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Abstract
In this paper, a novel finite-element based method for finite-strain mechanochemistry with moving reaction fronts, which
separate the chemically transformed and the untransformed phases, is proposed. The reaction front cuts through the finite
elements and moves independently of the finite-element mesh, thereby removing the necessity for remeshing. The proposed
method solves the coupledmechanics-diffusion–reaction problem. In themechanical part of the problem, the force equilibrium
and the displacement continuity conditions at the reaction front are enforced weakly using a Nitsche-like method. The
formulation is applicable to the case of large deformations and arbitrary constitutive behaviour, and is also consistent with
the minimisation of the total potential energy.

Keywords Chemo-mechanical processes · Finite strains · Moving interfaces · Nitsche method · Cut elements · Variational
consistency

1 Introduction

Chemical reactions, such as oxidation or lithiation, in solid
bodies lead to large volumetric expansions of materials and
thereby lead to the emergence of mechanical stresses, which,
in turn, affect the rates of the chemical reactions. This, for
example, has been experimentally observed for the chem-
ical reaction of silicon lithiation [40]. Chemical reactions
in solids can be either volumetric or localised at a surface
(a chemical reaction front) inside a solid body. In recent
years, there has been an emergence of models that describe
mechanochemistry of volumetric reactions, e.g. [16,18], and
localised reactions, e.g. [4,6–8,14,43]. In this paper, the focus
is on the latter.

From the physical point of view, in the case of localised
reactions, the reaction front moves due to the consumption
of the diffusive reactant, which is supplied to the reaction
front by a diffusion process. The velocity of the front is also
affected by the stresses, which, in turn, emerge due to trans-
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formation of the material as the front moves. This problem
is similar to the classical stress-induced phase transforma-
tions in solids, where the phase boundaries move due to the
configurational (driving) force (e.g. [1,10,21,33] and refer-
ences therein) equal to the jump of the normal component of
the Eshelby stress tensor at the phase boundary. A few years
ago it was shown that, in the case of a localised chemical
reaction, the configurational force is the normal component
of a chemical affinity tensor, which is equal to the com-
bination of the chemical potential tensors of the reaction
constituents, which, in turn, are equal to the Eshelby stress
tensors dividedby referencemass densities [6–8].Both cases,
phase transformations and chemical reactions, can be han-
dled computationally in a similar way.

There are two major approaches to formulating the prob-
lem with the localised reactions. The first approach is the
phase-fieldmethod, e.g. [37] in application tomechanochem-
istry and [31,32] in application to the classical phase trans-
formations. In this approach, an auxiliary field quantity is
introduced, which takes distinct values inside the phases and
smoothly changes between the phases. An additional par-
tial differential equation (PDE) governs the evolution of this
field. Thus, the interface1 between the phases is of a finite
thickness.

1 In this paper, “interface” and “reaction front” are used interchange-
ably.
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In the second approach, the reaction front is prescribed to
be infinitely thin (“sharp”), i.e. curve in 2D or surface in 3D.
The boundary conditions for the mechanical and/or diffu-
sion equations are enforced at the moving reaction front, the
velocity of which depends on the solutions of the equations.
This paper focuses on “sharp” interface approach.

It is noteworthy to mention that there are also “hybrid”
approaches, such as [44], where the mechanodiffusion with
damage was considered, and where both mechanics and
diffusion were solved in the entire computational domain;
however, an infinitely thin interface was introduced and dif-
ferent material properties were used on the opposite sides of
the interface. The kinetics of the interface was governed by
the diffusion flux and by the stresses.

One established way of solving mechanochemical and
phase transformation problems with sharp interfaces is the
boundary integral method, e.g. [15,35,36] in application
to modelling the formation of precipitates. Although term
“mechanochemistry” was not used there, the problem in
question was tracking the movement of phase boundaries
influenced by both mechanics and diffusion, while the dif-
fusion took place in the “untransformed” material. This
approach, however, has only been formulated for linear elas-
ticity and quasi-steady state diffusion.Moreover, it is difficult
to handle topological changes during phase transformations
within this approach.

Another popular computational approach to solving
mechanochemical problems is the finite-element method
(FEM). The major problem with the standard FEM is the
requirement for the reaction front to coincide with the ele-
ment edges/faces in 2D/3D. Therefore, the geometry should
be remeshed each time the reaction frontmoves, e.g. [9]. This
leads to accumulation of the numerical error and excessive
computations. To avoid this, there has been a significant effort
to create computational approaches that avoid remeshing.

An established way of modelling mechanochemistry and
phase transformations using FEM without remeshing is the
combination of the extended finite-element method (XFEM)
to solve the mechanical problem and the level-set method
to move the interface, e.g. [45,46] in application to phase
transformations and [5,47] in application to mechanochem-
istry. In this case, FEM is modified such that the interface
cuts through the elements and moves independently of the
mesh. However, at the moment, to the best knowledge of
the authors, XFEM and level-set combination has only been
formulated for and applied to linear elastic problems in the
context of phase transformation problems.

In [22], the application of isogeometric FEM was pro-
posed for linear elastic mechanochemistry. In this approach,
the reaction front still coincideswith the element edges/faces;
however, when the front moves, the elements are simply
distorted, i.e. stretched or compressed, without changing
topology or connectivity of the mesh. Distortion of the ele-

ments is utilised due to the nature of the isogeometricmethod,
where higher aspect ratios of the elements compared to the
standard FEM can be handled. The main advantage of this
method is the well-defined normal to the reaction front at any
point, due to the description of the front by B-splines. This
property is important for calculation of the velocity of the
front and moving the interface.

A computational approach for finite-strainmechanochem-
istry with the reaction fronts that are non-conforming to the
finite-element mesh was first proposed in [27,28], where the
interface motion was handled using the level-set method,
while the non-conforming interface was handled by the
enhanced gradient FEM in the mechanical and the diffusion
problems. The enhanced gradient method avoids remeshing;
however, treatment of the elements that are intersected by
the interface is relatively complicated. As in XFEM, spe-
cial finite-element basis functions are constructed for these
elements. These basis functions are piecewise polynomial
and can be discontinuous; additional degrees of freedom are
found from the interface conditions.

The aim of this paper is to develop a numerical method
for finite-strain mechanochemistry that considers interfaces
that are non-conforming to the finite-element mesh, avoids
remeshing and is relatively simple to implement, i.e. which
does not rely on special finite-element basis functions. The
major difficulty for such approach is the correct enforcement
of the interface conditions (displacement and traction conti-
nuity). One possible approach is the Nitsche method, which
is a way of weakly imposing boundary/interface conditions
for linear PDEs, e.g. [11,12,30] in application to mechanics
with linear elastic constitutive laws.However, an extension of
the Nitsche method to non-linear PDEs is non-trivial and has
been less studied. One such extension, which, as explained
below, has key differences to previous formulations, is pro-
posed in this paper.

The first attempt of extension of the Nitsche method along
with the discontinuousGalerkinmethod to large-deformation
mechanics has been reported in [29]. As the Nitsche penalty
terms in the weak form contain arbitrary multipliers, in [29],
the first Piola-Kirchhoff tensor was used. This, however, is
not consistent with the minimisation of the total potential
energy, as will be shown in this paper. In [38], it was shown
that when the weak form is obtained by finding the saddle
point of the total potential energy, the fourth-order acous-
tic tensor (derivative of the first Piola-Kirchhoff tensor by
the deformation gradient tensor) appears in the penalty term
multiplier.

In this paper, the weak form of the finite-strain mechan-
ical problem is obtained by minimising the total potential
energy, which includes the Nitsche-like penalty terms. As
the interface can cut a small volume fraction of an ele-
ment in mechanochemical problems, in this paper, additional
inter-element stabilisation term, similar to one presented in
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[2,12,34], is also introduced. The weak form of the coupled
problem is then derived and discretised using finite-element
formulation. Furthermore, in this paper, an algorithm for
moving the points of the reaction front in the mechanochem-
ical problem is presented. The method is illustrated with
2D numerical examples to show its numerical robustness in
application to finite-strain mechanochemical problems with
moving reaction fronts.

2 Notation

Vectors are denoted with an arrow, e.g. �a. The scalar and the
vector products between vectors �a and �b are denoted as �a · �b
and �a × �b, respectively. Second-order tensors are denoted
as bold capital letters, e.g. A. The tensor product between
vectors �a and �b is denoted as �a�b. The coordinate representa-
tion of the tensor product is given by Ai j = aib j , where ak
and bk are components of vectors �a and �b, respectively, and
Ai j are components of tensor A. The transpose of a tensor
is denoted as B = AT, which is Bi j = A ji in the coordi-
nate representation. Standard second-order identity tensor is
denoted as I . Einstein summation notation is used. The coor-
dinate representations of the scalar and the vector products of
a tensor by a vector from the right, �d = A · �c and C = A× �c,
respectively, are given by

di = Ai j c j , Cin = ξnjk Ai j ck,

where ξnjk is the Levi-Civita symbol. The double inner prod-
uct of two tensors is denoted as f = A:D and in the
coordinate representation is given by

f = Ai j D ji .

Higher-order tensors, which are formed by the tensor prod-
uct of more than two vectors, are denoted with preceding
superscript showing the order, e.g. 3E is a third-order tensor.
Standard fourth order identity tensor and its right transpose
are denoted as

4I = �es �ek �ek �es, 4IRT = �es �ek �es �ek,

respectively,where �ei , i ∈ {1, 2, 3} are basis vectors. It is use-
ful to note that 4I :Q = Q:4I = Q and 4IRT:Q = Q:4IRT =
QT.
The derivative of the function ϕ = ϕ (Q) with respect to

the second-order tensor Q = Qsk �es �ek and the variation of
the function ϕ are defined the following way [19,20]:

∂ ϕ

∂ Q
= ∂ ϕ

∂Qsk
�es �ek, δ ϕ = ∂ ϕ

∂ Q
: δQT.

The derivative of the second-order tensor P = P (Q) by the
second-order tensor Q and its variation are defined in the
following way [19,20]:

∂ P
∂ Q

= ∂Pmn

∂Qst
�em �en�es �et , δP = ∂ P

∂ Q
: δQT.

It is useful to note that [19,20]:

∂ Q
∂ Q

= 4IRT,

∂ ϕ

∂ Q
=

(
∂ ϕ

∂S

)T

: ∂S
∂ Q

,
∂ P
∂ Q

= ∂ P
∂S

: 4IRT : ∂S
∂ Q

,

∂ (tr (Q))

∂ Q
= I,

∂ (det (Q))

∂ Q
= det (Q) Q−T,

∂
(
Q−1)
∂ Q

= −Q−1 · 4IRT · Q−T.

3 Mechanochemical problem formulation

In this section, a generalmechanochemical problem formula-
tion is presented, in which movement of a chemical reaction
front takes place. No specific assumptions about constitutive
relations are made below. However, for numerical examples,
specific functional dependencies were chosen and are pre-
sented in Sect. 5.1.

From the physical point of view, mechanochemical prob-
lems are described by three coupled processes: mechanical
deformation, diffusion and chemical reaction at the reaction
front, as illustrated in Fig. 1a. In general, the deformation can
be dependent on the concentration and the diffusion rate can
be affected by the mechanical stresses. Moreover, the con-
centration and the stresses affect the velocity of the reaction
front.

The solution of the mechanochemical problem consists
in finding two time-dependent field quantities and one time-
dependent curve (in a 2D setting) or surface (in a 3D setting).
The first unknown field quantity is the displacement of all
material points of a body. The second unknown field quantity
is the concentration of the reactant. The last unknown is the
configuration/position of reaction front. All these quantities
are time-dependent, since the reaction front moves due to a
chemical reaction.

3.1 Configurations and kinematics

The solid body is split into twodomains: the chemically trans-
formed and the untransformed phases, which are denoted
as B+ and B−, respectively. Both phases undergo mechani-
cal deformation. Therefore, there are three configurations:
the current configuration, the reference configuration of
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(b)

(a)

Fig. 1 The schematic representation of a mechanochemical problem
with the chemical reaction front (a) and configurations that are used in
the problem formulation (b) (similarly to [8]). The diffusive reactant

diffuses from the outer surface of the body and through the transformed
phase and participates in the chemical reaction at the reaction front

the chemically untransformed material and the reference
configuration of the chemically transformed material. The
kinematics description used in this paper follows [6–8].

To perform numerical calculations, it is convenient to
work only with one reference configuration. In this paper, the
reference configuration of the untransformed material (B−)
is chosen and, in the rest of the text, is denoted as “the ref-
erence configuration”. The reference configuration of B+ is
referred to as “the chemically transformed configuration”.

In the current configuration, domains of B+ and B− are
denoted as ω+ and ω−, respectively. These domains are sep-
arated by the reaction front γ∗. The position vector in the
current configuration is denoted as �x . Mappings of ω+ and
ω− onto the reference configuration are denoted as Ω+ and
Ω−, respectively. These domains are separated by the reac-
tion frontΓ∗. The normal to the reaction front is defined as the
outer normal toΩ+ and is denoted as �N∗. The position vector
in the reference configuration is denoted as �X . Mappings of
ω+ and ω− onto the chemically transformed configuration
are denoted as Ω ′+ and Ω ′−, respectively.

Current position vector �x of a material point is a function
of the position position vector �X of the point in the reference

configuration, �x = �x
( �X

)
, �X ∈ Ω . Thus, the displacement

can be defined as

�u = �u
( �X

)
= �x

( �X
)

− �X , �X ∈ Ω. (1)

Operators∇ and∇0 are defined with respect to the current
and the reference configurations, respectively. Moreover

∇ = F−T · ∇0, F = (∇0 �x)T , (2)

where F is the deformation gradient, which maps the refer-
ence configuration to the current configuration:

d �x = F · d �X . (3)

For the transformed material, the multiplicative decomposi-
tion of the deformation gradient is used:

F+ = F′+ · G, �X ∈ Ω+, (4)

where G maps the reference configuration to the chemi-
cally transformed configuration and F′+ maps the chemically
transformed configuration to the current configuration, as
illustrated in Fig. 1b. For the purpose of this paper, G is
assumed to be constant. However, additional concentration-
dependent, therefore inhomogeneous, deformation can also
be introduced in the constitutive law of the material.

Quantities (deformation gradient, stress, displacement,
etc.) corresponding to phases B+ and B− are denoted with
subscripts “+” and “−”, respectively. To shorten the descrip-
tion in the rest of the text, subscript “±” is used on some
occasions to combine equations corresponding to B+ and
B− into one equation.

3.2 Mechanics

The problem is assumed to be quasistatic. The balance of
linear momentum equation is

∇ · σ± = �0, �x ∈ ω±, (5)
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where σ is the Cauchy stress tensor. The relation between
the Cauchy stress tensor and other variables is defined by
constitutive relations,

σ+ = σ+ {F+, θ, c} , σ− = σ− {F−, θ} ,

F± = I + (∇0 �u±)T , (6)

where θ is the temperature and curly brackets denote arbitrary
functional dependency on the variables, including dependen-
cies on the derivatives.

The outer boundary of the body is split into γD and γT, on
which displacements and tractions are enforced, respectively.
The normal to γT is denoted as �nT and is defined as the outer
normal to the body. The boundary conditions at the outer
surface of the body are

�u± = �d, �x ∈ γD±, γD± = γD ∩ ∂ω±, (7)

σ± · �nT = �t, �x ∈ γT±, γT± = γT ∩ ∂ω±, (8)

where �d is the displacement vector and �t is the traction vec-
tor. At the reaction front, the displacement and the traction
continuity conditions are enforced

�u− = �u+, �x ∈ γ∗, (9)

σ− · �n∗ = σ+ · �n∗, �x ∈ γ∗, (10)

where �n∗ is the normal to γ∗, which is defined as the outer
normal to ω+.

3.2.1 Boundary/interface conditions in the reference
configuration

For convenience, it is also useful to rewrite the boundary
and the interface conditions with respect to the reference
configuration. Here, ΓD and ΓT are the images of γD and γT,
respectively, in the reference configuration. The normal to
ΓT is denoted as �NT and is defined as the outer normal to
the body. The boundary conditions at the outer surface of the
body are

�u± = �d, �X ∈ ΓD±, ΓD± = ΓD ∩ ∂Ω±, (11)

P± · �NT = �T , �X ∈ ΓT±, ΓT± = ΓT ∩ ∂Ω±, (12)

where P is the first Piola-Kirchhoff stress tensor and �T is
the traction defined per unit surface in the reference config-
uration. As usual, for the purpose of presenting a numerical
method, �T is assumed to be independent of displacement
�u; however, it is easy to construct the generalisation. At the
reaction front, the displacement and the traction continuity
conditions are enforced

�u− = �u+, �X ∈ Γ∗, (13)

P− · �N∗ = P+ · �N∗, �X ∈ Γ∗. (14)

3.3 Diffusion

For the purpose of this paper, the diffusion is assumed to be
quasi-stationary. This assumption ismotivated by the fact that
in most cases, the rate of the diffusion is much higher than
the rate of the chemical reaction [17,42] and the diffusion
process can be assumed to take place at the thermodynamic
equilibrium.

The mass balance and the dissipation inequality are
derived with respect to the reference configuration of a body,
e.g. [16]. The diffusion process, which is considered here,
takes place in phase B+. Hence, the mass balance and the
dissipation inequality should be written with respect to the
chemically transformed configuration. However, since G,
which maps the reference configuration to the chemically
transformed configuration, is constant, integrals over vol-
ume Ω ′+ in the derivation can be transformed to integrals
over volume Ω+ using

dΩ ′+ = det (G) dΩ+.

Thus, the mass balance and the dissipation inequality can be
written with respect to the reference configuration.

The mass balance equation is

∇0 · �j = 0, �X ∈ Ω+, (15)

where �j is the diffusion flux, which is given by the constitu-
tive equation

�j = �j {c, σ+, F+, θ} , (16)

where, as above, curly brackets denote arbitrary functional
dependency on the variables, including dependencies on the
gradients.

The mixed boundary conditions for Eq. (15) are used at
the reaction front,

�N∗ · �j + f∗ = 0, �X ∈ Γ∗, (17)

f∗ = f∗ (c, V ) , (18)

where V is the normal velocity of the reaction front and
f∗ is some function. The specific expression for f∗ can be
derived from the mass conservation [6–8]. Elsewhere on the
boundary,

�NM · �j +α (c − s) = 0, �X ∈ ΓM, ΓM = ∂Ω+ \Γ∗, (19)

are enforced, where �NM is the outer normal to surface of
the body, α is a constant, which is proportional to the sur-
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face mass transfer coefficient, and s is a constant, which is
proportional to the solubility of the reactant in material B+.

3.4 Chemical reaction

The chemical reaction takes place at the reaction front. The
diffusive component reacts with the untransformed material,
which leads to the formation of a new transformed mate-
rial. Thereby, the position of the reaction front changes. The
kinetics of the reaction front is stress- and concentration-
dependent and varies for different mechanochemical models.
There are models where an expression for the velocity of the
reaction front is simply postulated. Recently, an expression
for the thermodynamic driving force in the case of a localised
chemical reaction has been derived [6–8]. This allows choos-
ing an expression for the velocity as a function of this
force.

The total velocity of the reaction front is defined in the
reference configuration as the time derivative of the position
of the front in the reference configuration. In mechanochem-
ical models, only the normal component of the velocity is
considered, since it can be shown that, in the case of coher-
ent reaction fronts, without loss of genereality, it is sufficient
to consider fronts moving along the normal in the reference
configuration [7]. Thus, the normal velocity is defined as the
scalar product of the total velocity and outer normal �N∗ to
the reaction front:

V = V (c, σ±, F±,W±, θ)

= d �X∗
d t

· �N∗, �X∗ =
{ �X

∣∣∣ �X ∈ Γ∗
}

, (20)

where �X∗ is the position of the reaction front in the ref-
erence configuration, W+ and W− are the elastic strain
energy densities of the transformed and the untransformed
materials, respectively, per unit volume in the reference
configuration.

It can be seen that the balance of momentum equation,
Eq. (5), the mass balance equation, Eq. (15), and the veloc-
ity equation, Eq. (20), form a coupled system of PDEs with
respect to unknown variables �u, c and �X∗. In general, there
are two independent coupling mechanisms: via the consti-
tutive equations and via the moving boundary. The first one
results from the concentration entering the constitutive equa-
tion for the stresses, Eq. (6), and from the stresses entering
the constitutive equation for the diffusion flux, Eq. (16). The
second coupling mechanism is the dependence of solutions
of (5) and (15), �u and c, respectively, on the position of the
reaction front, which, in turn, depends on both fields. Thus,
even if the first mechanism is not present, the system of PDEs
is still coupled. Further discussion of the mechanochemical
coupling can be found in [26].

4 Numerical method

There are two general ways of dealing with the time step-
ping for the reaction front movement—explicit and implicit
methods. The explicit scheme suggests that the position of
the reaction front is known at a given time step. This allows
solving the mechanical and the diffusion problems for dis-
placement and concentration fields, calculating the reaction
front velocity using these fields and, subsequently, finding
the new position of the front using the velocity. In con-
trast, within the implicit scheme, the position of the front
is unknown at a given time step. Therefore, all equations
(mechanical, diffusion and front velocity/position) must be
solved simultaneously with respect to the unknown displace-
ment, concentration and position of the front. In thiswork, the
explicit time stepping scheme for the interface movement is
used to avoid an increase in complexity of numerical imple-
mentation (coding) associated with the implicit scheme and,
in particular, evaluation of Jacobian components that corre-
spond to degrees of freedom representing the front.

The description of the numerical method is split into three
major parts: the mechanics, the diffusion and the movement
of the reaction front. As presented in the problem formu-
lation, the mechanical problem and the diffusion problem
are fully coupled. Therefore, in the general case, the finite-
element formulation for the fully coupled problem must be
formulated. However, for clarity of the presentation of the
method, the decoupled case is presented first: the mechanical
problem (for the case when stresses do not depend on con-
centration), followed by the diffusion problem (for the case
when the deformation and the stresses are already known).
Afterwards, the finite-element formulation for the fully cou-
pled problem is presented.

From an implementational point of view, when the con-
centration does not enter the constitutive law for stresses,
the mechanical and the diffusion problems can be solved
sequentially within a particular time step. Thismeans that the
mechanical problem is solved first, followed by the solution
of the diffusion problem using known stresses, followed by
the calculation of a new position of the reaction front. How-
ever, when the concentration enters the constitutive law for
stresses, the mechanical and the diffusion problems must be
solved as one system of coupled non-linear equations within
a particular time step. After the solution is found, the reaction
front is moved.

4.1 Mechanics

At first, the weak form of the mechanical problem is formu-
lated. The idea follows [30], where the potential energy with
an interface penalty term is formulated and the variation of
the potential energy is performed; however, in this paper, the
finite-strain case is considered.
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The following potential energy of the mechanical system
is considered:

Π =
∫

Ω+
W+ dΩ+ +

∫
Ω−

W− dΩ−

−
∫

ΓT+
�u+ · �T d ΓT+ −

∫
ΓT−

�u− · �T d ΓT−

+
∫

Γ∗

(
β

2
��u�∗ − 〈P〉 · �N∗

)
· ��u�∗ d Γ∗ + I ,

(21)

where

〈P〉 = 1

2
(P+ + P−) , (22)

��u�∗ = �u+ − �u−, (23)

and W± are the elastic strain energy densities of the trans-
formed and the untransformed materials per unit volume in
the reference configuration. Here β is the numerical param-
eter, which is introduced in Nitsche-like methods, and I is
the stabilisation term, which is explained further in the text.
Brackets �·�∗ denote the jump of the quantity across the inter-
face, brackets 〈·〉 denote the average of the quantity across
the interface. The fifth term in Eq. (21) is the penalty term,
which leads to the enforcement of the interface conditions
weakly.

4.1.1 Variation of the potential energy and the weak form

The weak form of the problem is found by the variation of
the potential energy:

δΠ = 0. (24)

The variation is the following:

δΠ =
∫

Ω+
δW+ dΩ+ +

∫
Ω−

δW− dΩ−

−
∫

ΓT+
δ�u+ · �T d ΓT+ −

∫
ΓT−

δ�u− · �T d ΓT−

−
∫

Γ∗

(
〈δP〉 · �N∗

)
· ��u�∗ d Γ∗

−
∫

Γ∗

(
〈P〉 · �N∗

)
· �δ�u�∗ d Γ∗

+
∫

Γ∗
β �δ�u�∗ · ��u�∗ d Γ∗ + δ I .

(25)

Since

δW± = ∂W±
∂F±

: δF±T = P± : δF±T, (26)

δP± = ∂ P±
∂F±

: δF±T, (27)

the resulting variation of Π becomes

δΠ =
∫

Ω+
P+ : δF+T dΩ+ +

∫
Ω−

P− : δF−T dΩ−

−
∫

ΓT+
δ�u+ · �T d ΓT+ −

∫
ΓT−

δ�u− · �T d ΓT−

−
∫

Γ∗

(〈
∂ P
∂F

: δFT
〉
· �N∗

)
· ��u�∗ d Γ∗

−
∫

Γ∗

(
〈P〉 · �N∗

)
· �δ�u�∗ d Γ∗

+
∫

Γ∗
β �δ�u�∗ · ��u�∗ d Γ∗ + δ I .

(28)

The test function is introduced as the variation of displace-
ment �u,

�ϕ± = δ�u±, (29)

therefore,

δF± = (∇0 �ϕ±)T . (30)

Due to the boundary conditions on ΓD,

�ϕ± = �0 on ΓD±.

To ensure that the functions under integrals are integrable,
additional functional spaces are introduced:

R± =
{
�u
∣∣∣ ui ∈ H1 (Ω±) , �u = �d on ΓD±

}
,

ui = �u · �ei , i ∈ {1, 2, 3} , (31)

Q± =
{

�ϕ
∣∣∣ϕi ∈ H1 (Ω±) , �ϕ = �0 on ΓD±

}
,

ϕi = �ϕ · �ei , i ∈ {1, 2, 3} . (32)

Here ui are components of vector function �u and H1 (Ω±)

is the Sobolev space with L2-norm.
The resulting weak problem formulation is the following:

find �u+ ∈ R+, �u− ∈ R− such that

a (�u+, �u−, �ϕ+, �ϕ−) = 0, ∀�ϕ+ ∈ Q+, ∀�ϕ− ∈ Q−,

where

a (�u+, �u−, �ϕ+, �ϕ−) =
∫
Ω+

P+ : (∇0 �ϕ+) dΩ+

+
∫
Ω−

P− : (∇0 �ϕ−) dΩ− −
∫
ΓT+

�ϕ+ · �T d ΓT+

−
∫
ΓT−

�ϕ− · �T d ΓT− −
∫
Γ∗

〈
∂ PT

∂F
: (∇0 �ϕ)

〉
:
(
��u�∗ �N∗

)
d Γ∗

−
∫
Γ∗

〈P〉 :
( �N∗ � �ϕ�∗

)
d Γ∗ + β

∫
Γ∗

� �ϕ�∗ · ��u�∗ d Γ∗ + δ I .

(33)
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Term δ I is given in Sect. 4.1.6. Here the following transfor-
mation was used:

〈
∂ P
∂F

: (∇0 �ϕ)

〉
:
( �N∗ ��u�∗

)
=

〈
∂ PT

∂F
: (∇0 �ϕ)

〉
:
(
��u�∗ �N∗

)
,

since it is more convenient to work with the derivative of
the transposed first Piola-Kirchhoff stress tensor when the
transformation between the configurations is performed.

Weak form (33) is similar to the weak form of [38,39],
however, with different interface stabilisation terms. In [38,
39], the stabilised discontinuous Galerkin (DG) method was
proposed for large deformations, while in [3], this approach
was extended to include models of damage and debonding.

4.1.2 Transformation between configurations for some
quantities

The first term in Eq. (21) can be also written with respect to
the chemically transformed configuration:

∫
Ω+

W+ dΩ+ =
∫

Ω ′+
W ′+ dΩ ′+, (34)

W+ = W ′+ det (G) , (35)

dΩ ′+ = det (G) dΩ+, (36)

where W ′+ is the elastic strain energy density of the trans-
formed material per unit volume in the chemically trans-
formed configuration and Ω ′+ is the domain of B+ in the
chemically transformed configuration.

More importantly, since the chemically transformed con-
figuration is the stress-free configuration of phase B+, the
constitutive laws for B+ are expected to be prescribed
in the chemically transformed configuration. Thus, W ′+
is expected to be prescribed instead of W+. Moreover,
since F′+ maps the chemically transformed configuration
to the current configuration, it is expected that W ′+ is
given as a function of F′+. Therefore, the first Piola-
Kirchhoff stress tensor in the chemically transformed con-
figuration

P ′+ = ∂W ′+
∂F′+

can be introduced. Since in (33), the first Piola-Kirchhoff
stress tensor in the reference configuration is used, their rela-
tion must be derived. Using

∂F′+
∂F+

= 4IRT :
(
G−T · 4I

)
,

the following is obtained:

P+ = ∂W+
∂F+

= det (G)

(
∂W ′+
∂F′+

)T

: ∂F′+
∂F+

= det (G) P ′+ · G−T. (37)

Similar transformation can be performed for the derivative
of the first Piola-Kirchhoff stress tensor:

∂ P+T

∂F+
= det (G) G−1 · ∂ P ′+

T

∂F+

= det (G) G−1 · ∂ P ′+
T

∂F′+
· G−T. (38)

4.1.3 Consistency with the strong form

The weak form of the problem, Eq. (33), without the sta-
bilisation term, δ I , is consistent with the strong form of the
problem, Eq. (5) and boundary conditions (11), (12), (13),
(14). Indeed, the first and the second terms of (33) are derived
using the standard approach, i.e. by multiplying (5) by �ϕ±
and integrating over the volume:

∫
ω±

�ϕ± · (∇ · σ±) dω± = 0. (39)

By applying the divergence theorem the following form is
obtained
∫

ω±
(∇ �ϕ±)T : σ± dω± =

∫
γT±

�ϕ± · σ± · �nT d γT±

+
∫

γ∗
�ϕ± · σ± · (±�n∗) d γ∗, (40)

where there is “+” sign in front of �n∗ when equation for B+
is considered, as �n∗ is the outer normal to ω+, and there is
“−” sign in front of �n∗ when equation for B− is considered.
Since

(∇ �ϕ±)T : σ± = (∇0 �ϕ±)T :
(
F±−1 · σ±

)
, (41)

the following is obtained:

∫
Ω±

(∇0 �ϕ±)T :
(
F±−1 · σ±

)
J± dΩ±

=
∫

ΓT±
�ϕ± · P± · �NT d ΓT± ±

∫
Γ∗

�ϕ± · P± · �N∗ d Γ∗.

(42)

In the expression above, the domain of integration was
changed and the standard definitions were used (subscripts
omitted):
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(a) (b) (c)

Fig. 2 The schematic representation of a finite-element mesh of the
body with an interface that cuts through the elements (a). For the nodes
that belong to the intersected elements, the number of degrees of free-
dom (DOFs) is doubled. Here the 2D mechanical case is illustrated
with 2DOFs/node in standard elements.Alternative interpretation of the
finite-element problem as two distinct “classical” finite-elementmeshes

that overlap over the set of intersected elements (b). The areas marked
with the grey hatching do not participate in the volumetric integration of
the elements. The schematic representation of a case when the interface
cuts a small volume faction of an element (c), which is marked with the
dark brown hatching

J = det (F) , P = Jσ · F−T,

�n d γ = J F−T · �N d Γ (Nanson’s formula), dω = J dΩ.

By using boundary condition (14),

∫
Γ∗

�ϕ+ · P+ · �N∗ d Γ∗ −
∫

Γ∗
�ϕ− · P− · �N∗ d Γ∗

=
∫

Γ∗
( �ϕ+ − �ϕ−) ·

(
1

2
P+ + 1

2
P−

)
· �N∗ d Γ∗

=
∫

Γ∗
〈P〉 :

( �N∗ � �ϕ�∗
)
d Γ∗.

(43)

When Eq. (42) for B+ and Eq. (42) for B− are summed, the
first, the second, the third, the fourth and the sixth terms of
(33) are obtained. Furthermore, boundary condition (13) is
scalar multiplied by

−
〈
∂ P
∂F

: (∇0 �ϕ)

〉
· �N∗ and β � �ϕ�∗ ,

integrated over Γ∗ and added to the sum of equations above.
This gives thefifth and the seventh termsof (33), respectively.
The eighth term is not consistent with the strong form and is
added for numerical stabilisation. This term is considered in
Sect. 4.1.6.

4.1.4 Finite-element formulation

The finite-element mesh covers the entire volume of the body
Ω = Ω+ ∪ Ω− and is arbitrary with respect to interface
Γ∗, i.e. the interface cuts through elements, as illustrated

in Fig. 2a. Without loss of generality, the mesh is consid-
ered to be conforming to the external boundary of the body,
∂Ω . Obviously, it is also possible to formulate the method in
the case when the external boundary is also non-conforming
to the mesh. However, since the reference configuration is
considered and the external boundary does not move in this
configuration, in most cases, there will be no practical pur-
pose of creating amesh that is non-conforming to the external
boundary.

The mesh contains N nodes. The standard nodal basis
function associated with node i is denoted asψi . These func-
tions are continuous piecewise-polynomial functions and are
equal to 1 at node i and equal to 0 at all other nodes. The
space of the standard nodal basis functions is denoted as

Sh = span {ψi }Ni=1 , ψi = ψi

( �X
)

.

To shorten the notation, additional space is introduced,

Qh =
{

�ϕ
∣∣∣ ϕ j ∈ Sh

}
, ϕ j = �ϕ · �e j , j ∈ {1, 2, 3} .

Furthermore, globally defined functions �uh+, �uh− ∈ Qh are
introduced.2 Restrictions of functions �uh+ and �uh− to domains

2 As discussed earlier, in addition to the unknown deformation, the full
mechanochemical problem contains the unknown concentration and
the unknown position of the reaction front. However, since the explicit
method of the interface movement is considered in this paper, the posi-
tion of the front is known at the current time step, while the deformation
and the concentration are unknown. Furthermore, in this subsection,
only the mechanical part is considered. Therefore, the discrete repre-
sentation of other unknowns, as well as the interfacemovement scheme,
is introduced later in text.

123



894 Computational Mechanics (2019) 63:885–911

Ω+ andΩ−, respectively, approximate solutions �u+ and �u−,
respectively, of (5).

The set of all elements is denoted as T . Furthermore, the
following sets can be defined:

T± =
{
E

∣∣∣ E ∈ T , E ∩ Ωh± �= ∅
}

,

where E denotes an element. Sets T+ and T− overlap, i.e.
they share the set of elements, which are crossed by Γ h∗ . The
set of all elements intersected by the interface is denoted as

T∗ = T+ ∩ T−.

Here superscript h is added to Ω± to indicate the discreti-
sation of the boundaries of the domains, as also explained
below, while Γ h∗ is the discretised interface Γ∗.

Thus, the finite-element formulation of the mechanical
problem is the following:

find �uh+, �uh− ∈ Qh such that a
(
�uh+, �uh−, �ϕh+, �ϕh−

)
= 0,

∀�ϕh+, �ϕh− ∈ Qh,

�uh± = �0 at nodes that do not belong to elements T±,

�uh± = �g at nodes on ΓD ∩ T±,

where functional a was defined in (33). Numerical parameter
β in (33), which is introduced in the Nitsche-like methods,
is usually taken to be inversely proportional to spatial step h,

β = λ

h
,

where λ is a constant. The above finite-element problem
represents a system of non-linear algebraic equations with
respect to nodal values of �uh+ and �uh−, which can be solved
using the standard Newton-Raphson method. This problem
formulation is valid for the case when σ+ does not depend
on c in (6). The coupled problem is formulated in 4.3.

Although the above finite-element formulation follows
relatively standard notation accepted in numerical analysis, it
should be emphasised that when integrals in (33) are calcu-
lated for a

(�uh+, �uh−, �ϕh+, �ϕh−
)
, the domains, over which the

integration is performed, have discretised piece-wise lin-
ear boundaries. Thus, for the finite-element formulation,
domains of integration Ω±, Γ∗ and ΓT are replaced by Ωh±,
Γ h∗ andΓ h

T , respectively. Interiors ofΩ
h+ andΩh− do not over-

lap and Γ h∗ = Ωh+ ∩ Ωh−. This is usually taken as obvious;
however, in this paper, the distinction is made to separate Γ∗
and Γ h∗ . The rules, according to which Γ h∗ is constructed, are
discussed in Sect. 4.4.1.

4.1.5 Assembling finite-element equations

Nodal values of �uh+ and �uh− are denoted as �U+
i and �U−

i ,
respectively,

�uh± =
N∑
i=1

ψi �U±
i , ψi = ψi

( �X
)

.

Without loss of generality, it can be assumed that

nodes 1, . . . , Na do not belong to elements T−
and do not belong to ΓD,

nodes Na + 1, . . . , Nb belong to elements T∗
and do not belong to ΓD,

nodes Nb + 1, . . . , Nc do not belong to elements T+
and do not belong to ΓD,

nodes Nc + 1, . . . , Nd do not belong to elements T−
and belong to ΓD,

nodes Nd + 1, . . . , Ne belong to elements T∗
and belong to ΓD,

nodes Ne + 1, . . . , N do not belong to elements T+
and belong to ΓD.

Following the finite-element formulation, the system of non-
linear algebraic equations with respect to �U+

i and �U−
i , where

i ∈ {1, . . . , N }, is assembled:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
(
�uh+, �uh−, ψi �e j , �0

)
= 0, i ∈ {1, . . . , Nb} , j ∈ {1, 2, 3} ,

a
(
�uh+, �uh−, �0, ψi �e j

)
= 0, i ∈ {Na + 1, . . . , Nc} , j ∈ {1, 2, 3} .

�U+
i = �0, i ∈ {Nb + 1, . . . , Nc, Ne + 1, . . . , N } ,

�U−
i = �0, i ∈ {1, . . . , Na, Nc + 1, . . . , Nd} ,

�U+
i = �g, i ∈ {Nc + 1, . . . , Ne} ,

�U−
i = �g, i ∈ {Nd + 1, . . . , N } .

(44)

Since functions �uh+ and �uh− are defined globally, each node
contains degrees of freedom (DOFs) both corresponding to
“+” solution and to “−” solution. Therefore, formally, there
are 4N and 6N DOFs in 2D and 3D, respectively (further
in this section only 3D case is discussed). However, as seen
from system (44), �U+

i and �U−
i are restricted to zero outside

of elements T+ and T−, respectively, hence, calculation of
these DOFs is trivial and does not increase the computational
complexity. The advantage of keeping theseDOFs is the con-
venience of coding, as the sizes of arrays does not depend on
the position of the interface. Such technique has been used
previously in application to the Nitsche-like methods [41].

As seen from system (44), the actual number of non-linear
equations is 3 (Nb + Nc − Na). Thus, the number of non-
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linear equations is increased by3 (Nb − Na), compared to the
standard FEM problem (where an interface might be present,
but is conforming to the mesh). Thus, compared to the stan-
dard FEM, in this approach, number of DOFs, calculation of
which is non-trivial, is doubled for all nodes that belong to
the elements that are cut by the interface.

As seen from the first equation of system (44), when
equations corresponding to �U+

i are assembled, �ϕh− = �0
everywhere. Analogously, the second equation of system
(44) indicates that when equations corresponding to �U−

i are
assembled, �ϕh+ = �0 everywhere.

There is another possible interpretation of the above finite-
element formulation, which is as follows. There are two
different meshes, which consist of sets of elements T+ and
T−. These meshes overlap over a set of elements T+ ∩ T−.
There are two different solutions, �U+

i and �U−
i , each defined

on the corresponding mesh. Thus, there are 3 DOFs per node
of each mesh. To assemble the system of equations for the
mechanical problem, at first, the test function defined on the
first mesh, �ϕh+, takes all possible values, while �ϕh− = �0; after-
wards, the test function defined on the second mesh, �ϕh−,
takes all possible values, while �ϕh+ = �0. Such interpretation
is illustrated schematically in Fig. 2b.

4.1.6 Stabilisation term

When interface Γ∗ cuts through elements T , it is possi-
ble that some elements are partitioned into highly unequal
area fractions, as illustrated in Fig. 2c. This can create a
numerical problem—the system of equations can become
ill-conditioned. Therefore, in Nitsche-like methods, addi-
tional stabilisation terms are introduced in such cases, e.g.
[2,12,34].

The set of all element boundaries is denoted as F . The
following set can be defined:

F∗ =
{
F

∣∣∣ F ∈ F , F ∩ Γ h∗ �= ∅
}

,

where F denotes a boundary of an element.
The stabilisation term is added as an additional term I to

the potential energy:

I =
∑

Γ f ∈F∗

κ

2

∫
Γ f

h

(�
F+ · �N f

�

e

2 +
�
F− · �N f

�

e

2
)
d Γ f ,

(45)

where �N f is the normal to boundary Γ f , κ is the numerical
parameter and �·�e denotes the jump of the quantity across
the element boundary. The orientation of normal �N f is not
important, as the jump is squared.

Variation of the stabilisation term in the potential energy
leads to

δ I =
∑

Γ f ∈F∗
κ

∫
Γ f

h
(�

F+ · �N f

�

e
·
�
(∇0 �ϕ+)T · �N f

�

e

+
�
F− · �N f

�

e
·
�
(∇0 �ϕ−)T · �N f

�

e

)
d Γ f . (46)

In [34], the set of boundaries used for the stabilisation term
also included adjacent boundaries to F∗. It is also possible
to include these boundaries here and thereby generalise term
(46). The inclusion of adjacent boundaries to F∗ becomes
important when the interface cuts comparably small frac-
tions froma large set of neighbouring elements,which should
be a relatively unlikely scenario in applied problems. In the
numerical examples of this paper, adjacent boundaries were
not included and no numerical difficulties related to condi-
tionality of the problem were encountered.

In Eq. (45), F± is stabilised across the inter-element
boundary. This choice is rather arbitrary and follows analo-
gous stabilisation term from [2]. For the mechanical problem
it is possible to use P± instead of F± in Eq. (45), i.e. sta-
bilise stresses instead of deformation gradients; however, this
choice of stabilisation term is not investigated in this paper.

4.2 Diffusion

Since mixed boundary conditions are imposed for the diffu-
sion problem, it does not require any special treatment and
the standard transformation of the strong form to the weak
form is applicable. Hence, Eq. (15) is multiplied by a test
function and integrated over the volume, which leads to

0 = −
∫

Ω+
ϕ∇0 · �j dΩ+ =

∫
Ω+

(∇0ϕ) · �j dΩ+

−
∫

∂Ω+
ϕ �N∂Ω+ · �j d (∂Ω+) , (47)

where �N∂Ω+ is the outer normal to the surface of the body B+
in the reference configuration. Using boundary conditions
(17) and (19), the weak form is obtained:

find c ∈ H1 (Ω+) such that b (c, ϕ) = 0, ∀ϕ ∈ H1 (Ω+) ,

where

b (c, ϕ) =
∫

Ω+
(∇0ϕ) · �j dΩ+

+
∫

Γ∗
ϕ f∗ d Γ∗ +

∫
ΓM

ϕ fM d ΓM. (48)
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4.2.1 Finite-element formulation

The same finite-element mesh as for the mechanical prob-
lem, Sect. 4.1.4, is used for the diffusion problem. Therefore,
the same notation for the standard nodal basis functions, ψi ,
and for the space of the standard nodal basis functions, Sh ,
is used. Furthermore, globally defined function ch ∈ Sh is
introduced. Restriction of function ch to domainΩ+ approx-
imate solution c of (15).

Thus, the finite-element formulation of the diffusion prob-
lem is the following:

find ch ∈ Sh such that b
(
ch, ϕh

)
= 0, ∀ϕh ∈ Sh,

ch = 0 at nodes that do not belong to elements T+,

where functional b was defined in (48). The above finite-
element problem represents a system of either linear or non-
linear algebraic equations with respect to nodal values of ch ,
depending on the choice of the constitutive laws. In the case
when the system is non-linear, the standardNewton-Raphson
method can be used for the solution.

The calculation of integrals in b requires f∗, which is a
function of V , which, in turn, depends on σ+, F+ and W+.
These quantities result from the solution of the mechanical
problem. Moreover, in general case, �j depends on σ+ and
F+. Therefore, the above problem formulation is valid for
the case when σ+, F+ and W+ are already known, i.e. the
mechanical problem can be solved first within a particular
time step, otherwise, the coupled problem should be solved,
as presented in Sect. 4.3. Evaluation ofV in the finite-element
representation is discussed in Sect. 4.4.2.

Since in the case of diffusion problem, integrals in (48)
are also evaluated in cut elements, similar inter-element sta-
bilisation term as in the mechanical problem, Sect. 4.1.6,
can be introduced. However, such term was not used in the
numerical examples of this paper, as no issues related to the
conditionality of the problem were observed.

4.2.2 Assembling finite-element equations

Nodal values of ch are denoted as Ci ,

ch =
N∑
i=1

ψiCi , ψi = ψi

( �X
)

.

The same notation for the node numbers as in Sect. 4.1.5 is
used. Following the finite-element formulation, the system of
algebraic equationswith respect toCi , where i ∈ {1, . . . , N },
is assembled:
{
b

(
ch, ψi

) = 0, i ∈ {1, . . . , Nb, Nc + 1, . . . , Ne} ,

Ci = 0, i ∈ {Nb + 1, . . . , Nc, Ne + 1, . . . , N } .
(49)

Since function ch is defined globally, formally, there are
N DOFs. However, as Ci are restricted to zero outside of
elements T+, calculation of extra DOFs is trivial and does
not increase the computational complexity. As in Sect. 4.1.5,
the advantage of keeping these DOFs is the convenience of
coding, as the sizes of arrays does not depend on the position
of the interface.

4.3 Coupled system

In the case when the stresses in the transformed material
depend on the concentration of the reactant, the mechanical
problem must be solved together with the diffusion problem.
Thus, the finite-element formulation of the coupled problem
is the following:

find �uh+, �uh− ∈ Qh and ch ∈ Sh

such that

{
a

(�uh+, �uh−, �ϕh+, �ϕh−
) = 0, ∀�ϕh+, �ϕh− ∈ Qh,

b
(
ch, ϕh

) = 0, ∀ϕh ∈ Sh,

�uh± = �0 at nodes that do not belong to elements T±,

�uh± = �g at nodes on ΓD ∩ T±,

ch = 0 at nodes that do not belong to elements T+.

Here the dependency of a on ch is via σ+ and the dependency
of b on �uh+ and �uh− is via �j . The assembling of the finite-
element equations for the coupled system leads to systems
(44) and (49), which are now coupled and must be solved
together.

4.4 Movement of the reaction front

Reaction frontΓ∗ is a curve in a 2D setting or a surface in a 3D
setting. In the finite-element formulation, reaction front Γ∗ is
represented by a piece-wise linear continuous curve/surface
Γ h∗ , which crosses the edges of finite elements. Within each
elementΓ h∗ is strictly linear. There are two additional require-
ments imposed on Γ h∗ , as presented below. It should be noted
that the method can be generalised to the case when Γ h∗ is
piece-wise polynomial; however, for clarity of the presenta-
tion, the piece-wise linear case is selected here.

The reaction front is moved using an explicit time step-
ping, i.e. for a certain position of Γ h∗ , the mechanical and
the diffusion problems are solved, the current velocities are
obtained and the points of the reaction front are moved using
these velocities. The general scheme, which starts from the
discretisation of a continuous interface, is illustrated in Fig. 3
and further details are provided in subsections below.

After the interface is moved, a new initial estimate for the
Newton-Raphson scheme is required, which can be taken to
be the solution at the previous time step. In this case, the
major point of attention is the possible change of the set
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Fig. 3 The steps of the general
scheme of the movement of the
reaction front—discretisation of
the interface (a), movement of
the intersection points to
construct a temporary interface
(b) and construction of a new
interface from the intersection
points of the temporary interface
and the mesh (c). The normals at
the intersection points are
determined by averaging the
normals of the segments located
in the neighbouring elements (d)

(a) (b)

(c)

(d)

of intersected elements, which means that some nodes that
belonged toΩh− at the previous time step, may belong to Ωh+
at the current time step. Therefore, all DOFs for these nodes
must be initialised using solution �uh− at the previous time
step.

4.4.1 Intersection points and surface normals

The set of all element edges is denoted as E . The set of
intersection points of Γ h∗ and the element edges is denoted
as I,

I =
{ �P

∣∣∣ ∃A ∈ E, �P ∈ A ∩ Γ h∗
}

,

where �P denotes an intersection point and A denotes an ele-
ment edge. Reaction front Γ h∗ is constructed such that

– set I is finite;
– each element E ∈ T∗ contains only a single linear seg-
ment of Γ h∗ .

The second requirement is introduced to avoid an ill-posed
problem, while the first requirement is introduced for practi-
cal purposes as explained below.

The schematic illustration of the effect of these two
requirements is demonstrated in Fig. 4, where Γ h∗ does not
cover all intersection points ofΓ∗ and themesh. In Fig. 4c, the

effect of the first constraint is shown—the configuration of
the interface shown in black colour is not allowed, as number
of coinciding points of the interface and the element edges
must be finite. The resulting discretised interface, after for-
bidden points are excluded, is shown in red colour. In Fig. 4b,
the effect of the second constraint is shown—there cannot be
two segments of the interface within one element. In Fig. 4a,
the typical case when both constraints forbid a certain con-
figuration of the interface is shown. Finally, in Fig. 4d, an
interesting effect emerging from these constraints is shown—
in some cases, a single interface curve can be separated into
several curves, some of which can form closed loops.

It should be mentioned that the rules for discretising the
interface are somewhat restrictive in this paper. From the
mathematical point of view, it is perfectly allowable that a
part of the interface coincides with a side of an element. The
only reason for introducing the restriction,which forbids this,
as shown in Fig. 4c, is the simplicity and the efficiency of
the coding. In practice, occurrence of such case should be
extremely rare, as in almost all cases the interface will fall
inside the elements.However, from the programmingpoint of
view, accounting for such case requires creation of additional
structure types for interface segments and coding additional
conditional checks. Therefore, from the practical point of
view, it is reasonable to exclude the case of Fig. 4c.Moreover,
it should also be noted that, since in real applications the
interface is expected to be “smooth” (on this occasion, this
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Fig. 4 The schematic
representation of the
discretisation of the interface.
Continuous interface Γ∗ is
illustrated in blue colour,
discretised interface Γ h∗ is
illustrated in red colour.
Hypothetical discretisation of
Γ∗, which is forbidden by the
imposed constraints, is
illustrated in black colour. In
subfigure (d), the formation of a
closed loop is shown, as also
discussed in Sect. 4.4.3

(a) (b) (d)

(c)

term is not used in strict mathematical sense, but implies
small differences in orientation of line segments), occurrence
of a case similar to the ones illustrated in Fig. 4 would mean
that the background mesh is too coarse and thus the solution
is imprecise.

If an intersection point of Γ h∗ and the mesh is closer than
ζ to a node, then this intersection point is moved to the loca-
tion of the node. Here, ζ is a very small numerical parameter,
which is introduced to avoid a very short segment of the inter-
face influencing the calculation of normals. In the numerical
examples of this paper ζ = 10−6 was taken.

For each element E ∈ T∗, the normal to Γ h∗ is defined as
�Nh∗ and is the outer normal to Ωh+. Thus, �Nh∗ corresponds to
�N∗. Since Γ h∗ is linear within each element, �Nh∗ is constant
within each element.

For each point �P ∈ I, there is a number of neighbour-
ing elements E j ∈ T∗, such that, �P ∈ E j , ∀ j . If point �P is
at ∂Ωh , then it might have only one neighbouring element,
while if point �P is inside Ωh , then it has at least two neigh-
bouring elements. Formally, normal to Γ h∗ is not defined at
point �P; however, an approximation of normal to Γ∗ at point�P ∈ I can be defined. In this paper, this approximation is
defined as the normalised average of the normals of all neigh-
bouring elements,

�Nh∗
( �P

)
=

∣∣∣∣∣∣
∑
j

�Nh∗
(
E j

)
∣∣∣∣∣∣
−1 ∑

j

�Nh∗
(
E j

)
, �P ∈ I, E j ∈ T∗,

where �Nh∗
( �P

)
is an approximation of normal to Γ∗ at point

�P and �Nh∗
(
E j

)
is normal to Γ h∗ within element E j . The

summation is performed over all neighbouring to �P elements
E j .

4.4.2 Points’ velocities

Thevelocities of the reaction front are calculated at eachpoint
�P ∈ I according to Eq. (20). This requires the calculation of

c, σ±, F± andW± at point �P . Obviously, some kind of inter-
element averaging and interpolation can be used to obtain the
values of these quantities at point �P .

In the case of linear finite-elements, concentration c at
point �P can easily be obtained by linearly interpolating nodal
values of ch at the element edge, to which point �P belongs.
Quantities σ±, F± and W± are defined inside the elements.
In this case of linear finite elements, σ±, F± and W± are
constant within an element; therefore, the values at point �P
can be obtained by simple averaging of the values at neigh-
bouring to �P elements E j ∈ T∗. Such averaging scheme is
the simplest; a more elaborate inter-element stress/energies
averaging procedure might improve the overall accuracy of
the method.

It should be noted that in this paper, velocity depend-
ing on �W �∗ − 〈P〉T : �F�∗ is taken, as presented in
Sect. 5.1. Therefore, in the numerical examples of this
paper, inter-element averaging is applied directly to term
�W �∗ − 〈P〉T : �F�∗.

In the case when the interface crosses the boundary of
the body, the intersection points of the interface and the
edges of the elements that belong to the boundary of the
body, �P ∈ I ∩ ∂Ωh , may have fewer neighbouring elements
than the rest of the intersection points. In the 2D case, these
intersection points may have only one neighbouring element,
while other intersection points have at least two. There-
fore, due to a reduced number of available neighbouring
elements to perform inter-element averaging/interpolation
of quantities such as σ± and F±, the accuracy of the
calculated velocities at these intersection points may be
reduced.

Tomitigate the issue of the influence of non-averaged/non-
interpolated quantities on the velocity of the interface,
velocities at points �P ∈ I ∩ ∂Ωh are obtained by extrap-
olation from velocities at neighbouring intersection points
that do not belong to ∂Ωh . For the extrapolation, V is rep-
resented as a function on curve/surface Γ h∗ . It should be
noted that in the numerical examples of this paper, such
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(a) (b)

(c) (d)

Fig. 5 The schematic representation of the movement of an end point
of the reaction front—movement of the intersection points to construct
a temporary interface (a), linear fit for the points of the interface that are

close to the edge (b), construction of a additional external intersection
point (c) and construction of a new interface (d)

extrapolation (using 4 neighbouring points) is applied to
quantity q, which is introduced in Sect. 5.1, and not to the
velocity.

4.4.3 Moving points and finding new configuration of the
interface

After point velocities V
( �P

)
and normals �Nh∗

( �P
)

are

obtained, �P ∈ I, new points �P� are calculated,

�P�
( �P

)
= �P + V

( �P
) �Nh∗

( �P
)

�t, �P ∈ I,

where �t is the user-defined time step. Temporary interface
Γ̂ h∗ is obtained by linearly connecting points �P� ∈ Ωh in
the same order as corresponding points �P are connected to
form Γ h∗ . Points �P� /∈ Ωh do not participate in formation
of Γ̂ h∗ , as shown in Fig. 5b.

Depending on the orientation of the interface and the
velocities of the points, it may happen that neither of points
�P� ∈ Ωh belongs to the boundary of the body, ∂Ωh , while

Γ h∗ ∩ ∂Ωh �= ∅. In this case, extrapolation is used to extend
curve/surface Γ̂ h∗ upto ∂Ωh . The 2D case of such extrapo-
lation is shown in Fig. 5c, d. For each end point of Γ̂ h∗ , a
set of N points �P�, which are closest to the end point of
Γ̂ h∗ , are taken and a linear fit for these points is performed.
The intersection point of the obtained line and a line parallel
to ∂Ωh and distanced from it by h is found. Curve Γ̂ h∗ is
extended to include this intersection point using a linear seg-
ment. In the numerical examples of this paper, N = 4 was
taken.

The set of intersection points of Γ̂ h∗ and the element edges
is denoted as Î,

Î =
{ �R

∣∣∣ ∃A ∈ E, �R ∈ A ∩ Γ̂ h∗
}

,

where �R denotes an intersection point and A denotes an
element edge. The new position of the interface, which is
denoted as Γ̃ h∗ , is obtained by connecting points from set
Î almost in the same order (with few possible exceptions)
as corresponding linear segments of Γ̂ h∗ are connected. The
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deviations from the connecting order are introduced when
it is necessary to satisfy similar requirements as imposed
on Γ h∗ :
– the set of intersection points of Γ̃ h∗ and element edges is

finite;
– each element, which is crossed by Γ̃ h∗ , contains only a
single linear segment of Γ̃ h∗ .

The connection is also made such that the formation of the
closed curves/surfaces is tracked, as illustrated in Fig. 4d.
In this case, Γ̃ h∗ may split into multiple curves/surfaces in
proximity of points in Î that do not belong to Γ̃ h∗ . As the
interfacemoves, two separate segments of the interfacemight
enter a single element, e.g. black segments in Fig. 4d, which
is forbidden by the above constraints, and the interface splits
into a closed loop and the rest of the interface. Splitting of the
interface does not mean the loss of generality of the finite-
element methods described in Sects. 4.1.4, 4.2.1 and 4.3.

5 Numerical examples

Since the purpose of this paper is the presentation of a numer-
ical method, units are omitted for all the quantities, which is
common in numerical analysis.

The unit square geometry is selected. The geometry is
meshed using linear finite elements composing a structured
mesh. All elements of the mesh are isosceles right triangles
with side lengths of h. The example of finite-element mesh
will be shown later.

In themechanical part of the problem, the plane strain case
is considered. Therefore, matrix notation of the total defor-
mation gradient tensor with respect to an Euclidean basis is
given by

F =
⎛
⎜⎝

∂x1
∂X1

∂x1
∂X2

0
∂x2
∂X1

∂x2
∂X2

0
0 0 1

⎞
⎟⎠ .

Thus, unknown displacements �u are in the 12-plane.

5.1 Constitutive relations for numerical examples

The hyperelastic mechanical constitutive relation is taken for
both phases [13,23]:

W ′+ = K+
(
J ′+ − 1 − ln J ′+

) + G+
2

(
tr

(
B̄

′
+
)

− 3
)

, (50)

W− = K− (J− − 1 − ln J−) + G−
2

(
tr

(
B̄−

) − 3
)
, (51)

where

B̄
′
+ = (

J ′+
)− 2

3 F′+ · F′+
T
, J ′+ = det

(
F′+

)
,

F′+ = F+ · G−1, (52)

B̄− = (J−)−
2
3 F− · FT−, J− = det (F−) . (53)

It should be emphasised that the elastic strain energy den-
sity for the transformed material is defined with respect to
the chemically transformed configuration. The derivatives
of W± required for the implementation are summarised in
appendix 1.

The following chemical expansion is chosen:

G = g (�e1�e1 + �e2�e2) + �e3�e3, for �X ∈ Ω+. (54)

The diffusion flux according to the Fick’s law is taken:

�j = −D∇0c, (55)

where D is the diffusion coefficient.
The reaction kinetics, which is governed by the chemi-

cal affinity tensor [6–8], is considered. This tensor acts as a
configurational driving force for the reaction front and was
derived from the balance laws and the dissipation inequal-
ity. In this approach, the expression for the velocity has the
following structure:

V = p1 (c − sq) ,

q = exp
(
−p2

(
p3 − �W �∗ + 〈P〉T : �F�∗

))
, (56)

while function f∗ used in the boundary condition (17) for the
diffusion problem at the reaction front now becomes

f∗ = p4V , (57)

where s, p1, p2, p3 and p4 are physical parameters, which
depend on temperature, reaction rate constant, solubility of
the reactant in the transformed material, molar masses of the
constituents, stoichiometric coefficients of the constituents,
densities of the constituents in the corresponding reference
configurations and temperature-dependent chemical ener-
gies.

In the numerical examples of this paper, the body is con-
sidered to be at a constant temperature. Thus, the temperature
only influences the values of physical parameters and does
not enter equations explicitly.

In the numerical examples, bulk moduli K+ = K− = 10
and shear moduli G+ = G− = 2 were taken. Diffusion
parameters D = s = 1 and reaction parameters p1 = p2 =
p3 = p4 = 1 were taken. Parameter α was taken to be differ-
ent on different edges to take into account different boundary
conditions, as described in Sect. 5.4. Chemical expansion
ratio was taken as g = 1.1. In the Newton-Raphson method,
absolute tolerances for the �∞-norms of the function and of
the change of the solution were taken to be 10−11. Numerical
parameters λ and κ were varied and are provided below.
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5.2 Example of amechanical problemwith
stationary non-conforming interface

The purpose of this section is to demonstrate that themechan-
ical part of the problem for the case of stationary (fixed)
interface provides a reliable solution. This is shown by
demonstrating the expected convergence with respect to the
mesh size and by comparing the non-conforming interface
problem with conforming interface problem resolved via
standard FEM.

For the examples in this section, the traction-free boundary
conditions with removed rigid body motion were used:

u1 = 0, u2 = 0 at node (0, 0) ,

u2 = 0 at node (1, 0) .

5.2.1 Case 1: flat interface

The case when the interface between two phases is flat can
be easily compared with the standard FEM approach. In this
example, the interface was taken to be line X2 = 7/12, while
the materials below and above the interface were taken to
be the transformed and the untransformed materials, respec-
tively. In the case of the standardFEM, the interfacewas lying
exactly along the element edges, such that elements were
entirely assigned to either the transformed or the untrans-
formed material. It is useful to define the mesh size as h =
1/N . For the standard FEM, N ∈ {12, 24, 48, 96, 192, 840}
was used, while for the non-conforming interface case, N ∈
{4, 8, 16, 32, 64, 128, 256} was used.

The examples of the reference and the current configura-
tions of the problem with the non-conforming interface are
illustrated in Fig. 6. The contour plots of the pressure and the

Fig. 6 The reference (a) and the
current (b) configurations of the
two-phase body with the
interface non-conforming to the
finite-element mesh. The phases
below and above the interface
are the transformed and the
untransformed materials,
respectively. The calculation
was performed for h = 1/32,
λ = 104, κ = 0

(a) (b)

(b)(a)

Fig. 7 The pressure (a) and the von Mises stress (b) field plots illustrated on the geometry in the reference configuration. The calculation was
performed for h = 1/128, λ = 104, κ = 0
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Fig. 8 The dependence of the error on the mesh size for the standard
FEM and the non-conforming interface FEM problems. The error was
calculated as the �2-norm of the difference between the current solution
and the reference standard FEM solution with the mesh size of h =
1/840. For the non-conforming interface problem, λ = 104 and κ = 0
were taken

von Mises stress,

p = −1

3
tr (σ ) , σVM =

√
3

2
σ d : σ d,

are shown in Fig. 7. As it can be expected, the positive
pressure emerges in the area below the interface, which indi-
cates the compression of the transformed material, while the
negative pressure emerges above the interface, indicating ten-
sion of the untransformed material. The von Mises stress is
obviously large around the interface indicating significant
deviatoric stresses in this region.

Since the number of DOFs is doubled for the nodes that
belong to the elements, which are intersected by the inter-
face (i.e. the intersected elements are doubled), the full
Cauchy stress tensor in the intersected elements was aver-
aged first and the pressure and the von Mises stress were
calculated afterwards. This explains the non-physical stress
values in the intersected elements in Fig. 7. Thus, when
the non-conforming mesh is used, a somewhat more elabo-
rate stress visualisation technique might be beneficial, where
parts of the intersected elements are coloured according to
the stresses in the corresponding phases.

To compare the standard FEM and the non-conforming
interface FEM, the standard FEM solution with the mesh
size of h = 1/840 was taken as the reference solution. The
solutions with different mesh sizes were compared at the
nodes of the mesh with hc = 1/4, i.e. M = 25 comparison
points were selected. The error was calculated as the �2-
norm of the difference between the solutions taken at the
comparison points:

e (h1, h2) = 1

M

∥∥∥Uh1 −Uh2
∥∥∥

�2
, (58)

whereUh1 andUh2 are solutions with mesh sizes h1 and h2,
respectively, taken at the comparison points.3

The main result of this section, the convergence of the
non-conforming interface FEM problem, is shown in Fig. 8.
The error was calculated according to (58), where the refer-
ence solution was compared to solutions with various mesh
sizes. It can be seen that the non-conforming interface FEM
problem has the same convergence rate with respect to the
mesh size as the standard FEM problem. The calculated con-
vergence rate for the non-conforming interface FEM (i.e. the
slope of the linear fit in Fig. 8) is r = 1.994, which is close
to the theoretical convergence rate of the linear FEM that is
equal to 2.

Furthermore, the influence of numerical parameters λ and
κ on the numerical error was investigated for the the non-
conforming interface FEM problem. In Fig. 9a, the influence
of λ on the error is shown. For λ < 101.5, the solution some-
times did not converge, hence there are some gaps in the plot.
Moreover, for small λ, the error somewhat oscillates and lev-
els off for large λ. In Fig. 9b, the influence of κ on the error is
shown. Obviously, the introduction of the stabilisation term
somewhat increases the error; however, it can be seen that
for small κ this increase is negligible, while such stabilisa-
tion term can be important for cases when the interface cuts
a small area fraction in some elements.

5.2.2 Case 2: curved interface

In this example, the interface was taken to be parabolic curve
X2 = 11/17 − (X1 − 1/2)2, while the materials below and
above the interface were taken to be the transformed and
the untransformed materials, respectively. This example is
less trivial than the previous example and shows the main
advantage of the method—an ability to handle curved inter-
faces non-conforming to the mesh. Mesh sizes h = 1/N ,
N ∈ {32, 64, 128} were used.

The examples of the reference and the current configura-
tions are illustrated in Fig. 10. The pressure and the vonMises
stress field plots are illustrated in Fig. 11. As in the case of flat
interface, the positive and the negative pressure emerge in the
areas below and above the interface, respectively. Moreover,
similar von Mises stress distribution is observed.

3 Column Uh can be formally defined as

Uh
2Nci+2i+2 j+k = �ek · �uh

( �Xi j

)
, �Xi j = �e1hci + �e2hc j,

i, j ∈ {0, 1, . . . , Nc} , k ∈ {1, 2} ,

where �uh is the solution obtained on the mesh with size h, while hc =
1/Nc is the size of the coarse mesh, nodes of which are taken as the
comparison points.
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Fig. 9 The dependence of the
error on numerical parameters λ

(a) and κ (b) for the
non-conforming interface FEM
problem. The calculation in
subfigure a was performed for
h = 1/32 and κ = 0, the
calculation in subfigure b was
performed for λ = 104

(a) (b)

Fig. 10 The reference (a) and
the current (b) configurations of
the two-phase body with the
interface non-conforming to the
finite-element mesh. The phases
below and above the interface
are the transformed and the
untransformed materials,
respectively. The calculation
was performed for h = 1/32,
λ = 104, κ = 10−3

(a) (b)

(a) (b)

Fig. 11 The pressure (a) and the von Mises stress (b) field plots illustrated on the geometry in the reference configuration. The calculation was
performed for h = 1/128, λ = 104, κ = 10−3
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Fig. 12 The pointwise
convergence rate on lines
X2 = 1/4 (a, d), X2 = 1/2 (b,
e) and X2 = 3/4 (c, f) as a
function of X1. Parameters λ

(a–c) and κ (d–f) are varied

(a) (b) (c)

(d) (e) (f)

For the problemwith the curved interface, the convergence
rate was evaluated pointwise:

r
( �X j , h

)
= log2

∣∣∣�uh ( �X j

)
− �uh/2

( �X j

)∣∣∣∣∣∣�uh/2
( �X j

)
− �uh/4

( �X j

)∣∣∣ , (59)

where r
( �X j , h

)
is the convergence rate at point �X j . The

pointwise convergence rate on three lines across the com-
putational domain, X2 = 1/4, X2 = 1/2, X2 = 3/4, is
illustrated in Fig. 12 as a function of X1. For small values of
parameter κ , the convergence rate is around 2, which is the
expected theoretical convergence rate of linear FEM. How-
ever, there are some oscillations in pointwise convergence
rate, especially at X2 = 3/4 and κ = 10−3, which means
that the solution with the used mesh sizes and parameter val-
ues was not entirely in the asymptotic region.

In Fig. 12a–c, parameter λ was varied and it can be
observed that for large λ, its influence on the convergence
rate is negligible. Parameter λ should only be large enough
for the solution to converge, as was discussed in Sect. 5.2.1.
Parameter κ influences convergence rate in a non-linear way.
As seen in Fig. 12d–f, up to κ = 10−1 the convergence
rate is still around the theoretical convergence value, which
is 2; however, for κ = 1, the convergence rate drops to 1.
This obviously happens due to overconstrained inter-element
jump of the deformation gradient in the intersected elements,
as prescribed in Eq. (45). The main advantage of the inter-
element stabilisation term is the regularisation of the solution
for certain values of κ , which can be seen in Fig. 12d–f,where

for κ = 10−2 and 10−1 the convergence rate becomes more
spatially homogeneous than for κ = 0 (absence of the inter-
element stabilisation term).

It can be concluded that there are optimal values of numer-
ical parameters λ and κ . Parameter λ is the coefficient in
front of the interface stabilisation term, which is usually
introduced in Nitsche-like methods, and should be relatively
large, although extremely large values of λ lead to the large
norm of the function in the Newton-Raphson method, which
makes it difficult to determine when the convergence is
reached. Parameter κ controls the inter-element stabilisation
and should be relatively small, however, very small values
lead to insufficient stabilisation and hence ill-conditionality
of the problem.

5.3 Testing the interfacemovement scheme

The full mechanochemical problem relies on the scheme of
the interface movement. Therefore, it is important to test this
scheme as a separate component of the full method.

To test the interface movement separately, initially cir-
cular interface (X1 − 13/23)2 + (X2 − 13/23)2 = (5/23)2

was created. Furthermore, the influence of stresses on the
velocity was removed and the uniform concentration field
was imposed, i.e. q = 0 and c = 1 in Eq. (56) were
taken. Under these conditions, the interface is an expanding
in time circle, thus, the analytical solution for the inter-
face position is known. To obtain the numerical solution,
10 time steps of the interface movement on different meshes
were performed with �t = 0.02. Mesh sizes h = 1/N ,
N ∈ {8, 16, 32, 64, 128, 256} were used.
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Fig. 13 The reference
configuration of the two-phase
body with the interface
configuration at different times
(a) for h = 1/32 and
�t = 1/32. The dependence of
the velocities of 4 interface
points on time (b) for h = 1/64
and �t = 1/128

(a)

(b)

The expected second-order convergence of the error of the
radius of the circular interface was obtained (the plot is not
shown here for brevity). This error was calculated as the �1-
norm of the vector-column containing all intersection points,
divided by the number of points. This illustrates the expected
performance of the interface discretisation and movement
method.

5.4 Example of a coupled problemwithmoving
non-conforming interface in a constrained 2D
body

In this section, an example of a constrained body, in which
the chemical reaction takes place, is considered. Due to
chemically-induced expansion of the transformed material,
there is a build up of mechanical stresses which affect the
chemical reaction rate.

For the example in this section, in the mechanical part of
the problem, the bottom boundary was clamped and the top
boundary was indented as follows:

u1 = 0, u2 = 0 at nodes on X2 = 0,

u1 = 0, u2 = −0.1X1 at nodes on X2 = 1.

The left and the right boundaries were traction-free. Such
boundary conditions create inhomogeneous non-symmetric
stress field within the body and the effect of stress concen-
trations on the local kinetics of the reaction front can be
observed.

In the diffusion part of the problem, mixed boundary con-
ditions were enforced on the bottom boundary and zero-flux
boundary conditions were enforced on the left and the right
boundaries:

α = 1 on X2 = 0,

α = 0 on X1 = 0 and X1 = 1.

This corresponds to the inflowof the reactant from the bottom
boundary.

The initial position of the interface was taken to be line
X2 = 2/17. The materials below and above the interface
were taken to be the transformed and the untransformed
materials, respectively. The movement of the interface was
simulated from t0 = 0 to te = 2.5.

Mesh sizes h = 1/N , N ∈ {4, 8, 16, 32, 64} were used.
Time steps �t = 1/Nt , Nt ∈ {8, 16, 32, 64, 128, 256, 512}
were used. Numerical parameters λ = 104 and κ = 10−3

were used based on the examples from the previous section.

5.4.1 Interface movement and stresses

The configuration of the interface at different times is illus-
trated in Fig. 13a. It can be seen that the initially flat interface
acquires certain curvature, as the central part of the interface
has lower velocity than the edges. Moreover, as the interface
approaches the top boundary, the right edge of the interface
slows down in comparison to the left edge. In Fig. 13b, the
velocities of 4 interface points are shown as functions of time.
It can be seen that there is a general decrease in the velocity of
the interface as it moves. Initially, point X1 = 7/8 has higher
velocity than points X1 = 3/8 and X1 = 5/8; however, its
velocity drops below the velocities of central points as the
interface approaches the top boundary. The oscillations of
the velocity in Fig. 13b are discussed further.

The reason for the progressive curvature of the interface
is the stress-affected kinetics of the reaction front. As it can
be seen in Fig. 14, there is a build-up of the hydrostatic as
well as the deviatoric stresses in the centre-right part of the
computational region. Higher stresses lead to the decrease
of the normal velocity according to the chosen kinetic law
(56). The stresses, in turn, develop due to propagation of
the reaction front, i.e. creation of the transformed material,
which has intrinsic volumetric expansion in comparison to
the untransformed material. Moreover, the inclination of the
top boundary (fixed displacements) creates non-symmetric
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(a) (b)

Fig. 14 The pressure (a) and the vonMises stress (b) field plots at t = 2.5 illustrated on the geometry in the reference configuration. The calculation
was performed for h = 1/64 and �t = 1/128

Fig. 15 The current
configurations of the two-phase
body at t = 0 (a) and t = 2.5
(b). The phases below and above
the interface are the transformed
and the untransformed
materials, respectively. The
calculation was performed for
h = 1/32 and �t = 1/32

(a) (b)

stress distribution which slows down the right-hand side of
the reaction front more than the left-hand side. The current
configurations at the initial and the final positions of the reac-
tion front are shown in Fig. 15.

In Fig. 13b, there are small, although visible, oscillations
of the velocities of interface points related to the points mov-
ing from one inter-element boundary to another. Since the
interface normal velocity depends on the stress (as well as
the deformation gradients and the strain energy densities),
the reason for these oscillations is the discontinuous stress
field (as well as F and W ) as given by the finite-element
solution with piece-wise linear test functions. As the point
jumps from one inter-element boundary to another, differ-
ent elements become involved in calculation/averaging of the
velocity at the intersection point, hence, there is a jump in the

velocity. These oscillations can be significantly reduced by
using amore elaborate inter-element stress averaging, higher-
order test functions or stress calculation procedures with an
improved accuracy, for example [24,25], but this is outside
of the scope of this paper.

5.4.2 Concentration of the reactant

As seen from Eq. (56), the reaction front is driven by the con-
centration of the reactant at the reaction front. The example
of the concentration distribution resulting from the solution
of the diffusion equation is shown in Fig. 16a. The concen-
tration field plot occupies only Ωh+, as the reactant is present
only within the transformed material. As the supply of the
reactant is provided at the bottom boundary (according to
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(a)

(b)

Fig. 16 The concentration field plot (a) at t = 2.5 illustrated on the geometry in the reference configuration. The concentration profile at the
reaction front for different times (b) illustrated as the function of X1. The calculation was performed for h = 1/64 and �t = 1/128

the imposed boundary conditions), the highest concentration
is at X2 = 0. There is a non-linear decay of the concen-
tration with the increase of X2 due to the mixed boundary
conditions at the reaction front. The concentration at the reac-
tion front is illustrated in Fig. 16b, where it can be seen that
even at t = 0, when the reaction front is flat, as illustrated
in Fig. 13a, the concentration profile at the reaction front
is non-linear. This is due to the stress-dependent velocity
entering the mixed boundary conditions at the reaction front
according to Eqs. (17), (56) and (57), while the stress profile
being non-linear and non-symmetric due to the mechanical
boundary conditions. As the reaction front moves, the con-
centration at the reaction front becomes even more spatially
non-linear with higher concentration close to the centre of
the reaction front.

5.4.3 Convergence

As discussed in previous subsections, the non-conforming
interface FEM has the same convergence rate as the standard
FEMwith respect to the mesh size for the case of fixed inter-
face. In the mechanochemical problems, the interface moves
in time, therefore, it is also necessary to demonstrate that the
coupled problem converges with respect to the mesh size and
the time step. Obviously, since solution �uh± depends on the
configuration of the interface, the error in the configuration
of the interface affects the solution. Hence, the convergence
rate for the solution cannot be higher than the convergence
rate for the configuration of the interface with respect to the
mesh size and the time step.

Since the points of the interface are moved using the
explicit scheme similar to the forward Euler method, as
described in Sect. 4.4.3, the convergence rate of the interface
position and consequently of solution �uh± with respect to the

time step should be 1. Moreover, as this problem involves the
explicit time integration, while the interface is spatially dis-
cretised, the existence of a stability condition, similar to the
Courant–Friedrichs–Lewy (CFL) condition, can be expected,
i.e. the time step must be decreased with the decrease of the
spatial step, otherwise the interface configuration becomes
numerically unstable. Loss of stability was observed in the
numerical simulations when relatively large time steps were
used; however, the non-linear nature of the problem makes
it difficult to derive an analytical expression for the stability
condition and this has to be a subject of a separate study.

There is also another limitation that arises in the full
mechanochemical problem with stress-dependent velocity
of the reaction front. In this case, the interface velocity and
consequently its configuration are affected by the numerical
error in the stresses (as well as in the deformation gradients
and in the strain energy densities). It is well-known that in
FEM, the convergence rate for the stresses with respect to
the mesh size is lower by 1 than the convergence rate for the
displacements. Therefore, in the full mechanochemical prob-
lem with stress-dependent velocity, the convergence rate for
the displacements with respect to the mesh size drops by 1,
following the convergence rate for the stresses. This issue
is not specific to the considered method and is expected
in any method dealing with the stress-dependent velocity.
The major potential improvement of the numerical frame-
work is an addition of a stress calculation procedure with
superior convergence rates, e.g. [24,25]. This will affect the
calculated velocities, hence the interface configuration and
consequently the solution (the nodal displacements).

In previous subsections, it has been shown that the non-
conforming interface FEM provides a reliable solution for a
fixed interface. Therefore, in the case ofmoving interface, it is
sufficient to consider the interface configuration/position as
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Fig. 17 The convergence rates
with respect to the time step (a)
and with respect to the mesh
size (c) for the interface position
along X2 as a function of X1.
The dependencies of the
�2-norms of the difference
between the reference interface
position and the current
interface position on the time
step (b) and the mesh size (d)

(a) (b)

(c) (d)

the quantity, convergence of which is verified. Due to the ori-
entationof the interface, it is convenient to consider pointwise
convergence rate for the intersection points of the interface
with the vertical element edges. Thus, the convergence rate
with respect to the time step can be introduced:

r�t (X1) = log2

∣∣∣X�t
2 (X1) − X�t/2

2 (X1)

∣∣∣∣∣∣X�t/2
2 (X1) − X�t/4

2 (X1)

∣∣∣ ,(
X1, X

�t
2

) ∈ Γ h∗ at t = te, (60)

where r�t (X1) is the convergence rate for X�t
2 with respect

to �t , given that
(
X1, X�t

2

)
belongs to interface Γ h∗ at

t = te, the position of which was obtained by solving the
mechanochemical problem on the mesh with size h and with
time step �t . Similarly, the convergence rate with respect to
the mesh size can be introduced:

rh (X1) = log2

∣∣∣Xh
2 (X1) − Xh/2

2 (X1)

∣∣∣∣∣∣Xh/2
2 (X1) − Xh/4

2 (X1)

∣∣∣ ,(
X1, X

h
2

)
∈ Γ h∗ at t = te, (61)

where rh (X1) is the convergence rate for Xh
2 with respect

to h, given that
(
X1, Xh

2

)
belongs to the interface. Rates r�t

and rh as functions of X1 are illustrated in Fig. 17a, c, where
it can be seen that although there are significant oscillations
in the rates, the average rate is around 1, both with respect to
�t and h.

The oscillations in pointwise convergence rates do not
prevent the �2-norms of the errors of X�t

2 and Xh
2 to converge.

These norms are defined as

e�t
Γ (�t1,�t2) = ∥∥U�t1 −U�t2

∥∥
�2

,

U�t
i = X�t

2 (hci) , i ∈ {0, 1, . . . , Nc} , (62)

ehΓ (h1, h2) =
∥∥∥Uh1 −Uh2

∥∥∥
�2

,

Uh
i = Xh

2 (hci) , i ∈ {0, 1, . . . , Nc} , (63)

where X�t
2 and Xh

2 are taken as in Eqs. (60) and (61), respec-
tively, and hc = 1/Nc is the size of the coarse mesh, nodes
of which are taken as the comparison points. In the computa-
tional examples, reference time step �t = 1/512 was taken
for the calculation of e�t

Γ as a function of current time step,
using h = 1/32 and hc = 1/32. For the calculation of ehΓ as a
function of current mesh size, reference mesh size h = 1/64
was used, with hc = 1/4 and �t = 1/128. The dependen-
cies of e�t

Γ and ehΓ on �t and h are illustrated in Fig. 17b, d,
respectively. Although the reference time step and the refer-
ence mesh size cannot be considered to be small enough for
the reference solutions to be used as approximations of the
exact solution (hence the convergence rate estimation from
e�t
Γ and ehΓ will not be precise), it can be seen that with the
decrease of �t and h, the difference between the current and
the reference solutions decreases.
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6 Conclusions

In this paper, a numerical method for solving finite-strain
mechanochemical problems with moving sharp chemical
reaction fronts separating chemically transformed and
untransformed phases has been presented. The main advan-
tage of the method is the ability to track the propagation of
the front without remeshing the geometry each time step. The
method is general in a sense that it does not rely on any consti-
tutive laws, including functional dependency of the velocity
on stresses/energies. Furthermore, it is applicable not only to
mechanochemical problems, but to all problems where sharp
interfaces move in deformable bodies due to configurational
forces, such as classical phase transformations (in this case
there is no reactant and the velocity does not depend on the
concentration), and modelling surfaces of growth in biome-
chanics.

The proposed method accounts for three interdependent
problems: the mechanical problem, the diffusion problem
and the movement of the interface (the chemical reaction
front). The method relies on using fixed finite-element mesh
and the interface that cuts through the elements. In the
mechanical part of the problem, the interface conditions are
enforced weakly using a Nitsche-like method. One of the
novelties of this work consists in derivation of the weak form
of the problem from the total potential energy for the case
of large deformations, thereby ensuring that the Nitsche-like
interface penalty terms are consistent with the energy min-
imisation. Furthermore, the algorithm that moves the points
of the interface has been proposed.

The method was illustrated with several case studies
assuming hyperelastic constitutive behaviour. The mechani-
cal part of the problem was tested separately for the case of a
stationary interface. The interface, which is non-conforming
to themesh and is handled using theNitsche-likemethod,was
compared to the standard FEM. The expected second-order
convergence in the case of linear elements was observed.

The fully coupled mechanochemical problem capturing
the propagation of a chemical reaction front in a clamped
2D body was solved to illustrate the applicability of the
method. The kinetics of the chemical reaction front was cho-
sen to be governed by the chemical affinity tensor [6–8],
where the velocity of the chemical reaction front depends
on stresses and elastic strain energy densities. In the com-
putational example, the stress-affected deceleration of the
reaction front was observed, with inhomogeneous stress dis-
tribution leading to the change of the curvature of the front.

Although 2D numerical examples were presented in this
paper, the method is directly applicable to 3D. The main
challenge for 3D applications is developing the code that
builds the new position of the interface, i.e. the code that
tracks correctly the intersection points of 3D element edges
and the surface of the interface.

Finally, as the spatially discretised interface is moved
explicitly, the existence of a CFL-like stability condition can
be expected. In the numerical simulations, the loss of numer-
ical stability for large time steps was observed (results are
not included in the paper), however, the analytical derivation
of this stability condition is yet to be performed and must be
a subject of a separate study.
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Appendix: A tensor derivatives for
hyperelasticity

When the method is implemented, closed-form expressions
for

P± = ∂W±
∂F±

and
∂ P±T

∂F±

are required. Moreover, as the Newton-Raphson method is
used to solve the system of non-linear equations, closed-form
expression for

∂

∂F±

(
Q : ∂ P±T

∂F±
: S

)

is also required for constructing the Jacobian, where Q and
S are independent of F± tensors. This term is required when
parts of the Jacobian corresponding to the fifth term of (33)
are assembled.

In this paper, hyperelastic mechanical constitutive rela-
tions were used for both phases, as given by (50) and (51).
Below tensor derivatives of W− by F− are presented, while
subscript “−” is omitted for simplicity of the notation. Tensor
derivatives of W+ by F+ can be obtained using transforma-
tion formulas between the configurations, as presented in
Sect. 4.1.2.

The expression for the first derivative of W by F is the
following:

P = ∂W

∂F
= K (J − 1) F−T
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+GJ− 2
3

(
F · FT − 1

3
F : FT I

)
· F−T.

The derivative of PT by F (i.e. left-transposed second deriva-
tive of W by F) is the following:

∂ PT

∂F
= K J F−1F−T + GJ− 2

3

(
4I − 2

3
FTF−T

+F−1 · 4IRT · F + 2

9
F : FTF−1F−T − 2

3
F−1F

)

−F−1 · 4IRT · P .

Finally, the tangent required for constructing the Jacobian is
the following:

∂

∂F

(
Q : ∂ PT

∂F
: S

)

= K J Q : F−1F−T : SF−T − K J F−T : SF−T · QT · F−T

− K J Q : F−1F−T · S · F−T − 2

3
GJ− 2

3 Q : SF−T

+ 4

9
GJ− 2

3 Q : FTF−T : SF−T

− 2

3
GJ− 2

3 F−T : SQ + 2

3
GJ− 2

3 Q : FTF−T · S · F−T

− 2

3
GJ− 2

3

(
Q · F−1 · ST

)
: FTF−T

−GJ− 2
3 F−T · QT · F · S · F−T + GJ− 2

3 Q · F−1 · ST

− 4

27
GJ− 2

3 F : FT Q : F−1F−T : SF−T

+ 4

9
GJ− 2

3 Q : F−1F−T : SF

− 2

9
GJ− 2

3 F : FTF−T : SF−T · QT · F−T

− 2

9
GJ− 2

3 F : FT Q : F−1F−T · S · F−T

+ 4

9
GJ− 2

3 Q : F−1F : SF−T

+ 2

3
GJ− 2

3 F : SF−T · QT · F−T − 2

3
GJ− 2

3 Q : F−1ST

+ F−T · QT · P · S · F−T −
(
Q · F−1 · ST

)
: ∂ PT

∂F
.
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