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Abstract
The Kirchhoff–Love shell theory is recasted in the frame of the tangential differential calculus (TDC) where differential
operators on surfaces are formulated based on global, three-dimensional coordinates. As a consequence, there is no need
for a parametrization of the shell geometry implying curvilinear surface coordinates as used in the classical shell theory.
Therefore, the proposed TDC-based formulation also applies to shell geometries which are zero-isosurfaces as in the level-set
method where no parametrization is available in general. For the discretization, the TDC-based formulation may be used
based on surface meshes implying element-wise parametrizations. Then, the results are equivalent to those obtained based on
the classical theory. However, it may also be used in recent finite element approaches as the TraceFEM and CutFEM where
shape functions are generated on a background mesh without any need for a parametrization. Numerical results presented
herein are achieved with isogeometric analysis for classical and new benchmark tests. Higher-order convergence rates in the
residual errors are achieved when the physical fields are sufficiently smooth.

Keywords Shells · Tangential differential calculus · TDC · Isogeometric analysis · IGA · Manifolds

1 Introduction

The mechanical modeling of shells leads to partial differen-
tial equations (PDEs) on manifolds where the manifolds are
curved surfaces in the three-dimensional space. An overview
in classical shell theory is given, e.g., in [4,9,32,44,45]
or in the textbooks [1,5,41,49]. When modeling physical
phenomena on curved surfaces, definitions for geometric
quantities (normal vectors, curvatures, etc.) and differen-
tial surface operators (gradients, divergence, etc.) are key
ingredients. These quantities may be either defined based on
two-dimensional, curvilinear local coordinates living on the
manifold or on global coordinates of the surrounding, three-
dimensional space.

In the first case, the curved surface is parametrized
by two parameters, i.e., there is a given map from the
two-dimensional parameter space to the three-dimensional

B D. Schöllhammer
schoellhammer@tugraz.at
http://www.ifb.tugraz.at

T. P. Fries
fries@tugraz.at
http://www.ifb.tugraz.at

1 Institute of Structural Analysis, Graz University of
Technology, Lessingstr. 25/II, 8010 Graz, Austria

physical space, see Fig. 1a. For the definition of geometri-
cal quantities and surface operators, co- and contra-variant
base vectors and Christoffel-symbols naturally occur. It is
important to note that a parametrization of a surface is not
unique, hence, there are infinitely many maps which result in
the same curved surface. Obviously, the physical modeling
must be independent of a concrete parametrization, which
suggests the existence of a parametrization-free formulation.

In the second case, the geometric quantities and surface
operators are based on global coordinates as done in the tan-
gential differential calculus (TDC) [15,25,28]. Then, amodel
may also be defined even if a parametrization of a curved sur-
face does not exist, for example, when it is a zero-isosurface
of a scalar function in three dimensions following the level-
set method [21,22,39,43]. When the physical modeling is
based on the TDC, i.e., on global coordinates, it is applicable
to surfaces which are parametrized or not. In this sense, the
TDC-based approach is more general than approaches based
on local coordinates. Models based on the TDC are found in
various applications, see [16–18,22] for scalar problems such
as heat flow and [20,31] for flow problems on manifolds. In
the context of structure mechanics, this approach is used in
[29] for curved beams, in [25,26,28] for membranes, and in
[27] for flat shells embedded in R3.
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Fig. 1 a In classical shell mechanics, the middle surface is defined by
a parametrization, i.e., a map x(r). b The cupola is given by the zero-
isosurface of φ(x) and themechanical response to the force F is sought.
c The surface mesh implies element-wise, approximate parametriza-

tions even if the initial geometry is defined by level-sets.d For implicitly
defined shells in the context of TraceFEMandCutFEM, no parametriza-
tion is needed at all

Herein, we apply the TDC for the reformulation of the
classical Kirchhoff–Love shell theory which is typically for-
mulated based on a given parametrization.Based on theTDC,
it is possible to also formulate the boundary value prob-
lem (BVP) for shell geometries where no parametrization
is given as for the example in Fig. 1b: the cupola with radius
r is given by the zero-isosurface of φ(x) = ‖x‖ − r with
x ∈ [−r , r ]2 × [0, r ] and the mechanical response to the
force F is sought. As mentioned before, the TDC-based for-
mulation is also valid when a parametrization is available; it
is then equivalent to the classical formulation based on local
coordinates.

Other attempts to parametrization-free formulations of the
Kirchhoff–Love shell theory are found, e.g., in [11–14] with
a mathematical focus and in [33,47,50] from an engineer-
ing perspective, however, only with focus on displacements.
Herein, the Kirchhoff–Love shell theory is recasted in the
frame of the TDC including all relevant mechanical aspects.
For the first time, the parametrization-free strong form of
the Kirchhoff–Love shell is given and taken as the start-
ing point to derive the weak form. Then, boundary terms
for the relevant boundary conditions of Kirchhoff–Love
shell theory are naturally achieved. Furthermore, mechan-
ical quantities such as moments, normal and shear forces
are defined based on global coordinates and it is shown
how (parametrization-)invariant quantities such as princi-
pal moments are computed. Finally, the strong form of
Kirchhoff–Love shells is also found highly useful to define
residual errors in the numerical results. Of course, evaluating
this error in the strong form requires up to forth-order deriva-
tives on the surface, which is implementationally quite some
effort. The advantage, however, is that one may then confirm
higher-order convergence rates in the corresponding error
norm for suitable shell test cases. This is, otherwise, very
difficult as exact solutions for shells are hardly available and

classical benchmark tests typically give only selected scalar
quantities, often with moderate accuracy.

For the numerical solution of shells, i.e., the approxi-
mation of the shell BVP based on numerical methods, we
distinguish two fundamentally different approaches. The first
is a classical finite element analysis based on a surface mesh,
labelled Surface FEM herein [16,18,20,22]. Once a surface
mesh is generated, it implies element-wise parametrizations
for the shell geometry, see Fig. 1c, no matter whether the
underlying (analytic) geometry was parametrized or implied
by level sets. In this case, classical shell theory based on
parametrizations is suitable at least for the discretized geom-
etry. The proposedTDC-based formulation is suitable aswell
which shall be seen in the numerical results. The other numer-
ical approach is to use a three-dimensional background mesh
into which the curved shell surface is embedded, cf. Fig. 1d.
Then, the shape functions of the (three-dimensional) back-
ground elements are only evaluated on the shell surface and
no parametrization (and surface mesh) is needed to furnish
basis functions for the approximation. For these methods,
e.g., labelled CutFEM [6–8,19] or TraceFEM [23,37,38,42],
applied to the case of shell mechanics, it is no longer pos-
sible to rely on classical parametrization-based formulations
of the shell mechanics, however, the proposed TDC-based
formulation is still applicable.

For the numerical results presented herein, the continu-
ous weak form of the BVP is discretized with the Surface
FEM [16,18,20,22] using NURBS as trial and test functions
as proposed by Hughes et al. [10,30] due to the continuity
requirements ofKirchhoff–Love shells. The boundary condi-
tions are weakly enforced via Lagrange multiplies [51]. The
situation is similar to [2,32,35,36], however, based on the
proposed view point, the implementation is quite different.
In particular, when PDEs on manifolds from other appli-
cation fields than shell mechanics are also of interest (e.g.,
when transport problems [16–18] or flow problems [20,31]
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on curved surfaces are considered), there is a unified and
elegant way to handle this by computing surface gradients
applied to finite element shape functions which simplifies
the situation considerably. In that sense one may shift sig-
nificant parts of the implementation needed for shells to the
underlying finite element technology and recycle this in other
situations where PDEs on surfaces are considered.

We summarize the advantages of the TDC-based formula-
tion of Kirchhoff–Love shells: (1) the definition of the BVP
does not need a parametrization of the surface (though it can
also handle the classical situation where a parametrization
is given), (2) the TDC-based formulation is also suitable
for very recent finite element technologies such as Cut-
FEM and TraceFEM (though the typical approach based
on the Surface FEM or IGA is also possible and demon-
strated herein), (3) the implementation is advantagous in
finite element (FE) codes where other PDEs on manifolds
are considered as well due to the split of FE technology and
application. From a didactic point of view, it may also be
advantageous that troubles with curvilinear coordinates (co-
and contra-variance, Christoffel-symbols) are avoided in the
TDC-based approach where surface operators and geometric
quantities are expressed in tensor notation.

The outline of the paper is as follows: In Sect. 2, impor-
tant surface quantities are defined, and an introduction to the
tangential differential calculus (TDC) is given. In Sect. 3,
the classical linear Kirchhoff–Love shell equations under
static loading are recast in terms of the TDC. Stress resultants
such asmembrane forces, bendingmoments, transverse shear
forces and corner forces are defined. In Sect. 4, implemen-
tational aspects are considered. The element stiffness matrix
and the resulting system of linear equations are shown. The
implementation of boundary conditions based on Lagrange
multipliers is outlined. Finally, in Sect. 5, numerical results
are presented. The first example is a flat shell embedded in
R
3, where an analytical solution is available. The second and

third example are parts of popular benchmarks as proposed
in [2]. In the last example, a more general geometry without
analytical solution or reference displacement is considered.
The error is measured in the strong form of the equilibrium
in order to verify the proposed approach and higher-order
convergence rates are achieved.

2 Preliminaries

Shells are geometrical objects, where one dimension is sig-
nificantly smaller compared to the other two dimensions. In
this case, the shell can be reduced to a surfaceΓ embedded in
the physical spaceR3. In particular, the surface is a manifold
of codimension 1. Let the surface be possibly curved, suffi-
ciently smooth, orientable, connected and bounded by ∂Γ .
There are two alternatives for defining the shell geometry.

One is through a parametrization, i.e., a (bijective) mapping

x(r) : Ω̂ → Γ (1)

from the parameter space Ω̂ ⊂ R
2 to the real domain Γ ⊂

R
3. The other approach is based on the level-set method.

Then, a level-set function φ(x) : R3 → Rwith x ∈ Ω ⊂ R
3

exists and the shell is implicitly given by

Γ = {x : φ(x) = 0 ∀ x ∈ Ω} . (2)

Additional level-set functions may restrict the zero-
isosurface to the desired, bounded shell as described in [22].
In Fig. 2a, b the two different approaches are schematically
shown.

Thedefinitionof the normal vector depends onwhether the
shell geometry is based on aparametrization or not. In thefirst
case (cf. Fig. 2a), the shell geometry results from amap x(r).
Then, the normal vector nΓ of the shell surface is determined
by a cross-product of the columns of the Jacobimatrix J(r) =
∂x/∂ r. The resulting geometric quantities, surface operators,
and models in this case are parametrization-based.

In the casewhere the shell geometry is implied by the zero-
isosurface of a level-set function φ(x) (cf. Fig. 2b) and no
parametrization is available, the normal vector may be deter-
mined by nΓ = ∇φ/‖∇φ‖. All resulting quantities including
the BVP of the Kirchhoff–Love shell are parametrization-
free in this case. Of course, when in the wake of discretizing
the BVP, the Surface FEM is used for the approximation,
then a surface mesh of the shell geometry is needed and the
surface elements do imply a parametrization again. It was
already mentioned above, that other numerical methods such
as the TraceFEM and CutFEM do not rely on a surface mesh.
In this case, the countinuous and discrete BVP for the shell
are truly parametrization-free.

In addition to the normal vector on the surface, along
the boundary ∂Γ there is an associated tangential vector
t∂Γ ∈ R

3 pointing in the direction of ∂Γ and a co-normal
vector n∂Γ = nΓ × t∂Γ ∈ R

3 pointing “outwards” and being
perpendicular to the boundary yet in the tangent plane of the
surfaceΓ . For the proof of equivalence of both caseswe refer
to, e.g., [18].

2.1 Tangential differential calculus

The TDC provides a framework to define differential oper-
ators avoiding the use of classical differential geometric
methods based on local coordinate systems and Christoffel
symbols. In the following, an overview of the operators and
relations in the frame of the TDC are presented. For simplic-
ity, we restrict ourselves to the case of surfaces embedded
in the three dimensional space. However, the shown rela-
tions and definitions may be adopted to other situations
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Fig. 2 Examples of bounded
surfaces Γ embedded in the
physical space R3: a explicitly
defined surface with a map x(r),
b implicitly defined surface with
a master level-function
φ(x) = 0 (yellow) and slave
level-set functions ψi for the
boundary definition (gray)

(a) (b)

accordingly (e.g., curved lines embedded in 2D or 3D). An
introduction from amoremathematical point of view is given
in [15,25,31].

Orthogonal projection operator P

The orthogonal projection operator or normal projector P ∈
R
3×3 is defined as

P = I − nΓ ⊗ nΓ . (3)

The operator ⊗ is the dyadic product of two vectors. The
normal projector P projects a vector v onto the tangent space
TPΓ of the surface. Note that P is idempotent (P · P = P),
symmetric (P = Pᵀ) and obviously in the tangent space TPΓ

of the surface, i.e., P · nΓ = nᵀ
Γ · P = 0).

The projection of a vector field v : Γ → R
3 onto the

tangent plane is defined by

vt = P · v ∈ TPΓ (4)

where vt is tangential, i.e. vt ·nΓ = 0. The double projection
of a second-order tensor function A(x) : Γ → R

3×3 leads
to an in-plane tensor and is defined as

At = P · A · P ∈ TPΓ , (5)

with the properties At = P·At ·P and At ·nΓ = nᵀ
Γ ·At = 0.

Tangential gradient of scalar functions

The tangential gradient ∇Γ of a scalar function u : Γ → R

on the manifold is defined as

∇Γ u(x) = P(x) · ∇ũ(x) , ∇Γ u(x) ∈ R
3×1 , x ∈ Γ (6)

where ∇ is the standard gradient operator in the physical
space and ũ is a smooth extension of u in a neighbourhood
U of the manifold Γ . Alternatively, ũ is given as a function
in global coordinates ũ(x) : R3 → R and only evaluated at
the manifold ũ|Γ = u.

For parametrized surfaces defined by the map x(r), and a
given scalar function u(r) : Ω̂ → R, the tangential gradient
can be determinedwithout explicitly computing an extension
ũ using

∇Γ u(x(r)) = J(r) · G(r)−1 · ∇ru(r) , (7)

with J(r) = ∂x/∂ r ∈ R
3×2 being the Jacobi matrix, G =

Jᵀ · J is the metric tensor or the first fundamental form and
the operator ∇r is the gradient with respect to the reference
coordinates. The components of the tangential gradient are
denoted by

∇Γ u =
⎡
⎣

∂Γ
x u

∂Γ
y u

∂Γ
z u

⎤
⎦ , (8)

representing first-order partial tangential derivatives. An
important property of ∇Γ u is that the tangential gradient of
a scalar-valued function is in the tangent space of the surface
∇Γ u ∈ TPΓ , i.e., ∇Γ u · nΓ = 0. When using the Surface
FEM to solve BVPs on surfaces, one may use Eq. (7) to
compute tangential gradients of the shape functions. If, on
the other hand, TraceFEM or CutFEM is used, one may use
Eq. (6).

Tangential gradient of vector-valued functions

Consider a vector-valued function v(x) : Γ → R
3 and apply

to each component of v the tangential gradient for scalars.
This leads to the directional gradient of v defined as

∇dir
Γ v(x) = ∇dir

Γ

⎡
⎣
u(x)

v(x)

w(x)

⎤
⎦ =

⎡
⎣

∂Γ
x u ∂Γ

y u ∂Γ
z u

∂Γ
x v ∂Γ

y v ∂Γ
z v

∂Γ
x w ∂Γ

y w ∂Γ
z w

⎤
⎦ . (9)

Note that the directional gradient is not in the tangent space
of the surface, in general. A projection of the directional
gradient to the tangent space leads to the covariant gradient
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of v and is defined as

∇cov
Γ v = P · ∇dir

Γ v , (10)

which is an in-plane tensor, i.e.,∇cov
Γ v ∈ TPΓ . The covariant

gradient often appears in the modelling of physical phenom-
ena onmanifolds, i.e., in the governing equations. In contrast
the directional gradient appears naturally in product rules or
divergence theorems on manifolds.

In the following, partial surface derivatives of scalar
functions are denoted as ∂Γ

xi u or uΓ
,i with i = 1, 2, 3. Par-

tial surface derivatives of vector or tensor components are
denoted as vdiri, j for directional and vcovi, j for covariant deriva-
tives with i, j = 1, 2, 3.

Tangential gradient of tensor functions

For a second-order tensor function A(x) : Γ → R
3×3, the

partial directional gradient with respect to xi is defined as

∇dir
Γ ,iA = ∂A

∂Γ
xi

=
⎡
⎣

∂Γ
xi A11 ∂Γ

xi A12 ∂Γ
xi A13

∂Γ
xi A21 ∂Γ

xi A22 ∂Γ
xi A23

∂Γ
xi A31 ∂Γ

xi A32 ∂Γ
xi A33

⎤
⎦ , (11)

with i = 1, 2, 3. The directional gradient of the tensor func-
tion is then defined as

∇dir
Γ A =

(
∇dir

Γ ,1A ∇dir
Γ ,2A ∇dir

Γ ,3A
)

. (12)

The covariant partial derivative is determined by project-
ing the partial directional derivative onto the tangent space

∇cov
Γ ,iA = P · ∇dir

Γ ,iA · P . (13)

Second-order tangential derivatives

Next, second-order derivatives of scalar functions are con-
sidered. The directional second order gradient of a scalar
function u is defined by

{Hedir}i j (u(x)) = ∂Γ , dir
x j

(
∂Γ
xi u(x)

) = udir, j i

=
⎡
⎣

∂Γ
xxu ∂Γ

yxu ∂Γ
zxu

∂Γ
xyu ∂Γ

yyu ∂Γ
zyu

∂Γ
xzu ∂Γ

yzu ∂Γ
zzu

⎤
⎦ = ∇dir

Γ (∇Γ u(x))

(14)

where Hedir is the tangential Hessian matrix which is not
symmetric in the case of curved manifolds [15], i.e., udir,i j 	=
udir, j i . For the case of parametrized surfaces and a given scalar
function in the reference space, the tangential Hessianmatrix
can be determined by

Hedir(u) = ∇dir
Γ (Q · ∇ru)

= [
Q,r · ∇ru Q,s · ∇ru

] · Qᵀ

+ Q · ∇r (∇ru) · Qᵀ
(15)

where Q = J · G−1, and Q,ri denotes the partial tangential
derivative of Q with respect to ri . The covariant counterpart
is

Hecov(u) = ∇cov
Γ (∇Γ u) = P · ∇dir

Γ (∇Γ u) = P · Hedir(u) .

(16)

In contrast toHedir,Hecov is symmetric and an in-plane tensor
[48]. In the special case of flat surfaces embedded in R

3 the
directional and covariant Hessian matrix are equal.

Tangential divergence operators

The divergence operator of a vector-valued function v(x) :
Γ → R

3 is given as

divΓ v(x) = tr
(
∇dir

Γ v(x)
)

= tr
(∇cov

Γ v(x)
)

, (17)

and the divergence of a matrix or tensor function A(x) :
Γ → R

3×3, is

divΓ A(x) =
⎡
⎣
divΓ [A11, A12, A13]
divΓ [A21, A22, A23]
divΓ [A31, A32, A33]

⎤
⎦ . (18)

Note that divΓ A is, in general, not a tangential vector. It
would only be tangential if the surface is flat and A is an
in-plane tensor.

Weingarten map and curvature

The Weingarten map as introduced in [15,31] is defined as

H = ∇dir
Γ nΓ = ∇cov

Γ nΓ (19)

and is related to the second fundamental form in differential
geometry. TheWeingarten map is a symmetric, in-plane ten-
sor and its two non-zero eigenvalues are associated with the
principal curvatures

κ1,2 = − eig(H) . (20)

The minus in Eq. (20) is due to fact that the Weingarten map
is defined with the “outward” unit normal vector instead of
the “inward” unit normal vector, which leads to positive cur-
vatures of a sphere. The third eigenvalue is zero, because H
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Fig. 3 Osculating circles (blue, red) and eigenvectors (t1, t2, nΓ ) of
H at point P on a surface embedded in R3. (Color figure online)

is an in-plane tensor. The corresponding eigenvectors t1, t2
and nΓ are perpendicular as H is symmetric. In Fig. 3, the
osculating circleswith the radii ri = 1/κi and the eigenvectors
at a point P are shown.

The Gauß curvature is defined as the product of the prin-
cipal curvatures K = ∏2

i=1 κi and the mean curvature is
introduced as � = κ1 + κ2 = tr(H).

Divergence theorems in terms of tangential operators

The divergence theorem or Green’s formula for a scalar func-
tion f ∈ C1(Γ ) and a vector valued function v ∈ C1(Γ )3

are defined as in [13,15]

∫
Γ

f · divΓ v dΓ = −
∫

Γ

∇Γ f · v dΓ

+
∫

Γ

� f (v · nΓ ) dΓ

+
∫

∂Γ

f v · n∂Γ ds. (21)

The term with the mean curvature � is vanishing if the
vector v is tangential, then v · nΓ = 0. In extension to
Eq. (21), Green’s formula for second order tensor functions
A ∈ C1(Γ )3×3, is

∫
Γ

v · divΓ A dΓ = −
∫

Γ

∇dir
Γ v : A dΓ

+
∫

Γ

� v · (A · nΓ ) dΓ

+
∫

∂Γ

v · (A · n∂Γ ) ds (22)

where ∇dir
Γ v : A = tr(∇dir

Γ v · Aᵀ). In the case of in-plane
tensors, e.g.,At = P·At ·P, the termwith themean curvature
� vanishes due toAt ·nΓ = 0 and we also have∇dir

Γ v : At =
∇cov

Γ v : At .

3 The shell equations

In this section, we derive the linear Kirchhoff–Love shell
theory in the frame of tangential operators based on a
global Cartesian coordinate system. We restrict ourselves to
infinitesimal deformations, which means that the reference
and spatial configuration are indistinguishable. Furthermore,
a linear elasticmaterial governed byHooke’s law is assumed.
As usual in the Kirchhoff–Love shell theory, the transverse
shear strains and the change of curvature in the material
law are neglected, which restricts the model to thin shells
(tκmax 
 1).

With these assumptions, an analytical pre-integrationwith
respect to the thickness leads to stress resultants such as
normal forces and bending moments. The equilibrium in
strong form is then expressed in terms of the stress resul-
tants. Finally, the transverse shear forces may be identified
via equilibrium considerations.

3.1 Kinematics

The middle surface Γ of the shell is a sufficiently smooth
manifold embedded in the physical space R3. A point on the
middle surface is denoted as xΓ ∈ Γ ⊂ R

3 and may be
obtained explicitly or implicitly, see Sect. 2. With the unit-
normal vector nΓ a point in the domain of the shell Ω of
thickness t is defined by

x = xΓ + ζnΓ (23)

with ζ being the thickness parameter and |ζ | ≤ t/2. Alterna-
tively, if themiddle surface is defined implicitlywith a signed
distance function φ(x) the domain of the shell Ω is defined
by

Ω =
{
x ∈ R

3 : |φ(x)| ≤ t

2

}
. (24)

In this case the middle surface Γ is the zero-isosurface of
φ(x), see Eq. (2). The displacement field uΩ of a point
P(xΓ , ζ ) in the shell continuum Ω takes the form

uΩ(xΓ , ζ ) = u(xΓ ) + ζw(xΓ ) (25)

with u(xΓ ) = [u, v, w]ᵀ being the displacement field of
the middle surface andw(xΓ ) being the difference vector, as
illustrated in Fig. 4.

Without transverse shear strains, the difference vector w

expressed in terms of TDC is defined as in [13]

w(xΓ ) = −
[
∇dir

Γ u + (∇dir
Γ u)ᵀ

]
· nΓ

= H · u − ∇Γ (u · nΓ ).
(26)
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Fig. 4 Displacements uΩ, u
and w of the shell

As readily seen in the equation above, the difference vector
w is tangential. Alternatively, the difference vector w may
also be re-written in terms of partial tangential derivatives of
u and the normal vector nΓ

w(xΓ ) = H · u − ∇Γ (u · nΓ ) = −
⎡
⎣
udir,x · nΓ

udir,y · nΓ

udir,z · nΓ

⎤
⎦ (27)

Consequently, the displacement field of the shell continuum
is only a function of the middle surface displacement u, the
unit normal vector nΓ and the thickness parameter ζ .

The linearised, in-plane strain tensor εΓ is defined by the
symmetric part of the directional gradient of the displacement
field uΩ , projected with P [26]

εΓ (xΓ , ζ ) = P · 1
2

[
∇dir

Γ uΩ + (∇dir
Γ uΩ)ᵀ

]
· P

= P · εdirΓ · P
= 1

2

[∇cov
Γ uΩ + (∇cov

Γ uΩ)ᵀ
]

.

(28)

Finally, the whole strain tensor may be split into a membrane
and bending part, as usual in the classical theory

εΓ = εΓ ,M(u) + ζεΓ ,B(w) , (29)

with

εΓ ,M = 1

2
(∇cov

Γ u + (∇cov
Γ u)ᵀ) ,

εΓ ,B = −
⎡
⎣
ucov,xx · nΓ ucov,yx · nΓ ucov,zx · nΓ

ucov,yy · nΓ ucov,zy · nΓ

sym ucov,zz · nΓ

⎤
⎦ .

Note that in the linearised bending strain tensor εΓ ,B, the
term (∇dir

Γ u)ᵀ · H is neglected as in classical theory [45,
Remark 2.2] or [49]. The resulting membrane and bending
strain in Eq. (29) are equivalent compared to the classical the-
ory, e.g., [1]. In the case of flat shell structures as considered
in [27] the membrane strain is only a function of the tan-
gential displacement ut = P · u and the bending strain only
depends on the normal displacement un = u · nΓ , which
simplifies the whole kinematic significantly. Moreover, the
normal vector nΓ is then constant and the difference vector
simplifies to w(xΓ ) = −∇Γ un .

3.2 Constitutive equation

As already mentioned above, the shell is assumed to be lin-
ear elastic and, as usual for thin structures, plane stress is
presumed. The in-plane stress tensor σΓ is defined as

σΓ (xΓ , ζ ) = P · [2μεΓ + λtr(εΓ )I] · P (30)

= P ·
[
2μεdirΓ + λtr(εdirΓ )I

]
· P (31)

where μ = E
2(1+ν)

and λ = Eν
(1−ν2)

are the Lamé constants

and εdirΓ is the directional strain tensor from Eq. (28). With
this identity the in-plane stress tensor can be computed only
with the directional strain tensor

εdirΓ = εdirΓ ,M(u) + ζεdirΓ ,B(w),

with

εdirΓ ,M = 1

2
(∇dir

Γ u + (∇dir
Γ u)ᵀ),

εdirΓ ,B = −
⎡
⎣
udir,xx · nΓ

1
2 (udir,yx + udir,xy) · nΓ

1
2 (udir,zx + udir,xz) · nΓ

udir,yy · nΓ
1
2 (udir,zy + udir,yz) · nΓ

sym udir,zz · nΓ

⎤
⎦ ,

which is from an implementational point of view an advan-
tage, because covariant derivatives are not needed explicitly.
In comparison to the classical theory, the in-plane stress
tensor expressed in terms ofTDCdoes not require the compu-
tation of themetric coefficients in thematerial law.Therefore,
the resulting stress tensor does not hinge on a parametriza-
tion of the middle surface and shell analysis on implicitly
defined surfaces is enabled.

3.2.1 Stress resultants

The stress tensor is only a function of the middle sur-
face displacement vector u, the difference vector w(u) and
the thickness parameter ζ . This enables an analytical pre-
integration with respect to the thickness and stress resultants
can be identified. The following quantities are equivalent to
the stress resultants in the classical theory [1,45], but they
are expressed in terms of the TDC using a global Cartesian
coordinate system.
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The symmetric moment tensor mΓ is defined as

mΓ =
∫ t/2

−t/2

ζσΓ (u, ζ ) dζ = t3

12
σΓ (εΓ ,B)

= P · mdir
Γ · P , (32)

results in the components

[
mdir

Γ

]
11

= − DB (udir,xx + νudir,yy + νudir,zz) · nΓ ,

[
mdir

Γ

]
22

= − DB (udir,yy + νudir,xx + νudir,zz) · nΓ ,

[
mdir

Γ

]
33

= − DB (udir,zz + νudir,xx + νudir,yy) · nΓ ,

[
mdir

Γ

]
12

= − DB
1−ν
2 (udir,yx + udir,xy) · nΓ ,

[
mdir

Γ

]
13

= − DB
1−ν
2 (udir,zx + udir,xz) · nΓ ,

[
mdir

Γ

]
23

= − DB
1−ν
2 (udir,zy + udir,yz) · nΓ ,

where DB = Et3

12(1−ν2)
is the flexural rigidity of the shell.

The moment tensor mΓ is symmetric and an in-plane ten-
sor. Therefore, one of the three eigenvalues is zero and the
two non-zero eigenvalues of mΓ are the principal bend-
ing moments m1 and m2. The principal moments are in
agreement with the eigenvalues of the moment tensor in the
classical setting, see [1]. For the effective normal force tensor
ñΓ we have

ñΓ =
∫ t/2

−t/2

σΓ (u, ζ ) dζ = tσΓ (εΓ ,M)

= P · ndirΓ · P, (33)

with the components

[
ndirΓ

]
11

= DM

[
udir,x + ν(vdir,y + wdir

,z )
]
,

[
ndirΓ

]
22

= DM

[
vdir,y + ν(udir,x + wdir

,z )
]
,

[
ndirΓ

]
33

= DM

[
wdir

,z + ν(udir,x + vdir,y )
]
,

[
ndirΓ

]
12

= DM

[
1−ν
2 (udir,y + vdir,x )

]
,

[
ndirΓ

]
13

= DM
[ 1−ν

2 (udir,z + wdir
,x )

]
,

[
ndirΓ

]
23

= DM

[
1−ν
2 (vdir,z + wdir

,y )
]
,

where DM = Et
1−ν2

. Similar to the moment tensor, the two
non-zero eigenvalues of ñΓ are in agreement with the effec-
tive normal force tensor expressed in local coordinates. Note

that for curved shells this tensor is not the physical normal
force tensor. This tensor only appears in the variational for-
mulation, see Sect. 4. The physical normal force tensor nrealΓ

is defined by

nrealΓ = ñΓ + H · mΓ (34)

and is, in general, not symmetric and also has one zero
eigenvalue. The occurrence of the zero eigenvalues in mΓ ,
ñΓ and nrealΓ is due to fact that these tensors are in-
plane tensors, i.e. mΓ · nΓ = nᵀ

Γ · mΓ = 0 . The
normal vector nΓ is the corresponding eigenvector to the
zero eigenvalue and the other two eigenvectors are tangen-
tial.

3.3 Equilibrium

Based on the stress resultants from above, one obtains the
equilibrium for a curved shell in strong form as

divΓ nrealΓ + nΓ divΓ (P · divΓ mΓ ) + H · divΓ mΓ = − f ,

which converts to

divΓ ñΓ + nΓ divΓ (P · divΓ mΓ ) + 2H · divΓ mΓ

+ [∂xΓ
i H] jk[mΓ ]ki = − f ,

(35)

with f being the load vector per area on the middle sur-
face Γ . A summation over the indices i, k = 1, 2, 3 has
to be performed. The obtained equilibrium does not rely
on a parametrization of the middle surface but is, oth-
erwise, equivalent to the equilibrium in local coordinates
[1,49]. From this point of view, the reformulation of the
linear Kirchhoff–Love shell equations in terms of the TDC
may be seen as a generalization, because the requirement
of a parametrized middle surface is circumvented. With
boundary conditions, as shown in detail in Sect. 3.3.2, the
complete fourth-order boundary value problem (BVP) is
defined.

Based on the equilibrium in Eq. (35), the transverse shear
force vector q is defined as

q = P · divΓ mΓ . (36)

Note that in the special case of flatKirchhoff–Love structures
embedded inR3 the divergence of an in-plane tensor is a tan-
gential vector, as already mentioned in Sect. 2.1. Therefore,
the definition of the transverse shear force vector in [27] is
in agreement with the obtained transverse shear force vector
herein.
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3.3.1 Equilibrium in weak form

The equilibrium in strong form is converted to a weak form
by multiplying Eq. (35) with a suitable test function v and
integrating over the domain, leading to

−
∫

Γ

v · {divΓ ñΓ + nΓ divΓ (P · divΓ mΓ ) + 2H · divΓ mΓ

+ [∂xΓ
i H] jk[mΓ ]ki } dΓ =

∫
Γ

v · f dΓ . (37)

With Green’s formula from Sect. 2.1, we introduce the con-
tinuous weak form of the equilibrium:

Find u ∈ V : Γ → R
3 such that

a(u, v) = 〈F, v〉 ∀ v ∈ V0 , (38)

with

a(u, v) =
∫

Γ

∇dir
Γ v : ñΓ − εdirΓ ,B(v) : mΓ dΓ ,

〈F, v〉 =
∫

Γ

f · v dΓ −
∫

∂ΓN

∇dir
Γ (v · nΓ ) · (mΓ · n∂Γ )

− 2(H · v) · (mΓ · n∂Γ ) − v · (ñΓ · n∂Γ )

− (v · nΓ ) (P · divΓ mΓ · n∂Γ ) ds.

The corresponding function spaces are

V = {u : Γ → R
3 | u ∈ H1(Γ )3 : u, j i · nΓ ∈ L2(Γ )3}

(39)

V0 = {v ∈ V(Γ ) : v|∂ΓD = 0} (40)

where ∂ΓD is the Dirichlet boundary and ∂ΓN is the Neu-
mann boundary. The advantage of this procedure is that the
boundary terms naturally occur and directly allow to consider
for mechanically meaningful boundary conditions.

3.3.2 Boundary conditions

As well known in the classical Kirchhoff–Love shell theory,
special attention needs to be paid to the boundary condi-
tions. In the following, the boundary terms of the weak form
in Eq. (38) are rearranged in order to derive the effective
boundary forces.

Using Eqs. (34) and (26), we have

−
∫

∂ΓN

∇dir
Γ (v · nΓ ) · (mΓ · n∂Γ ) − 2(H · v) · (mΓ · n∂Γ )

− v · (ñΓ · n∂Γ ) − (v · nΓ ) (P · divΓ mΓ · n∂Γ ) ds

=
∫

∂ΓN

v · (nrealΓ · n∂Γ ) + w(v) · (mΓ · n∂Γ )

+ (v · nΓ ) · (P · divΓ mΓ · n∂Γ ) ds. (41)

As already mentioned above, the difference vector w is a
tangential vector. Consequently, the difference vector at the
boundary may be expressed in terms of the tangential vectors
t∂Γ and n∂Γ

w(v) = [H · v − ∇Γ (v · nΓ )] · n∂Γ︸ ︷︷ ︸
ωt∂Γ

t∂Γ

+ [H · v − ∇Γ (v · nΓ )] · t∂Γ︸ ︷︷ ︸
ωn∂Γ

n∂Γ

(42)

where ωt∂Γ
= ωt∂Γ

t∂Γ may be interpreted as rotation along
the boundary and ωn∂Γ

= ωn∂Γ
n∂Γ is the rotation in co-

normal direction, when the test function v is interpreted as
a displacement, see Fig. 5a. Analogously to the difference
vector, the expressions nrealΓ · n∂Γ and mΓ · n∂Γ in Eq. (41)
are decomposed in a similar manner

nrealΓ · n∂Γ = (nrealΓ · n∂Γ ) · t∂Γ︸ ︷︷ ︸
pt∂Γ

t∂Γ

+ (nrealΓ · n∂Γ ) · n∂Γ︸ ︷︷ ︸
pn∂Γ

n∂Γ ,
(43)

mΓ · n∂Γ = (mΓ · n∂Γ ) · n∂Γ︸ ︷︷ ︸
m t∂Γ

t∂Γ

+ (mΓ · n∂Γ ) · t∂Γ︸ ︷︷ ︸
mn∂Γ

n∂Γ .
(44)

Next, the term pnΓ = P · divΓ mΓ · n∂Γ represents the
resultant force in normal direction. In Fig. 5b the forces and
bending moments along a curved boundary are illustrated.

Inserting these expressions in Eq. (41), the integral along
the Neumann boundary simplifies to

∫
∂ΓN

v · (
pt∂Γ

t∂Γ + pn∂Γ
n∂Γ + pnΓ nΓ

)

+ ωt∂Γ
m t∂Γ

+ ωn∂Γ
mn∂Γ

ds .

(45)

As discussed in detail, e.g., in [1], the rotation in co-normal
directionωn∂Γ

is already prescribedwith v|∂Γ . Therefore, the
term ωn∂Γ

mn∂Γ
is expanded and with integration by parts we

obtain∫
∂ΓN

ωn∂Γ
mn∂Γ

ds =
∫

∂ΓN

−∇Γ (v · nΓ ) · t∂Γ mn∂Γ

+ H · v · t∂Γ mn∂Γ
ds

=
∫

∂ΓN

(v · nΓ ) · (∇Γ mn∂Γ
· t∂Γ

)
(46)

+ H · v · t∂Γ mn∂Γ
ds

− (v · nΓ )mn∂Γ

∣∣−C
+C
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(a) (b)

Fig. 5 Decomposition of the difference vector w, in-plane normal forces nrealΓ · n∂Γ and bending moments mΓ · n∂Γ along the boundary ∂Γ in
terms of t∂Γ and n∂Γ : a rotations at the boundary, b normal force tensor and bending moments at the boundary

where +C and −C are points close at a corner C . The new
boundary term are theKirchhoff forces or corner forces. Note
that if the boundary of the shell is smooth, the corner forces
vanish. Finally, the integral over the Neumann boundary in
Eq. (38) is expressed in terms of the well-known effective
boundary forces and the bendingmoment along the boundary

∫
∂ΓN

v · (
p̃t∂Γ

t∂Γ + p̃n∂Γ
n∂Γ + p̃nΓ nΓ

)

+ ωt∂Γ
m t∂Γ

ds − (v · nΓ )mn∂Γ

∣∣−C
+C

(47)

with:

p̃t∂Γ
= pt∂Γ

+ (H · t∂Γ ) · t∂Γ mn∂Γ
, (48)

p̃n∂Γ
= pn∂Γ

+ (H · t∂Γ ) · n∂Γ mn∂Γ
, (49)

p̃nΓ = pnΓ + ∇Γ mn∂Γ
· t∂Γ . (50)

The obtained effective boundary forces and moments are
in agreement with the given quantities in local coordinates
[1,49]. The prescribeable boundary conditions are the conju-
gated displacements and rotations to the effective forces and
moments at the boundary

p̃t∂Γ
⇐⇒ u · t∂Γ = u t∂Γ

,

p̃n∂Γ
⇐⇒ u · n∂Γ = un∂Γ

,

p̃nΓ ⇐⇒ u · nΓ = unΓ ,

m t∂Γ
⇐⇒ ωt∂Γ

= [H · u − ∇Γ (u · nΓ )] · n∂Γ ,

= −
[
(∇dir

Γ u)ᵀ · nΓ

]
· n∂Γ .

In Table 1, common support types are given. Other bound-
ary conditions (e.g., membrane support, etc.) may be derived,
with the quantities above, accordingly.

4 Implementational aspects

The continuous weak form is discretized using isogeometric
analysis as proposed by Hughes et al. [10,30]. The NURBS

patch T is the middle surface of the shell and the elements
τi (i = 1, . . . , nElem) are defined by the knot spans of the
patch. The mesh is then defined by the union of the elements
Γ = ⋃

τ∈T
τ .

There is a fixed set of local basis functions {Nk
i (r)} of

order k with i = 1, . . . , nk being the number of con-
trol points and the displacements {ûi , v̂i , ŵi } stored at the
control points i are the degrees of freedom.Using the isopara-
metric concept, the shape functions Nk

i (r) are NURBS of
order k. The surface derivatives of the shape functions are
computed as defined in Sect. 2 , similar as in the Surface
FEM [16,18,20,22] using NURBS instead of Lagrange poly-
nomials as ansatz and test functions. The shape functions
of order k ≥ 2 are in the function space V , see Eq. (39).
In fact, the used shape functions are in the Sobolev space
Hk(Γ )3 ⊂ V iff k ≥ 2.

The resulting element stiffness matrix KElem is a 3 × 3
block matrix and is divided into a membrane and bending
part

KElem = KElem,M + KElem,B . (51)

The membrane part is defined by

KElem,M = t
∫

Γ

Pib · [K̂]bj dΓ (52)

[K̂]k j = μ(δk jNΓ
,a · NΓ ᵀ

,a + NΓ
, j · NΓ ᵀ

,k ) + λNΓ
,k · NΓ ᵀ

, j ,

(53)

summation over a and b. The matrix K̂ is determined by
directional first-order derivatives of the shape functions N .
One may recognize that the structure of the matrix K̂ is sim-
ilar to the stiffness matrix of 3D linear elasticity problems.
For the bending part we have

[KElem,B]i j = DB

∫
Γ

nin j K̃ dΓ (54)

K̃ = (1 − ν)Ncov
,ab · Ncovᵀ

,ab + νNcov
,cc · Ncovᵀ

,dd . (55)
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Table 1 Set of common
boundary conditions Clamped edge u t∂Γ

= 0 un∂Γ
= 0 unΓ = 0 ωt∂Γ

= 0

Simply supported edge u t∂Γ
= 0 un∂Γ

= 0 unΓ = 0 m t∂Γ
= 0

Symmetry support p̃t∂Γ
= 0 un∂Γ

= 0 p̃nΓ = 0 ωt∂Γ
= 0

Free edge p̃t∂Γ
= 0 p̃n∂Γ

= 0 p̃nΓ = 0 m t∂Γ
= 0

A summation over a, b on the one hand and c, d on the other
has to be performed. The first term of K̃ is the contraction
of the covariant Hessian matrix HecovΓ and the second term
may be identified as the Bi-Laplace operator. Note that for
the Bi-Laplace operator also directional derivatives may be
used, due to the fact that the trace of second order derivatives
is invariant, although the components differ. This suggests a
further rearrangement of the contraction of the covariantHes-
sianmatrix in order to use only directional derivatives, which
is preferred from an implementational point of view. The
equivalent expression of K̃ using only second-order direc-
tional derivatives is

K̃ = (1 − ν)PeaNdir
,ab · Ndirᵀ

,be + νNdir
,cc · Ndirᵀ

,dd , (56)

with summation over a, b, e and c, d as above. When the
shell is given through a parametrization, the resulting element
stiffness matrix in the classical theory, e.g., [9] is equivalent
to the element stiffnessmatrix from above, but in the classical
setting the computationmay be foundmore cumbersome due
to fact that the local basis vectors and the metric tensor in
co- and contra-variant form has to be computed. In contrast,
herein, the surface gradients and second-order derivatives are
first applied to the shape functions (NURBSor classical finite
element functions) to obtain NΓ

,i , Ndir
,i j and Ncov

,i j , which is
independent of the application.

In this sense, a significant part of the complexity of imple-
menting shells is shifted to finite element technology and
may be recycled for any kind of boundary value problems
on curved surfaces in R

3. Examples are transport problems
[16–18] or flow problems [20,31] on curved surfaces. We
expect that future implementations in finite element software
will provide frameworks for solving PDEs onmanifolds and,
based, e.g., on this work will also apply to shells. In order
to emphasize the differences in the implementation, example
Matlab®-codes for the proposedTDC-based formulation and
the classical parametrization-based formulation are given in
Sect. A, clearly highlighting the differences.

The boundary conditions are weakly enforced by
Lagrange multipliers [51]. The shape functions of the
Lagrange multipliers are NURBS of the same order than the
shape functions of the displacements. Therefore, the shape
functions of the Lagrange multiplier i is defined as

{Nk
i L(r)} = {Nk

i (r)|∂ΓD} . (57)

For the test cases shown in Sect. 5, bounded condition num-
bers and unique solutions are observed. The usual assembly
yields a linear system of equations in the form
[
K C
Cᵀ 0

]
·
[
û
λ̂

]
=

[
f
0

]
, (58)

with [û, λ̂]ᵀ = [û, v̂, ŵ, λ̂] being the sought displacements
of the control points and Lagrange multipliers. With the
shape functions of the Lagrange multipliers NL, the con-
straint matrix C for simply supported edges is defined by

C =
∫

∂ΓD

⎡
⎣
N · Nᵀ

L 0 0
0 N · Nᵀ

L 0
0 0 N · Nᵀ

L

⎤
⎦ ds , (59)

for clamped edges

C =
∫

∂ΓD

⎡
⎣
N · Nᵀ

L 0 0 (nxn∂Γi N
Γ
,i ) · Nᵀ

L
0 N · Nᵀ

L 0 (nyn∂Γi N
Γ
,i ) · Nᵀ

L
0 0 N · Nᵀ

L (nzn∂Γi N
Γ
,i ) · Nᵀ

L

⎤
⎦ ds,

(60)

and for symmetry supports

C =
∫

∂ΓD

⎡
⎣
n∂Γx N · Nᵀ

L (nxn∂Γi N
Γ
,i ) · Nᵀ

L
n∂Γy N · Nᵀ

L (nyn∂Γi N
Γ
,i ) · Nᵀ

L
n∂Γz N · Nᵀ

L (nzn∂Γi N
Γ
,i ) · Nᵀ

L

⎤
⎦ ds . (61)

Note that all constraint matrices have three block-rows refer-
ring to the unknowns û, v̂, ŵ.

5 Numerical results

The numerical results are achieved using NURBS functions
for the geometry and shape function definition, following
the methodology of isogeometric analysis (IGA) [3,24,30,
32,34]. The definition of NURBS is omitted here for brevity
but is found at numerous references in the frame of IGA, e.g.,
[10,40].

The obtained shell equations are carefully verified and
compared to the classical approach with different test cases.
As already mentioned above the proposed approach leads
to an equivalent stiffness matrix for arbitrary curved and
non-curved shells. Consequently, the same convergence
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Fig. 6 Definition of flat shell problem

properties as shown, e.g., in [9,32] are expected. In the fol-
lowing, the results of the convergence analyses of a flat shell
embedded in R

3, the Scordelis-Lo roof, and the pinched
cylinder test (part of the shell obstacle course proposed by
Belytschko et al. [2]) are shown. Furthermore, a new test
case with a challenging geometry is proposed which features
smooth solutions enabling higher-order convergence rates.
These rates are confirmed in the residual error as no analytic
solution exists, see Sect. 5.4. Other examples (e.g., pinched
hemispherical shell, shells of revolution, etc.) have been con-
sidered but are omitted here for brevity.

In the convergence studies, NURBS patches with differ-
ent orders and numbers of knot spans in each direction are
employed. This is equivalent to meshes with higher-order
elements and n = {2, 4, 8, 16, 32} elements per side are
used. The orders are varied as p = {2, 3, 4, 5, 6}.

5.1 Flat shell embedded inR3

Following a similar rationale as in [27], as a first test case,
we consider a simple quadrilateral, flat shell with the normal
vector nΓ = [−1/4, −√

3/2,
√
3/4]ᵀ in R

3, see Fig. 6. The
shell is simply supported at all edges. For verification, the

Fig. 7 Displacement u of arbitrarily orientated flat shell, scaled by two
orders of magnitude a front view, b rotated view

load vector f is split into tangential f t and normal fn loads.
The tangential loads are obtained with the method of man-
ufactured solution for a given displacement field ut (x) =
[ [1, 1]ᵀ · 1/4 · sin(πr) sin(πs)] ◦ χ−1. In normal direction,
a sinusoidal load fn(x) = [−DB sin(πr) sin(πs)] ◦ χ−1

is applied to the shell. Herein, χ is an affine mapping
function (rigid-body rotation) from the horizontal param-
eter space to the real domain. An analytic solution for
the normal displacements is easily obtained with un(x) =[−(sin(πr) sin(πs))/(4π4)

]◦χ−1, [46]. The shell is defined
with L = 1 and the thickness is set to t = 0.01. The mate-
rial parameters are: Young’s modulus E = 10000 and the
Poisson’s ratio ν = 0.3.

In Fig. 7, the solution of the shell is illustrated. The
displacements are scaled by two orders of magnitude. The
colours on the deformed surface indicate the Euclidean norm
of the displacement field ‖u‖.

The results of the convergence analysis are shown in Fig.
8. The curves are plotted as a function of the element size 1/n

(which is rather a characteristic length of the knot spans). The
dotted lines indicate the theoretical optimal order of conver-
gence. In Fig. 8a, the relative L2-error of the primal variable
(displacements) is shown.Optimal higher-order convergence
rates O(p + 1) are achieved. In the figures Fig. 8b–d, the
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(a) (b)

(c) (d)

Fig. 8 Convergence results for the rotated flat shell. a Relative L2-norm of displacements u. b Relative L2-norm of normal forces nrealΓ . c Relative
L2-norm of bending momentsmΓ . d Relative L2-norm of transverse shear forces q

relative L2-errors of the normal forces (membrane forces),
bending moments and transverse shear forces are plotted.
For all stress resultants the theoretical optimal orders of
convergence are achieved. It is clear that the same results
were obtained if the results are computed for the purely two-
dimensional case as, e.g., in [9].

5.2 Scordelis-Lo roof

The Scordelis-Lo roof is a cylindrical shell and is supported
with two rigid diaphragms at the ends. The shell is loaded
by gravity forces, see Fig. 9. The cylinder is defined with
L = 50, R = 25 and the angle subtended by the roof is
φ = 80◦. The thickness of the shell is set to t = 0.25. The
material parameters are: Young’s modulus E = 4.32 × 108

and the Poisson’s ratio ν = 0.0. In contrast to the first exam-
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Fig. 9 Definition of Scordelis-Lo roof problem

ple, the maximum vertical displacement uz,max is compared
with the reference solution uz,max,Ref = 0.3024 as given in
reference [2].

In Fig. 10a, the numerical solution of the Scordelis-Lo
roof is illustrated. The displacements are magnified by one
order of magnitude.

In Fig. 10b, the convergence of the maximum displace-
ment uz,max is plotted up to polynomial order of p = 6 as a
function of the element (knot span) size. It is clearly seen that
the expected results are achieved, with increasing accuracy
for higher-order NURBS. Due to the lack of a more accurate
reference solutions, it is not useful to show these results in
a double-logarithmic diagram as usual for error plots. The
style of presentation follows those of many other references
such as, e.g., in [2,9,32].

5.3 Pinched cylinder

The next test case is a cylindrical shell pinched with two
diametrically opposite unit loads located within the mid-
dle of the shell, see Fig. 11. The cylinder is defined with
L = 600, R = 300. The thickness is set to t = 3. The mate-
rial properties are: Young’s modulus E = 3 × 106 and the
Poisson’s ratio ν = 0.3. The reference displacement at the
loading points are uRef = 1.82488 × 10−5 as given in refer-
ence [2]. Due to symmetry only one eighth of the geometry
is modelled.

In Fig. 12a, the numerical solution of the pinched cylinder
is illustratedwith scaled displacements by a factor of 5×106.

(a)

(b)

Fig. 10 a Displacement field of the Lo-Scordelis roof scaled by one
order of magnitude, b normalized convergence of reference displace-
ment uz,max,Ref = 0.3024

As in the example before, in Fig. 12b, the convergence to
a normalized reference displacement as a function of the ele-
ment size is plotted. The results converge with the expected
behaviour as shown in [9,32]. It is noted that due to the singu-
larity in some mechanical quantities due to the single force,
higher-order convergence rates are not possible here. How-
ever, the improvement for increasing the order of theNURBS
is still seen in the figure. An additional grading of the ele-
ments in order to better resolve the singularity would have
further improved the situation but is omitted here.

5.4 Flower shaped shell

As a last example, a more complex geometry is considered,
which enables smooth mechanical fields and thereby enables
higher-order convergence rates. The geometry of the middle
surface is given with
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Fig. 11 Definition of the pinched cylinder problem

xΓ (r , s) =
⎡
⎣

(A − C) cos(θ)

(A − C) sin(θ)

1 − s2

⎤
⎦ (62)

with:

r , s ∈ [−1, 1] , A = 2.3 , B = 0.8

θ(r) = π(r + 1)

C(r , s) = s[B + 0.3 cos(6θ)]
(63)

and illustrated in Fig. 13. Below the figure, the boundary
conditions and material parameters are defined. The middle
surface of the shell features varying principal curvatures and
curved boundaries.

The curved boundaries are clamped and the corresponding
conditions (from Table 1) have to be properly enforced. An
analytical solution or reference displacement is not available.
Therefore, the error is measured in the strong form of the
equilibrium from Eq. (35) and may be called residual error.
In particular, the residual error is the summed element-wise
relative L2-error

εrel,residual =
nElem∑
i=1

εL2,rel,τi

ε2L2,rel,τ =
∫
Γ

{
divΓ ñΓ + nΓ divΓ (P · divΓ mΓ )

+2H · divΓ mΓ + [∂xΓ
i H] jk [mΓ ]ki + f

}2

dΓ

∫
Γ

f 2 dΓ
.

(64)

(a)

(b)

Fig. 12 Pinched cylinder: a displacement u of one eighth of the geome-
try (scaled by a factor of 5×106),bnormalized convergence of reference
displacement uRadial,Ref = 1.82488 × 10−5 at loading points

The computation of the residual error requires the evaluation
of fourth-order surface derivatives. It is noteworthy that the
implementation of these higher-order derivatives is not with-
out efforts. For example, recall that mixed directional surface
derivatives are not symmetric. That is, there are 34 = 81
partial fourth-order derivatives. Nevertheless, if the displace-
ment field is smooth enough this error measure is a suitable
quantity for the convergence analysis.

In Fig. 14a, the deformed shell is illustrated. The displace-
ment field is scaled by one order of magnitude. In Fig. 14b,
the results of the convergence analysis are plotted. Due to
the fact that fourth-order derivatives need to be computed,
at least fourth-order shape functions are required. The the-
oretical optimal order of convergence is O(p − 3) if the
solution is smooth enough. One may observe that higher-
order convergence rates are achieved, however, rounding-off
errors and the conditioning may slightly influence the con-
vergence. Nevertheless, the results are excellent also given
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Fig. 13 Definition of flower shaped shell problem

the fact that higher-order accurate results for shells (given in
double-logarithmic error plots) are the exception.

The stored elastic energy at the finest level with a polyno-
mial order p = 8, which may be seen as an overkill solution,
is e = 1.7635958±1×10−7 kN m. This stored elastic energy
may be used for future benchmark tests, without the need to
implement fourth-order derivatives on manifolds.

6 Conclusions and outlook

The linear Kirchhoff–Love shell theory is reformulated in
terms of the TDC using a global Cartesian coordinate system
and tensor notation. The resulting model equations apply to
shell geometries which are parametrized or not. For example,
a parametrizationmay not be availablewhen shell geometries
are implied by the level-set method. Because the TDC-based
formulation holds in both cases, it may be seen as a gen-
eralization to the classical shell theory which is based on
parametrizations and curvilinear coordinates.

The TDC-based strong form is used as the starting point
to consistently obtain the weak form including all boundary
termswell-known in the Kirchhoff–Love theory.Mechanical
stress-resultants such as moments, normal and shear forces
are defined in global coordinates. Furthermore, the strong
formmaybeused in the numerical results to compute residual
errors and thus enable convergence analyses evenwithout the
knowledge of exact solutions which, for shells, are scarce.

For the discretization, the Surface FEM is used with
NURBS as trial and test functions. That is, an isogeometric
approach is chosen due to continuity requirements. In this
case, the presence of a surface mesh (i.e., a NURBS patch),

(a)

(b)

Fig. 14 Flower shaped shell: a displacement u of flower shaped shell
(scaled by one order of magnitude), b residual error εrel,residual

implies a parametrization and although the involved equa-
tions and the resulting implementations vary significantly, it
is seen that the classical, parametrization-based and the pro-
posed TDC-based formulation are equivalent. For a generic
finite element framework enabling various implementations
for PDEs on manifolds (in addition to only shells), the TDC-
based approach is benefitial, because surface gradients of
shape functions may be computed beforehand and are inde-
pendent of the application.

The numerical results confirm higher-order convergence
rates. As mentioned, based on the residual errors, a frame-
work for the verification of complex test cases is presented.
There is a large potential in the parametrization-free refor-
mulation of shell models, because the obtained PDEsmay be
discretizedwith new finite element techniques such as Trace-
FEMor CutFEMbased on implicitly defined surfaces. In this
case, neither the problem statement nor the discretization is
based on a parametrization.
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A Element stiffness matrix

In order to clarify the implementation, we give theMatlab�-
code of the routine which evaluates the element contribution
to the matrix and right hand side.

Using TDC, the input contains the shape function data
and normal vectors evaluated at the integration points plus
the material parameters, see Code 1. Note that the first- and

second-order surface derivatives are included in the shape
function data, i.e., ∇Γ Ni (x j ) and Hecov(Ni (x j )) where
i = 1, . . . , n refers to the n shape functions in the current
element (knot span) and x j with j = 1, . . . , m to integra-
tion points. The computation of these quantities is part of the
standard finite element technology provided by the imple-
mentation and is independent of the application to shells.

When curvilinear coordinates are used, the input contains
shape function data, integration points, material parameters
plus the coordinates of the control points of the correspond-
ing element, see Code 2. Note that the included derivatives of
the shape functions are the derivatives w.r.t. reference coordi-
nates, i.e., ∇rN (r). As a first step, the covariant base vectors
and the metric tensor in co- and contra-variant form need to
be calculated at each integration point and in the next step,
the element stiffness matrix and the element load vector are
computed.
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