the two
first strain invariants c1 = 0.25MPa, c2 = k c1.

The membrane was pressurized by an internal over-
pressure p, in relation to an external, ambient, pressure p0.
The included amount of gaswas an alternative parameter, and
measured by Γ = (p + p0)V , with V ≡ V (u) the enclosed
volume at a state u. The instabilities existing for this problem
are extensively studied in literature [28,36,44].

It is noted that with present data the over-pressure is
significantly lower than ambient pressure, aiming at the rep-
resentation of balloon-like membranes on earth. A study of
the dependence on ambient pressure is also discussed below.

5.2.1 General settings

The basic total potential energy for this problem was

Wc = Wp − pV (u) + ΔWR, (74)

with the strain energyWp dependent on geometric and mate-
rial parameters hard-coded in the expressions. Rigid body
motions were constrained by an additional energy term

ΔWR = μT
R

(∑
k uk∑
k Xk × uk

)
, (75)

withμR containing six Lagrangemultipliers. The expression
considers displacements uk and initial positions Xk of all
nodes in themodel. In all converged solutionsμR ≈ 0 to high
precision. The needed constraining functions gc(u), below
denoted as gR , and their corresponding contributions to the
residual equations were obtained from Eq. (75).

Recognizing that the symmetry properties of a discretized
mesh can significantly affect simulation results [27,47], dif-
ferent computational meshes were used. All were based on
flat, triangular membrane elements with assumed local plane
stress conditions [17]. Main results are given for a 5120 ele-
ment mesh based on a regular refinement of an icosahedron
mesh, and fulfilling Ih symmetry in Schoenflies notation.2

2 https://en.wikipedia.org/wiki/Schoenflies-notation.
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The refinement means that the final mesh will use nodes of
30 different positions with respect to symmetry. In particular,
the nodes at the axis crossings with the sphere are different,
and give slightly different radial expansions. Results are here
given for a node initially at Z = R, being a vertex of the
icosahedron.

Two other models were based on 4096 elements: a regu-
lar subdivision of a tetrahedron, fulfilling Td symmetry, and
based on an 8-sector and one mirror mesh, fulfilling D8h

symmetry. Low resolution element meshes of these symme-
try classes are shown in Fig. 3.

In all simulations reported below, a fictitious mass setting
according to Eq. (39) was used for eigen-analysis, with ε =
10−5.

5.2.2 Response to over-pressure forces

For an otherwise un-constrained setting, parameters were
introduced as �c = [μR] and �x = [p, Γ ]T. Selector func-
tions were introduced as

gx (u, p, Γ ) =
(

Γ − (p + p0) V (u)

g∗(y)

)
, (76)

defining the gas amount Γ as an auxiliary parameter, from
a hard-coded p0. The Jacobian of the constrained system in
Eq. (14) was symmetric from Eq. (75), as f,�c = − gIc,u,
while gc,�c was zero. The matrix h contained a first column
− V,u and one zero column, while Γ gave a contribution to
the differential gx,�x .

With the Ih model, and ambient pressure p0 = 100 kPa,
the relations between radial expansion and over-pressure are
given in Fig. 4a, for a set of k. Localmaximumpressure states
were isolated for low k, with accompanying local minima if
k > 0. Figure 4b shows the relation between over-pressure
p and enclosed amount of gas Γ . Also the gas amount can
show a limit state under inflation for low ambient pressure
and k < 0, Fig. 4c. This limit amount situationwas here noted
only from a change of sign for the Γ tangent component.

Critical states, for fixed p, aremarked in the figures. These
are primarily limit states, but bifurcation states, of different
multiplicities, were found for k < 0. Compared to the ana-
lytical solution, the mesh introduced an imperfection. This
is seen for the case k = − 0.05, which gave a limit state
as well as a turning state in the considered radial expansion
measure, and returned—in the used projection—parallel to
itself, as can be vaguely seen from Fig. 4c.

5.2.3 Symmetry of model

An analytical treatment of the gas-pressurized sphere (pre-
sented elsewhere) shows that bifurcations will occur from
the primary equilibrium sequence for certain hyper-elastic

Fig. 3 Low resolution meshes for modelling of the sphere. a Icosa-
hedron mesh Ih (80 elements). b Tetrahedron-based mesh Td (64
elements). cMirror and sector based mesh D8h (64 elements). All three
meshes were further recursively refined 3 times for computations. Ver-
tices for the initial meshes are marked by stars

material models, e.g., a Mooney-Rivlin model with k < 0.
This leads to the existence of symmetry-breaking solution
branches, and gives states with multiple zero eigenvalues
of the tangent stiffness on the primary branch. These are
following a limit state of multiplicity one, and are of mul-
tiplicities 3, 5, 7, . . ., giving successively equilibrium states
with 0, 1, 4, 9, 16, . . . negative eigenvalues.
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Fig. 4 Gas-pressurized sphere discretized by Ih model, with variable
constitutive constants k. aOver-pressure p related to radial expansion at
top point uR for ambient pressure p0 = 100 kPa. b p related to measure
for gas amount Γ . c Γ related to uR for p0 = 0. Critical states for un-
constrained problem marked ‘by “+”. In all sub-figures k = 0.25, 0.15,
0.05, − 0.05 from top to bottom

These bifurcation states will be more or less well repre-
sented by a chosen mesh. Multiple bifurcations are thereby
split into several lower order bifurcations, or converted into
limit states by mesh un-symmetries acting as imperfections

[18]. Such limit states indicate that the primary equilib-
rium sequence for the discretized case deviates from the one
valid for the continuous case, however, without a bifurca-
tion. Figure 5 shows the computed response curves for a
case with k = − 0.05 and p0 = 100 kPa, and the three dif-
ferent meshes. The figure shows at which bifurcation state
for the continuous case the respective models are no longer
able to yield an essentially spherical solution. Figure 5a
shows the pressure-expansion relation, which is magnified
in Fig. 5b, while Fig. 5c shows the deviation from spheri-
cal expansion, evaluated from displaced nodal coordinates.
The figures show, in addition to sequences started from
zero over-pressure, a sequence for the Ih model restarted
for larger expansions on the primary continuous sequence.
The observation is that the continuous case will be pos-
sible to represent with a set of unconnected equilibrium
sequences.

5.2.4 Gas amount as main load parameter

Simulations were performed with gas amount as load param-
eter, based on a potential function

Wc = Wc(Eq. (74)) + Γ ln

(
p + p0
p0

)
(77)

As the constraint term is of the ΔWc form in Eq. (6), the
corresponding seven constraint functions were

gc =
(
gR

Γ
p0+p − V (u)

)
, (78)

with �c = [μT
R, p]T, �x = [Γ ], and p0 a hard-coded

ambient pressure. It is noted that the second expression in
Eq. (78) is the same as the first expression in Eq. (76), but re-
formulated to give a symmetric Jacobianmatrix. Themoving
of the function from a condition in gx to a constraint in gc is
also of significance. With over-pressure p now included in
�c, the Jacobian included Wc,pp = −Γ /(p0 + p)2 	= 0 as
a diagonal term of the b submatrix in the schematic Eq. (27),
and a zero row was appended to the c matrix. The effective
load vector h only contained Wc,pΓ = 1/(p0 + p). With
Nx = 1, a sequence selector function g∗(y) was automati-
cally added by the algorithm.

The equilibrium sequences [uT, p, Γ ]T, were the same
as above, but stability conclusions differed, as the present
case studied stability with fixed Γ , while over-pressure p
was allowed to vary. Figure 6a shows that the present case
did not show a critical state at the maximum over-pressure.
The magnified Fig. 6b shows that the maximum amount state
was now noted by a singular Jacobian. The same bifurcation
states along the sequence were isolated for both forms. Fig-
ure 6b also shows in detail how the sevenfold bifurcation
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Fig. 5 Gas-pressurized sphere with negative constitutive constant k =
− 0.05 and p0 = 100 kPa, with different meshes. a Over-pressure p
related to radial expansion at top point uR . b Magnification from a. c
Sphericity ratio ρ = rmax/rmin related to uR . Marks indicate critical
states for Ih case. Thinner line is re-started simulation at larger expan-
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is split into two bifurcations. All bifurcations were isolated
to high precision without any extra constraints or conditions,
but a symmetry-enforcing condition, Eq. (62), could improve
numerical stability.
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Fig. 6 Gas-pressurized sphere with negative constitutive constant k =
− 0.05 and ambient pressure p0 = 0. aOver-pressure p and gas amount
Γ related to radial expansion at top point uR . bMagnification of a. “*”
indicates (one or several) zero eigenvalues for the over-pressure control,
“o” zero eigenvalues for the amount control. Numbers on curves in b
indicate number of zero eigenvalues

5.2.5 Response to ambient pressure

Simulations were performed for a spherical membrane,
which was inflated by an amount of gas, closed, and then
subjected to variable ambient pressure p0. The potential of
this setting was the same as in Eq. (77), but now with Γ

hard-coded, �c = [μT
R, p]T, and�x = [p0], with constraint

functions as in Eq. (78). The setting also leads to the same
gc,u, f,�c and gc,�c as above, but an effective load vector

h(u,�) ≡
[
0T,

Γ

(p0 + p)2

]T
(79)

Sequence-following added a single selector function g∗(y),
and did not need any symmetry condition.

A situation similar to those in Fig. 4a–b was first studied
for p0 = 100 kPa and k = 0.18, giving three equilib-
rium states for p = 0.85 kPa: stable at uR = 22.76mm,
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Γ = 0.1624 kNm; unstable at uR = 45.95mm, Γ =
0.3723 kNm; stable at uR = 79.10mm, Γ = 0.9069 kNm,
with stability judged for fixed p.

With these amounts successively introduced as three cases
of Γ , results over a range of ambient pressures p0 are given
in Fig 7.

Stability conclusions All equilibrium states in Fig. 7 were
found stable based on the constrained Jacobian, even if
the tangent stiffness matrix K had one negative eigen-
value in parts of the sequences. This illustrates an impor-
tant distinction in stability conclusions, dependent on set-
ting.

The constrained setting considers Eqs. (77) and (78) and
studies stability with p0 and Γ fixed, which demands p to
vary with displacements in order to fulfil the Γ definition.
The investigation of the tangent stiffness matrix is based on
an analysis of the same problem, but based on Eq. (74) and (a
re-formulation of) Eq. (76) with �x = [p, p0]T. This would
yield the same equilibrium sequence but give stability con-
clusions for fixed p, p0 and Γ .

As stability is in the latter case only related to expansion
and over-pressure, Fig. 7a also clearly shows similar regions
of instability in all three cases considered, cf. Fig. 4a. Fig-
ure 7c also shows how the three starting states are changing
due to variable ambient pressure, with the amount of gas
kept constant; the marks connect in each case the solutions
for p0 of 50, 100 and 200 kPa, but it is obvious that the curve
of p versus uR is followed by continuous changes to p0.
The three cases are shown to react differently to changes in
ambient pressure from the initial 100 kPa, as Case 2 will
be always unstable in this ambient pressure range, Case
3 always stable and Case 1 changing stability within the
range.

5.2.6 Parameterized deviations from sphericity

Deviations from a spherical structure was modelled, by
introducing a non-uniform scaling of the unstressed Ih unit
spheremodel, with radii (Rx , Ry, Rz). Simulationswere per-
formed for variable Rz , while Rx = Ry = 50mm, with
k = − 0.05, p0 = 100 kPa, and other data as above. With
successive hard-coded values for Rz , parameters were intro-
duced as �c = [μR, p], �x = [Γ ]. With a potential energy
from Eq. (77), constraint functions according to Eq. (78)
were introduced, and a sequence selector function g∗(y)
used.

For ellipsoid geometry, the Ih symmetry was reduced
to a D5d symmetry, when the sphere was stretched along
an axis through two vertices of the basic icosahedron.
Some results for different Rz are shown in Fig. 8. It
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Fig. 7 Gas-pressurized sphere with constitutive constant k = 0.18, and
specified gas amounts Γ , under variable ambient pressure p0. a Over-
pressure p related to p0. b p0 related to radial expansion at top point uR .
c Crossings of the three cases with relation uR vs. p for p0 = 50, 100,
200 kPa. Cases 1, 2, 3 are for Γ = 0.1624, 0.3723, and 0.9069 kNm,
respectively. Thicker (red) lines in a, b indicate stable equilibrium for
fixed p Circles in b are for p0 = 100 kPa

was noted that wrinkling appeared for lower uR values
when Rz was low, but curves only show non-wrinkled
states.
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Fig. 8 Gas-pressurized ellipsoid membrane with constitutive constant
k = − 0.05, and ambient pressure p0 = 100 kPa. a Over-pressure p
related to radial expansion at top point uR . b Gas amounts Γ related to
uR . Bifurcations are marked by “+”. Numbers in figures are values for
Rz

Some critical states shown in Fig. 8 are ofmultiplicity 2, or
even higher for Rz = 50mm. Critical equilibrium sequences
were traced for the sameproblem, nowwith parameters�x =
[Γ , Rz]T, and selector functions

gx =
(∑

(κ̃crit(K̃) − κε)

g∗(y)

)
, (80)

cf. Eq. (63)—and noting the different multiplicities of the
sequences. Simulations used κε = 10−11, compared to com-
mon low eigenvalues of ≈ 10−4. The number of negative
eigenvalues was checked at all obtained states as verifica-
tion.

Results are shown in Fig. 9, indicating how similar critical
modes are transformed by the non-sphericity.

Visibly identical critical sequences were obtained when
solving for exact criticality κε = 0, after the introduction of
the —for each critical state—relevant symmetry-preserving
conditions of the form in Eq. (62).
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Fig. 9 Critical equilibrium sequences for gas-pressurized ellipsoid
membrane with constitutive constant k = − 0.05, and ambient pres-
sure p0 = 100 kPa. aOver-pressure p related to radial expansion at top
point uR . b Gas amounts Γ related to uR . c Critical pressure related to
radius Rz . Thin background curves and “+” are from Fig. 8. Solid lines
in c are onefold critical, dashed are twofold

6 Concluding remarks

The paper has described how constrained stability of a con-
servative multi-parametric quasi-statically loaded structure
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can be described, evaluated and interpreted. The work was
partially motivated by the increasing interest in multi-stable
equilibrium systems.

A main starting point was that stability is a property
of one particular equilibrium state, but can be evaluated
as dependent on different parameter variations of not only
the common load parameter. The stability conclusions were
based on systematic usage of a total potential energy formu-
lation, including constraints of different forms, and studied
small, linearized vibrations around the equilibrium state,
which gave the relevant eigenvalue problem. Included pas-
sive physical constraints on the solution were shown to affect
the stability conclusions. In particular, the treatment shows
how conclusions are dependent on which load parameter is
fixed, and, thereby, which must be variable in the fulfilment
of constraints.

The formulation of the constrained problems was in the
formof a generalized equilibriumproblem,where constraints
were clearly distinguished from more general conditions,
which can describe convenience transformations between
different load parameters, or be selectors in the placement
of evaluated equilibrium states. A generalization of the con-
cept of stable equilibrium sequences (for a range of force
values) allowed identification of stable parametric regions.
The viewpoint thereby differed from common engineering
practice in that it clearly separated the parameterization of
an equilibrium sequence from the parameter seen as causing
instability when passing a critical value.

The paper discussed settings for the evaluation of the
needed eigensolutions for different forms of constraint equa-
tions, allowing efficient use of basic algorithms. One aspect
was related to the inclusion of massless constraint equations.
An important conclusion is that the evaluation of eigenvalues
is normally straight-forward, while the corresponding eigen-
vectors, if needed, demand more elaborate procedures.

The present work shows how complex instability prob-
lems can be handled by a generalized equilibrium sequence-
following algorithm, able to handle equilibrium states with
multiple instabilities, and in particular cases with multiple
simultaneously vanishing eigenvalues for the relevant Jaco-
bian matrix. High accuracy is needed in all parts of the
algorithm, with low tolerances for residual error, and low
thresholds for what is considered as vanishing eigenvalues
and tangent vector components. An improved algorithm for
the treatment of the current problem classes would need
more problem-oriented functions for the identification and
handling of the multiple critical states. A basic idea shown
in the paper is that equations enforcing the correct symmetry
properties in a solution can stabilize the equilibrium itera-
tions, but further work is needed to develop this as a general
method.

Examples concerned with a simple truss structure and a
gas-pressurized spherical membrane showed several aspects

of parameterized stability investigations. Highly unstable
equilibrium states could be found, isolated and identified.
Situations where stability is regained after significant defor-
mations of the structure were thereby amenable to analysis.
Examples also showed how aspects of symmetry in a struc-
ture or a structural model can be of major importance in
simulations, and how these aspects can introduce, hide or
significantly modify instabilities.
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