Computational Mechanics (2019) 63:301-321
https://doi.org/10.1007/500466-018-1595-4

ORIGINAL PAPER

@ CrossMark

Compressible-flow geometric-porosity modeling and spacecraft
parachute computation with isogeometric discretization

Taro Kanai' - Kenji Takizawa' - Tayfun E. Tezduyar?3 . Tatsuya Tanaka' - Aaron Hartmann?

Received: 10 May 2018 / Accepted: 19 June 2018 / Published online: 2 July 2018
© The Author(s) 2018

Abstract

One of the challenges in computational fluid—structure interaction (FSI) analysis of spacecraft parachutes is the “geometric
porosity,” a design feature created by the hundreds of gaps and slits that the flow goes through. Because FSI analysis with
resolved geometric porosity would be exceedingly time-consuming, accurate geometric-porosity modeling becomes essential.
The geometric-porosity model introduced earlier in conjunction with the space—time FSI method enabled successful compu-
tational analysis and design studies of the Orion spacecraft parachutes in the incompressible-flow regime. Recently, porosity
models and ST computational methods were introduced, in the context of finite element discretization, for compressible-flow
aerodynamics of parachutes with geometric porosity. The key new component of the ST computational framework was the
compressible-flow ST slip interface method, introduced in conjunction with the compressible-flow ST SUPG method. Here,
we integrate these porosity models and ST computational methods with isogeometric discretization. We use quadratic NURBS
basis functions in the computations reported. This gives us a parachute shape that is smoother than what we get from a typical
finite element discretization. In the flow analysis, the combination of the ST framework, NURBS basis functions, and the
SUPG stabilization assures superior computational accuracy. The computations we present for a drogue parachute show the
effectiveness of the porosity models, ST computational methods, and the integration with isogeometric discretization.

Keywords Spacecraft parachute - Geometric-porosity modeling - Compressible-flow space-time SUPG method -
Compressible-flow space—time slip interface method - Isogeometric discretization - Drogue parachute

1 Introduction ing as the core computational technology in addressing these
challenges, and special ST methods introduced in conjunc-

Computational fluid—structure interaction (FSI) analysis of  tion with these core technologies have brought spacecraft

spacecraft parachutes involves a number of challenges
beyond those in a typical FSI analysis (see [1,2] and
references therein, and [3-10]), including some that are
formidable. The Deforming-Spatial-Domain/Stabilized
Space-Time (DSD/SST) method [2,11-15] has been serv-
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parachute FSI analysis to a new level (see [1,2] and refer-
ences therein, and [3—10]). The core and special ST methods
enabled successful computational analysis and design studies
of the Orion spacecraft parachutes (see [1,2] and references
therein, and [3-10]).

Spacecraft parachute analysis with the ST computational
methods started in 2007. The studies conducted in the first
five years can be found in [1,2] and references therein. The
aspects of spacecraft parachutes studied in the last five years
include “disreefing” [3,6], spacecraft cover separation [4],
parachute designs with modified “geometric porosity” [3,5],
gore curvature calculation [7], aerodynamic-moment calcu-
lation [8], drogue parachutes [6,9], and compressible-flow
parachute aerodynamics [10].

The DSD/SST method was introduced in [11,16,17],
intended for computation of flows with moving boundaries
and interfaces (MBI), including FSI. Because it functions
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as a moving-mesh method in MBI computations, the fluid
mechanics mesh follows the fluid—solid interfaces, enabling
mesh-resolution control and accurate flow representation
near those interfaces. What made the original DSD/SST
method “stabilized” were the Streamline-Upwind/Petrov—
Galerkin (SUPG) [18] and Pressure-Stabilizing/Petrov-
Galerkin (PSPG) [11] components, and for that the method
is now also called “ST-SUPS.” The ST Variational Multi-
scale (ST-VMS) method [14,15] is the VMS version of the
DSD/SST method, with the VMS components coming from
the residual-based VMS (RBVMS) method [19-22].

The RBVMS method has been shown to have good tur-
bulence modeling features, including in the context of the
ALE-VMS method [2,23-27], which is the VMS version
of the Arbitrary Lagrangian—Eulerian (ALE) finite element
method [28]. The ALE method is a more commonly used
moving-mesh method. To increase their scope and accuracy,
the ALE-VMS and RBVMS methods are often supplemented
with special methods, such as those for weakly enforced no-
slip boundary condition [29-31], “sliding interfaces™ [32,33]
and backflow stabilization [34]. The first increases accu-
racy in turbulent flows with active walls, the second enables
application of the ALE-VMS method to flow computations
with solid surfaces in fast relative motion, and the third pre-
vents divergence due to possible reverse flow at the outflow
boundaries. The RBVMS and ALE-VMS methods have been
successfully used for different types of FSI, MBI and fluid
mechanics problems. The classes of problems include wind-
turbine aerodynamics and FSI [35-42], more specifically,
vertical-axis wind turbines [43,44], floating wind turbines
[45], wind turbines in atmospheric boundary layers [46],
and fatigue-damage in wind-turbine blades [47], patient-
specific cardiovascular fluid mechanics and FSI [23,48-53],
biomedical-device FSI [54-59], ship hydrodynamics with
free-surface flow and fluid—object interaction [60,61], hydro-
dynamics and FSI of a hydraulic arresting gear [62,63],
hydrodynamics of tidal-stream turbines with free-surface
flow [64], and bioinspired FSI for marine propulsion [65,66].

The ST-VMS method, because of the source of its VMS
components, also has good turbulence modeling features,
and the ST-SUPS method, which is a reduced version of
the ST-VMS method, can quite often perform reasonably
well. The ST-SUPS and ST-VMS methods, because of
their ST accuracy features (see [14,15]), would be desir-
able also in computations that do not involve any MBL
They have been successfully used for different classes of
FSI, MBI and fluid mechanics problems. The classes of
problems include spacecraft parachute analysis for the main
parachutes [1-3,5,8], cover-separation parachutes [4] and
the drogue parachutes [6,7,9], wind-turbine aerodynamics
for horizontal-axis wind-turbine rotors [2,35,67,68], full
horizontal-axis wind turbines [41,69-71] and vertical-axis
wind turbines [72], flapping-wing aerodynamics for an actual
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locust [2,73-75], bioinspired MAVs [70,71,76,77] and wing-
clapping [78,79], blood flow analysis of cerebral aneurysms
[70,80], stent-blocked aneurysms [80-82], aortas [83,84]
and heart valves [71,78,84-87], spacecraft aerodynamics
[4,88], thermo-fluid analysis of ground vehicles and their
tires [89], thermo-fluid analysis of disk brakes [90], flow-
driven string dynamics in turbomachinery [91], flow analysis
of turbocharger turbines [92-94], flow around tires with road
contact and deformation [95,96], ram-air parachutes [97],
and compressible-flow parachute aerodynamics [10].

The core and special ST computational methods have been
playing by far the most prevalent role in FSI analysis of
spacecraft parachutes (as documented in [1-10] and refer-
ences therein). Actually, parachute FSI analysis in 3D with
the ST computational methods started about 10 years earlier
than the FSI analysis of spacecraft parachutes. In that ear-
lier 10-year period, the ST computational methods played
the most prevalent role in FSI analysis of various types of
personnel and cargo parachutes (as documented in the ear-
lier references cited in [1-10]). However, computational FSI
analysis of spacecraft parachutes involves challenges not
only beyond those in a typical FSI analysis, but also beyond
those in parachute FSI analysis, and even beyond those in
large-parachute FSI analysis. One of those challenges is the
“geometric porosity,” a design feature created by the hun-
dreds of gaps and slits that the flow goes through. Because
FSI analysis with resolved geometric porosity would require
resolving the flow that goes through the hundreds of gaps and
slits as they change their shapes during the computation, it
would be exceedingly time-consuming. That makes accurate
geometric-porosity modeling essential. One of the special
methods targeting spacecraft parachutes, the Homogenized
Modeling of Geometric Porosity (HMGP) [3,98], was intro-
duced to address this computational challenge. The HMGP
was a key contributor to successful computational analysis
and design studies of the Orion spacecraft parachutes since
2007 (see [1,2] and references therein, and [3-9]).

Until recently, ST computational analysis of space-
craft parachutes focused on the Orion spacecraft main
parachutes, which are the parachutes used for landing,
in the incompressible-flow regime, which is where the
main parachutes operate. At the higher-altitudes, drogue
parachutes will be used, and that will mostly be in the
compressible-flow regime. These parachutes have a ribbon
construction and 24 gores, with 52 ribbons in each gore,
where a gore is the slice of the parachute canopy between
two radial reinforcement cables running from the parachute
vent to the skirt. This construction results in hundreds of
gaps that the flow goes through, creating a geometric-porosity
challenge similar to the one faced in FSI analysis of the main
parachutes. Furthermore, there are three wider gaps along the
gore, created by removing ribbons. Drogue FSI computations
with the ST computational methods were first presented in
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[6,7,9], for the incompressible-flow part of the flight enve-
lope.

Geometric-porosity models and ST computational meth-
ods for compressible-flow aerodynamics of spacecraft
parachutes were introduced recently [10] in the context of
finite element discretization. The key new component of
the ST computational framework was the compressible-flow
ST Slip Interface (ST-SI) method, introduced in conjunction
with the compressible-flow ST SUPG method.

The compressible-flow ST SUPG method is essentially the
same as the compressible-flow DSD/SST method, but with-
out necessarily implying a mesh motion. The compressible-
flow DSD/SST method is a straightforward mixture of
the DSD/SST concept and the compressible-flow SUPG
method. The first 3D computation with the compressible-
flow DSD/SST method was reported in 1996 [99] for two
high-speed trains passing each other in a tunnel. The inter-
ested reader can find in [10] a summary of when and in what
context the compressible-flow SUPG method was introduced
[100-102], how it evolved with the addition of a shock-
capturing term [103,104] and with new stabilization and
shock-capturing parameters [105-107], and what test com-
putations [108—110] were reported.

The ST-SI method [72] was introduced to retain the desir-
able moving-mesh features of the ST-VMS method (and its
reduced version, ST-SUPS) when we have spinning solid sur-
faces, such as a turbine rotor or a tire. With the ST-SI method,
the mesh covering the spinning solid surface spins with it and
we retain the high-resolution representation of the boundary
layers. The starting point in the development of the ST-SI
method was the version of the ALE-VMS method designed
for computations with sliding interfaces [32,33]. In the ST-
SI method, interface terms similar to those in the ALE-VMS
version are added to the ST-VMS formulation to account for
the compatibility conditions for the velocity and stress. The
SI between the spinning mesh and the rest of the mesh accu-
rately connects the two sides. An ST-SI version where the
SI is between fluid and solid domains with weakly-imposed
Dirichlet boundary conditions for the fluid was also presented
in [72]. The ST-SI method introduced in [90] for the cou-
pled incompressible-flow and thermal-transport equations
addresses the challenge involved in high-resolution repre-
sentation of the thermo-fluid boundary layers near spinning
solid surfaces. These ST-SI methods have been success-
fully applied to aerodynamic analysis of vertical-axis wind
turbines [72], thermo-fluid analysis of disk brakes [90], flow-
driven string dynamics in turbomachinery [91], flow analysis
of turbocharger turbines [92-94], flow around tires with
road contact and deformation [95,96], aerodynamic analy-
sis of ram-air parachutes [97], and heart valve flow analysis
[84,86,87].

The ST-SI methods have additional desirable features. The
SI provides mesh generation flexibility in a general context

by accurately connecting nonmatching meshes. This feature
was used in the flow analysis of a heart valve [84,87] and
a turbocharger turbine [92-94]. This type of mesh genera-
tion flexibility is especially valuable in complex-geometry
flow computations with isogeometric discretization, remov-
ing the matching requirement between the NURBS patches
without loss of accuracy (see [93,94]). In another version
of the ST-SI method presented in [72], the SI is between
a thin porous structure and the fluid on its two sides. With
this, the fabric porosity is dealt with in a fashion consis-
tent with how the standard two-sided SIs are dealt with and
how the Dirichlet conditions are enforced weakly. Further-
more, this version of the ST-SI method enables handling thin
structures that have T-junctions. This method has been suc-
cessfully used in incompressible-flow aerodynamic analysis
of ram-air parachutes with fabric porosity [97].

The compressible-flow ST-SI methods were introduced
in [10], including the version where the SI is between
a thin porous structure and the fluid on its two sides.
Compressible-flow porosity models were also introduced in
[10]. These, together with the compressible-flow ST SUPG
method, extended the ST computational analysis range to
compressible-flow aerodynamics of parachutes with fab-
ric and geometric porosities. That enabled successful ST
computational flow analysis of the Orion spacecraft drogue
parachute in the compressible-flow regime [10]. The compu-
tations were in the context of finite element discretization.

The ST Isogeometric Analysis (ST-IGA), which is the
integration of the ST methods with isogeometric discretiza-
tion, was introduced in [14], inspired by the success of using
IGA basis functions in space [23,32,48,111]. First computa-
tions with the ST-VMS method and ST-IGA were reported
in [14] in a 2D context, with IGA basis functions in space for
flow past an airfoil and in both space and time for the advec-
tion equation. The stability and accuracy analysis given [14]
for the advection equation showed that using higher-order
basis functions in time would be essential in getting full ben-
efit out of using higher-order basis functions in space.

In the early stages of the ST-IGA, the emphasis was on
IGA basis functions in time. As pointed out in [14,15] and
demonstrated in [73,74,76], higher-order NURBS basis func-
tions in time provide a more accurate representation of the
motion of the solid surfaces and a mesh motion consistent
with that. They also provide more efficiency in temporal
representation of the motion and deformation of the vol-
ume meshes, and better efficiency in remeshing. That is
how the ST/NURBS Mesh Update Method (STNMUM)
was introduced and demonstrated in [73,74,76]. The name
“STNMUM” was given in [69]. The STNMUM has a wide
scope that includes spinning solid surfaces. With the spinning
motion represented by quadratic NURBS basis functions in
time, and with sufficient number of temporal patches for a
full rotation, the circular paths are represented exactly, and a
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“secondary mapping” [2,14,15,73] enables also specifying a
constant angular velocity for invariant speeds along the paths.
The ST framework and NURBS in time also enable, with the
“ST-C” method, extracting a continuous representation from
the computed data and, in large-scale computations, efficient
data compression [§9-91,112]. The STNMUM and desirable
features of the ST-IGA with IGA basis functions in time have
been demonstrated in many 3D computations. The classes
of problems solved are flapping-wing aerodynamics for an
actual locust [2,73-75], bioinspired MAVs [70,71,76,77] and
wing-clapping [78,79], separation aerodynamics of space-
craft [4], aerodynamics of horizontal-axis [41,69-71] and
vertical-axis [72] wind-turbines, thermo-fluid analysis of
ground vehicles and their tires [89], thermo-fluid analysis
of disk brakes [90], flow-driven string dynamics in turbo-
machinery [91], and flow analysis of turbocharger turbines
[92-94].

The ST-VMS method and ST-IGA with IGA basis func-
tions in space have been successfully utilized in ST com-
putational flow analysis of turbocharger turbines [92-94],
ram-air parachutes [97], heart valves [84,86,87], and tires
with road contact and deformation [96]. The turbocharger
turbine analysis was based on the integration of the ST-SI
method and ST-IGA. The IGA basis functions were used
in the spatial discretization of the fluid mechanics equa-
tions and also in the temporal representation of the rotor
and spinning-mesh motion. That enabled accurate represen-
tation of the turbine surfaces and rotor motion and increased
accuracy in the flow solution. The meshes used in the turbine
analysis presented in [93,94] was created by the general-
purpose NURBS mesh generation method introduced in
[93] for complex-geometry flow computations. The ST-SI
method is a key player in discretization with this general-
purpose mesh generation method; it removes, without loss
of accuracy, the matching requirement between the NURBS
patches. The ram-air parachute analysis was based on the
integration of the ST-IGA, the ST-SI version that weakly
enforces the Dirichlet conditions, and the ST-SI version that
accounts for the porosity of a thin structure. The ST-IGA with
IGA basis functions enabled, with relatively few number of
unknowns, accurate representation of the parafoil geome-
try and increased accuracy in the flow solution. The volume
mesh needed to be generated both inside and outside the
parafoil, and the mesh generation inside was challenging
near the trailing edge because of the narrowing space. Using
IGA basis functions addressed that computational challenge
and still kept the element density near the trailing edge at
a reasonable level. The heart valve analysis was based on
the integration of the ST-SI method, ST Topology Change
(ST-TC) method [78,79,85,95], and the ST-IGA. The “ST-SI-
TC-IGA,” beyond enabling a more accurate representation
of the surfaces and increased accuracy in the flow solution,
kept the element density in the narrow spaces near the contact
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areas at a reasonable level. When solid surfaces come into
contact, the elements between the surface and the SI col-
lapse. Before the elements collapse, the boundaries could be
curved and rather complex, and the narrow spaces might have
high-aspect-ratio elements. With NURBS elements, it was
possible to deal with such adverse conditions rather effec-
tively. The computational flow analysis of tires with road
contact and deformation presented in [96] was also based
on the ST-SI-TC-IGA, with essentially the same desirable
features as in the heart valve computational flow analysis.

In this article, we integrate the compressible-flow porosity
models and ST computational methods with isogeometric
discretization. We apply that to flow analysis of a drogue
parachute. We use quadratic NURBS basis functions in the
computations.

The governing equations are given in Sect. 2, and the
porosity models in Appendix A. The compressible-flow ST
SUPG and ST-SI methods are given in Appendices B and C.
The computations are presented in Sect. 3 and the concluding
remarks are given in Sect. 4.

2 Governing equations

Let £2; C R™! be the spatial domain with boundary I;
at time t € (0,7T). The subscript ¢ indicates the time-
dependence of the domain. The symbols p, u and p will
represent the density, velocity and pressure, respectively, and
e(n) = ((Vu) + (Vu)T) /2 is the strain-rate tensor. The
stress tensor is defined as o (u, p) = —pI 4+ T, where 1
is the identity tensor, and T is the Newtonian viscous ten-
sor: T = A(V -u)I + 2ue(u). Here A and u (= pv) are the
viscosity coefficients, v is the kinematic viscosity, and it is
assumed that . = —2u/3.

The Navier—Stokes equations of compressible flows can
be written on £2; and Vr € (0, T) as

U oF; OE;
=4 _R=, 1
ot + 0x; 0x; M

where U = (p, puy, pua, pus, pe) is the vector of conser-
vation variables, e is the total energy per unit volume, and F;
and E; are, respectively, the Euler and viscous flux vectors:

u;p 0
uipuy + 81 p T;
Fi=| uipup +82p |, Ei= T; )
u;ipu3 + 8;3p T;
ui(pe + p) —qi + Tixuk

Here §;; are the components of I, ¢g; are the components
of the heat flux vector, and T;; are the components of T.
The equation of state typically corresponds to the ideal gas



Computational Mechanics (2019) 63:301-321 305
assumption. The term R represents all other components that . Ventband
. . . . ores n Il
might enter the equations, including the external forces.
Equation (1) can further be written in the form Upper rbbors -
Suspension lines a
U oU a au o e T
—tAi———|Kij-— | —R=0, (3)
ot 8)6'[ 8)6[ 8)61 3 wider gaps
Middle ribbons
17-35 111t
Riser <
where
"""" Radial lines
oF; aU
i = _ls Kl] -~ = Ei . (4) Lower ribbons / Vertical tapes
oU 0x j 36-52
Payload
. .. Skirt band
The essential and natural boundary conditions for Eq. (3) are

represented as U = G on ([})g and n; (KU%) = Hon
(I})y, where (1) and (I7)y are complementary subsets of
the boundary I3, n; are the components of the unit normal
vector n, and G and H are given functions. A function Ug(x)
is specified as the initial condition.

The porosity models we use in conjunction with the gov-
erning equations are given in Appendix A. The
compressible-flow ST SUPG and ST-SI methods are given
in Appendices B and C.

3 Computations
3.1 Parachute description

The Orion spacecraft drogue parachute is a variable porosity
conical ribbon parachute [6,7,9] with a nominal diameter of
23 ft. It has 24 gores, each composed of 52 2-inch horizon-
tal ribbons that are spaced and retained at close intervals by
seven parallel, equidistant vertical tapes. The ribbon ends are
stitched to the radial lines, which provide the primary lon-
gitudinal stiffness. The parachute also includes a vent band,
which connects the 24 radial lines terminated at the vent.
Figure 1 shows the parachute configuration. The spacing
between the ribbons is varied in four levels. The 13 ribbons
that are closest to the vent are spaced 0.3 inches apart, and the
next three groups of 13 ribbons are spaced 0.4, 0.5 and 0.6
inches apart. Additionally, there are three locations along the
gore where ribbons are removed, increasing the overall geo-
metric porosity. These “missing” ribbons allow a localized
increase in flow, which helps prevent the boundary layer from
reattaching to the canopy, increasing parachute stability.

The ribbons are modeled with membrane elements. The
upper, middle and lower ribbons have slightly different mate-
rial properties. The various lines, tapes and bands are all
modeled with cable elements, with material properties that
vary by functionality. The material properties were obtained
from NASA.

3ft

Fig.1 Parachute configuration

3.2 Flight conditions

The drogue parachute is designed to be used at a wide range of
altitudes and Mach numbers. In [10] we had three altitudes,
10,000, 20,000 and 35,000 ft, and three free-stream Mach
numbers, 0.3,0.5 and 0.7. In this article, the free-stream Mach
number is 0.3, and we have the same three altitudes as in
[10]. We use the same notation as in [10], AM11, AM21,
and AM31, where the first digit denotes the altitude, and
the second digit the Mach number. Table 1 shows the flight
conditions for the three cases.

3.3 Structural mechanics computations

Structural mechanics computations for the drogue parachute
are conducted to obtain a deformed shape prior to the fluid
mechanics computations.

3.3.1 Problem setup

The structural mechanics mesh, shown in Fig. 2, is a cubic
NURBS mesh. It has 91,612 control points and is composed
of 6576 membrane elements, 13,249 cable elements, and 1
payload element. The mesh resolution for the ribbons in the
radial direction is 1 element.

As the fluid dynamics load on the canopy, we apply a
uniform pressure difference equal to the dynamic pressure
corresponding to the free-stream density and velocity, Ap =
% Poo llUso |2, which can be calculated from Table 1. In each
case, we continue the time-dependent structural mechanics
computation until a steady-state solution is reached.
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Table 1 Flight conditions for

Case Altitude Moo O Poo Poo oo [[aso |l
the three cases, where the 3
subscript “co” denotes the (f) (K) (kPa) (kg/m") (Pa-s) (m/s)
free-stream values AMI1 10,000 0.3 268 69.68 0.90 1.69% 105 98.5
AM21 20,000 0.3 249 46.56 0.65 1.59x 1073 94.8
AM31 35,000 0.3 218 23.83 0.38 1.43x107 88.9
Membrane

Cable

Payload

Fig.2 Structural mechanics control mesh and examples of membrane,
cable and payload elements. Red points indicate the control points. The
canopy mesh includes cable elements

3.3.2 Results

Parachute configurations obtained from the structural
mechanics computation in the three cases are shown in Figs. 3
and 4. The elongation of the three parachutes look quite
similar. On the other hand, we see slight differences in the
canopy shape. We see more roundness in AM31 than in
AM11 because of the lower dynamic pressure.

3.4 One-gore fluid mechanics computations

For the purpose of calculating the porosity coefficients in
modeling the geometric porosity in each of the three cases,
we compute the flow field for a one-gore (15°) “slice” of the
canopy configuration obtained from the structural mechanics
computation.

3.4.1 Problem setup

The fluid mechanics domain for the one-gore slice is a slice
of a cylinder with radius of 17.25 ft, height 57.5 ft, and an
axial circular hole that has a very small diameter. The dis-
tance between the parachute skirt and the inflow boundary
is approximately 15 ft. At the inflow, we specify p and u in
the Euler fluxes, and we drop the terms that we identify as
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AM11 AM21

AM31

Fig.3 Parachute configurations obtained from the structural mechanics
computations

—

AM11

AM31

Fig. 4 Parachute configurations, in zoomed view, obtained from the
structural mechanics computations

the 3rd, 4th and 5th terms in Eq. (50). At the outflow, we
specify stress condition with atmospheric pressure and zero
normal heat flux. On the side boundaries, we set the normal
velocity weakly to zero and specify zero normal heat flux. On
the parachute, when we have porosity, we use the conditions
described in Appendix C.4, and when we do not have poros-
ity, we use the conditions enforced by Eq. (53). We resolve
the flow through the gaps as well as the wider gaps. In deal-
ing with the fabric porosity, we use Egs. (19) and (23). In
Eq. (19), we set % equal to the fabric porosity, and drop the
B term.
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Fig.5 Control mesh for the one-gore fluid mechanics computation for
AM31

Table2 Number of control points (n¢) and elements (ne) for the volume
meshes used in the one-gore fluid mechanics computations. Number of
elements across the gaps (ney) is also given. The meshes with the same
last letter have the same connectivity

Mesh nc ne neg
AMI11-A 204,695 117,806 3
AM21-B 198,112 111,500 2
AM21-C 206,763 116,978 2
AM31-B 198,112 111,500 2

We use quadratic NURBS meshes. The canopy surface
has 3432 control points and 1872 elements. The mesh
resolution in the radial direction is 4 elements for the rib-
bons, 2 or 3 elements for the gaps, and 6 elements for
the wider gaps. Figure 5 shows, as an example, the mesh
for AM31. The mesh information is given in Table 2. In
the case of AM21, we remesh at 0.33 s to improve the
quality of the mesh. Before the remeshing, the mesh has
the same connectivity and function space as the mesh for
AM31.

The computations are carried out in two stages, first with-
out porosity, and then with porosity. Both stages have 3
nonlinear iterations per time step, and in the GMRES iter-
ations, we use a nodal-block-diagonal preconditioner. The
time-step sizes and the number of GMRES iterations per
nonlinear iteration are shown in Table 3. We set yacr = —1
in Eq. (49).

Table3 Time-step sizes and the number of GMRES iterations per non-
linear iteration in the one-gore fluid mechanics computations

Case Porosity Mesh At (s) GMRES
Without 5
AMI11 With AMI11-A 5.0x10 60
=3
Without 1.0x1077 10
AM21-B | to 1.0x10
AM21 1.0x10°
With to 8.0x1077 60
AM21-C 3.2x107°
Without 5.0x10°° 10
AM31 . AM31-B 1.0x107°
With 102.0x10°5 60

3.4.2 Results

Figures 6 and 7 show the velocity magnitude and density for
the three cases. We can see that we are resolving the flow
through the gaps as well as the wider gaps.

3.4.3 Geometric-porosity modeling

We calculate the porosity coefficients based on the porosity
model represented by Egs. (19) and (23). The subscript G
will refer to the geometric porosity, and the area is divided
into four patches, as shown in Fig. 8. Figures 9 and 10 show
the patch-averaged values of || through the gaps and M?.
In the periods with fabric porosity, these values decrease with
increasing altitude for all patches, because the density, veloc-
ity and dynamic pressure all decrease with increasing altitude
(see Table 1). Figure 11 shows the correlation between the
time-averaged values of || and M? displayed in Figs. 9
and 10, with the intervals used in the time-averaging shown
in those two figures. The correlation is established by least-
squares curve fitting based on Eq. (19), which yields % and
B that represent the geometric porosity of the gaps, and we
call those (%) G and fg. Table 4 shows, for each patch, the
(%)G and B¢ values, and the coefficient of determination in
the curve fitting.

3.5 Full-canopy fluid mechanics computation
3.5.1 Modeled porosity
In the full-canopy fluid mechanics computations with the
modeled porosity, for each patch, the relationship between
M? and || is given as
Mmoo, .2
M ==
o1+ Bl
A A
(AR () A9 (LY Y
Ay \D/F Ay \D/gG

Ar Ag )
+ (A—lﬁF + A—}ﬁc) ||, &)
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Fig.6 Velocity magnitude (m/s) from the one-gore fluid mechanics computations. Minimum and maximum values of the color range correspond
to 1 and 170% of the free-stream velocity ||ux||. (Color figure online)
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Fig.7 Density (kg/m?) from the one-gore fluid mechanics computations. Minimum and maximum values of the color range correspond to 85 and
115% of the free-stream density po. (Color figure online)

where the subscript F refers to the fabric porosity, Af is the
total fabric area for the patch, A is the fluid surface area for

Patch 1 the patch, taken as A| &~ Ag + Ag here, (%)

. is set equal to
the fabric porosity, taken as 40 CFM here, and B = 0 here.
P Figure 12 shows that relationship for all the patches. Table 5

shows, for all the cases and patches, the values of % and 8

used in Eq. (9).
3 wider gaps Patch 2

3.5.2 Computation

We do the full-canopy fluid mechanics computation for
AM31. The domain is a cylinder with diameter 96.5 ft and
height 96.5 ft. The distance between the parachute skirt and
the inflow boundary is approximately 33 ft. The boundary
conditions are the same as those described in 3.4.1 for the
Patch 4 one-gore fluid mechanics computations.

We use a quadratic NURBS mesh. The number of control
points and elements for the volume mesh are 270,296 and
190,464. The canopy surface has 6336 control points and
5040 elements. The mesh resolution in the radial direction
for the wider gaps is 3 elements.

Patch 3

Fig.8 Patch definition. The 4 patches are separated by the 3 wider gaps
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Fig. 9 Patch-averaged values of || through the gaps. Blue shaded zones are the computation intervals without porosity. Gray shaded zones are

the intervals used in the time-averaging. (Color figure online)
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Fig. 10 Patch-averaged values of M?. Blue shaded zones are the computation intervals without porosity. Gray shaded zones are the intervals used

in the time-averaging. (Color figure online)

103
20 T T

«Patch 1
5 ePatch 2
% oy Patch 3 /
R= «Patch 4
§ 10 |- / y
S 5| :

%
O L

0 20 40 60 80 100
1| (kg/(m?:s))

Fig. 11 Correlation between the time-averaged values of |riz| and M?
displayed in Figs. 9 and 10. The curves are the outcome of least-squares
curve fitting based on Eq. (19)

Figures 13 and 14 show the surface and volume meshes.
The computations are carried out in three stages, first without
porosity, and the second and the third with porosity. The time-
step size for first and second stages is 5.0x 107 s, and for
the third stage 5.0x10™* s. In all three stages, we have 3
nonlinear iterations per time step and 60 GMRES iterations
per nonlinear iteration. In the GMRES iterations, we use a
nodal-block-diagonal preconditioner. We set yact = —1 in
Eq. (49).

Figures 15 and 16 show the velocity and density for AM31
after a settled solution is reached.

Table 4 Porosity parameters representing the geometric porosity of the
gaps, (%) G and g, and the coefficient of determination in the curve

fitting, R?

(%)g (ke/(m?-s)) B R?
Patch 1 100.6 0.51 0.990
Patch 2 82.27 0.62 0.979
Patch 3 61.14 1.04 0.980
Patch 4 31.83 2.54 0.991

4 Concluding remarks

Geometric porosity, a design feature in spacecraft parachutes,
is created by the hundreds of gaps and slits that the flow goes
through. Accurate geometric-porosity modeling is essential.
That is because FSI analysis with resolved geometric porosity
would require resolving the flow that goes through the hun-
dreds of gaps and slits as they change their shapes during the
computation, which would be exceedingly time-consuming.
The geometric-porosity model introduced earlier in con-
junction with the ST computational methods, the HMGP,
enabled successful computational analysis and design stud-
ies of the Orion spacecraft main parachutes, which operate in
the incompressible-flow regime. Recently, porosity models
and ST computational methods were introduced, in the con-
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Fig. 12 Relationship between 10° Patch 1 103 Patch 2
|11 and M? as given by Eq. (5). 20 T T ‘ — Fabric 20 ‘ ‘ ‘ — Fabric
The lines labeled “Fabric” — Geometric — Geometric
represent the fabric-porosity part =~ 15} — AM11 =~ 15} - — AM11
of that relationship (without the N — AM21 N — AM21
ratio %), and the curves labeled 5 0l | ——AM31 ;E/ 10} | AM3A
“Geometric” come from Fig. 11 g g
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Table5 Values of % and B used in Eq. (5) for all the cases and patches,
which are the values for the blue curves in Fig. 12

Case £ (kg/(m?-5)) B
AM11 Patch 1 5379 0.074
Patch 2 513.7 0.116
Patch 3 500.0 0.213
Patch 4 486.4 0.552
AM21 Patch 1 538.7 0.073
Patch 2 515.1 0.114
Patch 3 501.8 0.209
Patch 4 485.8 0.555
AM31 Patch 1 539.2 0.073
Patch 2 516.4 0.113
Patch 3 503.1 0.207
Patch 4 479.1 0.584

text of finite element discretization, for compressible-flow
aerodynamics of parachutes with geometric porosity. The
key new component of the ST computational framework was
the compressible-flow ST-SI method, introduced in conjunc-
tion with the compressible-flow ST SUPG method. Here,
we integrated these porosity models and ST computational
methods with isogeometric discretization and applied that to
flow analysis of the Orion spacecraft drogue parachute, which
operates in the compressible-flow regime. We used quadratic
NURBS basis functions in the computations. That gives us
a parachute shape that is smoother than what we get from a

@ Springer

|| (kg/(m?s))

Fig. 13 Full-canopy fluid mechanics surface and control mesh for
AM31

typical finite element discretization. In the flow analysis, the
combination of the ST framework, NURBS basis functions,
and the SUPG stabilization assures superior computational
accuracy. The ST-SI plays a key role not only by enabling the
porosity modeling with its version where the SI is between a
thin porous structure and the fluid on its two sides, but also
by removing, without loss of accuracy, the matching require-
ment between the NURBS patches. The porosity coefficients
used in modeling the geometric porosity are determined in
high-resolution computation of the flow field for a slice of
the parachute canopy with the Mach number given and over
a range of altitudes. In these high-resolution computations,
the flow going though each gap is resolved. After perform-
ing those computations for the drogue parachute, using the
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|
i

Fig. 14 Full-canopy fluid mechanics volume control mesh for AM31

1 50 100 130

Fig.15 Velocity magnitude (m/s) from the full-canopy fluid mechanics
computation for AM31. Minimum and maximum values of the color
range correspond to 1 and 150% of the free-stream velocity |[uso]|.
(Color figure online)

Fig. 16 Density (kg/m?) from the full-canopy fluid mechanics com-
putation for AM31. Minimum and maximum values of the color range
correspond to 90 and 110% of the free-stream density ps. (Color figure
online)

porosity coefficients obtained, we performed a full-canopy
flow computation. The computations show the effectiveness
of the porosity models, ST computational methods, and the
integration with isogeometric discretization.
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A Porosity models

Consider a porous media as shown in Fig. 17. The flow
is only in the normal direction, and across the media the
mass flow rate is invariant and the pressure is continuous.
The temperature-related condition will be described later.
We assume that, compared to the fluxes, the term

% ( f " de> ©)

is negligible. Then, the mass flow rate across the media,
m = PUR, @)

is constant. Here, ugr is the velocity relative to the porous
media, which is only in the normal direction.

Up Ua

rB Za

Fig. 17 Schematic representation of a porous media. The coordinates
xp and x4 represent the “B” (“below”) and “A” (“above”) sides of the
media. The flow direction from the B side to the A side is taken as
the positive flow direction. The flow is only in the normal direction,
and across the media the mass flow rate is invariant and the pressure is
continuous. The temperature-related condition will be described later
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We assume that the pressure gradient can be expressed as

dp 0
- = — — , 8
I SMR-I— LuR|MR| (8)

where § and L are model parameters. This is know as the
Darcy—Forchheimer model. We assume a polytropic process
in the media:

1
p=Cpn, 9)

where n is the exponent constant, and C is a constant. This
is general enough to cover most processes.

A.1 Relationship between the fluid inside the media
and the surrounding fluid

Multiplying Eq. (8) with the density, we obtain

d 1
—p—pzsgnm'z)( i+ — |m|2) (10)

dx

and using Eq. (9), we can integrate in the normal direction:

xa C lde o *a . 2
— pn 1 x = sgn (1) |m| + — |m| dx.
XB X XB

(11)
With the transformed model parameters defined as
S
D=———, 12)
(xa —xB)
1 L
- = 13)
B (xa—xp)

the integration yields

—cHn(pA ~ Py )=sgn<m)(5|m|+ﬂ|m|).
(14)

Substituting for C from Eq. (9), we obtain

s (oapa = pppp) = sgn (i) (5 il + B bl

(15)
A.2 Mass flux
We define M? as
M =~ (paps — psps) sgn i), (16)

I+n

@ Springer

and because
sgn(m) = —sgn (pApA — PBPB) (17)

the definition translates to

n
M = 1o lPapa = ppal. (18)

With that, we rewrite Eq. (15) as
B lrin|* + |m| M =0, (19)

and this is the equation we solve for |m|. We obtain

— Ll (5) +apr2
] = —2 (’g ) (20)
B
for B # 0, and the form
. 2M?
lm| = (21)

2
b V(B) + apar
would be applicable also when 8 = 0. From that, we can get

2M?
()" +4pa?

sgn(papa — pppp). (22)

m=—
I
T

Remark 1 Setting n = y gives us M? for adiabatic process:

Y
M = Ty lpapa — pBPB| - (23)

Remark 2 Setting n = oo gives us M? for incompressible-
flow process:

M? =plpa— psl. 24)
A.3 Momentum flux

The force acting on the fluid per unit area due to the media,
hy, is expressed in terms of the momentum-conservation
fluxes on the two sides:

(mus + pa) — (mup + pp) = hm. (25)
A.4 Energy flux

Neglecting the energy exchange due to viscous forces, the

heat leaving from the fluid to the media, gu, is expressed in
terms of the energy-conservation fluxes on the two sides:

(1 (eat 22) )
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- < (eB ; —> . qB) = —am, 6)
P8

where the unit normal vector n is pointing from the B side to
the A side. Heat flux condition between a thin porous struc-
ture and the surrounding fluid specifies gy to a given value.
As a special case of that, the adiabatic condition between a
thin porous structure and the surrounding fluid specifies gum
to zero.

B Compressible-flow ST SUPG method

The compressible-flow ST SUPG method is essentially the
same as the compressible-flow DSD/SST method, but with-
out necessarily implying a mesh motion. The compressible-
flow DSD/SST method is a straightforward mixture of the
DSD/SST concept and the compressible-flow SUPG method.
The compressible-flow SUPG method [101-104] was intro-
duced in 1982 and evolved over the years (see Sect. 1).
The DSD/SST method [2,11-15], introduced in 1990, also
evolved over the years (see Sect. 1 and [2]).

In the DSD/SST method, the finite element formulation
is written over a sequence of N ST slabs Q,, where Q,
is the slice of the ST domain between the time levels ¢,
and #,41. The lateral boundary P, will have complemen-
tary subsets where essential and natural boundary conditions
are enforced, just like how it is with I;. At each time step,
the integrations are performed over Q,. The functions are
continuous within an ST slab, but discontinuous from one
ST slab to another, and the superscripts “—"" and “+” will
indicate the values of the functions just below and just above
the time level. The trial solution and test function spaces are
defined over Q,, by using ST polynomials that are typically
first-order, but sometimes higher-order. Each Q,, is decom-
posed into elements Qf, where e = 1,2, ..., (ne1),. The
subscript n used with ng is for the general case where the
number of ST elements may change from one ST slab to
another.

We assume that we have constructed some suitably-
defined finite-dimensional trial solution and test function
spaces (S ), and (V{I,)n The DSD/SST formulation [106—
110,113-115] of Eq (3) can be written as follows: given
(UM, find U" € (S}"),, such that YW" € (V}'),,:

auU” au”
W[ — +A'— —R")d
) ,l <ar A ¢
aWh au”
+ / Kl —dQ — W' . H"dP
L oxi Uy, (P

[ v (Why - why)ag
2

313
(nel)n JWh SWh , i
T — 4+ —A7 ) -Rp(U"d
+ Z/ SUPG< t o ) A(UNHdQ
(nel)n aW"  juh
— . —dQ =0, 27
+ Z/” VSHOC " G Q 27
where
au’ aur 9 au”
RA(UM = — 4+ A/ — - — (KEL— ) —R", (28
AU = o A 8xi( U ox; 28

Tsupg is the SUPG stabilization matrix, and vsgoc is the
shock-capturing parameter. The stabilization is residual-
based because the residual of the compressible-flow equa-
tions, RA(Uh), appears as a factor in the stabilization term.
We start with (Uh)a = Up(x) and apply the formulation
sequentially to all ST slabs Qq, Q1, Q2, ..., On—1. The sta-
bilization matrix is given from [106,108-110] and [116] as

» 07 0
TSUPG = 0 i | 0 , (29)
0 o7 «ze
where
1
= (fs_U20N12) . (30)
1
_ _2\"2
T = (TSUZGle + (zsuons) ) 5 3D
_1
= (T§1J2GN12 + (T§UGN3)_2> 5 (32)
and
1{]1
TSUGNL2 = m m 1 G, (33)
(thuons) | = vr'r" : G, (34)
(téuons) | = VT’ : G, (35)
MEd
P L (36)
[Vl
ré = V_@h (37)
|ven|

The symbols 0 and v° represent the temperature and the ther-
mal diffusivity. See Appendix D for the definition of G3T and
G. The parameter vsyoc is defined as
h
10U

HY“U}'HW
8x,

B
8 <hsgoc> ’ (38)

vy

Nsd
VSHOC = HY_IZ” (
i=1
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where hol4opod !
h= (%) ; (45)

.s _1

hsnoc =2(j:G) 2, (39) .
Voh hg =2 (mpng : G) 2 (for Side B), (46)

j= 40) 1
1= Ivoh|’ ( ha =2(manp : G)"2  (for Side A). 47)

Y is a diagonal scaling matrix constructed from the reference

values of the components of U, and Z = Af’% or Z =
RA(UM). In the computations reported here, we use 8 = 1
and Z = Afl%.

C Compressible-flow ST-SI method
C.1 ST-Sl base version

First we define a new function and introduce a notation based
on that:

FU) =n;F;(U) —n;v; U, 41
F'=Fuh, (42)

where v is the mesh velocity and v; is its ith component. In
the ST-SI method associated with the formulation given by
Eq. (27), there will be added boundary terms corresponding
to the SI. We will use the labels “Side A” and “Side B” to
represents the two sides of the SI. The boundary terms for the
two sides will first be added separately, using test functions
Wf,; and W’é. Then, putting together the terms added for each
side, the complete set of terms added will be obtained. We
give the boundary terms for only Side B:

— WA . Fhdp
(Pn)SI

h
+ Wi
(Pn)st

1
=) Wheg (b)), ((m8),+ (EA),) 0P
(Pn)SI g ! !
Wy 1/, r\" n\!
- 3 Ki), + (KA)
yACI,/(pn)SI dx; 2 (nB>i (( B ij+ Alij

(up-uh)ap
Ch
+ Wi = (U - UL)dp, 43)
(Pu)st h

. % (J:g Y F o (U’;3 - U’;\)) dpP

where

h ho (h h h
o’ = max (‘nB' (uB -V )‘ + ¢g,

b (yh h h
nA~(uA—V )‘—l—cA )

(44)
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Here, (P,)g; is the SI in the ST domain, c is the acoustic
speed, and C" is a tensor that will be defined later. Side A
counterpart of Eq. (43) can be written by just interchanging
subscripts A and B. For the definition of G, see Appendix D.

Remark 3 The first and second integrations set the Euler flux
at the boundary to the Lax—Friedrichs flux.

Remark 4 The third integration contains the average viscous
terms.

Remark 5 The fourth integration, with yaci = 1, is the
adjoint consistency term introduced in the symmetric-
interior-penalty discontinuous Galerkin method [117]. The
other choice is yacr = —1, resulting in a method that is
adjoint inconsistent, which is known as the nonsymmetric-
interior-penalty discontinuous Galerkin method [118].

Remark 6 The fifth integration is a penalty-like term. Several
forms of the tensor C" have been proposed and we use the
one from [119]:

c'= 5 (), (4), ((x8), + (<0),). @

where C is a nondimensional positive constant, which is 1.0
in the computations reported in this article.

Remark 7 The element length given in Eqs. (45)—(47) was
introduced in [120], partly based on [116], in the context of
incompressible flow.

Putting together the boundary terms added for each side,
the complete set of terms added becomes

/@,1)51 (W{; —~ WZ) : % (f’,g —Fh gt (U',; _ul )) ip
- /<Pn>51 <(ng)i Wi + (”}/l*)l- thx)
(), + (2), ) ar
-, (69 5= 55
. % << ﬁ)Tj + (KZ)T) (U~ U4)ap

+ f( . (wg - W’;\) : %h (U’,; - U’,‘g) dp. (49)

S~—
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C.2 ST-Sl version where the Sl is a fluid-solid where
interface with weakly-imposed flow velocity and
temperature conditions g
h h
The boundary terms added for Side B are given as ((EB) ADI>i = (EB) ; + g ’ (54)
h
(qB)i
- Wh . Fhdp o7
(Pn)st o7
+[ Wi F(Gly)dp (b)) =(xb) +[ o [ (55)
(Pn)st ADI/ ij ij OT
— [ wh(nh) (EL) ap (5¢)
(Pu)st i i B
h
o (), 6, (05~ Glo)ar i
J— . n
o (Po)s ij B i B ij 150 :01}3’8?
ch N B oh
+ W= ( GISO) (50)  Gapr = P82 : (56)
(Pu)st p{a’gé’
h B 1 |ghl?
where PB (CVGB +5 g )
: Chor =€ (rh), (nh), (((%6),,),,)- 7
:ZBh ADI ") \"B i B)api/;j N
P%g%
G?SO = PBS2 ] G Notethat U ; = 2U.
h h J = 3x
PB&3

oh (Cveh + 5 1g"]%)

Cly, = C (n ) (n{;)j ((Kg)i), (52)

and g and gg are given functions.

C.3 ST-Sl version where the Sl is a fluid-solid
interface with weakly-imposed flow velocity and
adiabatic conditions

The boundary terms added for Side B are given as

- Wh . Fidp
(Pn)st

. wh . .F(GADI)d

), (58),),

(Pu)st
i T
— YACI /(P . a;jf ) (”@i (((Kg>ADI>ij>
. (UB GADI) dp

ch
h ~ —ADI
+ We- = h (
(Pn)si

~ Ghpr) 4P, (53)

C.4 ST-Sl version where the Sl is the interface
between a thin porous structure and the
surrounding fluid with weakly-imposed flow
velocity and adiabatic conditions

In general, the adiabatic condition (gp = 0) between the thin
structure and the surrounding fluid implies

—kn-VO|pg=—«kn-VO|,. (58)
As a special case of that, we might have

—«kn-Vl|g =0, (59
—kn-Vo|, =0. (60)

C.4.1 Special case

From Eq. (22) with Eq. (23), we obtain the mass flux as a
function of the two conservation variables:

mp =m (Ug, Ua) . (61)

The boundary terms added for Side B are given as

- Wh . Fhap
(Pn)SI
+ Wi D (Uh, UL ) dp
(Pn)st
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et

— YACI —/(Pn>51 a(,::/g : ((IC\/IS.)]r (Uﬁ))

. (Ug — Gproro <Ug, U}A)) dpP

Cporo (U, U
+ wh . —(h 5 Us) (U{;
(Pn)st
— Gporo (U{;, U’;) )dP. (62)

Here the normal components of the Euler flux vectors are
taken as

D (Ug, Ua)
mp
my (’%ng + V) + ng pB
3 (Fe (U, 1itg) + F, (Ua, ritp)
+ |mg| (g (Up, mp) — g, (Ua, mp))) + ng - Vpp

(63)
where
Fo (U, sitg) = ring (ge (U, rig) + 3) , (64)
P
1 1|7 2
ge (U.sig) = e — = [l + = H@Hv (65)
2 210 p

The normal components of the viscous flux vectors, not
including the heat conduction flux, are taken as

0
EvisU)=| hr(U) |, (66)
hy (U) -v
where
hy U)=d—-—nn)(n-T). (67)

The vectors and tensors involved in the fourth and fifth inte-
grations of Eq. (62) are given as

(Kvis); (U) = (8jx — njnk) ni (Kapdi - (68)
LB
Gporo (U, Up) = | mpng + ppv |, (69)
oBge (U, mB)
Croro (Us, Ua) = C (np); (nB); (KB)aDD);j; - (70)

@ Springer

C.4.2 General case

The boundary terms added for Side B are given as

- Wi, - FLdP
(Pu)st
. Wi D (Uh, UL ) dp
- Wi - (Evis (Uh)
(Pn)st
o (s (05) - ke (Ug))) ar

— YACI /( . aa‘jjg . ((’CVIS)_,T (U%)

v (pg (Kuea)} (Ulé>
—pk Kuen)] (UL))) - (U — Groro (UB. UL) ) aP
" (Po)s1 Wi M (Ug ~ Groro <Ug’ Uii)) aF,
(71)

where the normal component of the heat conduction part of
the viscous flux vectors are taken as

0
Euea (U) = 0 . (72)
-n-q

The vectors and tensors involved in the fourth and fifth inte-
grations of Eq. (71) are given as

OT
OT
Krea); @ = | 07| (73)
. of
9gi
_”iWqJ
PB

Gporo (U, Up) = mgng + PRV )
0B (ge (Ua, n1p) + ﬁ—;} - "—B)

0B
(74)
Croro (U, Up) = C (nB); ((nB); (Kp) apD);;
_— K (U
+ o5t Pn (pB (KHEA) ; (Up)
— pa (Kuga) j (Un))) . (75)

D Element metric tensor

Here provide the element metric tensor in space and in the
ST framework from [120], which was based on [116].
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D.1 Element metric tensor in space D.2 Element metric tensor in the ST framework
Components of the Jacobian matrix Q are written as The ST Jacobian matrix is

0Xx; or ot
0, = 2%, (76) QST — |0 7 (86)

0&; — | 9x

& J 50 Q

where & is the parametric coordinate in jth direction. We first g—é 3—; g
scale it with a matrix D to take into account the polynomial - Vg—é Ql’ (87)

order or other factors such as the dimensions of the element
domain in the parametric space:

Q=0QD L. (77)

With this vector, we define the element length (see [116]) as

hrop =2 (rr 1 G) ™2, (78)
where
G=QTQ . (79)

Remark 8 From this derivation, what we get with D = I has
been used in many methods of calculating the stabilization
parameters (see, for example, [2]). In those methods, a scal-
ing factor taking the polynomial order into account is applied
to the element length, and here we do the scaling in the para-
metric space, for each of the parametric directions.

Sweeping over all the directions represented by r, we obtain
the minimum and maximum element lengths:

vy = 2 min ((rr : G)—%) , (80)

iniax = 2 max ((rr : G)—%) . 81)

They are equivalent to

N = 2 (mrax (rr - G))_§ , (82)
=2 ()Lmax (G))_% s (83)

and

Iaiax = 2 (mrin (rr : G))_7 , (84)
= 2 (hin (G)) 2, (85)

where Amax and Apyip are the maximum and minimum eigen-
values of the argument matrix.

Remark 9 In the implementation, we take measures to keep
the calculated element length between hypn and Avax.

where 6 is the parametric coordinate in time, and the mesh
velocity v is

d
== (88)
or |g
The ST scaling matrix is given as
Dy 07
ST _ | Do
D> = |: 0 D} , (89)
and the scaling becomes
A -1
QST = QST (DST> _ (90)
The ST metric tensor is defined as
~ =T /A —1
GST — (QST) <QST) ) 1)
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