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Abstract
We derive a hyperelastic shell formulation based on the Kirchhoff–Love shell theory and isogeometric discretization, where
we take into account the out-of-plane deformation mapping. Accounting for that mapping affects the curvature term. It
also affects the accuracy in calculating the deformed-configuration out-of-plane position, and consequently the nonlinear
response of the material. In fluid–structure interaction analysis, when the fluid is inside a shell structure, the shell midsurface
is what it would know. We also propose, as an alternative, shifting the “midsurface” location in the shell analysis to the inner
surface, which is the surface that the fluid should really see. Furthermore, in performing the integrations over the undeformed
configuration, we take into account the curvature effects, and consequently integration volume does not change as we shift the
“midsurface” location. We present test computations with pressurized cylindrical and spherical shells, with Neo-Hookean and
Fung’s models, for the compressible- and incompressible-material cases, and for two different locations of the “midsurface.”
We also present test computation with a pressurized Y-shaped tube, intended to be a simplified artery model and serving as
an example of cases with somewhat more complex geometry.

Keywords Kirchhoff–Love shell theory · Isogeometric discretization · Hyperelastic material · Out-of-plane deformation
mapping · Neo-Hookean material model · Fung’s material model · Artery

1 Introduction

Ashell formulation based on theKirchhoff–Love shell theory
and isogeometric discretization was introduced in [1–3]. It
has the advantage of not requiring rotational degrees of free-
dom. Extension to general hyperelastic material can be found
in [4]. The formulation has been successfully used in compu-
tation of a good number of challenging problems, including
wind-turbine fluid–structure interaction (FSI) [3,5–9], bioin-
spired flapping-wing aerodynamics [10], bioprosthetic heart
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valves [11–15], fatigue and damage [16–21], and design
[22,23].

In this article, we start with the formulation from [4]
and derive, based on the Kirchhoff–Love shell theory and
isogeometric discretization, a hyperelastic shell formulation
that takes into account the out-of-plane deformation map-
ping. Accounting for thatmapping affects the curvature term.
It also affects the accuracy in calculating the deformed-
configuration out-of-plane position, and consequently the
nonlinear response of the material. We are extending the
range of applicability of Kirchhoff–Love shell theory to the
situations where the Kirchhoff–Love shell kinematics is still
valid, yet the thickness or the curvature change is significant
enough to make a difference in the response. Fung’s model
has different versions. In the version used in [12], the first
invariant of the Cauchy–Green deformation tensor appears
in a squared form. In the version we use in this article, it
appears without being squared, and this version has been
used in a number of arterial FSI computations [24–31] with
the continuum model.

In FSI analysis, when the fluid is inside a shell structure,
the shell midsurface is what it would know. That would be
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physically wrong, especially when the thickness is signifi-
cant, because the inner surface is the one that the fluid should
really see. In this article we also propose, as an alternative,
shifting the “midsurface” location in the shell analysis to the
inner surface. Furthermore, in performing the integrations
over the undeformed configuration, we take into account the
curvature effects, and consequently integration volume does
not change as we shift the “midsurface” location.

To evaluate the performance of the shell formulation pre-
sented, we do test computations with pressurized cylindrical
and spherical shells, with Neo-Hookean and Fung’s models,
for the compressible- and incompressible-material cases, and
for two different locations of the “midsurface.” We compare
the results to near-analytical reference solutions. We also do
test computation with a pressurized Y-shaped tube, intended
to be a simplified artery model. This serves as an example of
cases with somewhat more complex geometry.

In Sect. 2 we provide the governing equations. The hyper-
elastic shell model is presented in Sect. 3. Test computations
with the cylindrical and spherical geometries and Y-shaped
tube are presented in Sect. 4, and the concluding remarks in
Sect. 5. In the Appendix, we provide some derivations used
in Sect. 3, and the constitutive laws.

2 Governing equations

Let Ωt ⊂ R
nsd be the spatial domain with boundary Γt at

time t ∈ (0, T ),wherensd is the number of space dimensions.
The subscript t indicates the time-dependence of the domain.
The equations governing the structural mechanics are then
written, on Ωt and ∀t ∈ (0, T ), as

ρ

(
d2y
dt2

− f
)

− ∇∇∇ · σσσ = 0, (1)

where ρ, y, f andσσσ are the density, displacement, body force
and Cauchy stress tensor. The essential and natural boundary
conditions are represented as y = g on (Γt )g and n · σσσ = h
on (Γt )h, where n is the unit normal vector, and g and h are
given functions. The Cauchy stress tensor can be obtained
from

σσσ = J−1FSFT , (2)

where F and J are the deformation gradient tensor and its
determinant, and S is the second Piola–Kirchhoff stress ten-
sor. It is obtained from the strain-energy density function ϕ

as follows:

S ≡ ∂ϕ

∂E
, (3)

where E is the the Green–Lagrange strain tensor:

E = 1

2
(C − I) , (4)

C is the Cauchy–Green deformation tensor:

C ≡ FT · F, (5)

and I is the identity tensor. From Eqs. (3) and (4),

S = 2
∂ϕ

∂C
. (6)

3 Hyperelastic shell model

We split the domain as Ωt = Γ t × (hth)t , where Γ t repre-
sents the midsurface of the domain, which is parametrized
by npd = nsd − 1, where npd is the number of parametric
dimensions. With the position x ∈ Γ t , we define a natural
coordinate system:

gα ≡ ∂x
∂ξα

(7)

= x,α, (8)

where α = 1, . . . , npd, and the third direction is based on

n ≡ g3 (9)

= g1 × g2∥∥g1 × g2
∥∥ . (10)

The components of the metric tensor are

gαβ = gα · gβ, (11)

and this is known as the first fundamental form. Similarly,
we define the components of the metric tensor for the con-
travariant basis vectors as

gαβ = gα · gβ, (12)

and obtain the tensor components and contravariant basis
vectors from

[
gαβ

] = [
gαβ

]−1 (13)

and

gα = gαβgβ. (14)
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We define

ΓΓΓ αβ = ∂2x
∂ξα∂ξβ

, (15)

and with that, components of the covariant curvature tensor
are

bαβ = ΓΓΓ αβ · n (16)

= gβ,α · n, (17)

and this is known as the second fundamental form.
A position x ∈ Ωt is represented as

x = x + nξ3, (18)

where −1 ≤ ξα ≤ 1 and ξ3 ∈ (hth)t . The basis vectors are
represented as

gα ≡ x,α (19)

= gα + n,αξ3 (20)

= gα − bαγ gγ ξ3. (21)

See Appendix A.1 for the lines between Eqs. (20) and (21).
Becausegα andgα are onparallel planes (from theKirchhoff–
Love shell theory),

g3 = g3. (22)

With that, the metric tensor components in 3D space are

gαβ = gαβ − 2bαβξ3 + bαγ g
γ δbβδ

(
ξ3

)2
, (23)

gα3 = 0, (24)

g3α = 0, (25)

g33 = 1. (26)

Remark 1 The quadratic term may be omitted. However, if
the metric tensor is obtained from the basis vectors, the term
will automatically be included.

We now provide similar definitions and derivations for the
undeformed configuration. We start with the basis vectors:

Gα = ∂X
∂ξα

0
(27)

= X,α, (28)

and

N ≡ G3 (29)

= G1 × G2∥∥G1 × G2
∥∥ . (30)

A position X ∈ Ω0 is expressed as

X = X + Nξ30 , (31)

where −1 ≤ ξα
0 ≤ 1 and ξ30 ∈ (hth)0. The basis vectors are

represented as

Gα = X,α (32)

= Gα + N,αξ30 (33)

= Gα − BαγG
γ
ξ30 , (34)

G3 = G3. (35)

The metric tensor components in 3D space are

Gαβ = Gαβ − 2Bαβξ30 + Bαγ G
γ δ
Bβδ

(
ξ30

)2
, (36)

G3α = 0, (37)

Gα3 = 0, (38)

G33 = 1, (39)

and Bαβ is the second fundamental form for the midsur-
face of the undeformed configuration. On the midsurface the
parametric coordinates indicate the samematerial points, and
therefore, ξα = ξα

0 . In the third direction, however, because
of the normalization, the coordinates may not be the same.
The relationship is

dξ3

dξ30
= λ3, (40)

where λ3 is the stretch in the third direction.

3.1 Kinematics

We obtain F from the following relationship:

gαdξ
α
0 + g3λ3dξ30 = F ·

(
Gαdξ

α
0 + G3dξ

3
0

)
. (41)

This means that

gα = F · Gα, (42)

λ3g3 = F · G3. (43)

Then we can write F as

F = gαGα + λ3g3G3, (44)
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and J as

J = 1

G3 · (G1 × G2)
(F · G3) · ((F · G1) × (F · G2)) (45)

= λ3
(g1 × g2) · n

(G1 × G2) · N (46)

= λ3
‖g1 × g2‖
‖G1 × G2‖ . (47)

From Eq. (5), we can write C as

C =
(
Gαgα + λ3G3g3

)
·
(
gβGβ + λ3g3G3

)
(48)

= gαβGαGβ + λ23G
3G3, (49)

and the determinant of C gives the square of J :

J 2 = detC (50)

= A2

A2
0

λ23, (51)

A2 = det
[
gαβ

]
, (52)

A2
0 = det

[
Gαβ

]
. (53)

From Eq. (4), we can write E as

E = 1

2

(
C −

(
GαβGαGβ + G3G3

))
(54)

= 1

2

(
gαβ − Gαβ

)
GαGβ + 1

2

(
λ23 − 1

)
G3G3. (55)

The covariant components of the in-plane strain tensor are

Eαβ = 1

2

(
gαβ − Gαβ

)
(56)

= 1

2

(
gαβ − Gαβ

)
︸ ︷︷ ︸

εαβ

+
(
−bαβξ3 + Bαβξ30

)

+ 1

2

(
bαγ g

γ δbβδ

(
ξ3

)2 − Bαγ G
γ δ
Bβδ

(
ξ30

)2)
.

(57)

We write ξ3
(
ξ30

)
as ξ3

(
ξ30

) = λ̂3
(
ξ30

)
ξ30 . From the Taylor

expansion of λ̂3 around ξ30 = 0, we obtain

ξ3 = λ3ξ
3
0 + dλ̂3

dξ30

(
ξ30

)2 + O
((

ξ30

)3)
. (58)

We note that λ3 is the stretch at ξ30 = 0, which is λ̂3 (0). With
that,

Eαβ = εαβ +
(
−bαβξ3 + Bαβξ30

)
+ 1

2(
bαγ g

γ δbβδλ3
2 − Bαγ G

γ δ
Bβδ

) (
ξ30

)2 + O
((

ξ30

)3)

(59)

= εαβ +
(
−bαβξ3 + Bαβξ30

)
+ O

((
ξ30

)2)
. (60)

3.2 Constitutive equations

The total differential of the second Piola–Kirchhoff stress
tensor is

dS = ∂S
∂E

: dE (61)

= ∂SI J

∂EKL
GIGJGKGL : dEMNGMGN (62)

= C
I J K LGIGJdEKL , (63)

where I , J , K , L, M, N = 1, . . . , nsd. From Eq. (4), the
following expression can be used:

C
I J K L = 2

∂SI J

∂CKL
. (64)

For shells,

dSI J = C
I Jγ δdEγ δ + C

I J33dE33, (65)

because dE3α = dEα3 = 0. From Eq. (65), we can write

dS33 = C
33γ δdEγ δ + C

3333dE33, (66)

and from Eqs. (4) and (66), we can write

dS33 = 1

2
C
33γ δdCγ δ + 1

2
C
3333dC33. (67)

From the plane stress condition S33 = 0, dS33 = 0, and
consequently

dE33 = −C
33γ δ

C3333 dEγ δ, (68)

which makes

dSαβ = C
αβγ δdEγ δ − C

αβ33
C
33γ δ

C3333 dEγ δ, (69)
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and therefore we introduce

Ĉ
αβγ δ = C

αβγ δ − C
αβ33

C
33γ δ

C3333 . (70)

In computingC33,wehavedifferentmethods for incompress-
ible and compressible materials. In the case of incompress-
ible material, from Eq. (49) we can write C33 = λ23. Because
J = 1,

λ3 = 1

A/A0
, (71)

and therefore

C33 = A2
0

A2 . (72)

In the case of compressible material, as can be found in [32],
C33 can be calculated by Newton–Raphson iterations that
would make S33 = 0. Because Cγ δ does not change during
the iterations, the iteration increment is

ΔCi
33 = −

(
S33

)i
(
dS33/dC33

)i . (73)

From Eq. (67) and remembering that dCγ δ = 0 during the
iterations,

ΔCi
33 = −2

(
S33

)i
(
C3333

)i . (74)

The update takes place as

Ci+1
33 = Ci

33 + ΔCi
33, (75)

where superscript i is the iteration counter, and as the initial
guess we have the following three options:

C0
33 = 1, (76)

C0
33 = A2

0

A2 , (77)

C0
33 = 1

2
gαβG

αβ. (78)

The option given by Eq. (78) comes from the constitutive
law for zero bulk modulus. To preclude C33 being negative,
we introduce an alternative update method based on the log-
arithm of C33:

lnCi+1
33 = lnCi

33 + d lnC33

dC33
ΔCi

33 (79)

= lnCi
33 + ΔCi

33

Ci
33

. (80)

3.3 Variational formulation

The variation of the in-plane components of the Green–
Lagrange tensor is

δEαβ = δεαβ − δbαβξ3 + bαβδξ3. (81)

The variation of ξ3 can be dropped (see Appendix B), and
we obtain

δEαβ = δεαβ + (−δbαβ

)
︸ ︷︷ ︸

δκαβ

ξ3. (82)

With that,

δWint = −
∫

Ω0

δE : SdΩ (83)

= −
∫

Γ 0

∫
(hth)0

δεαβGαGβ : Sγ δGγGδ

A0

A0
dξ3dΓ

−
∫

Γ 0

∫
(hth)0

ξ3δκαβGαGβ : Sγ δGγGδ

A0

A0
dξ3dΓ ,

(84)

which means

δWint = −
∫

Γ 0

δεαβ

∫
(hth)0

Sαβ A0

A0
dξ3dΓ

−
∫

Γ 0

δκαβ

∫
(hth)0

ξ3Sαβ A0

A0
dξ3dΓ . (85)

Remark 2 Evaluation of S requires a material point corre-
spondence in the third direction.We take that into account by
integrating Eq. (40) with the 4th order Runge–Kutta method,
and λ3 can be obtained from the constitutive law given in
Sect. 4.1. Figure 1 illustrates the deformation mapping. In
general, stretch at a convex side is less than the stretch at the
concave side, which results in a nonuniform λ3.

Now we derive what we need:

δεαβ = 1

2

(
δgα · gβ + gα · δgβ

)
(86)

= 1

2

(
∂δx
∂ξα

· gβ + gα · ∂δx
∂ξβ

)
, (87)

δκαβ = −∂δgα

∂ξβ
· n − ∂gα

∂ξβ
· δn (88)

= −δΓΓΓ αβ · n + ΓΓΓ αβ · gγ
(
n · δgγ

)
(89)

= −
(
δΓΓΓ αβ −

(
ΓΓΓ αβ · gγ

)
δgγ

)
· n, (90)
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0− (hth)0
2

(hth)0
2

ξ30

ξ3

hth

(ξ30)k

(ξ3)k ≡
(ξ3

0)k

0
λ3dξ30

Fig. 1 Deformation mapping from the undeformed configuration to the
current configuration. Mapping of the integration points (5 in this case)
is included in the sketch, and calculation of the kth integration point in
the current configuration is shown
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ν = 0.45 ν = 0.49
Incompressible

Fig. 2 Pressurized cylinder. Neo-Hookeanmodel. Reference solutions.
Midsurface model (top) and inner-surface model (bottom)

where

δΓΓΓ αβ = δx,αβ, (91)

and the variation of the normal vector (see Appendix A.2) is

δn = −gγ
(
n · δgγ

)
. (92)

1.0 1.2 1.4 1.610−2

10−1

100

101

102

103

λ1

p∗

1.0 1.2 1.4 1.610−2

10−1

100

101

102

103

λ1
p∗

ν = 0.45 ν = 0.49
Incompressible

Fig. 3 Pressurized cylinder. Fung’s model. Reference solutions. Mid-
surface model (top) and inner-surface model (bottom). Note that the
pressure scale is logarithmic
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10−1

100
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λ1

p∗

ν = 0.45 ν = 0.49
ν = 0.499 ν = 0.4999
Incompressible

Fig. 4 Pressurized cylinder. Fung’s model. Reference solutions. Mid-
surface model. Two more Poisson’s ratios beyond those in Fig. 3

3.4 Linearization for the Newton–Raphson
iterations

The linearization for the Newton–Raphson iterations is
doneas
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Fig. 5 Pressurized cylinder. Neo-Hookean model (ν = 0.45). Midsur-
face model (top), inner-surface model (middle), and continuum model
(bottom). Solid curve is the reference solution

δaδbWint = −
∫

Γ 0

δaδbεαβ

∫
(hth)0

Sαβ A0

A0
dξ3dΓ

−
∫

Γ 0

δaδbκαβ

∫
(hth)0

ξ3Sαβ A0

A0
dξ3dΓ

−
∫

Γ 0

δaεαβ

∫
(hth)0

Ĉ
αβγ δ A0

A0
dξ3δbεγ δdΓ

−
∫

Γ 0

δaεαβ

∫
(hth)0

Ĉ
αβγ δξ3

A0

A0
dξ3δbκγ δdΓ
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Fig. 6 Pressurized cylinder. Neo-Hookean model (ν = 0.49). Midsur-
face model (top), inner-surface model (middle), and continuum model
(bottom). Solid curve is the reference solution

−
∫

Γ 0

δaκγ δ

∫
(hth)0

Ĉ
αβγ δξ3

A0

A0
dξ3δbεγ δdΓ

−
∫

Γ 0

δaκγ δ

∫
(hth)0

Ĉ
αβγ δ

(
ξ3

)2 A0

A0
dξ3δbκγ δdΓ . (93)

The variation with subscript a is associated with the vari-
ational formulation, and the variation with subscript b is
associated with the iteration linearization. Again, the vari-
ation of ξ3 is dropped.

123



688 Computational Mechanics (2019) 63:681–700
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Fig. 7 Pressurized cylinder. Neo-Hookean model (incompressible).
Midsurface model (top), and inner-surface model (bottom). Solid curve
is the reference solution

In this part too, we derive what we need:

δbδaεαβ = 1

2

(
∂δax
∂ξα

· ∂δbx
∂ξβ

+ ∂δbx
∂ξα

· ∂δax
∂ξβ

)
, (94)

δaδbκαβ = −
(

δaΓΓΓ αβ −
(
ΓΓΓ αβ · gγ

) ∂δax
∂ξγ

)
· δbn

+ δb

(
ΓΓΓ αβ · gγ

)
δagγ · n (95)

= −
(

δaΓΓΓ αβ −
(
ΓΓΓ αβ · gγ

) ∂δax
∂ξγ

)
· δbn

+
(
δbΓΓΓ αβ · gγ + ΓΓΓ αβ · δbgγ

)
δagγ · n (96)

=
(

δaΓΓΓ αβ −
(
ΓΓΓ αβ · gγ

) ∂δax
∂ξγ

)
· gγ

(
n · δbgγ

)

+ δagγ · n
(
gγ · δbΓΓΓ αβ − ΓΓΓ αβ · gδgγ · δbgδ

)
(97)

=
(

δaΓΓΓ αβ −
(
ΓΓΓ αβ · gγ

) ∂δax
∂ξγ

)
· gγ

(
n · δbgγ

)

+
(

δbΓΓΓ αβ −
(
ΓΓΓ αβ · gδ

) ∂δbx
∂ξδ

)
· gγ

(
n · δagγ

)
.

(98)
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Fig. 8 Pressurized cylinder. Fung’s model (ν = 0.45). Midsurface
model (top), inner-surface model (middle), and continuum model (bot-
tom). Solid curve is the reference solution

Here, we used

δgγ = −gδgγ · δgδ, (99)

and the proof for this can be found in Appendix C.

4 Test problems

We test the formulation given in Sect. 3 by using pressur-
ized cylindrical and spherical shells, with Neo-Hookean and
Fung’s models, for the compressible- and incompressible-
material cases, and for two different locations of the “midsur-
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Fig. 9 Pressurized cylinder. Fung’s model (ν = 0.49). Midsurface
model (top), inner-surface model (middle), and continuum model (bot-
tom). Solid curve is the reference solution

face.” For the compressible-material cases, we include tests
with the continuum model. We compare the results to near-
analytical reference solutions. We also do test computation
with a pressurized Y-shaped tube.

4.1 Constitutive models

We test two constitutive models: neo-Hookean and Fung’s.
The elastic-energy density functions are

ϕNH (C) = 1

2
μ (trC − nsd) , (100)
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p∗

Fig. 10 Pressurized cylinder. Fung’s model (incompressible). Midsur-
face model (top), and inner-surface model (bottom). Solid curve is the
reference solution
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Fig. 11 Pressurized cylinder. Fung’s model. Incompressible-material
case.Midsurfacemodel. Solutions from the shell models with andwith-
out the out-of-plane deformation mapping

ϕF (C) = D1

(
e(D2trC−nsd) − 1

)
, (101)

where μ is the shear modulus, and D1 and D2 are the coef-
ficients of the Fung’s model.

For incompressible material, we use

ϕNHI (C) = ϕNH (C) + p (J − 1) , (102)
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Fig. 12 Pressurized sphere. Neo-Hookean model. Reference solutions.
Midsurface model (top) and inner-surface model (bottom)

ϕFI (C) = ϕF (C) + p (J − 1) , (103)

where p is the pressure, which can be eliminated by the plane
stress condition.

For compressible material, we use

ϕNHR (C) = ϕNH

(
J

− 2
nsd C

)
+ ϕvol (J ) , (104)

ϕFR (C) = ϕF

(
J

− 2
nsd C

)
+ ϕvol (J ) , (105)

where

ϕvol (J ) = 1

2
κ

(
1

2

(
J 2 − 1

)
− ln J

)
, (106)

and κ is the bulk modulus.

4.2 Test computations

The pressure, applied at r = rp, is normalized by the shear
modulus (at the zero-stress state):

p∗ = p

μ
(107)
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Fig. 13 Pressurized sphere. Fung’s model. Reference solutions. Mid-
surface model (top) and inner-surface model (bottom). Note that the
pressure scale is logarithmic

for the neo-Hookean model,

p∗ = p

2D1D2
(108)

for the Fung’s model, and we use D2 = 8.365.We determine
the bulk modulus from the Poisson’s ratio ν as follows:

κ = 2μ (1 + ν)

3 (1 − 2ν)
(109)

for the neo-Hookean model, and

κ = 4D1D2 (1 + ν)

3 (1 − 2ν)
(110)

for the Fung’s model.
How to deal with pressure acting on the inner surface

is not easy because the midsurface is the geometry we are
using in the computation. Here we propose two ways. In
the first one, “midsurface model,” the pressure is applied
on the midsurface of the current configuration. In the sec-
ond one,“inner-surface model,” the structure “midsurface” is
moved to the inner surface and the pressure is applied there.
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Fig. 14 Pressurized sphere. Fung’s model. Reference solutions. Mid-
surface model. Two more Poisson’s ratios beyond those in Fig. 13

Remark 3 In applying the pressure, the midsurface model is
physically wrong, especially when the thickness is signifi-
cant. The inner-surface model will have larger absolute value
for ξ3, which would lead to larger discretization errors.

In the test cases, we use the inner and outer radii RI and
RO, and the thickness H = RO−RI. The condition used here
is H

2RI
= 0.1, which is slightly thinner than most arteries. To

have a reference solution to compare the results to, we pro-
vide in Appendix D the second Piola–Kirchhoff stress tensor
expressed in terms of the principal stretches. The results are
compared by inspecting pressure as a function of stretch. The
stretch is λ1 ≡ rp

R
for the midsurface model, where rp = r ,

and λ1 ≡ rp
RI

for the inner-surface model, where rp = rI.
In the computations, we increase the pressure gradually in
obtaining the solution and calculate the stretch. In obtaining
the reference solutions, we use numerical integrations, which
are explained in the following subsections.

4.2.1 Pressurized cylinder

We use orthogonal basis vectors: the first basis vector is in
the radial direction, the second one is in the cylinder axis
direction, and the third one is normal to the surface. The
force equilibrium gives the following relationship:

p2rp = 2
∫ rO

rI
σ11dx3 (111)

= 2
∫ rO

rI
J−1λ21S11dx3 (112)

= 2
∫ RO

RI

J−1λ21S11λ3dX3 (113)

= 2
∫ RO

RI

λ1

λ2
S11dX3. (114)

Fig. 15 Pressurized sphere. Cubic T-spline mesh used in the computa-
tions. Red circles represent the control points

Because the cylinder height does not change, λ2 = 1, and
we obtain

p = 1

rp

∫ RO

RI

λ1S11dX3. (115)

SeeAppendixD.1 for S11. Figures 2 and 3 show the reference
solutions for the neo-Hookean and Fung’s models.

Remark 4 For the Fung’s model, to show convergence to
incompressible-material response with increasing Poisson’s
ratio, for the midsurface model we add Fig. 4, with two more
Poisson’s ratios beyond those in Fig. 3.

We compute, in 2D, with uniform, periodic cubic B-
splines with 8 elements. For comparison purposes, we also
compute with the continuummodel, using 128 uniform, peri-
odic cubic B-spline elements in the circumferential direction,
and 1 element in the radial direction.

Figures 5, 6 and 7 show the solutions for the neo-Hookean
model, and Figs. 8, 9 and 10 for the Fung’s model. Figures 5,
8 and 6, 9 show, for ν = 0.45 and 0.49, the solutions from
the midsurface, inner-surface and continuum models. Fig-
ures 7, 10 show, for incompressible material, the solutions
from the midsurface and inner-surface models.

Remark 5 To compare the solutions from the shell models
with and without the out-of-plane deformation mapping,
we use near-analytical solutions to represent the shell-
model solutions (see Appendix E). We do this for the
incompressible-material case, with themidsurfacemodel. To
have some sense of scale for the difference between the solu-
tions, we include in the comparison the solution we get when
we use 1-point ξ3 integration in themodel without the out-of-
plane deformationmapping. Figure 11 shows the comparison
for the Fung’smodel. For the neo-Hookeanmodel, there is no
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Fig. 16 Pressurized sphere. Neo-Hookean model (ν = 0.45). Midsur-
face model (top), inner-surface model (middle), and continuum model
(bottom). Solid curve is the reference solution

visible difference between the solutions. However, we note
that the curvature changes are very small in this test problem.

4.2.2 Pressurized sphere

We use orthogonal basis vectors: the first two vectors are on
the surface, and the third vector is normal to the surface. The
force equilibrium gives the following relationship:

pπr2p =
∫ rO

rI
2πx3σ11dx3 (116)

=
∫ rO

rI
2π J−1λ21x3S11dx3 (117)
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Fig. 17 Pressurized sphere. Neo-Hookean model (ν = 0.49). Midsur-
face model (top), inner-surface model (middle), and continuum model
(bottom). Solid curve is the reference solution

=
∫ RO

RI

2π J−1λ21 λ1X3︸ ︷︷ ︸
x3

S11λ3dX3 (118)

=
∫ RO

RI

2π
λ21

λ2
X3S11dX3. (119)

Because of the symmetry between the two basis vector direc-
tions on the surface, λ1 = λ2, and we obtain

p = 2

r2p

∫ RO

RI

X3λ1S11dX3. (120)
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Fig. 18 Pressurized sphere. Neo-Hookean model (incompressible).
Midsurface model (top), and inner-surface model (bottom). Solid curve
is the reference solution

See Appendix D.2 for S11. Figures 12 and 13 show the ref-
erence solutions for the neo-Hookean and Fung’s models.

Remark 6 For the Fung’s model, to show convergence to
incompressible-material response with increasing Poisson’s
ratio, for the midsurface model we add Fig. 14, with two
more Poisson’s ratios beyond those in Fig. 13.

We compute, in 3D, with a cubic T-spline mesh, which
consists of 296 control points and 534 Bézier elements (see
Fig. 15). For comparison purposes, we also compute with the
continuum model, which is extruded in the thickness direc-
tion with 1 element.

Remark 7 The number of elements used in the integration is
the number of Bézier elements, which is 534 in this case. The
mesh was generated by a commercial software, Rhinoceros
with theT-splines plug-in. It actually has, in the finite element
sense, 294 elements.

Figures 16, 17 and 18 show the solutions for the neo-
Hookean model, and Figs. 19, 20 and 21 for the Fung’s
model. Figures 16, 19 and 17, 20 show, for ν = 0.45 and
0.49, the solutions from the midsurface, inner-surface and
continuum models. Figures 18, 21 show, for incompressible
material, the solutions from themidsurface and inner-surface
models.
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Fig. 19 Pressurized sphere. Fung’s model (ν = 0.45). Midsurface
model (top), inner-surface model (middle), and continuum model (bot-
tom). Solid curve is the reference solution

Remark 8 In the same way described in Remark 5 for the
pressurized cylinder, we compare the solutions from the
shell models with and without the out-of-plane deformation
mapping. Figure 22 shows the comparison for the Fung’s
model. For the neo-Hookean model there is no visible differ-
ence between the solutions. We again note that the curvature
changes are very small in the test problem.

4.2.3 Pressurized Y-shaped tube

The undeformed configuration of the tube is shown in Fig. 23.
The enddiameters of the tube are 20, 14 and10mm.Figure 24
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Fig. 20 Pressurized sphere. Fung’s model (ν = 0.49). Midsurface
model (top), inner-surface model (middle), and continuum model (bot-
tom). Solid curve is the reference solution

shows the cubic T-splines mesh used in the computation.
The number of control points and elements are 1,295 and
1,296. Figure 25 shows the maximum principal curvature for
the undeformed configuration. We use the incompressible-
material Fung’s model with D1 = 2.6447×103 Pa and
D2 = 8.365. The “midsurface” location in the shell analysis
is the inner surface, and the pressure applied is 12.3×103 Pa.
The thickness distribution for the undeformed configuration
is shown in Fig. 26. This smooth thickness distribution is
outcome of solving the Laplace’s equation over the inner
surface of the tube, with Dirichlet boundary conditions at
the tube ends, where the value specified is 0.146 times the
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Fig. 21 Pressurized sphere. Fung’s model (incompressible). Midsur-
face model (top), and inner-surface model (bottom). Solid curve is the
reference solution
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Fig. 22 Pressurized sphere. Fung’s model. Incompressible-material
case.Midsurfacemodel. Solutions from the shell models with andwith-
out the out-of-plane deformation mapping

end diameter. Figures 27 and 28 show the maximum prin-
cipal curvature and thickness distribution for the deformed
configuration.
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Fig. 23 Pressurized Y-shaped tube. Undeformed configuration. The
end diameters are 20, 14 and 10 mm

Fig. 24 Pressurized Y-shaped tube. Cubic T-splines mesh used in the
computation. Red circles represent the control points

5 Concluding remarks

We have presented a hyperelastic shell formulation based on
theKirchhoff–Love shell theory and isogeometric discretiza-
tion. The formulation takes into account the out-of-plane
deformation mapping. Accounting for that mapping affects
the curvature term. It also affects the accuracy in calculat-
ing the deformed-configuration out-of-plane position, and
consequently the nonlinear response of the material. In FSI
analysis, when the fluid is inside a shell structure, the shell
midsurface is what it would know. That would be physi-
cally wrong, especially when the thickness is significant,
because the inner surface is the one that the fluid should
really see. For that reason, in this article we also proposed,
as an alternative, shifting the “midsurface” location in the
shell analysis to the inner surface. The way we perform the

0.0 0.1 0.2

Curvature (1/mm)

Fig. 25 Pressurized Y-shaped tube. Maximum principal curvature for
the undeformed configuration

1.0 2.0 3.0

Thickness (mm)

Fig. 26 PressurizedY-shaped tube. Thickness distribution for the unde-
formed configuration

integrations over the undeformed configuration takes into
account the curvature effects, and consequently integration
volume does not change ifwe shift the “midsurface” location.
We presented test computations with pressurized cylindri-
cal and spherical shells, with Neo-Hookean and Fung’s
models, for the compressible- and incompressible-material
cases, and for two different locations of the “midsurface.”
We compared the results to near-analytical reference solu-
tions, and in all cases we see a good match. We also
presented test computationwith a pressurizedY-shaped tube,
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Curvature (1/mm)

Fig. 27 Pressurized Y-shaped tube. Maximum principal curvature for
the deformed configuration

1.0 2.0 3.0

Thickness (mm)

Fig. 28 Pressurized Y-shaped tube. Thickness distribution for the
deformed configuration

intended to be a simplified artery model and serving as
an example of cases with somewhat more complex geom-
etry.
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Appendix A: Derivative and variation of the
normal vector in the shell model

A.1 Derivative of the normal vector

Derivative of the normal vector with respect to ξα can be
obtained as follows:

n,α = ∂

∂ξα

(
g1 × g2(

g1 × g2
) · n

)
(121)

= (I − nn) · g1,α × g2 + g1 × g2,α(
g1 × g2

) · n (122)

= (I − nn) · g1,α × (
n × g1

) + g2,α × (
n × g2

)
(
g1 × g2

) · n(
g1 × g2

) · n (123)

= (I − nn) · (
gβ,α × (

n × gβ
))

(124)

= (I − nn) · ((
gβ,α · gβ

)
n − (

gβ,α · n)
gβ

)
(125)

= − (
gβ,α · n)

gβ + n
(
n · gβ

)
︸ ︷︷ ︸

=0

(
gβ,α · n)

(126)

= −gβgβ,α · n (127)

= −gβbαβ. (128)

In the derivation, we used the following relationships, which
generally hold:

g1 = g2 × g3(
g1 × g2

) · g3 , (129)

g2 = g3 × g1(
g1 × g2

) · g3 , (130)

(
g1 × g2

)
· g3 = ((g1 × g2) · g3)−1 . (131)

A.2 Variation of the normal vector

From the steps given by Eqs. (121)–(127), the variation of
the normal vector can be written as

δn = −gβδgβ · n. (132)
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Appendix B: Variation of �3 is a second-order
term

Taking the variation of both sides of Eq. (58), we obtain

δξ3 = δλ3ξ
3
0 + δ

dλ̂3
dξ30

(
ξ30

)2 + O
((

ξ30

)3)
. (133)

For a representative value of the variation,we take the average
over the thickness:

δξ3 ≡ 1

(hth)0

∫ (hth)0/2

−(hth)0/2
δξ3dξ30 (134)

= 1

(hth)0

(
2

3
δ
dλ̂3
dξ30

(
(hth)0
2

)3

+ O
(
(hth)

5
0

))
(135)

= 1

12
δ
dλ̂3
dξ30

(hth)
2
0 + O

(
(hth)

4
0

)
. (136)

Thus, the variation of ξ3 is a second-order term.

Appendix C: Variation of the contravariant
basis vector

Here we show that δgγ can be expressed as

δgγ = −gδgγ · δgδ. (137)

We start with the transformation from the contravariant
basis vectors to the covariant basis vectors:

gα = gαδgδ. (138)

We take the variation of both sides:

δgα = δgαδgδ + gαδδgδ, (139)

and from that obtain

gαδδgδ = δgα − δgαδgδ. (140)

From that and Eq. (11), we obtain

gαδδgδ = δgα − (δgα · gδ + gα · δgδ) gδ (141)

= δgα − δgα · gδgδ︸︷︷︸
=I

−gα · δgδgδ (142)

= δgα − δgα − gα · δgδgδ (143)

= −gα · δgδgδ. (144)

Multiplying both sides with gγα , we obtain

gγαgαδ︸ ︷︷ ︸
=δ

γ
δ

δgδ = − gγαgα︸ ︷︷ ︸
=gγ

·δgδgδ. (145)

Thus,

δgγ = −gγ · δgδgδ (146)

= −gδgγ · δgδ. (147)

Appendix D: Constitutive law: second Piola–
Kirchhoff tensor

(SNHI)11 = μ

(
1 − λ23

λ21

)
, (148)

(SNHR)11 = μJ− 2
3

(
1 − λ1 + λ2 + λ3

3λ21

)

+ 1

2λ21
κ

(
J 2 − 1

)
, (149)

(SFI)11 = 2D1D2e
(D2((λ1+λ2+λ3)−3))

(
1 − λ23

λ21

)
, (150)

(SFR)11 = 2D1D2e

(
D2

(
J

−2
3 (λ1+λ2+λ3)−3

))
J− 2

3(
1 − λ1 + λ2 + λ3

3λ21

)
+ 1

2λ21
κ

(
J 2 − 1

)
.

(151)

D.1 Cylinder

(SNHI)11 = μ
(
1 − λ−4

1

)
, (152)

(SNHR)11 = μ (λ1λ3)
− 2

3

(
1 − λ1 + λ3 + 1

3λ21

)

+ 1

2
κ

(
λ23 − λ−2

1

)
, (153)

(SFI)11 = 2D1D2e

(
D2

((
λ1+λ−1

1 +1
)
−3

)) (
1 − λ−4

1

)
,

(154)

(SFR)11 = 2D1D2e

(
D2

(
J

−2
3 (λ1+λ3+1)−3

))
(λ1λ3)

− 2
3(

1 − λ1 + λ3 + 1

3λ21

)
+ 1

2
κ

(
λ23 − λ−2

1

)
. (155)
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D.2 Sphere

(SNHI)11 = μ

(
1 − 1

λ61

)
, (156)

(SNHR)11 = μ
(
λ21λ3

)− 2
3

(
1 − 2λ1 + λ3

3λ21

)

+ 1

2
κ

(
λ23 − λ−2

1

)
, (157)

(SFI)11 = 2D1D2e

(
D2

((
2λ1+λ−2

1

)
−3

)) (
1 − 1

λ61

)
, (158)

(SFR)11 = 2D1D2e

(
D2

((
λ21λ3

)− 2
3 (2λ1+λ3)−3

)) (
λ21λ3

)− 2
3

(
1 − 2λ1 + λ3

3λ21

)
+ 1

2
κ

(
λ23 − λ−2

1

)
. (159)

Appendix E: Representation of the shell-
model solutions with the near-analytical ref-
erence solutions

Consider the following relationship between the stress tensor
and stress vector at a cross-sectional surface:

h0 = FS · n0, (160)

where h0 and n0 are the stress and unit normal vectors on the
reference configuration. Integrating this over (hth)0, we get

∫
(hth)0

h0dξ30 =
∫

(hth)0

FS · n0dξ30 . (161)

Combining this with Eq. (44), we obtain

∫
(hth)0

h0dξ30 =
∫

(hth)0

(
gαGα + λ3g3G3

)
· S · n0dξ30 ,

(162)

and because G3 · S = 0 in the Kirchhoff–Love shell theory,
we get

∫
(hth)0

h0dξ30 =
∫

(hth)0

gαGα · SδβGδGβ · n0dξ30 . (163)

Using the relationship Gα · Gδ = δα
δ , we obtain

∫
(hth)0

h0dξ30 =
∫

(hth)0

SαβgαGβ · n0dξ30 . (164)

Combining this with Eq. (21), we obtain

∫
(hth)0

h0dξ30 =
∫

(hth)0

Sαβ
(
gα − bαγ gγ ξ3

)
Gβ · n0dξ30 ,

(165)

and taking the midsurface quantities out of the integration,
we get

∫
(hth)0

h0dξ30 = gα

∫
(hth)0

SαβGβ · n0dξ30

− bαγ gγ

∫
(hth)0

ξ3SαβGβ · n0dξ30 . (166)

For the model without the out-of-plane deformation map-
ping, the approximation is

∫
(hth)0

h0dξ30 ≈ gα

∫
(hth)0

Sαβ
∣∣
ξ3=ξ30

dξ30
(
Gβ · n0

)

− bαγ gγ

∫
(hth)0

ξ30 Sαβ
∣∣
ξ3=ξ30

dξ30
(
Gβ · n0

)
.

(167)

When using 1-point ξ3 integration in the model without
the out-of-plane deformation mapping, the approximation
becomes

∫
(hth)0

h0dξ30 ≈ gα Sαβ
∣∣
ξ3=ξ30=0

(
Gβ · n0

)
(hth)0

− bακgκ (hth)30
12

∂Sαβ

∂Eγ δ

∂Eγ δ

∂ξ30

∣∣∣∣∣
ξ3=ξ30=0

(
Gβ · n0

)
.

(168)

Substituting Eqs. (23) and (36) into Eq. (56), omit the
quadratic terms, and taking derivative with respect to ξ30 , we
obtain

∂Eγ δ

∂ξ30
= − (

bγ δ − Bγ δ

)
. (169)

Using Eqs. (69) and (70), we obtain

∫
(hth)0

h0dξ30 ≈ gα Sαβ
∣∣
ξ3=ξ30=0

(
Gβ · n0

)
(hth)0

+ bακgκ (hth)30
12

Ĉ
αβγ δ

∣∣∣
ξ3=ξ30=0

(
bγ δ − Bγ δ

) (
Gβ · n0

)
.

(170)
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E.1 Cylinder

For the model without the out-of-plane deformation map-
ping, Eq. (115) is approximated as

p = 1

rp
λ1

∫ RO

RI

S11|x3=X3+r−R dX3

+ 1

rp

∫ RO

RI

X3 − R

R
S11

∣∣∣∣∣
x3=X3+r−R

dX3. (171)

When using 1-point ξ3 integration in the model without
the out-of-plane deformation mapping, the approximation
becomes

p = 1

rp
λ1 S11|x3=r , X3=R H

+ 1

rp
Ĉ1111

∣∣∣
x3=r , X3=R

λ1 − 1

R
2

H3

12
. (172)

E.2 Sphere

For the model without the out-of-plane deformation map-
ping, Eq. (120) is approximated as

p = 2

r2p
Rλ1

∫ RO

RI

S11|x3=X3+r−R dX3

+ 2

r2p
R

∫ RO

RI

X3 − R

R
S11|x3=X3+r−R dX3. (173)

Wenote that Eq. (173) has been obtained after also neglecting
the volume change in the thickness direction (see [4]). When
using 1-point ξ3 integration in the model without the out-of-
plane deformation mapping, the approximation becomes

p = 2

r2p
Rλ1 S11|x3=r , X3=R H

+ 2

r2p
R

(
Ĉ1111

∣∣∣
x3=r , X3=R

+ Ĉ1122

∣∣∣
x3=r , X3=R

)

× λ1 − 1

R
2

H3

12
. (174)
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