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Abstract The 9-node quadrilateral shell element MITC9i
is developed for the Reissner-Mindlin shell kinematics, the
extended potential energy and Green strain. The following
features of its formulation ensure an improved behavior:
1. The MITC technique is used to avoid locking, and we
propose improved transformations for bending and trans-
verse shear strains, which render that all patch tests are
passed for the regular mesh, i.e. with straight element sides
and middle positions of midside nodes and a central node.
2. To reduce shape distortion effects, the so-called corrected
shape functions of Celia and Gray (Int J Numer Meth Eng
20:1447–1459, 1984) are extended to shells and used instead
of the standard ones. In effect, all patch tests are passed
additionally for shifts of the midside nodes along straight
element sides and for arbitrary shifts of the central node.
3. Several extensions of the corrected shape functions
are proposed to enable computations of non-flat shells.
In particular, a criterion is put forward to determine the
shift parameters associated with the central node for non-
flat elements. Additionally, the method is presented to
construct a parabolic side for a shifted midside node,
which improves accuracy for symmetric curved edges.
Drilling rotations are included by using the drilling Rota-
tion Constraint equation, in a way consistent with the
additive/multiplicative rotation update scheme for large
rotations. We show that the corrected shape functions
reduce the sensitivity of the solution to the regularization
parameter γ of the penalty method for this constraint.
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The MITC9i shell element is subjected to a range of lin-
ear and non-linear tests to show passing the patch tests, the
absence of locking, very good accuracy and insensitivity to
node shifts. It favorably compares to several other tested 9-
node elements.
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1 Introduction

It has been clear since the earliest implementations of a basic
9-node element, that it has several limitations, i.e. it is exces-
sively stiff (locks) and its accuracy is diminished by shape
distortions.

To alleviate the problem of an excessive stiffness, five
types of modifications to the standard formulation of the 9-
node element have been proposed:

1. Uniform Reduced Integration (URI) in [53], with the
2 × 2 instead of the 3 × 3 Gauss integration scheme.
This yields a rank-deficient stiffness matrix and requires
a stabilization, which was developed e.g., in [4,5,31] and
for shells in [50].

2. Selective Reduced Integration (SRI) in [32], with dif-
ferent integration schemes for various parts of the strain
energy. This method yields the correct rank of the stiff-
ness matrix but strain components are computed at
different integration points, which limits the range of
application of the element.

3. Two-level approximations of strains, which are devel-
oped as either the Assumed Strain (AS) method or the
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Mixed Interpolation of Tensorial Components (MITC)
method, see, e.g., two books [11,17]. These were
invented to overcome the above mentioned limitation of
the SRI. (Note that in the 4-node element, this technique
is applied to transverse shear strains and designated the
Assumed Natural Strain (ANS) method.) We will show
in the current paper that the MITC method still has the
potential for improvement.

4. The enhanced element based on the Enhanced Assumed
Strain (EAS) technique, which uses a set of 11 modes for
membrane behavior [7]. They are incorporated using an
identical formula to that used for 4-node elements, see
[39,40,42,51]. We use these modes in our version of the
9-EAS11 shell element.

5. Partly hybrid formulations based on the Hellinger–
Reissner functional, e.g., [34,35]. Hybrid stress, hybrid
strain and enhanced strain 9-node shell elements are
developed and assessed in [36]. We are not aware of
any 9-node shell element based on theHu–Washizu func-
tional, which was a basis of several 4-node shell elements
of very good accuracy and exceptional robustness in non-
linear applications, see e.g. [16,41,45,47,48].

The technique of two-level approximations of strains is
applied either to Cartesian strain components (the AS
method) or to covariant strain components (the MITC
method); in the current paper we focus on the latter
one. The strain components are sampled at the points
where they are of good accuracy, and, next, extrapo-
lated over the element. In effect, all strain components
are available at each of the 3 × 3 Gauss integration
points.

For sampling of the shell strain components (11, 13)
and (22, 23), the 2 × 3 and 3 × 2-point schemes are
used in the literature respectively. Several sets of sampling
points and interpolation functions were proposed for the (12)
strain components, i.e. the in-plane shear strain ε12 and the
twisting strain κ12,

1. The 2 × 3 and the 3 × 2-point schemes in [19,21,
31]. Note that the last paper uses different approximation
functions from the first two.

2. The 2 × 2-point scheme in [8,28]. This scheme uses
exactly the same points for the shear component as the
SRI of [32] (Table 1, p. 580).

In our tests, the 2× 2-point scheme for the (12) strain com-
ponents provided the correct rank of the tangent matrix and
was the most accurate.

Another problem with the 9-node elements is the sen-
sitivity of solutions to shifts of the midside nodes and the
central node from the middle positions, which causes loss
of accuracy for all the element formulations listed above.

Some earlier studies, e.g., [26] suggest that only regular
meshes, i.e. with straight element boundaries and evenly
spaced nodes, give satisfactory results, while the accuracy is
poor for curved boundaries or unevenly spaced nodes. Since
then, however, research has been conducted to reduce this
sensitivity.

The best remedy found so far, are the Corrected Shape
Functions (CSF) of [9] used instead of the standard shape
functions based on isoparametric transformations of [15].
In [9], the CSF are tested for an 8-node (serendipity) ele-
ment for the Laplace equation (heat conduction) and the
4 × 4 integration rule. In [30], we examine several 9-node
2D elements for plane stress elasticity and the 3 × 3 Gauss
integration: QUAD9** [19], MITC9 [2] and ours: 9-AS
[28] and MITC9i [43]. Summarizing the performed tests,
because of the CSF, the midside nodes can be shifted along
straight element sides without rendering errors while for
perpendicular shifts of these nodes errors are smaller andneg-
ative values of the Jacobian determinant are often avoided.
Also the central node can be shifted in an arbitrary direc-
tion without causing errors. All of the tested 2D elements
benefited from using the CSF, hence, in the current paper,
we further develop this technique to make it applicable to
shells.

Objectives and scope of the paper The objective of the cur-
rent paper is to develop an improved 9-node MITC9i shell
element with drilling rotations.

1. The original 9-node MITC9 element has good accuracy
but does not pass the patch test. In [43], we have scruti-
nized its formulation to find the source of this problem.
By an alternative but equivalent formalism, the formu-
lation of the MITC9 element was seen from a different
perspective, and the modified transformations were pro-
posed. As a result of this change, the membrane MITC9i
element passed the patch test for a regular mesh, i.e. with
straight element sides and middle positions of the mid-
side nodes and the central node.
In the current paper this technique is extended to the
bending and transverse shear strains of a shell ele-
mentMITC9i, for which proper transformations between
Cartesian and covariant components are devised. In par-
ticular, we verify whether this change suffices to pass the
patch tests for middle positions of the midside nodes and
the central node.

2. The problem of sensitivity to node shifts is particularly
important for 9-node elements as it affects a parametriza-
tion of the element domain and element accuracy. In the
current paper, we improve the shell element robustness
to node shifts extending the corrected shape functions of
[9]. In [30],we tested severalmembrane 9-node elements
integrated by the 3 × 3 Gauss rule, and these functions
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have proven beneficial to all of them. In the current paper,
we further develop this technique to make it applicable
to shells.
For a 9-node shell element located in 3D space, we
have to extend the method of computing the node shift
parameters due to a presence of the third coordinate.
Additionally, a new criterion is needed to determine the
shift parameters associated with the central node for non-
flat elements. Next, we have to verify whether the shell
element MITC9i using the corrected shape functions
passes patch tests for the midside nodes shifted along
straight element sides and for the central node in an arbi-
trary position.
Additionally,wenoticed that the originalmethod todeter-
minate the shift parameters of [9] yields a non-symmetric
side curve when the midside node is shifted. Therefore,
we propose an alternative method, which does not rely
on the proportion of arc-lengths, but uses a parametric
equation of a parabola to construct a symmetric curve
also when the midside node is shifted. We describe this
method and evaluate its accuracy for an example with
curved and symmetric shell edges.

3. The drilling rotation is incorporated into the formulation
of the 9-node shell element via the drilling Rotation Con-
straint (RC) and the penalty method. We implemented
it consistently with the additive/multiplicative rotation
update scheme for large rotations, which combines a 3-
parameter canonical rotation vector and a quaternion.
Regarding the drilling RC, we analyze its form for equal-
order bi-quadratic interpolations of displacements and
the drilling rotation to check whether it contains a faulty
term, analogous to the ξη-term in 4-node elements, see
[48], and to evaluate how it affects the solution. Besides,
we verify how the corrected shape functions change the
sensitivity of a solution to the regularization parameter γ

of the penalty method, in particular in the case of curved
or distorted elements.

Finally, the 9-node MITC9i shell element with drilling
rotations is tested on a range of linear and non-linear numer-
ical examples, which are performed to check passing the
patch tests, an absence of locking, accuracy, an insensitiv-
ity to node shifts, and correctness of implementation of the
drilling rotation; a selection of these tests is presented in
Sect. 6.

Performance of the MITC9i element is mostly com-
pared to other 9-node elements, some of them with similar
improvements implemented as in the tested element. Besides,
reference results obtained by our 4-node shell elements are
provided; the corresponding ones for triangular elements can
be found e.g., in [10].

2 Shell element characteristic

Reissner–Mindlin shell kinematics The position vector of
an arbitrary point of a shell in the initial configuration is
expressed as

X(ζ ) = X0 + ζ t3, (1)

where X0 is a position of the reference surface and t3 is the
shell director, a unit vector normal to the reference surface.
Besides, ζ ∈ [−h/2,+h/2] is the coordinate in the direction
normal to the reference surface, where h denotes the initial
shell thickness.

In a deformed configuration, the position vector is
expressed by the Reissner–Mindlin kinematical assumption,

x(ζ ) = x0 + ζ Q0t3, (2)

where x0 is a position of the reference surface and Q0 ∈
SO(3) is a rotation tensor.

Green strain for shell The deformation function χ : x =
χ(X) maps the initial (non-deformed) configuration of a
shell onto the current (deformed) one. Let us write the defor-
mation gradient as follows:

F .= ∂x
∂X

= ∂x
∂ξ

J−1, (3)

where ξ
.= {ξ, η, ζ }, ξ, η ∈ [−1,+1], and the Jacobian

matrix J .= ∂X/∂ξ . The right Cauchy–Green deformation
tensor is

C .= FTF = J−T
(

∂x
∂ξ

)T
∂x
∂ξ

J−1, (4)

and the Green strain is

E .= 1

2
(C − C0) , (5)

where C0
.= C|x=X = I. The Green strain can be expressed

as a series of the ζ coordinate,

E(ζ ) ≈ E0 + ζE1 + · · · , (6)

where the higher order terms are neglected. The 0th order
strain E0 includes the membrane components ε and the
transverse shear components γ /2 while the 1st order strain
E1 includes the bending/twisting components κ . We assume
that the transverse shear part of E1 is negligible, i.e. κα3 ≈ 0
(α = 1, 2). Note that the normal strains ε33 and κ33 are
equal to zero because of Eq. (2) and must be either recovered
froman auxiliary condition, such as the plane stress condition
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or the incompressibility condition, or be introduced by the
EAS method. In the current paper, we use the plane stress
condition for this purpose.

Incremental form of rotation Q0 To enable computation of
large rotations of a shell, we use an incremental approach
and an update scheme involving a rotation vector 
ψ and
a quaternion qn , where n is the increment (step) index.
Consistently with this scheme, the rotation Q0 ∈ SO(3) of
Eq. (2) is assumed in the following form

Q0 = 
Q0(
ψ) Qn
0(q

n), (7)

where


Q0(
ψ)
.= I+ sin ‖
ψ‖

‖
ψ‖
˜
ψ + 1 − cos ‖
ψ‖

‖
ψ‖2
˜
ψ2, (8)

which is the Rodrigues’s formula for the canonical
parametrization of a rotation tensor. Besides, ‖
ψ‖ .=√


ψ · 
ψ ≥ 0, ˜
ψ
.= 
ψ × I is the skew-symmetric

tensor and I is the second-rank identity tensor. Within an
increment, we use the Newton method and additively update
the rotation vector after each iteration, 
ψ i+1 = 
ψ i +δψ ,
where δψ is the rotation vector increment for an iteration
and i is the index of iterations. When the Newton method
have converged, 
ψ i+1 is converted to a quaternion for an
increment 
q, and the total quaternion is multiplicatively
updated qn+1 = 
q ◦ qn . This scheme works very well
for statical computations in the range of large rotations.

Rotations in mechanics In mechanics, the rotations can be
treated in two ways: either as independent variables, e.g.
in Cosserat continuum, or as dependent variables, e.g. in
Cauchy continuum; the latter case is of interest in the cur-
rent paper. In the Cosserat shells, see e.g. [12,34] and [35],
the drilling rotation is naturally present but the constitutive
equations are complicated.

For Cauchy continuum and the known deformation gra-
dient F, the rotations can be obtained by the polar
decomposition F = RU = VR, where the rotation
R ∈ SO(3) and U, V is the right and left stretching tensor,
respectively. But this is merely a post-processing which is
not a subject of the current paper; our goal is to include the
rotations into the formulation.

To include rotations as additional variables into 3D equa-
tions, first, we define the extended configuration space

Cext .= {(χ ,Q) : B → R3 × SO(3) | χ ∈ C}, (9)

where C .= {χ : B → R3} is the classical configuration
space, and, next, we impose the Rotation Constraint (RC)

Fig. 1 Drilling rotation for an
increment: the axis of rotation is
defined as the forward-rotated
director

a3
n

skew(QTF) = 0, (10)

to obtain the Cauchy continuum, see [37]. Here Q ∈ SO(3)
is the rotation, which at a solution of the extended system
of equations (equilibrium equations plus the RC) is equal to
R yielded by the polar decomposition of F; this issue is
considered in detail in [44].

For shells, we can use an analogous approach to that for
the 3DCauchy continuum, butwith the following alterations:
(a) the rotation tensor is constant in ζ , i.e. Q ≈ Q0, where
Q0 is defined in Eq. (7), and (b) only the drilling component
of 
ψ is considered because the tangent ones are introduced
by the term Q0t3 in Eq. (2).

Drilling rotation constraint The drilling rotation for an
increment is defined as an elementary rotation about the
forward-rotated director an

3 , i.e. 
ω
.= 
ψ · an

3 , where
an
3 = Qn

0t3, see Fig. 1. Note that Q0t3 = 
Q0an
3 in

Eq. (2), so the tangent components of 
ψ in the {an
k }

basis are present in shell equations while the normal one, i.e.
the drilling rotation, must be included in a different way.

Let us define thedrilling Rotation Constraint (drillingRC)
as the (1,2) component of the RC of Eq. (10) in the local
basis {tk} (k = 1, 2, 3),

c
.= t1 ·

[
skew(QT

0 F) t2
]

= 0. (11)

It can be written in the incremental form consistent with the
form of Q0 of Eq. (7) and the multiplicative decompositions
F = 
FFn ,

c
.= 1

2

[
an
1 · (
Atn2

)− tn1 ·
(

AT an

2

)]
= 0, (12)

where 
A .= 
QT
0 
F, the convected vectors are tnα

.= Fntα
and the forward-rotated vectors are an

α
.= Qn

0tα (α = 1, 2);
a derivation of the above formula is given in Sect. 5. To
obtain the shell equationswith drilling rotations,we construct
an extended potential energy functional including the above
scalar equation.

Physical interpretation of drilling rotation For simplicity,
consider the planar (2D) deformation, so only the drilling
rotation ω matters in the definition of Q0 while the tangent
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rotation components are equal to zero. To obtain an interpre-
tation of ω, we consider a pair of orthogonal unit vectors t1
and t2, associated with the initial configuration, which are
rotated and stretched by F, so we can write

Ft1 = λ1Q(β1) t1, Ft2 = λ2Q(β2) t2, (13)

where λ1, λ2 > 0 are stretches and β1, β2 are rotation
angles.Using these formulas in the drillingRC in the standard
(non-incremental) form (see the derivation in Eq. (59)),

c
.= 1

2
[(Ft2) · a1 − (Ft1) · a2] = 0, (14)

we obtain

ω ≈ 1

2
(β1 + β2) + kπ, k = 0, . . . , K , (15)

for cosω �= 0, λ1c1 + λ2c2 �= 0 and λα ≈ 1, where
c1

.= cosβ1 and c2
.= cosβ2. Hence, the drilling angle ω

is an average of rotations of vectors t1 and t2; for details
see [46] “Appendix”.

Extended potential energy functional for shells with drilling
rotation To obtain the shell equationswith drilling rotations,
we define the extended shell potential energy,

F sh
P E

.= Wsh(E) − F sh
ext + F sh

drill . (16)

This functional includes the shell strain energy,

Wsh(E)
.=
∫

A

∫ + h
2

− h
2

W(E) μ dζ d A, (17)

the work of external forces F sh
ext , and an additional term for

the drilling RC, F sh
drill . Besides μ

.= detZ, where Z is
the shifter tensor, and A is the shell reference surface. We
discuss below the first and third term.
(A) The strain energy Wsh(E) = Wsh(E0,E1) by using the
shell form ofGreen strain E(ζ ) ≈ E0+ζE1, see Eq. (6). For
instance, for a linear material and symmetry of its properties
w.r.t. the reference surface, upon integration over thickness,
we obtain the well-known: Wsh(E0,E1) = h W(E0) +
(h3/12) W(E1).
(B) The drilling rotation term F sh

drill is assumed in the
penalty form,

F sh
drill

.= γ h

2

∫
A

c2 d A, (18)

where c is defined by Eq. (11) and γ ∈ (0,∞) is the
regularization parameter. The upper bound on γ equal to
the shear modulus G was found for an isotropic elastic

material in [20], but a reduced value can be beneficial for
non-planar shell elements; in the current paper we test also
γ = G/1000. Note the thickness h in this formula.

Another question is how to select γ for non-isotropic
and/or inelastic materials for which theoretical results are not
available. For an orthotropic elastic material the shear modu-
lus for the in-plane shear G12 should be used instead of G.
For multilayer shells composed of orthotropic elastic layers
of different orientation, the effective material is anisotropic.
We treat this problem approximately, expressing G12 of a
substitute orthotropic material in terms of the effective in-
plane stiffness matrix D0. The elasto-plastic tangent matrix
Cep can be used similarly.

Remark on PL method We have also tested the Perturbed
Lagrange (PL) form of the drilling rotation term,

F sh
drill

.= h
∫

A

[
T ∗c − 1

2γ
(T ∗)2

]
d A, (19)

where T ∗ is the Lagrange multiplier. The second term under
the integral provides a regularization in T ∗, and a small per-
turbation of the tangent matrix which is needed when it is
singular, i.e. for the drilling rotation ω = 0. Note that for 9-
node elements, we have to use 9 parameters for T ∗ to avoid
singularity of the tangent matrix. They can be either values
at nodes or coefficients of interpolation functions, and can
be eliminated (condensed out) on the element level. For 4-
node mixed/enhanced shell elements, the PL form implies a
reduced sensitivity to distortions and a larger radius of con-
vergence in non-linear problems, see [48,49]. For 9-node
elements, the PL form also works well but is slightly less
beneficial, hence the penalty form of Eq. (18), for which the
element is faster, is tested in Sect. 6.

Taking a variation of the governing functional of Eq. (16)
and performing a consistent linearization of it, we obtain the
tangent stiffness matrix K for the Newton method; this
procedure is standard and, therefore, not described here. The
standard procedure is also used to compute the stress and
couple resultants.

Basic definitions for 9-node shell element We consider a 9-
node isoparametric element with the nodes numbered and
named as in Fig. 2, where 1, 2, 3, 4 are the corner nodes,
5, 6, 7, 8 are the midside nodes, and 9 is the central node.
For a shell element, we use a Cartesian basis associated with
it as a reference basis.

Consider the following vectors associated with the refer-
ence surface of a shell: the initial position X, the current
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1 2

6

7

8 9

5

34

1,2,3,4 - corner nodes
5,6,7,8 - midside nodes
9 - central node

Fig. 2 Numbering and naming of nodes of 9-node element

position x, the displacement u and the rotation vector 
ψ .
The above vectors are interpolated as follows:

X(ξ, η) =
9∑

I=1

NI (ξ, η) XI , x(ξ, η) =
9∑

I=1

NI (ξ, η) xI ,

u(ξ, η) =
9∑

I=1

NI (ξ, η) uI , 
ψ(ξ, η) =
9∑

I=1

NI (ξ, η) 
ψ I ,

(20)

where the natural coordinates ξ, η ∈ [−1,+1] and I is the
node number. Note that the rotation vectors 
ψ I are used
in a step, and converted to quaternions at the end of the step.
The shape functions NI (ξ, η) are presented in Sect. 4.

The tangent vectors of the natural basis on the reference
surface are defined as

g1(ξ, η)
.= ∂X(ξ, η)

∂ξ
, g2(ξ, η)

.= ∂X(ξ, η)

∂η
. (21)

The vectors gk of the co-basis {g1, g2} are defined in the
standard way by gα · gβ = δα

β , α, β = 1, 2. In general,

g1 and g2 as well as g1 and g2 are neither unit nor
mutually orthogonal. The director t3 is defined as a unit
vector perpendicular to vectors g1 and g2,

t3
.= g1 × g2

‖g1 × g2‖ . (22)

Tangent vectors of the Cartesian basis {ik} can be defined
as

i1 = 1√
2
(ĩ1 − ĩ2), i2 = 1√

2
(ĩ1 + ĩ2), (23)

where the auxiliary vectors are

ĩ1 = g̃1 + g̃2
‖g̃1 + g̃2‖ , ĩ2 = t3 × ĩ1. (24)

The normalized natural vectors are denoted by a tilde, i.e.
g̃k = gk/‖gk‖. Note that i1 and i2 are equally distant from
g1 and g2, see Fig. 2 in [48]. The above vectors for the
element center are designated by the letter “c”.

3 MITCi method for bending/twisting and
transverse shear strains

Standard and improved 2D MITC9 element A lot of research
has been devoted to various aspects of the Mixed Inter-
polation of Tensorial Components (MITC) method; for a
comprehensive review see [11], [8]. Here we focus on the
transformations used in this method.

The MITC9 is a 9-node element formulated using the
MITC method and fully integrated (3 × 3 Gauss rule). This
element uses the covariant components of the Green strain,
which e.g. for 2D are as follows

2εξξ
.= x,ξ · x,ξ − g1 · g1, 2εηη

.= x,η · x,η − g2 · g2,
2εξη

.= x,ξ · x,η − g1 · g2. (25)

For X and x interpolated as in Eq. (20) and gα of Eq. (21),
the above components can be directly computed. Then, in the
MITC method, these strains are sampled at selected points,
interpolated, and transformed to the local Cartesian basis at
each Gauss point.

Generally, the MITC9 element performs quite well but it
does not pass the patch test even for a regular mesh shown in
Fig. 7, i.e. with straight elements’ sides andmiddle positions
of the midside nodes and the central node. This motivated
our work on the formulation of this element in [43] and [30],
and below we shortly describe the improvement which we
proposed.

First, we note that the matrix εξ of covariant components
of Eq. (25) can be obtained from the Cartesian components
εre f by the transformation

εξ = jT εre f j, (26)

where j .= [Jαβ ] (α, β = 1, 2) is a 2 × 2 sub-matrix
of J defined below Eq. (3). We noticed that j varies
over the element, and, in consequence, the covariant εξ is
associated with a different co-basis at each sampling point.
We put forward the hypothesis that this was the cause of
failing the patch test by the classical MITC9 element, and
proposed an improvement described below.

Because the Jacobian j varies over the element, it can be
decomposed j .= jc
j, where 
j designates the relative
Jacobianbetween the element center and aGauss point. Then,

εξ = jT εre f j = 
jT (jTc εre f jc)︸ ︷︷ ︸
.= εc

ξ


j. (27)

Hence,we proposed to neglect 
j and use the Jacobian at the
element center jc instead of j. Note that the components εc

ξ

yielded by such a transformation are not exactly the covariant
components of Eq. (25); for clarity, we designate them by
“COVc”.
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a

b

b

a

a

a

a

(a) (b) (c)

Fig. 3 Sampling points: a for ε11, κ11, γ31, b for ε22, κ22, γ32, c for ε12, κ12

Remark The Jacobian at center was used in [40] to improve
the method of incompatible modes for a 4-node element.
However, no such an improvement was proposed for the
MITC method until our paper [43], where the MITC9i ele-
ment was developed. The main difficulty was to notice that
the covariant components of Eq. (25) can be obtained from
the Cartesian ones by Eq. (26), and apply this formula in the
context of sampling/interpolation.

MITCi method for bending/twisting and transverse shear
strains For the membrane strains ε of the shell element
MITC9i, we apply the transformations which we developed
in [43]. In the present paper, we propose and test analo-
gous transformations for the bending/twisting strains κ and
the transverse shear strains γ . Note that the transformation
formulas between Cartesian and covariant components are
different for the in-plane strains, i.e. ε and κ , and for the
transverse shear strain γ , see “Appendix”.

Steps defining the improved shell element MITC9i are
as follows:

1. The representations in the reference Cartesian basis are
transformed to the co-basis at the element center, to
obtain the COVc components,

κξ = jTc κre f jc, γ ξ = jTc γ re f , (28)

2. The two-level approximations of the COVc components
are performed,

κξ
MITC−→ κ̃ξ , γ ξ

MITC−→ γ̃ ξ . (29)

This involves sampling and interpolation, which are
described in detail in the next paragraph. Results are des-
ignated by the tilde “̃ ′′.

3. The approximated COVc components in the co-basis at
the element center are transformedback from the co-basis
at the element center to the reference Cartesian basis,

κ̃re f = j−T
c κ̃ξ j−1

c , γ̃ re f = j−T
c γ̃ ξ . (30)

The transformations of the first and third steps are reciprocal
and without the second step we would simply obtain κ̃re f =
κre f and γ̃ re f = γ re f .

Sampling points and interpolation functions The two-level
approximations are applied to the COVc components of shell
strains, as symbolically given by Eq. (29). The COVc strain
components are sampled at points shown in Fig. 3, where
a = √

1/3 and b = √
3/5. Let us group the sampled shell

strain components,

Eξξ ∈ {ε11, κ11, γ31}, Eηη ∈ {ε22, κ22, γ32},
Eξη ∈ {ε12, κ12}. (31)

Then the particular strain groups are interpolated, using the
sampled values, as follows:

Ẽξξ (ξ, η) =
∑

l

Rl(ξ, η) (Eξξ )l ,

Ẽηη(ξ, η) =
∑

l

Rl(ξ, η) (Eηη)l ,

Ẽξη(ξ, η) =
∑

l

Rl(ξ, η) (Eξη)l , (32)

where Rl are the interpolation functions defined below, and
l is the index of sampling points: l = A, B, C, D, E, F for
the 6-point schemes and l = A, B, C, D for the 4-point
scheme. The sets of interpolation functions are defined as
follows:
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1. for ε11, κ11, γ31, the points of Fig. 3a are used (2 points
in the ξ direction),

RA(ξ, η) = 1
4 (1 − ξ

a )
[
(
η
b )2 − η

b

]
, RB(ξ, η) = 1

4 (1 + ξ
a )
[
(
η
b )2 − η

b

]
,

RC (ξ, η) = 1
4 (1 + ξ

a )
[
(
η
b )2 + η

b

]
, RD(ξ, η) = 1

4 (1 − ξ
a )
[
(
η
b )2 + η

b

]
,

RE (ξ, η) = 1
2 (1 + ξ

a )
[
1 − (

η
b )2
]
, RF (ξ, η) = 1

2 (1 − ξ
a )
[
1 − (

η
b )2
]
.

(33)

2. for ε22, κ22, γ32, the points of Fig. 3b are used (2 points
in the η direction),

RA(ξ, η) = 1
4 (1 − η

a )
[
(
ξ
b )2 − ξ

b

]
, RB(ξ, η) = 1

4 (1 + η
a )
[
(
ξ
b )2 − ξ

b

]
,

RC (ξ, η) = 1
4 (1 + η

a )
[
(
ξ
b )2 + ξ

b

]
, RD(ξ, η) = 1

4 (1 − η
a )
[
(
ξ
b )2 + ξ

b

]
,

RE (ξ, η) = 1
2 (1 + η

a )
[
1 − (

ξ
b )2
]
, RF (ξ, η) = 1

2 (1 − η
a )
[
1 − (

ξ
b )2
]
.

(34)

3. For ε12, κ12, the points of Fig. 3c are used (2 points in ξ

and η directions),

RA(ξ, η) = 1
4 (1 − ξ

a )(1 − η
a ), RB(ξ, η) = 1

4 (1 + ξ
a )(1 − η

a ),

RC (ξ, η) = 1
4 (1 + ξ

a )(1 + η
a ), RD(ξ, η) = 1

4 (1 − ξ
a )(1 + η

a ).
(35)

Remark The sampling points of Fig. 3 correspond to the inte-
gration points proposed for the SelectiveReduced Integration
(SRI) of strain energy terms in [32]. Several attempts were
made to apply the 6-point schemes of Fig. 3a and b to ε12 and
κ12 but without a significant improvement, see [19,21,31].

Improved sampling strategy Note that the schemes of Fig. 3a
and b involve 6 sampling points each, which implies a con-

siderable number of evaluations. To reduce it, we use the
so-called sampling lines instead of points, which yields a
more efficient implementation. This method is not fully
equivalent to the 6-point scheme due to the transformations
of Eqs. (28) and (30) but works very well.

To explain the method, we consider only one strain com-
ponent Ec

ξξ , for which sampling points and integration
points are shown in Fig. 4a. Let us, for a moment, neglect

Fig. 4 Sampling points and
lines for Eξξ . a 2 × 3 points, b 2
sampling lines

a aa a

b b

b b

- sampling points
- Gauss points

X XX XX X

X X

X

X XX X

X XX XX X

L1,L2 - sampling lines

L1 L2

(a) (b)
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the effect of transformations of Eqs. (28) and (30). Then
we see that both these types of points are located at the
same η ∈ {−b, 0,+b}, where b = √

3/5. Hence, the
3×3 integration does evaluate Ec

ξξ at correct η-coordinates,
and, therefore, no separate sampling and interpolation in the
η-direction is needed. In consequence, we sample and inter-
polate Ec

ξξ only in the ξ -direction,

Ẽξξ (ξ, η) = RL1(ξ) Ec
ξξ (−a, η) + RL2(ξ) Ec

ξξ (+a, η),

(36)

where

RL1(ξ) = 1

2

(
1 − ξ

a

)
, RL2(ξ) = 1

2

(
1 + ξ

a

)
,

a = √
1/3. (37)

This formula involves two sampling lines shown in Fig. 4b,
where L1 is located at ξ = −a and L2 at ξ = a. Besides,
note that the interpolation functions RL1 and RL2 ofEq. (37)
replace sixmuchmore complicated functions Rl of Eq. (33).
The sampling lines are transformed back by Eq. (30).

4 Corrected shape functions for shell element

In this section, we present several modifications to the
method of calculation the shift parameters for the corrected
shape functions, which: (a) are necessary for 9-node shell
elements located in 3D space, and (b) improve accuracy of
a solution for non-flat shell elements and (c) enable to con-
struct a symmetric side curve for a shifted midside node. The
last modification is also applicable to 2D problems.

The standard isoparametric shape functions are obtained
by the assumption that themidside nodes (5,6,7,8) are located
at the middle positions between the respective corner nodes
and the central node 9 is located at the element center. When
these nodes are shifted from the middle positions then the
physical space parameterized by the standard shape functions
is distorted, see e.g. Figs. 13a and 20 in [30].

To alleviate this problem, the corrected shape functions
(CSF) were proposed in [9], with six additional parameters
introduced in the local coordinates space, α, β, γ, ε, θ, κ ∈
[−1,+1], see Fig. 5. The distance of these nodes from the
middle positions in the local coordinates space is computed
as proportional to their distance in the physical space. To
determine these 6 parameters, nonlinear equations must be
solved: 4 equations with 1 unknown each and 2 equations
with 2 unknowns. This is done only once, so the time over-
head is insignificant.

The corrected shape functions for the 9-node element are
defined in two steps. First, the shape functions of the 8-node
(serendipity) element are defined,

1 2

6

7

8 9

5

34

Fig. 5 Shift parameters of 9-node element

N̄1
.= 1

4 (1 − ξ)(1 − η)
(1+α)(1+ε)−(1+α)(1+η)−(1+ε)(1+ξ)

(1+α)(1+ε)
,

N̄2
.= 1

4 (1 + ξ)(1 − η)
(1−α)(1+β)−(1−α)(1+η)−(1+β)(1−ξ)

(1−α)(1+β)
,

N̄3
.= 1

4 (1 + ξ)(1 + η)
(1−γ )(1−β)−(1−γ )(1−η)−(1−β)(1−ξ)

(1−γ )(1−β)
,

N̄4
.= 1

4 (1 − ξ)(1 + η)
(1+γ )(1−ε)−(1+γ )(1−η)−(1−ε)(1+ξ)

(1+γ )(1−ε)
,

N̄5
.= (ξ2−1)(1−η)

2(α2−1)
, N̄6

.= (1+ξ)(η2−1)
2(β2−1)

,

N̄7
.= (ξ2−1)(1+η)

2(γ 2−1)
, N̄8

.= (1−ξ)(η2−1)
2(ε2−1)

,

(38)

and they account for shifts of themidside nodes from themid-
dle positions. Next, the basis function for the central node 9
is added hierarchically to the shape functions for the 8-node
element. The obtained shape functions for the 9-node ele-
ment are

Ni (ξ, η)= N̄i (ξ, η) − N̄i (θ, κ) N9(ξ, η), i =1, . . . , 8,

N9
.= (ξ2−1)(η2−1)

(θ2−1)(κ2−1)
,

(39)

where N̄i (θ, κ)
.= N̄i (ξ = θ, η = κ), see [9], Eq. (20).

These functions account for shifts of the midside nodes from
the middle positions and the central node from the central
position.When the shift parameters are equal to zero, then the
CSF of Eq. (39) are reduced to the standard shape functions.

4.1 Computation of shift parameters in 3D for midside
nodes

For the midside nodes (5,6,7,8), the procedure to determine
the shift parameters α, β, γ, ε can be extended from 2D to
3D space as follows. For instance, let us determine the shift
parameter α of node 5 in local coordinates. Consider the
parametric form of the side 1-5-2, which, in general, can be
curved. For 2D problems, it is

X (ξ) = N3n(ξ) · [X1, X5, X2] and

Y (ξ) = N3n(ξ) · [Y1, Y5, Y2], (40)
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where the vector of corrected shape functions for a 3-node
element is

N3n(ξ)
.=
[
1

2

(ξ − 1)(ξ − α)

1 + α
,
1−ξ2

1−α2 ,
1

2

(ξ+1)(ξ−α)

1 − α

]
.

(41)

For shells in 3D space, we have to write additionally a similar
expression for the third coordinate,

Z(ξ) = N3n(ξ) · [Z1, Z5, Z2]. (42)

In the method proposed in [9], the shift parameter α is
obtained from the proportion of arc-lengths, i.e. the fractional
distance of node 5 along the curved side relative to nodes 1
and 2 is required to be identical in a physical space and in a
local space,

Lα−1

L+1
−1

=
∫ α

−1 dξ∫ 1
−1 dξ

, (43)

where the arc-length of the side in a physical space from
ξ = −1 to ξ = α is

Lα−1
.=
∫ α

−1

√
(d X/dξ)2 + (dY/dξ)2 + (d Z/dξ)2 dξ. (44)

In the above form, we included the term (d Z/dξ)2, i.e.
the contribution of the third coordinate, which is needed
for shells. The definition of L+1

−1 is analogous; we have
to replace α by +1. Besides, for the right-hand-side, we
obtain

∫ α

−1 dξ = 1+ α, and
∫ 1
−1 dξ = 2, and Eq. (43) can

be transformed to a single non-linear equation in α,

F(α)
.=
∫ α

−1

√
aξ2 + bξ + c dξ∫ 1

−1

√
aξ2 + bξ + c dξ

− α + 1

2
= 0, (45)

where a, b, c depend on differences in node positions and
on α. We solve this equation using the Newton method,
and the term added for shells, (d Z/dξ)2, contributes to the
tangent matrix and the residual vector.

An initial value of α, denoted as α0, is obtained by a
proportion and a change of variables as follows:

a
.= L15

L15 + L52
∈ [0, 1], α0

.= 2a − 1 ∈ [−1,+1], (46)

where Li j is the distance between nodes i and j in
3D space, computed as a length of a vector connecting these
points.When the side 1-5-2 is straight then, L15+L52 = L12

and the so-defined α0 is a solution of the nonlinear Eq. (43).
The parameters for the other midside nodes, i.e. β, γ and ε,
are obtained in an analogous way.

4.2 Computation of shift parameters in 3D for central
node

For the central node 9 and the (θ, κ) parameters, the gener-
alization to 3D space is more complicated. For 2D space, we
use an assumption that the Jacobian of transformation from
physical to local coordinates should not be affected by the
central node 9. For shells, we have additionally the third
coordinate Z , and we can consider two methods of treating
it:

M1. Neglect a contribution of the Z -coordinate, and solve
a system of 2 equations identical to that used for 2D
space,

[
X9 −∑8

i=1 N̄i (θ, κ) Xi = 0
Y9 −∑8

i=1 N̄i (θ, κ) Yi = 0

]
. (47)

This method is an option when the elemental reference
basis is used, e.g. the tangent basis attached at node 9,
as then Z describes elevation or warping of an element.

M2. Account for a contribution of the Z -coordinate. We
propose to incorporate it using a definition of the square
error

e
.= rT r, (48)

where

r(θ, κ)
.=
⎡
⎢⎣

X9 −∑8
i=1 N̄i (θ, κ) Xi

Y9 −∑8
i=1 N̄i (θ, κ) Yi

Z9 −∑8
i=1 N̄i (θ, κ) Zi

⎤
⎥⎦ . (49)

The error e is a scalar, and minimization of it w.r.t. θ
and κ yields 2 equations

[
2rT (dr/dθ) = 0
2rT (dr/dκ) = 0

]
. (50)

This method can be applied when either the elemental
or global reference basis is used for an element. For a
flat shell element, M2 yields exactly the same results as
M1, so the proposed generalization is correct indeed.

In both methods, the set of nonlinear equations is solved
for θ and κ using the Newton method. Initial values can be
calculated, e.g., as follows:

θ0
.= 2L89

L89 + L96
− 1, κ0

.= 2L79

L79 + L95
− 1, (51)

where Li j is the distance between nodes i and j in 3D
space. When nodes 8, 9 and 6 lie on one straight line then
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θ = θ0. Similarly, when nodes 5, 9 and 7 lie on one straight
line then κ = κ0. The proposed method M2 is tested in
Sect. 6.4.

4.3 Alternative computation of shift parameters for
curved sides

When the element side is straight, then the shift α = α0,
where α0 is given by Eq. (46). Computations are more
complicated when the side is curved; e.g. in the method of
[9], the proportion of arc-lengths yields a nonlinear Eq. (45)
from which α is calculated. We have noticed two features
of that procedure:

1. when themidside node is shifted from themiddle position
then the so-computed α yields a non-symmetrical side
curve,

2. any particular shape of the side curve is not assumed in
this method so we cannot control it. It is a drawback,
e.g., for domain boundaries, the shape of which we try to
represent as exactly as possible.

We propose an alternative method by which a parabola is
constructed in such a way that a symmetric shape of the side
is obtained even for a shifted midside node. The steps of the
proposed method for the given nodes P1, P2 and P5 are
as follows:

1. Check the position of P5 relative to P1 and P2

d
.= ‖p5 − p1‖ − ‖p5 − p2‖ < tol, (52)

where p1, p2 and p5 are position vectors of P1, P2 and
P5, respectively, and tol is a prescribed tolerance. If
d < tol then P5 is on the axis of symmetry so α = 0 and
this ends the calculations; otherwise we proceed further.

2. Construct vectors of a local Cartesian basis in 3D using
P1, P2 and P5

st = (p2 − p1)/‖(p2 − p1)‖,

v = (p1 − p5) × (p2 − p5), sr = v/‖v‖, (53)

sn = sr × st ,

Note that st and sn belong to the plane defined by P1,
P2 and P5.

3. Calculate coordinates of P1, P2 and P5 in the local
basis {st , sn, sr },

r1 = OT (p1 − p0), r2 = OT (p2 − p0),

r5 = OT (p5 − p0), (54)

where p0 = (p1+p2)/2 and O .= [st | sn | sr ] ∈ SO(3).
The applied transformation involves a shift by p0 and
a rotation by O. Associate the local coordinates x, y
with the vectors st and sn , respectively, so let them have
zero at p0. The local coordinates of nodes are designated:
r1 = [x1, y1], r2 = [x2, y2] and r5 = [x5, y5], where
y1 = y2 = 0.

4. Calculate coefficients of a parabola in the local basis,
assuming that it passes through P1 and P2, and is
symmetrical w.r.t. x = 0. Writing y = ax2 + c for
P1 and P5, we obtain a system of two equations, from
which we can calculate

a = y5 − y1
x25 − x21

, c = y5 − ax25 . (55)

5. The parametric equation of parabola y = ax2 + c is

x = − 2

4a
t, y = 1

4a
t2 + c, (56)

where t is a parameter. The value of t for P1 can be
obtained using the condition x = x1, and the value of t
for P5 using the condition x = x5,

tP1 = − 2ax1, tP5 = − 2ax5. (57)

Then, the shift parameter α ∈ [−1, 1] can be defined as
a ratio

α
.= tP5

|tP1 |
= x5

|x1| . (58)

The newmethod is simpler than that of [9] and its accuracy is
better when the shell edge is curved and symmetric indeed,
see Sect. 6.5. Note that the midside shift parameters, such
as α, affect also the (θ, κ) parameters for the central node,
see Eq. (50). Finally, we note that e.g. a semi-circle can be
implemented in a similar manner, but a parabola is simpler.

Example Consider three points P1(0,0), P2(4,0) and P5(1,2)
shown in Fig. 6, where the side curves are obtained for
the standard shape functions (“standard”) and the corrected
shape functions. For the latter, α is obtained in two ways:
the method of [9] yields α = − 0.264405 and the non-
symmetric curve “CSF,CG”, while the proposed method
yields α = − 0.5 and the symmetric curve “CSF,new”.

5 Treatment of drilling RC

The purpose of using the drilling Rotation Constraint
(drilling RC) is to provide an additional equation for the
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standard

sy
m

m
.

CSF,new
CSF,CG

1 2

5

X

Y

Fig. 6 Shape of curved side for shifted node 5 obtained for the CSF
with coefficients computed either as in [9] (“CSF,CG”) or by the pro-
posed method (“CSF,new”)

drilling rotation 
ω
.= 
ψ · an

3 , which is not present in
the shell kinematical assumption (2) and in strains.

We define the drilling RC as the (1,2) component of the
RC equation of Eq. (10), which is taken with Q ≈ Q0 in
the local basis {tk} (k = 1, 2, 3). Applying the t1 · [( · ) t2]
operation to the l.h.s. of Eq. (10), we obtain the scalar

c
.= t1 ·

[
skew(QT

0 F) t2
]

= 1

2

[
t1 ·

(
QT

0 Ft2
)

− t1 ·
(
FTQ0t2

)]

= 1

2
[(Q0t1) · (Ft2) − (Ft1) · (Q0t2)]

= 1

2
[a1 · (Ft2) − (Ft1) · a2] , (59)

where a1
.= Q0 t1 and a2

.= Q0 t2 are the forward-rotated
tangent vectors t1 and t2.

ThedrillingRCcan also beobtained in the forward-rotated
basis {ak}, where ak

.= Q0 tk , which is associated with the
current (deformed) configuration. Let us denote A .= QT

0 F
and its forward-rotated form A∗ .= Q0AQT

0 = FQT
0 . We

see that

t1 · (skewA t2) = t1 · (QT
0 skewA

∗Q0t2) = a1 · (skewA∗ a2),
(60)

where the last form uses the forward-rotated basis vectors.
When we approach the solution, i.e. Q0 → R, then A .=
QT

0 F → RTF = U and A∗ .= FQT
0 → FRT = V, where

the rotation R ∈ SO(3) and the right and left stretching
tensors, U and V, respectively, are obtained by the polar
decomposition of F.

Incremental form of the drilling RC An incremental form of
the drilling RC can be obtained from the last form of Eq. (59)
using the multiplicative decompositions F = 
FFn and
Q0 = 
Q0Qn

0, where the superscript “n” designates the last

converged configuration. Introducing the convected vectors
tnα

.= Fntα and the forward-rotated vectors an
α

.= Qn
0tα

(α = 1, 2), after straightforward transformations, we obtain

c = 1

2

[
an
1 · (
Atn2

)− tn1 ·
(

AT an

2

)]
, (61)

where 
A .= 
QT
0 
F. This form of c complies with

the additive/multiplicative rotation update scheme, in which,
we use 
Q0 parametrized by 
ψ for the increment, see
Eq. (8). This scheme works correctly for |
ω| < π/2, and,
when combinedwith a quaternion, allows for arbitrarily large
drilling rotations. For the initial configuration, Fn = I and
Qn

0 = I, so we have tnα = tα , an
α = tα , and the above

formula reduces to

c = 1

2
[
a1 · (
Ft2) − (
Ft1) · 
a2] , (62)

where 
aα
.= 
Q0tα , of an apparent similarity to the last

form of Eq. (59).

Discussion of approximation of drilling RC Below we show
that for the equal-order bi-quadratic interpolations of dis-
placements and the drilling rotation, the drilling RC is
incorrectly approximated.

For simplicity, consider a planar bi-unit square element
with drilling rotations and a linearized form of the drilling
RC: 2c

.= 2ω + (u,η − v,ξ ) = 0, where u,η
.= u1,2

and v,ξ
.= u2,1. Let us write the interpolation formulas as

follows:

u =
9∑

i=1

φi Ui , v =
9∑

i=1

φi Vi , ω =
9∑

i=1

φi �i , (63)

where [φi ] .= [
1, ξ, η, ξη, ξ2, η2, ξη2, ξ2η, ξ2η2

]
and

ξ, η ∈ [−1,+1]. Besides, Ui , Vi , �i are coefficients for
displacement components and the drilling rotation depending
on the nodal values uk, vk, ωk (k = 1, . . . , 9). For the
above interpolations, the linearized drilling RC yields

2c
.= (2�1 + U3 − V2) + (2�2 + U4 − 2V5) ξ

+ (2�3 + 2U6 − V4) η + 2 (�4 + U8 − V7) ξη

+ (2�5 + U7) ξ2 + (2�6 − V8) η2 + 2 (�8 − V9)

ξη2 + 2 (�7 − U9) ξ2η + 2�9 ξ2η2. (64)

Note that the last ξ2η2-term contains only the rotational coef-
ficient �9 but no displacement coefficients Ui , Vi , which
is incorrect, because both these types of coefficients should
be linked in each term of the drilling RC. This problem is
caused by equal-order approximations of displacements and
the drilling rotation; a similar one appears for 4-node (bi-
linear) elements, but then the ξη-term is faulty, see [48].
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Let us designate the faulty term as c9
.= �9 ξ2η2. For

a bi-unit square element and the linearized drilling RC, we
can express c9 in terms of nodal drilling rotations ωk (k =
1, . . . , 9) as follows:

c9 =
[
1

4
(ω1 + ω2 + ω3 + ω4)

−1

2
(ω5 + ω6 + ω7 + ω8) + ω9

]
ξ2η2. (65)

Note that for the rigid element rotation ωrr , all nodal
ωk = ωrr and the term in brackets vanishes, so the faulty
term does not cause any problem then. However, in general,∫ 1
−1

∫ 1
−1 c29 dξdη = 4

25�
2
9 �= 0, whichmeans that the penalty

form involving c9 is non-zero and affects the solution.
To establish a magnitude of the effect caused by c9, we:

(1) removed c9 from c, which implied 1 additional zero
eigenvalue of the tangentmatrix, and (2) stabilized thismatrix
by the scaled-down c9. Then, Eq. (18) valid for an arbitrary
element (not only for the bi-unit one), has the followingmod-
ified form

F sh
drill = γ h

2

∫
A

[
(c − c9)

2 + 1

103
c29

]
d A, (66)

where 1/103 is the scaling factor. This form was tested on
the Cook’s membrane example of Sect. 6.3, and the effect
of c9 term was not strong. Hence, in further tests, we use
the form of F sh

drill given by Eq. (18), which is simpler.

6 Numerical tests

In this section, we present numerical tests of the developed
9-node shell elementMITC9i. The element uses themodified
transformations of Sect. 3 and the corrected shape functions
(CSF) in the extended version for shells of Sect. 4, which
enables calculation of shift parameters for non-flat element
geometry and generation of a symmetric side curve for a non-
symmetric position of a midside node. An implementation
of the drilling rotation is described in Sects. 2 and 5. The
element is integrated using the 3 × 3 Gauss rule.

The tested and reference shell elements are listed in
Table 1. All “ours” shell elements are of the Reissner–
Mindlin type and with drilling rotations (6 dofs/node).

The elements were derived using the automatic differenti-
ation program AceGen described in [23,24], and were tested
within the finite element program FEAP developed by R.L.
Taylor [52]. The use of these programs is gratefully acknowl-
edged. Our parallel multithreaded (OMP) version of FEAP
is described in [22].

We tacitly assume that any consistent set of units is used
for the data defined in numerical examples.

Table 1 Tested and reference 9-node shell element

Element Characteristics

Tested

MITC9i Two-level approximations of covariant strains
in co-basis at element center (COVc), CSF

Reference, ours

9 Standard (not modified)

9-AS [28], Assumed Strain, two-level
approximations of strains in Cartesian basis
at element center

9-SRI0 [32] Selective Reduced Integration scheme of
Table 1, CSF

9-SRI [28] Selective Reduced Integration scheme of
Table 2, CSF

9-EAS11 Enhanced Assumed Strain for membrane
strains of [7] Eq. (30), bending strain
unmodified, transverse shear strain treated
as in MITC9i, CSF

Reference, of [29]

MITC9 ADINA [2], 5 dofs/node, two-level
approximations of covariant strains in local
co-basis

S9R5 ABAQUS [1], 5 dofs/node (small strain/finite
rotation, Kirchhoff), 2 × 2
URI+stabilization (1 spurious eigenvalue,
not suppressed)

4-node shells, ours [48]

HW47, HW29 Mixed/enhanced elements based on
Hu–Washizu functional with 47 or 29 p.
Drilling RC by Perturbed Lagrange method

EADG5A Enhanced Assumed Displacement Gradient
element with 5 p drilling RC by Perturbed
Lagrange method

6.1 Eigenvalues of single element

The eigenvalues of a tangentmatrix are computed for a single
unsupported element. First, a single bi-unit square element
with regularly placed mid-side and central nodes is checked.
Then, several other flat and non-flat (h-p, one- and two-
curvature) element shapes with shifted mid-side and central
nodes are examined. This test is performed for the standard
as well as corrected shape functions, which implies different
element shapes. For all these cases, the tested shell element
MITC9i has a correct number of zero eigenvalues (6).

6.2 Patch tests

The patch tests are crucial to demonstrate the benefits of
using the newMITC9i shell element. The five-element patch
of elements proposed in [33] of Fig. 7 and its distorted form
of Fig. 8 are used. The data E = 106, ν = 0.25 and a
thickness h = 0.001.
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Fig. 7 Five-elements patch
test. Regular mesh
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Fig. 8 Five-elements patch test. Shifted nodes (circles not to scale)

The stretching/shearing (membrane) andbending/twisting
patch tests are performed as described in [27]; displacements
and rotations are prescribed at external nodes and the com-
puted values are checked at internal nodes. The transverse
shear test is performed for the load case defined for a 9-node
plate in [18], see “Shearing case” in Fig. 2b therein. The
particular types of constant strains are verified as follows:

1. For the stretching/shearing (membrane) patch test, the
displacement and rotation fields are

ux = 0.001(x + 1
2 y), ψx = 0,

uy = 0.001( 12 x + y), ψy = 0,
uz = 0, ψz - unconstrained.

(67)

This test verifies that εxx = εyy = 0.001 and εxy =
0.0005 while the bending/twisting strains and the trans-
verse shear strains are equal to zero.

The drilling rotation, ψz is unconstrained, andwe should
obtain the solution ψz = 0, where zero results from the
linearized drilling RC, ψz = ω

.= 1
2 (ux,y − uy,x ).

2. For the bending/twisting patch test, the displacement and
rotation fields are

ux = 0, ψx = 0.0005 (x + 2y),
uy = 0, ψy = −0.0005 (2x + y),
uz = 0.0005 (x2 + xy + y2), ψz - unconstrained.

(68)

This test verifies that the bending strains κxx = κyy =
0.001 and the twisting strain κxy = −0.0005 while
the membrane strains and the transverse shear strains are
equal to zero. Note that passing this test is not required
for consistency; it is merely a test of ability to model
constant bending/twisting strains.

3. For transverse shear patch, the uniform transverse force
Pz = 1 is applied at the right boundary, the left boundary
is clamped. Rotations ψx and ψy are set to zero at
all nodes of the mesh to prevent the bending moments
developing. The analytical solution is

uz = 0.025 x, (69)

and at the right boundary uz = 0.006. This test verifies
that the transverse shear strains are: εxz = 0.0125 and
εyz = 0.
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Table 2 Patch tests of MITC9i
shell element

Cases of node shifts log10 eu
Stretch/shear Bend/twist Transverse shear

(A) Zero shifts (regular mesh) −15.7 −15.7 −15.8

(B) Arbitrary shifts of n. 25 −5.4 −5.2 −5.4

(C) Parallel shifts of n. 21-24 −5.4 −5.2 −5.3

(D) Perpendicular shifts of n. 21-24 −3.0 −1.1 −4.4

Logarithm of relative error of Eq. (70)

The standard patch tests are performed using the regular
mesh of Fig. 7, which has straight element sides, the side
nodes are placed at the middle positions and the central node
of each element is located at the intersection of lines con-
necting opposite midside nodes.

We additionally perform the patch tests using the dis-
torted meshes obtained from the regular mesh by shifts of
the selected five nodes indicated in Fig. 8. The shifts are
kept within the radius r = 0.00673145, which is a half of
the minimal distance of nodes in the entire mesh. Pseudo-
random real numbers are generated 100 times in the range
[−r, r ], and the relative error is computed over all nodes,

eu = max
Abs(uana − u)

uana
, (70)

where u is a selected component and the analytical solution
uana is computed using either Eq. (67) or (68) or (69). The
rounded logarithms of these errors are shown in Table 2,
and we see that for the regular mesh (Case A), the errors
are of order 10−16, which means that the MITC9i element
passes all the standard patch tests. For the distorted meshes,
additionally the corrected shape functions are activated, and
the results can be summarized as follows:

1. For the shifted central node 25 (Case B) and for parallel
shifts of nodes 21, 22, 23, 24 (Case C), the errors are
of order 10−5, so the element passes all the patch tests
for these cases. Note that to obtain such a performance
the standard shape functions are not sufficient and the
corrected shape functions are required.

2. For perpendicular shifts of nodes 21, 22, 23 and 24 (Case
D), we observe a drop of accuracy in all three patch tests.

The biggest error occurs for bending/twisting, and this
patch test is not passed.We checked bending and twisting
separately, and they both contribute to the error. (To shed
additional light on this case, we replaced the transverse
shear part of the 9-node element by an assembly of the
transverse shear parts of four 4-node elements, in which
the ANS method of [3] was applied to eliminate locking.
Then the error dropped to log10 eu = −3.1.)

Because the bending/twisting patch test is not necessary
for consistency, the convergence of the FE solution is
possible despite failing this test.

Finally, note that the classical MITC9 element does not pass
these patch tests even for the regular mesh (Case A), so the
MITC9i element provides an improvement.

6.3 Cook’s membrane

In this test, we demonstrate that the use of corrected shape
functions reduces sensitivity of a solution to the value of
regularization parameter γ in the drilling RC term. The
implementation of F sh

drill of Eq. (18) is tested.
The membrane is clamped at one end (all degrees of free-

dom are restrained, including drilling rotations), while at the
other end, the uniformly distributed shear load P = 1 is
applied, see Fig. 9. The data is as follows: E = 1, ν = 1/3
and a thickness h = 1.

Two meshes are used, the skew one of Fig. 9a, and the
irregular one, where the central node 9 and three midside
nodes (5, 7, 8) are shifted by d, see Fig. 9b. We use two
mesh densities: 1 × 1 and 16 × 16 elements.

We test the MITC9i element using: (a) two values of the
regularization parameter: γ = G and γ = G/1000, and
(b) two types of shape functions, standard and corrected.
The results are given in Table 3, and we summarize them as
follows:

1. Solutions for the coarse 1 × 1-element mesh are more
sensitive to the value of γ than those for the dense
16 × 16-element mesh. For both tested types of shape
functions, the reduced value γ = G/1000 improves the
accuracy.

2. For the irregular mesh of Fig. 9b and both mesh densi-
ties, the use of the corrected shape functions is beneficial
and the solution is almost insensitive to the node shifts.
The MITC9i element is more accurate than the other ele-
ments.

We see that for the corrected shape functions, the solution
is less sensitive to the value of regularization parameter γ ,
which is another positive effect of using these functions.
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Fig. 9 Cook’s membrane.
Mesh of single element: a skew,
b irregular for d = 5
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Table 3 Cook’s membrane

Element Regularization parameter γ Skew mesh Irregular mesh
1 × 1 16 × 16 1 × 1 16 × 16

MITC9i, Standard shape f.

2D, no drill RC – 22.265 23.955 19.347 23.961

with drill RC G 22.256 23.946 19.025 23.955

with drill RC G/1000 22.256 23.955 19.346 23.961

MITC9i, Corrected shape f.

2D, no drill RC – 22.265 23.955 22.265 23.960

with drill RC G 22.256 23.946 22.256 23.955

with drill RC G/1000 22.265 23.955 22.265 23.960

9 G/1000 19.644 23.949 12.736 23.949

9-AS G/1000 21.799 23.953 19.462 23.958

MITC9 – 22.209 23.955 16.570 23.958

S9R5 – 26.540 23.96 19.46 –

4-node elements

4n HW14-S [47] G 21.353 23.940 – –

Ref. [14] 23.810

Vertical displacement at node A

6.4 Shift parameters for parabolic cylindrical element

In this test, we evaluate the method M2 of calculation the
shift parameters θ and κ of the corrected shape functions
for shells, which was proposed in Sect. 4.

The parabolic cylindrical element shown in Fig. 10a is
obtained from a bi-unit square X, Y ∈ [−1,+1] by shifting
nodes 5, 7 and 9 by the vector [dx , 0, dz]. (In the notation
of Sect. 4, Z5 = Z7 = Z9 = dz .) The remaining nodes are
at Z = 0 and the standard X, Y positions.

For this element, we first calculate the shift parameters
α, β, γ, ε and next θ and κ using methods M1 and M2 of
Sect. 4. For the initial values given by Eq. (51), the Newton

method always converged in less than 5 iterations. The values
of θ obtained for the horizontal shift dx ∈ [0, 0.5] and the
elevation dz ∈ [0, 0.7] are plotted in Fig. 10b, and we see
that:

1. M1 yields always the value θ = dx , which is correct for
flat elements and acceptable for shallow elements, when
0 ≤ dz ≤ 0.1, but is incorrect beyond this range.

2. For M2, the value of θ varies with dz and the bigger
dz the θ differs more from dx , which is correct as the
arc-length changes then. Note that, e.g., for dz = 0.7
and dx = 0.5, the error of M1 relative to M2 is about
17.7%.
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Fig. 10 Parabolic cylinder. a Shift [dx , 0, dz] of nodes 5, 7 and 9 of
square element. b Values of θ for varying elevation dz

Concluding, the method M2 is appropriate for flat, shallow
and non-flat elements, and can be used as a general method
of calculation θ and κ for 9-node shell elements.

6.5 Single curved element

In this test, we evaluate the method of computation of the
shift parameters for curved sides proposed in Sect. 4, which
constructs a symmetrical side curve when the midside node
is shifted from the middle position.

The curved cantilever is clamped at one end and at the
other end is loaded by either “Load 1” causing in-plane bend-
ing by a pair of in-plane forces, or “Load 2” causing twisting
by a pair of transverse forces, see Fig. 11. The material data
and geometry are: E = 1.0 × 105, ν = 0.0, h = 0.025,
inner radius = 0.095, outer radius = 0.105, force P = 0.1, as
in [25]. One 9-node element is used and it’s nodes are shifted
as follows: (1) the midside nodes 6 and 8 by d = n ∗ 0.001
along straight boundaries, (2) the midside nodes 5 and 7 by
φ = n ∗ 1◦ in the circumferential direction along curved
boundaries, and (2) the central node 9 in the radial direction
by d = n ∗ 0.001, see Fig. 11.

PP

P P 1

2 3

4

5
9

7

8

6
x

y

Load 2 Load 1

Fig. 11 Single curved element. Load cases and shifts of nodes

The element shape for n = 3 in shown in Fig. 12, and we
see that the standard shape functions very poorly approximate
the geometry while the corrected ones much better.

The displacements at node 1 obtained for the increasing
distortion parameter n are shown in Figs. 13 and 14. The
curves are designated as follows: “standard” for the stan-
dard shape functions,while for the corrected shape functions:
“CSF,CG” for the method of calculation of the shift param-
eter of [9], and “CSF,new” for the method of calculation of
the shift parameter proposed in Sect. 4.

Next, we can calculate errors of the displacement at node
1 for the distortion parameter n = 4 relative to the displace-
ment for n = 0, see Table 4. We see that the corrected
shape functions are beneficial for both tested elements and
significantly reduce errors. The proposed method of calcula-
tion of the shift parameter “CSF,new” is more accurate than
the original method of [9] “CSF,CG”. It renders that the ele-
ment MITC9i is practically insensitive to nodes’ shifts for
both load cases.

6.6 Curved cantilever

In this test, we assess the effects of elements’ curvature, skew
shape and a varying shell thickness h on the accuracy of a
solution.

The curved cantilever is fixed at one end and loaded by a
moment Mz at the other, see Fig. 15. The data is as follows:
E = 2 × 105, ν = 0, width b = 0.025 and radius of
curvature R = 0.1. The FE mesh consists of 6 nine-node
elements, which have either rectangular or skew shape, see
[25]. The analytical solution for a curved beam is

uy = Mz R2

E I
= 0.024, ψz = π Mz R

2E I
= 0.377, (71)

where I is the moment of inertia.
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Fig. 12 Single curved element.
Parameterizations of domain for
shifted nodes (n = 3) using: a
standard shape functions, b
CSF [9], c) CSF with new shift
parameters
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Fig. 13 Single curved element. Displacement for “Load 1”

The shell thickness is varied in h ∈ [10−2, 10−5], and
the external moment is assumed as Mz = (R/h)−3, so a
solution of the linear problem should remain constant. For
this range of h, we obtain the range of R/h ∈ [10, 104]
and L/h ∈ 2.6 × [1, 104], where L is a circumferential
length of a single rectangular element.

Note that for the rectangular mesh, coefficients of the cor-
rected shape functions are equal to zero while for the skew
mesh non-zero values are obtained; the values for the ’mid-
dle’ elements (θ and κ are obtained by M2 of Sect. 4) are
given in Table 5.

The displacement uy at point A obtained by the linear
analysis are shown inFig. 16. The plots of the rotation ψz are
similar and for this reason not shown here. We can conclude
this test as follows:

1. For the rectangular mesh, the solutions for all elements
are are close to the analytical value, and we provide for
reference the curve designated “MITC9i,rectang”. The
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Fig. 14 Single curved element. Displacement for “Load 2”

only exception is the element ‘9’, which severely locks;
then the curve is similar to the one shown for this element
and the skew mesh.

2. For the skew mesh,

a. all the tested elements, except ‘9’, yield accurate
solution for R/h ≤ 100. Beyond this range, the
accuracy of all elements worsens. The most accu-
rate is S9R5, second is MITC9i but the difference
between it and the next 9-EAS11, 9-AS and 9-SRI is
not big. The solution for MITC9 was obtained only
for log(R/h) = 1, 2, see [29] p. 93.

b. MITC9i behaves slightly better than the elements 9-
AS and 9-SRI of [29]; this can be attributed to the
corrected shape functions implemented in MITC9i.
MITC9i performs also slightly better than 9-EAS11
when both use the corrected shape functions.
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Table 4 Single curved element
Shape functions Load 1 Load 2

MITC9i 9-AS MITC9i 9-AS

CSF,new 0.04 0.04 0.06 4.4

CSF,CG 8.3 12.5 4.8 15.0

Standard 98.4 93.8 251.0 275.0

Errors of displacement at node 1 (in %)

Fig. 15 Curved cantilever.
Rectangular and skew mesh
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Table 5 Coefficients of
corrected shape functions for
skew mesh (×104)

Parameter α β γ ε θ κ

Value 0.35484 0.0 −0.24975 0.10912 0.15873 0.05455
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Fig. 16 Curved cantilever. Displacement uy at point A for skewmesh
and diminishing thickness

6.7 Pinched hemispherical shell with hole

In this test, the shell undergoes an almost in-extensional
deformation and membrane locking can strongly manifest
itself, see [4]. The elements are curved and we test two val-
ues of the regularization parameter γ for the drilling rotation
term.

x y
z

18

P=1
P=1

R=10

free
w=0

Fig. 17 Pinched hemispherical shell with hole

A hemispherical shell with an 18o hole is loaded by two
pairs of equal but opposite external forces, applied in the
plane z = 0, along the 0X and 0Y axes, see Fig. 17. The
data is as follows: E = 6.825× 107, ν = 0.3, R = 10 and
thickness h = 0.04 or h = 0.01. Note that for the smaller
thickness, h/R = 0.001. Because of the double symmetry,
only a quarter of the hemisphere is modeled.

Linear analyses Two values of the regularization parameter
γ for the drilling RC term are tested, γ = G and γ =
G/1000, and the results for the 8 × 8 element mesh are
given in Tables 6 and 7. A displacement at the point where
a force is applied and in a direction of this force is reported.
The conclusions are as follows:
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Table 6 Pinched hemispherical shell with a hole. h = 0.04. Linear
analysis

Element −uy × 102

γ = G γ = G/1000

MITC9i 9.3582 9.3733

9 3.1370 3.1554

9-AS, 9-SRI – 9.3473

9-SRI0 9.3352 9.3503

9-EAS11 9.3505 9.3776

MITC9 8.5687

S9R5 9.3513

4n HW47 64 × 64 9.3714

Ref. [27] 9.4000

Table 7 Pinched hemispherical shell with a hole. h = 0.01. Linear
analysis

Element −uy

γ = G γ = G/1000

MITC9i 5.7834 5.8875

9 0.1677 0.1727

9-SRI0 5.7687 5.8722

9-EAS11 5.6916 5.8899

4n HW47 64 × 64 5.8924

1. For both thicknesses, the reduced value γ = G/1000
yields more accurate results for all tested elements.

2. For h = 0.04 and both tested values of γ , MITC9i
performes similarly to 9-EAS11.

We see that the solution for the basic element 9 is very locked,
and such techniques as EAS, MITC, AS or SRI improve
accuracy about threefold for h = 0.04 and over 30 times for
h = 0.01.

Non-linear analyses The non-linear analyses are performed
using the Newton method and 
P = 0.2. We use the mesh
of 8× 8 elements, unless differently indicated. The solution
curves for the inward displacement under the force are shown
in Fig. 18.

1. The curves MITC9i, 9-SRI0 and 9-EAS11 are obtained
for γ = G/1000. We see that they almost coincide with
the solution for the 4-node element HW47.

2. For MITC9i, we additionally provide the solution for
γ = G (“MITC9i,G”) and it is locked compared to
the one for γ = G/1000. The solution for a 16 × 16-
element mesh (“MITC9i, 16x16”) is softer than that for
the 8 × 8-element mesh.
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Fig. 18 Pinched hemispherical shell. h = 0.01. Inward displacement
at force

Concluding the linear and non-linear analyses, we see that
the accuracy of the MITC9i shell element is very good com-
pared to the 9-SRI0 element and that the reduced value
γ = G/1000 for the drilling rotation term is beneficial in
the case of curved elements.

6.8 Short C-beam

Drilling rotations aremainly introduced to allow for analyses
of intersecting shells and in this example we have two 90-
degree intersections.

A short C-beam is fully clamped at one end and loaded by
a vertical force P at the other, see Fig. 19a. At the clamped
end, displacements and rotations are constrained to zero,
as proposed in [12]. The data is as follows: E = 107,
ν = 0.333, the thickness h = 0.05. The web is modeled
by 18 × 3 elements and each flange by 18 × 1 elements,
so the total number of elements is 90. The vertical dis-
placement uz at the point where the force P is applied
is monitored.

The mesh is regular so coefficients of the corrected shape
functions (CSF) are equal to zero in this example.

The linear solutions for P = 1 and γ = G/1000 are
given in Table 8. The reference value is computed in [13],
using the (2+3+2)×9-element mesh of the 16-node CAM
elements and αt = 0.01. For comparison, we also provide
a solution by 4-node HW47 and (2 + 6 + 2) × 36-element
mesh obtained in [48].

We see that the solutions for MITC9i, 9-AS, 9-SRI and
9-EAS11 are similar and slightly above the reference value.
Besides, MITC9i is insensitive to the value of γ , and yields
almost the same results for γ = G/1000 and γ = G.
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Fig. 19 Short C-beam. a Initial
geometry and load. b Deformed
configuration at force P = 112
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Table 8 Short C-beam. Linear
solution. Vertical displacement

Element −uz × 103

MITC9i 1.1551

9 1.1902

9-AS, 9-SRI 1.1556

9-SRI0 1.1557

9-EAS11 1.1559

MITC9i, G 1.1550

MITC9 1.2839

S9R5 1.1628

4n HW47 1.1537

Ref. [13] 1.1544
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Fig. 20 Short C-beam. Non-linear solutions for 
P = 20

The solution by MITC9 is slightly excessive. Surprisingly,
the solution for a basic element 9 does not show much lock-
ing.

The non-linear solution computed using the arc-length
method with the initial 
P = 20 is shown in Fig. 20. All
elements are tested for γ = G/1000. The curves for 9-AS
and 9-SRI coincide with that for MITC9i and the solution for
MITC9 is quite close to them. The 4-node HW47 element is

B

P

L

L

w

Fig. 21 L-shaped plate. Initial geometry and load

slightly softer than MITC9i. Additionally, MITC9i is tested
for γ = G, and the solution curves for both values of γ

almost coincide.
Note that the reference elements 9 and S9R5 behave erro-

neously; the solution for 9 is too stiff while for S9R5 is too
flexible, compared also to the solutions from, e.g., [6,12].
Note that S9R5 lost convergence at about uz ≈ −2.7.

6.9 L-shaped plate

In this test we compare the convergence properties of
the MITC9i element to the 9-node element 9-EAS11 and
two 4-node elements, including the mixed/enhanced HW29
element of [48]. This example was also analyzed using
quadrilateral and triangular shell elements in [38] and [10].

The L-shaped plate is clamped at one end and the in-plane
force P is applied at the other end, see Fig. 21. The data is
as follows: E = 71,240, ν = 0.31, w = 30, L = 240, and
thickness h = 0.6. The value of the regularization parameter
for the drilling RC term γ = G. A mesh of 17 nine-node
elements (102 nodes) is used.

The solution of this problem has a bifurcation point at
which an out-of-plane deformation occurs. We add a small
out-of-plane load and solve the equilibrium problem using
the arc-length method. The in-plane force P and the out-
of-plane load P3 = P/1000 are applied at point B, at which
the out-of-plane displacement u3 is monitored.

In this test, 10 steps are performed by the arc-length
method for the initial load increment 
P = 0.5 and the
requested number of iterations per step Ireq = 20. The
non-linear solutions are presented in Fig. 22. The reference
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Fig. 22 L-shaped plate. Non-linear solution. Indicated are the last
points for particular elements after 10 steps

curve was obtained in [48] using 64 4-node elements and

P = 0.1.

We see in Fig. 22, that the longest steps were made by the
4-node HW29 element, next by the 9-node MITC9i and 9-
EAS11, and the shortest ones by the 4-node EADG5A. The
total number of Newton iterations used in 10 steps was as
follows:

(a) 4-node elements: HW29 - 67, EADG5A - 90,
(b) 9-node elements: MITC9i - 91, 9-EAS11 - 91.
We see that the 4-node HW29 outperforms the other 4-

and 9-node elements in this test. We recall that a treatment of
the drilling RC was pivotal to improve convergence proper-
ties of this element, see [48]. In this element, we applied the
Perturbed Lagrange method and the 3-parameter Lagrange
multiplier, which yielded one spurious mode, for which we
developed the γ -stabilization. Finally, we note that this anal-
ysis can be continued further without any problem, and, e.g.,
for MITC9i and 20 steps, we end up at the load level of about
130.

7 Final remarks

The improved nine-node shell element MITC9i with drilling
rotations was developed and tested in this paper. The element
is based on the Reissner–Mindlin kinematics, Green strain
and the extended potential energy functional for the plane
stress condition. Its formulation includes several improve-
ments, which we summarize as follows:

1. We propose to formulate the MITC method for the bend-
ing/twisting strains κ and the transverse shear strains
γ using the ‘COVc’ components of Green strain, see

Sect. 3, which is different from in the classical MITC9
element. This modification renders that the patch tests
are passed by the MITC9i element for the regular mesh
of Fig. 7.

2. The corrected shape functions are applied instead of the
standard shape functions, see Sect. 4. They eliminate
distortions of a local coordinate space caused by shifted
nodes, which results in a better interpolation accuracy.
These functions enable the MITC9i element to pass the
patch tests for meshes distorted by parallel shifts of mid-
side nodes and arbitrary shifts of the central node, see
Fig. 8.
The method of computation of the shift parameters of [9]
was generalized from 2D to shells located in 3D space in
Sect. 4. To compute the shift parameters of a central node,
we propose the method based on the minimization of a
square error, Eq. (50), which is suitable for flat, shallow
and non-flat elements, see Sect. 6.4.
Additionally, we propose an alternative method to cal-
culate the shift parameters for midside nodes, Eq. (58),
different from the one of [9]. It does not rely on the pro-
portion of arc-lengths but uses a parametric equation of a
parabola. In effect, a symmetric curved side is generated
even for a shifted midside node, which improves accu-
racy when the shell boundary is curved and symmetric,
see Sect. 6.5.

3. The drilling rotation is incorporated using the drilling part
of the Rotation Constraint equation, Eqs. (10) and (11).
We found that the corrected shape functions reduce sensi-
tivity of solutions to the value of regularization parameter
γ of the penalty method. Besides, we confirmed that
the reduced value γ = G/1000 improves accuracy for
curved or distorted element shapes, see Sects. 6.3 and
6.7.

Finally, the shell element MITC9i with drilling rotations not
only passes the patch tests described above, but its accuracy
is very good in linear tests for coarse distorted meshes. In
non-linear tests, see Sects. 6.7, 6.8 and 6.9 (we have also
run several other tests, not reported in this paper), it is very
robust and its convergence properties are good. Nonetheless,
its radius of convergence is smaller than of our best 4-node
element HW29, see Sect. 6.9. Therefore, further studies are
needed to fully compare its performance to other existing
very good quadrilateral and triangular elements.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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Appendix

Transformations between Cartesian and covariant
components

For shell, we usually assume that the director t3 is perpendic-
ular to the reference surface and define the so-called normal
basis, such that t3 is one of its vectors and two other vectors
are tangent to the reference surface. Various tangent vectors
can be used: Cartesian tα , natural gα and the co-vectors
to the natural ones, gα (α = 1, 2), which implies various
transformation rules for components of vectors and tensors.
Below we derive the transformation rules for the 2nd rank
tensors and their covariant and Cartesian components.

Relation between tangent vectors gα and tα . The natural
basis vectors gα can be decomposed in the Cartesian basis
{tα} as follows:

gα = (gα · t1) t1 + (gα · t2) t2, (72)

in which (gα · tβ) are components of the Jacobian matrix

j .=
[
∂Sα

∂ξβ

]
=
[
g1 · t1 g2 · t1
g1 · t2 g2 · t2

]
. (73)

Hence, we can rewrite Eq. (72) as

[
g1
g2

]
= jT

[
t1
t2

]
and obtain

[
t1
t2

]
= j−T

[
g1
g2

]
.

(74)

The second relation is used below in the form

t1 = J−1
11 g1 + J−1

21 g2, t2 = J−1
12 g1 + J−1

22 g2, (75)

where J−1
αβ designates components of the inverse Jacobian

matrix

j−1 =
[
g1 · t1 g1 · t2
g2 · t1 g2 · t2

]
, (76)

and gα are the co-basis vectors.

Transformation of in-plane and transverse components
Transformation formulas for covariant and Cartesian com-
ponents of the second-rank tensor A can be obtained in the
following way.
In-plane (αβ) components First, we calculate the Cartesian
components AC

αβ = tα · (Atβ) and, next, transform them
usingEq. (75). Finally, we identify the covariant components
Aαβ

.= gα ·(Agβ) of the tensor representation A = Aαβ gα⊗
gβ . The transformations are performed as follows:

AC
11

.= t1 · (A t1) = [J−1
11 g1 + J−1

21 g2] · [J−1
11 (Ag1)

+ J−1
21 (Ag2)]

= (J−1
11 )2 A11 + (J−1

21 )2 A22 + J−1
11 J−1

21 A12

+ J−1
11 J−1

21 A21,

AC
22

.= t2 · (A t2) = [J−1
12 g1 + J−1

22 g2] · [J−1
12 (Ag1)

+ J−1
22 (Ag2)]

= (J−1
12 )2 A11 + (J−1

22 )2 A22 + J−1
12 J−1

22 A12

+ J−1
12 J−1

22 A21,

AC
12

.= t1 · (A t2) = [J−1
11 g1 + J−1

21 g2] · [J−1
12 (Ag1)

+ J−1
22 (Ag2)]

= J−1
11 J−1

12 A11 + J−1
21 J−1

22 A22 + J−1
11 J−1

22 A12

+ J−1
12 J−1

21 A21,

AC
21

.= t2 · (A t1) = [J−1
12 g1 + J−1

22 g2] · [J−1
11 (Ag1)

+ J−1
21 (Ag2)]

= J−1
11 J−1

12 A11 + J−1
21 J−1

22 A22 + J−1
12 J−1

21 A12

+ J−1
11 J−1

22 A21.

We can rewrite the above formulas in the vector-matrix form

AC
v = T∗ Aξv, (77)

where

T∗ .=

⎡
⎢⎢⎣

(J−1
11 )2 (J−1

21 )2 J−1
11 J−1

21 J−1
11 J−1

21
(J−1

12 )2 (J−1
22 )2 J−1

12 J−1
22 J−1

12 J−1
22

J−1
11 J−1

12 J−1
21 J−1

22 J−1
11 J−1

22 J−1
12 J−1

21
J−1
11 J−1

12 J−1
21 J−1

22 J−1
12 J−1

21 J−1
11 J−1

22

⎤
⎥⎥⎦ ,

AC
v

.=

⎡
⎢⎢⎣

AC
11

AC
22

AC
12

AC
21

⎤
⎥⎥⎦ , Aξv

.=

⎡
⎢⎢⎣

A11

A22

A12

A21

⎤
⎥⎥⎦ .

Alternatively, in terms of 2× 2 matrices of components AC

and Aξ , we have

AC = (j−1)T Aξ j−1, (78)

and the covariant components in terms of Cartesian ones,

Aξ = jTAC j. (79)

Transverse (α3 and 3α) components The derivation is analo-
gous to that for the in-plane components. First, we calculate
the Cartesian components AC

α3 = tα · (At3) and, next, trans-
form them using Eq. (75). Finally, we identify the covariant
components Aα3

.= gα · (A g3) of the tensor representa-
tion A = Aα3 gα ⊗ g3. (Note that for the normal basis,
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g3 = g3 = t3.) The transformations are performed as fol-
lows:

AC
13

.= t1 · (A t3) = (J−1
11 g1 + J−1

21 g2) · (A g3)

= J−1
11 A13 + J−1

21 A23,

AC
23

.= t2 · (A t3) = (J−1
12 g1 + J−1

22 g2) · (A g3)

= J−1
12 A13 + J−1

22 A23.

We can rewrite the above formula in the vector-matrix form
[

AC
13

AC
23

]
= j−T

[
A13

A23

]
. (80)

The formulas for AC
3α components are analogous.
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