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Abstract A multiscale approach termed the generalized
grain cluster method (GGCM) is presented, which can be
applied for the prediction of the macroscopic behavior of
an aggregate of single crystal grains composing a multi-
phase material. The GGCM is based on the minimization
of a functional that depends on the microscopic deformation
gradients in the grains through the equilibrium requirements
of the grains as well as kinematic compatibility between
grains. By means of the specification of weighting factors it
is possible to mimic responses falling between the Taylor and
Sachs bounds. The numerical solution is computed with an
incremental-iterative algorithm based on a constrained gra-
dient descent method. For a multiscale analysis, the GCCM
can be included at integration points of a standard finite ele-
ment code to simulate macroscopic problems. A comparison
with FEM direct numerical simulations illustrates that the
computational time of the GGCM may be up to about an
order of magnitude lower.
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1 Introduction

The constitutive behavior of metals and alloys is strongly
influenced by their microstructural characteristics, such as
the size, fraction, orientation and composition of the individ-
ual metallic phases. The need for understanding the evolu-
tion of microstructural characteristics with deformation has
stimulated the development of advanced micromechanical
models that accurately describe the underlying physical phe-
nomena, e.g., recrystallization [3,17], martensitic phase tran-
sitions [20,23,35], phase separation and coarsening by diffu-
sion [5], twinning and detwinning [12,39], dislocation inter-
actions [7,9], and cracking and damage growth [2,4,8,29]. In
order to apply state-of-the-art micromechanical models for
the analysis of large-scale engineering problems, efficient
and generic multiscale methods need to be developed for
keeping the computational times within manageable bounds.

Starting with the landmark contributions of Voigt [38]
and Reuss [22], substantial research effort has been devoted
to efficiently transferring information from small length
scales to the macroscopic scale, leading to a wide spectrum
of analytical and numerical formulations for the effective
mechanical behavior of composites [11,13,14,18,21,24,30,
31,40,41,44]. Although for a broad range of materials these
methods have provided an impetus to the homogenization
of basic constitutive properties (elasticity, (rate-dependent)
plasticity, power law creep), their extension towards the
description of advanced microstructures composed of a diver-
sity of phases with relatively complex constitutive behavior
often is far from straightforward, and poses considerable
mathematical challenges. Furthermore, the description of
sophisticated micromechanical phenomena may introduce
complementary conditions on the static and/or kinematic
hypotheses adopted in classical homogenization approaches,
such as the well-known Taylor assumption that demands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-015-1167-9&domain=pdf


194 Comput Mech (2015) 56:193–219

the deformation in each microstructural phase to be equal
to the applied macroscopic deformation. For example, for
polycrystalline materials this kinematic assumption appears
to be too restrictive for adequately simulating grain size
effects [7] and deformation texture [37]; hence, during the
last decade this has triggered the development of homoge-
nization schemes in which deformation heterogeneity among
grains is explicitly accommodated for by relaxing the Taylor
assumption [6,7,16,34,37]. This relaxation can be formu-
lated in various ways and at different degrees, and essentially
comes down to requiring that the macroscopic deformation
is no longer imposed on each grain individually, but rather
on specific clusters of grains, by equating it to the weighted
average of the grain deformations within a cluster. Accord-
ingly, the distribution of strain remains homogeneous within
each grain, but not within a cluster of grains.

To date, the grain cluster-type formulations presented in
the literature typically consider relatively small clusters of
2–8 hexahedral (rectangular) grains, with the deformation
incompatibilities at the grain boundaries being described
by a set of additional kinematic variables, i.e., the a-priori
unknown relaxations [6,7,34,37]. These local relaxations
are computed by minimizing the total work of the system,
whereby the stationarity condition with respect to the relax-
ations results in the corresponding equations for traction
continuity at the grain boundaries. For providing the relax-
ations with a physical background, the deformation mismatch
at grain boundaries, commonly expressed by the Nye tensor
[10,19], often is constitutively connected to the development
of dislocation networks, see [7,34].

Despite their efficiency in terms of computational time, the
current grain cluster-type formulations are not very suitable
for being extended to clusters composed of a vast number
of grains with realistic (convex and non-convex) shapes,
since the incorporation of numerous relaxations at grain
boundaries of arbitrary orientation makes the mathemati-
cal implementation relatively cumbersome. For this reason,
in the present communication a generalized grain cluster
method (GGCM) is proposed in which these limitations are
removed. In specific, the general character of this formulation
can be defined by means of three distinctive aspects, namely:
(i) the method is able to model grains of arbitrary polyhedral
shape, (ii) the method can handle a relatively large number of
grains in a computationally tractable way, thereby explicitly
accounting for interactions between individual grains, (iii)
the method is formulated within a geometrically nonlinear
framework and is independent of the actual micromechanical
model(s) applied within the grains. The latter aspect allows
for the analysis of an aggregate of dissimilar (multiphase)
grains with different, user-defined constitutive properties.

The basic starting point of the method is to assume that
each grain in a polycrystalline aggregate deforms homoge-
neously, whereby the deformation gradient is allowed to

vary from grain to grain. However, as opposed to other
grain cluster-type models, both traction discontinuities and
deformation incompatibilities along grain boundaries are
minimized simultaneously in the cluster, by means of iter-
atively adjusting the deformation gradients in the individual
grains. This key ingredient is based upon the construction
of a representative objective functional, which brings in the
advantage that the method can be straightforwardly applied
to a large number of grains of arbitrary shape. The use of
separate weighting factors in the objective functional on
the conditions for traction continuity and deformation com-
patibility makes it possible to cover the range of effective
nonlinear responses lying between the Taylor bound (uniform
deformation in the grains) and the Sachs bound (uniform
stress in the grains). Although the method does allow for
describing the incompatibilities at grain boundaries in terms
of any particular localized deformation mechanism, such as
geometrically necessary dislocations or intergranular cracks,
for reasons of simplicity and generality these incompatibili-
ties here are straightforwardly adopted as a consequence of
the kinematic assumptions made in the formulation.

The paper is organized as follows. The generalized grain
cluster method is formulated in Sect. 2 and its numerical
implementation is treated in Sect. 3. The calibration of the
weighting factors and a detailed analysis of the efficiency and
accuracy of the method is demonstrated in Sect. 4 through
a series of simulations on grain clusters of various sizes.
The simulations were performed for a multiphase material
composed of ferritic grains undergoing plastic deformation
and austenitic grains undergoing a combination of plas-
tic deformation and phase transformation. The advanced
microstructural geometries considered in the analyses were
generated by means of a multilevel Voronoi algorithm devel-
oped recently in [43], and represent a steel experiencing
transformation-induced plasticity, i.e., a TRIP steel. The plas-
ticity and transformation phenomena activated under shear
loading were simulated by means of crystallographically-
based models presented in previous works by the authors
[32,33,35,36,42]. One important objective for the develop-
ment of the GGCM is to have a flexible scheme that can be
used in a so-called multiscale adaptive algorithm. Within that
algorithm, microscale simulations may be conducted using
either the GGCM or a fully-resolved finite-element simu-
lation at the level of individual grains, depending on the
required resolution. In view of this, the performance of the
GGCM is compared to (finite element-based) direct numer-
ical simulations for the same microstructure. This illustrates
that the GGCM is able to efficiently account for the evolu-
tion of the stress and history variables, such as plastic slip and
transformation volume fractions. Some concluding remarks
are provided in Sect. 5 on the coupling of the GGCM with
commercial FEM software, and the bifurcation sensitivity of
microstructural responses.
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As a general scheme of notation, vectors are indicated in
lowercase boldface and tensors or matrices are indicated in
uppercase boldface. A centered dot indicates an inner product
between two tensors of the same order. Additional notation
is introduced in the text as required.

2 Formulation of generalized grain cluster method

2.1 Basic assumptions

Consider an aggregate of Ngr grains, with each grain N =
1, . . . , Ngr occupying a region ΩN , as shown schematically
in Fig. 1. The region filled by the cluster of grains is denoted
as Ω , i.e.,

Ω =
Ngr⋃

N=1

ΩN . (1)

This aggregate of grains is assumed to be periodic in space.
Each grain N is taken as a polyhedron, although not nec-
essarily convex. The boundary of each polyhedral grain N
is composed of MN faces, denoted by ΓN ,γ and identi-
fied using the global grain index N and a local face index
γ = 1, . . . , MN . For notational purposes, it is convenient to
introduce a global interface index I given by I = Î (N , γ ).
The common interface ΓI between adjacent grains N and N ′
(corresponding to the local indices γ and γ ′, respectively),
is uniquely identified as I = Î (N , γ ) = Î (N ′, γ ′), as illus-
trated in Fig. 1. Furthermore, observe that parts of grains on
the “external” boundary of Ω appear as disconnected, but
are in fact treated as a single grain due to periodicity. In that
case, the index N refers to the whole grain and the index I
to the whole interface, see Fig. 1. Correspondingly, the total
number of interfaces in the cluster is

Nint = 1

2

Ngr∑

N=1

MN . (2)

The description of a deformation ŷ from a reference config-
uration is written as

y = ŷ(x, t) with x ∈ Ω and y ∈ Ωt , (3)

where Ω and Ωt denote the regions occupied by the grain
cluster in the reference and the current configurations (at
time t), respectively, x is a (material) point in the reference
configuration and y denotes the current location of x at time
t . The deformation gradient F is defined as

F := ∇ŷ , (4)

where ∇ = ∂/∂x designates the gradient with respect to x.
Previous grain cluster-type formulations rely on variables

that describe the deformation of interfaces, see [6,7,34,37].
While this approach is adequate for the description of cubic-
like grains, it becomes cumbersome and requires enforce-
ment of redundant constraints for grains with an arbitrary
polyhedral shape. In order to reduce the number of variables
while preserving the simplicity of the grain cluster method,
it is more efficient to work directly with the deformation
gradient of the grain as the primary variable. This modifica-
tion allows for an extension of the range of applications to a
large number of grains of arbitrarily complex shapes; hence,
the method is termed the generalized grain cluster method
(GGCM). In view of developing the weak formulation of the
GGCM, the deformation field ŷ and a generic test function
ŵ are assumed to be linear inside each grain, i.e.,

y = ŷ(x, t) = FN (t)x + cN (t),

w = ŵ(x, t) = GN (t)x + dN (t),
(5)
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for x in ΩN . At a given time t , the tensor FN and the vec-
tor cN thus are considered as uniform in grain N , with FN

the deformation gradient; note that for an admissible defor-
mation it is required that det (FN ) > 0. The deformation
gradient and the displacement are allowed to vary discon-
tinuously from grain to grain. From this perspective, the
proposed method shares similarities with non-conforming
Galerkin finite element methods, where displacements are
allowed to be discontinuous at element boundaries, see, e.g.,
[1]. The tensor GN and the vector dN characterizing the test
functions in (5)2 are assumed to be constant in the interior
of each grain. Further, at the common interface I between
two adjacent grains N and N ′, these quantities are taken as
a simple average, i.e.,

GI := 1

2
(GN + GN ′) ,

dI := 1

2
(dN + dN ′) ,

(6)

with I = Î (N , γ ) = Î (N ′, γ ′) representing a global inter-
face index, see the inset in Fig. 1. As will be shown below,
the relevance of using (6) is to (approximately) recover con-
tinuity of traction and kinematic compatibility across grain
boundaries.

2.2 Weak formulation and discretization of the balance
of linear momentum

Neglecting body forces, for a quasi-static process the balance
of linear momentum in terms of the first Piola–Kirchhoff
stress tensor P is expressed as

divP = 0, (7)

with div = divx denoting the divergence in the reference
configuration. Multiplying (7) with a suitable test function w
gives

divP · w = div
(
PTw

)
− P · ∇w = 0 , (8)

where (·)T designates the transpose of a tensor.
In the classical formulation of a boundary value prob-

lem the macroscopic boundary conditions are applied on the
external boundary of the domain Ω . However, due to the
periodicity of the present microstructure, all interfaces of the
domain Ω are treated as internal boundaries, for which the
boundary data is not explicitly defined. For this reason, the
macroscopic deformation is imposed pointwise on the inte-
rior of the grain cluster instead, by means of the following
multiscale kinematic constraint:
∫

Ω

(
F − F̄

)
dv = 0, (9)

whereF is the deformation gradient in a microscopic material
point and F̄ reflects the deformation gradient at the macro-
scopic level. Observe that the multiscale kinematic constraint
(9) cannot be transformed to pointwise periodic boundary
conditions, since the displacement field is not continuous
across grains. Taking a variation in (9) with respect to the
deformation gradient, it follows that a (virtual) deformation
gradient δF = ∇w should satisfy that its average over the
domain Ω is zero. Consequently, a suitable test function w
is assumed to fulfill the condition
∫

Ω

∇wdv = 0 . (10)

Integrating (8) over the reference domain Ω , followed by
using the decomposition (1) and incorporating the constraint
(10), gives

Ngr∑

N=1

[∫

ΩN

(
div

(
PTw

)
− P · ∇w

)
dv

+Σ ·
∫

ΩN

∇wdv

]
= 0 , (11)

where Σ is a Lagrange multiplier tensor. Since the assumed
displacement field u presented in (5) may be discontinuous
across grain boundaries, the divergence term in (11) may not
be defined at the internal interfaces. However, it is still pos-
sible to use the divergence theorem for each grain separately,
which leads to

Ngr∑

N=1

⎡

⎣
MN∑

γ=1

∫

ΓN ,γ

(Pn) · wda −
∫

ΩN

P · ∇wdv

+Σ ·
∫

ΩN

∇wdv

⎤

⎦ = 0 , (12)

where n = n(N , γ ) refers to the outward normal unit vector
of face ΓN ,γ . Rewriting (12) using the assumed fields (5)
yields the following expression for the weak form

Ngr∑

N=1

⎡

⎣
MN∑

γ=1

∫

ΓN ,γ

(PNn) · (GIx + dI ) da

−
∫

ΩN

(PN − Σ) · GNdv

⎤

⎦ = 0 , (13)

where PN refers to the first Piola–Kirchhoff stress in grain N
andGI and dI are given by (6) with I = Î (N , γ ). Consistent
with the assumption of a homogeneous grain subjected to a
uniform deformation gradient FN , the stress PN is taken as
uniform within an individual grain N .
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Fig. 2 Common interface of
grains N and N ′

N

N’

I
γ

γ’

n(N,γ)

n’(N’,γ’)

To elaborate further on expression (13), observe that the
first term refers to a summation over all grains N and all
interfaces γ (local index), hence it involves surface integrals
on both sides of each interface I = Î (N , γ ) = Î (N ′, γ ′).
For a specific grain N that shares an interface I with a neigh-
boring grain N ′, the contribution from both grains to the first
term in (13) is, using relation (6),

∫

ΓN ,γ

(PNn(N , γ )) ·
(
G Î (N ,γ )

x + d Î (N ,γ )

)
da

+
∫

ΓN ′,γ ′

(
PN ′n′(N ′, γ ′)

) ·
(
G Î (N ′,γ ′)x + d Î (N ′,γ ′)

)
da

=
∫

ΓN ,γ

1

2
(PNn(N , γ )) · ((GN +GN ′) x+(dN +dN ′)) da

+
∫

ΓN ′,γ ′

1

2

(
PN ′n′(N ′, γ ′)

) · ((GN ′ +GN ) x+(dN ′ +dN )) da

=
∫

ΓN ,γ

1

2

(
PNn(N , γ ) + PN ′n′(N ′, γ ′)

) · (GNx + dN ) da

+
∫

ΓN ′,γ ′

1

2

(
PN ′n′(N ′, γ ′)+PNn(N , γ )

) · (GN ′x+dN ′) da

=
∫

ΓN ,γ

1

2
(PN − PN ′) n(N , γ ) · (GNx + dN ) da

+
∫

ΓN ′,γ ′

1

2
(PN ′ − PN )n′(N ′, γ ′) · (GN ′x + dN ′) da ,

where the last expression follows from the fact that the
outward normal unit vector of face ΓN ′,γ ′ satisfies n′ =
n′(N ′, γ ′) = −n(N , γ ), as shown in Fig. 2.

Consequently, the first term in (13) may be expressed as
follows:

Ngr∑

N=1

MN∑

γ=1

∫

ΓN ,γ

(PNn) · (GIx + dI ) da

=
Ngr∑

N=1

MN∑

γ=1

∫

ΓN ,γ

1

2
(PN − PN ′) n · (GNx + dN ) da,

(14)

where, to simplify the notation, the arguments of n have been
suppressed. A further simplification in (14) may be achieved

by using the fact that the traction vectorPNn in each interface
I is constant, hence

Ngr∑

N=1

MN∑

γ=1

∫

ΓN ,γ

1

2
(PN − PN ′)n · (GNx + dN ) da

=
Ngr∑

N=1

MN∑

γ=1

1

2
AN ,γ (PN − PN ′) n · (

GN rN ,γ + dN
)
,

(15)

where rN ,γ represents the position vector of the centroid of
interface I = Î (N , γ ) and AN ,γ is the corresponding area.
From the assumptions (5) and in view of (15), it follows that
(13) may be written as

Ngr∑

N=1

⎡

⎣
MN∑

γ=1

1

2
AN ,γ (PN − PN ′)n · (

GN rN ,γ + dN
)

−VN (PN − Σ) · GN

⎤

⎦ = 0, (16)

with VN reflecting the volume of the N -th grain.
In the weak formulation (16), which needs to be satisfied

for all test tensors GN and test vectors dN , the unknowns are
the deformation gradient tensors FN with N = 1, . . . , Ngr

and the Lagrange multiplier Σ ; observe that the vectors
cN have no contribution in this formulation. Note that the
first Piola–Kirchhoff stress PN in grain N depends on the
deformation gradient FN through the constitutive law of
grain N , whereas the first Piola–Kirchhoff stress PN ′ in an
adjacent grain N ′ depends in a similar fashion on the defor-
mation gradient FN ′ . Here, it is implicitly assumed that,
with the actual constitutive relation, the stress (or stress rate)
depends objectively on the deformation through an appropri-
ate formulation.

Since the test tensors GN can be specified indepen-
dently of the test vectors dN , the (virtual) deformation
GN rN ,γ + dN of the centroid of an interface γ may be
defined independently of the (virtual) deformation gradient
GN of the grain. Consequently, the formulation (16), together
with the constraint (9), leads to the following system of equa-
tions for each grain and each interface:

AN ,γ (PN − PN ′)n = 0

VN (PN − Σ) = 0

for all N = 1, . . . ,Ngr , γ = 1, . . . , MN

subjected to:

Ngr∑

N=1

VN
(
FN − F̄

) = 0 .

(17)
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In principle this is an over-determined system of equations
since, in view of (2) and (17), there are Nint + Ngr + 1 dis-
tinct tensor-valued equations and only Ngr +1 tensor-valued
unknowns, i.e., the deformations gradients in each grain and
the global Lagrange multiplier. Observe that one solution
of this system of equations corresponds to a uniform state
of stress, with the Lagrange multiplier Σ representing the
actual macroscopic stress value.

As mentioned before, equation (17)3 enforces compatibil-
ity between the volume-averaged microscopic deformation
gradients FN in the grains and the macroscopic deformation
gradient F̄ of the whole cluster of grains. However, in anal-
ogy with a displacement-controlled process in which F̄ is
prescribed, it also acts as the “external loading” for which
the system of equations (17)1,2 must be satisfied. In par-
ticular, note that in the absence of the loading term (17)3,
equations (17)1,2 are trivially satisfied with a stress-free state
Σ = 0. Accordingly, a state of equal stress in the grains, which
reflects the well-known Sachs bound, requires the solution
for the deformation gradients FN that satisfies (17)3. Obvi-
ously, this solution neglects kinematic compatibility across
grain boundaries, which indeed would induce a non-uniform
state of stress in the grain cluster. The incorporation of the
kinematic compatibility equation in the formulation is treated
in the section below.

2.3 Weak formulation and discretization
of the kinematic compatibility equation

As mentioned in Sect. 2.1, the basic kinematic assumption
adopted in the generalized grain cluster method is that the
displacement field is linear within each grain, but generally
may be discontinuous across grain boundaries. This discon-
tinuity can be related to a physical mechanism, such as crack
formation or dislocation activity [7,34], but for simplicity
and generality is considered here as a direct result of the
above kinematic assumptions. Accordingly, the purpose is to
find piecewise linear displacement fields that minimize the
kinematic incompatibilities at grain boundaries. To this end,
the equation of kinematic compatibility, which guarantees
continuity of a displacement field, is explicitly incorporated
in the formulation as a field equation.

Referring to a cartesian basis, the components of a vec-
tor n and a tensor F are, respectively, given by ni and Fi j ,
with i, j = 1, 2, 3. Accordingly, the curl of the tensor field
F = F(x) and the cross product between n and F can be
expressed as

(∇ × F)i j = εimn Fjn,m ,

(n × F)i j = εimnnmFjn .
(18)

Here, implicit summation on repeated indices is assumed,
(·)·,m refers to partial differentiation with respect to xm ,

εi jk = (1/2)(i − j)( j − k)(k − i) represents the alterna-
tor (or permutation) tensor, and ∇ × (·) designates the curl
of a tensor (in the reference configuration). When interpret-
ing F as the microscopic deformation gradient, the kinematic
compatibility equation can be written as

∇ × F = 0 . (19)

Multiplying (19) by a suitable tensor-valued test function G
and using the identity (73) (see appendix) yields

(∇ × F) · G = tr (∇ × (GF)) +
(
∇ × GT

)
· FT = 0 ,

(20)

where tr indicates the trace of a tensor. Integrating (20) over
the domain Ω and using the decomposition (1) gives

Ngr∑

N=1

∫

ΩN

(
tr (∇ × (GF)) +

(
∇ × GT

)
· FT

)
dv = 0.

(21)

Applying the generalized divergence theorem for each grain
separately then leads to

Ngr∑

N=1

⎡

⎣
MN∑

γ=1

tr

(∫

ΓN ,γ

n × (GF) da

)

+
∫

ΩN

(∇ × GT) · FTdv

⎤

⎦ = 0 , (22)

where the linearity of the integration and trace operators was
used to interchange their order.

The tensor-valued test function G is taken as the gradient
of a vector-valued test function w, i.e., G = ∇w. Conse-
quently, ∇ × GT = ∇ × (∇w)T = ∇ (∇ × w). In general,
this term is not zero, but for the choice of piece-wise linear
test functions w introduced in (5), it follows that inside each
grain N the tensor G is constant and therefore meets the rela-
tion ∇ × GT = 0. Correspondingly, the second term in (22)
vanishes. Now, using the assumed fields (5) in (22) and in
view of the identity tr (n × (GF)) = (n × F) · G, the weak
form of the kinematic compatibility equation becomes

Ngr∑

N=1

MN∑

γ=1

∫

ΓN ,γ

(n × FN ) · GIda = 0 , (23)

where GI is given by (6), with I = Î (N , γ ).
The summation in (23) is carried out over all grains N

and all interfaces γ , hence it includes surface integrals on
both sides of each interface I . Correspondingly, using (6),
the weak form (23) may be expressed as
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Ngr∑

N=1

MN∑

γ=1

∫

ΓN ,γ

1

2

(
n × FN + n′ × FN ′

) · GNda

=
Ngr∑

N=1

MN∑

γ=1

∫

ΓN ,γ

1

2
(n×(FN − FN ′)) · GNda=0, (24)

where n′ = −n refers to the outward normal unit vector of
face ΓN ′,γ ′ .

The formulation (24), together with the constraint (9),
leads to the following system of equations

AN ,γ

1

2
n × (FN − FN ′) = 0

for all N = 1, . . . , Ngr, γ = 1, . . . , MN

subjected to:
Ngr∑

N=1

VN
(
FN − F̄

) = 0 .

(25)

Similar to the weak formulation of linear momentum pre-
sented in (17), the weak formulation (25) for the equation of
kinematic compatibility leads to an over-determined system
of equations, i.e., there are Nint + 1 distinct tensor-valued
equations and only Ngr tensor-valued unknowns. Observe
that a trivial solution to this system of equations corresponds
to a uniform state of deformation, FN = F̄ in the grains N ,
reflecting the well-known Taylor bound.

Note that the equilibrium and compatibility equations pre-
sented in Sects. 2.2 and 2.3 have been consistently obtained
using the common assumption (5) for the test functions w.
This is particularly relevant in view of the framework pre-
sented in the section below, which combines both sets of
equations.

2.4 Formulation of the constrained minimization
problem

By assuming grain-wise constant deformation gradients, see
expression (5), the discrete form of the balance of lin-
ear momentum (17) leads to the uniform stress solution
(Sachs bound), whereas the discrete form of the kinematic
compatibility equation (25) provides the state of a uniform
deformation gradient or strain (Taylor bound). The GGCM
consists of finding solutions that simultaneously approximate
these two conditions. A simple combination of the formu-
lations (17) and (25) results in 2Nint + Ngr + 1 distinct
tensor-valued equations. The unknown variables in these
equations are (i) the deformation gradients of the cluster’s
grains, which can be collected in a set F defined as

F := {FN }N=1...,Ngr , (26)

and (ii) the Lagrange multiplier Σ . Correspondingly, there
are Ngr + 1 (tensor-valued) unknowns, resulting in an over-
determined system of equations. This is a consequence of
the simplifying assumption of a grain-wise constant defor-
mation gradient, which does not provide sufficient degrees of
freedom for finding a solution that simultaneously satisfies
the weak forms of (7) and (19). Therefore, a compro-
mise between these requirements needs to be found, which
is accomplished by using a minimization formulation that
approximates (17)1,2 and (25)1 while enforcing the mul-
tiscale condition (17)3 (which is the same as (25)2). For
this purpose, a weighted scalar functional J is defined that
depends on the variables F and Σ as follows:

J (F ,Σ) := α1 J1(F) + α2 J2(F) + α3 J3(F ,Σ) (27)

where αi , with i = 1, 2, 3, are scalar weighting factors and

J1(F) := 1

2β2Aint

Ngr∑

N=1

MN∑

γ=1

AN ,γ ‖(PN − PN ′)n‖2 ,

J2(F) := 1

2Aint

Ngr∑

N=1

MN∑

γ=1

AN ,γ ‖n × (FN − FN ′)‖2 ,

J3(F ,Σ) := 1

2β2V

Ngr∑

N=1

VN ‖(PN − Σ)‖2 . (28)

Here, ‖ · ‖ refers to the norm of the corresponding vector
or tensor, i.e., for a vector a with cartesian components ai ,

‖a‖ =
(∑3

i=1 a
2
i

)1/2
and for a second-order tensor A with

components Ai j , ‖A‖ =
(∑3

i, j=1 A2
i j

)1/2
.

The terms Aint and V denote the total interfacial area and
the total volume of the cluster Ω , respectively, as expressed
by

Aint := 1

2

Ngr∑

N=1

MN∑

γ=1

AN ,γ , V :=
Ngr∑

N=1

VN . (29)

For the numerical implementation of the GGCM it is conve-
nient to warrant that the stress-related terms, i.e., J1 and J3,
and the term directly related to the deformation gradients,
i.e., J2, are of the same order of magnitude. Thus, a scaling
factor β (units of stress) is introduced in (28)1,3 in order to
non-dimensionalize the stress terms J1 and J3 and achieve a
proper scaling. In principle, the same goal may be realized
with the weighting factors αi ; however, for presentation pur-
poses it is convenient to work with nondimensional values
for αi .

The generalized grain cluster method can now be outlined
as follows: For a given macroscopic deformation gradient F̄
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applied to a cluster of N = 1, . . . , Ngr polyhedral grains,
each with volume VN and connected to adjacent grains N ′
through interfaces of area AN ,γ with outward normal unit
vectors n = n(N , γ ), find the collection of deformation gra-
dients F∗ = {

F∗
N

}
N=1...,Ngr

and the Lagrange multiplier Σ∗

such that

J (F∗,Σ∗) = min
F ,Σ

J (F ,Σ) ,

subject to C
(F , F̄

) = 0,
(30)

with J given by (27) and (28) and the tensor-valued multi-
scale constraint C given by

C
(F , F̄

) :=
Ngr∑

N=1

VN

V
FN − F̄ . (31)

The first Piola–Kirchhoff stress tensor PN in (28)1,3 is
assumed to be determined by a (path-dependent) constitutive
model of grain N that depends on the deformation gradient
FN and a set of internal variables characterizing the inelastic
response.

The solution to the constrained minimization problem
summarized by expressions (30) and (31) depends on the
specific choice of the weighting factors αi , i = 1, 2, 3. In
general, a range of solutions may be obtained that is bounded
by the limit cases of a uniform stress and a uniform defor-
mation gradient in the grain cluster. Accordingly, the GGCM
should be equipped with a calibration procedure for deter-
mining the specific combination of weighting factors for
which a close approximation of an accurate reference solu-
tion or an experimental response is found. This procedure
will be discussed in more detail in Sect. 4. The numerical
implementation of the GGCM is discussed in Sect. 3 below.

3 Numerical implementation

If the microscopic material behavior in the grain cluster is
inelastic and thus path-dependent, its effective macroscopic
response can be computed by incrementally loading the clus-
ter from an initial state to the final state of deformation F̄.
Correspondingly, the loading process may be divided into
discrete steps s = 1, . . . , Nsteps, where Nsteps represents the
total number of steps. The initial state (s = 0) typically cor-
responds to an unloaded configuration characterized by the
macroscopic deformation gradient being equal to identity,
F̄s=0 = I. The loading process can be parameterized by a
scalar t s , which may be interpreted as the actual time for rate-
dependent constitutive models, with F̄s = F̄ (t s) reflecting
the macroscopic loading at time t s in a quasi-static process.
Consider a given macroscopic loading increment expressed
by the change in the deformation gradient going from step s
to step s + 1,

(

F̄

)s+1 := F̄s+1 − F̄s . (32)

Denote by {F ,Σ,�} a microscopic state, where � :={
ξ N

}
N=1...,Ngr

represents a collection of internal variables

ξ N of the inelastic constitutive model in grain N . Starting
from the last converged state {F s,Σ s,�s} corresponding to
the macroscopic deformation gradient F̄s , the goal is to deter-
mine the state

{F s+1,Σ s+1,�s+1
}

that minimizes J under
the incremental deformation (32), subject to the multiscale
constraint C(F s+1, F̄s+1) = 0. Since the internal variables
�s+1 are determined from a user-defined, constitutive model,
the task is to calculate the Lagrange multiplier Σ s+1 and a
collection of deformation gradients F s+1 that minimize J .
To this end, the gradients of J with respect to the Lagrange
multiplier Σ and the deformation gradients FN (collected in
the set F) need to be computed, as described below.

3.1 Unconstrained gradient

For solving the constrained minimization problem (30), a
simple constrained gradient descent method based on the
computation of the gradient of the objective functional J is
proposed. In this section the components of the unconstrained
gradient of the objective functional are derived. Observe that,
in view of (27) and (28), the symbolic expression for the
unconstrained gradient is the same for all loading steps s,
hence the superindex s will be suppressed for notational
simplicity.

Consider a generic grain K ∈ [1, . . . , Ngr] and the cor-
responding deformation gradient FK with cartesian compo-
nents (FK )mn . Henceforth, implicit summation on repeated
cartesian components i = 1, 2, 3 will be assumed. The deriv-
atives of the terms composing J in (28) are as follows:

∂ J1

∂ (FK )mn
= 2

β2Aint

MK∑

γ=1

AK ,γ

× (
(PK )i j − (PK ′)i j

)
n j

∂ (PK )ik

∂ (FK )mn
nk ,

∂ J2

∂ (FK )mn
= 2

Aint

MK∑

γ=1

AK ,γ

× (
(FK )ml − (FK ′)ml

)
(δnl − nnnl) ,

∂ J3

∂ (FK )mn
= VK

β2V

(
(PK )i j − Σi j

) ∂ (PK )i j

∂ (FK )mn
,

∂ J3

∂Σmn
= − 1

β2V

Ngr∑

N=1

VN
(
(PN )mn − Σmn

)
,

(33)

where the identity εiklεi pn = δkpδln − δknδlp was used to
derive (33)2, with δi j representing the Kronecker delta sym-
bol. Observe that the factor 2 in front of ∂ J1/∂ (FK )mn
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and ∂ J2/∂ (FK )mn is related to the contributions from
grains K ′ that are adjacent to K . The tangential stiff-
ness ∂ (PK )i j /∂ (FK )mn is obtained from the constitutive
model of grain K , and can be calculated analytically and/or
numerically, for example, through a numerical perturbation
technique [28]. The constitutive model further provides the
stress components (PK )i j and the internal variables by means
of an incremental-iterative update scheme, such as a return
mapping algorithm commonly used for classical plasticity
models. Henceforth, it is assumed that for an arbitrary defor-
mation gradient (FK )mn it is possible to compute (PK )i j and
∂ (PK )i j /∂ (FK )mn from a user-defined constitutive model
for grain K .

It is convenient to enforce the necessary condition for a
minimum of the objective functional J with respect to the
Lagrange multiplier Σ from the outset, i.e., the derivative of
J with respect to Σ is set to zero. Consequently, in view of
(33)4, the Lagrange multiplier Σ that satisfies the necessary
condition for a minimum of J is interpreted as the macro-
scopic stress, i.e.,

Σ =
Ngr∑

N=1

θNPN , (34)

where the scalars θN correspond to the volume fractions of
the grains:

θN := VN

V
N = 1, . . . , Ngr . (35)

It is worth pointing out that the Hill–Mandel condition,
which refers to the consistency between the microscale power∑Ngr

N=1 θNPN · ḞN and macroscale stress power Σ · ˙̄F, is in
general only approximately satisfied, since neither the kine-
matical compatibility relation nor the equilibrium condition
are exactly met in the present framework. A consequence of
this is that the spatial average of the energy dissipated at the
microscale is not equal to the energy dissipated in a material
point at the macroscale, although the difference is expected to
be small in general. In the limit cases of uniform deformation
and uniform stress, the Hill–Mandel condition is satisfied,
albeit at the expense of relaxing, respectively, the equilib-
rium condition and the kinematic compatibility relation.

Using (34) in (33) and in view of (27), the derivative of
J with respect to the deformation gradient in a generic grain
K becomes

∂ J

∂ (FK )mn

= 2α1

β2Aint

MK∑

γ=1

AK ,γ

(
(PK )i j − (PK ′)i j

)
n j (AK )ikmn nk

+ 2α2

Aint

MK∑

γ=1

AK ,γ

(
(FK )ml − (FK ′)ml

)
(δnl − nnnl)

+α3θK

β2

(
(PK )i j − Σi j

)
(AK )i jmn , (36)

with Σi j given by (34) and the material tangent stiffness AK

of the K -th grain defined in cartesian components as

(AK )i jmn := ∂ (PK )i j

∂ (FK )mn
. (37)

Observe that the tensor I − n ⊗ n (in components: δnl −
nnnl ) appearing in the second term on the right hand side of
(36) represents a projection (of the microscopic deformation
gradient) onto a grain boundary with normal vector n; hence
this term measures the relative difference in deformation at
grain boundaries. Furthermore, the first term in (36) reflects
the traction discontinuity across a grain boundary and the
third term represents the difference between the microscopic
stress in a grain and the macroscopic stress.

In the gradient descent method, the estimate of the defor-
mation gradient is modified by an incremental amount in the
opposite direction of the derivative (36) in order to minimize
the jumps in traction and displacement across grain bound-
aries, as well as the deviation of the microscopic stresses
from the macroscopic stress. However, this modification
cannot be performed arbitrarily, as it is required that the
average microscopic deformation gradient remains uncondi-
tionally equal to the macroscopic deformation gradient, see
expression (30)2. Accordingly, in the next section a gradient
descent direction is constructed that satisfies this multiscale
constraint.

3.2 Constrained gradient

In view of the numerical implementation of the constrained
gradient descent method, a matrix-vector notation is hence-
forth used, such that a single index Q is obtained from a
combination of a grain index K and two cartesian indices m
and n, i.e.,

Q = Q(K ,m, n) with Q = 1, . . . , 9Ngr

for K = 1, . . . , Ngr, m, n = 1, 2, 3 .

Similarly, two cartesian indices m and n are combined into a
single index q such that

q = q(m, n) with q = 1, . . . , 9 for m, n = 1, 2, 3 .

The index Q = 1, . . . , 9Ngr ranges over all degrees of
freedom in the minimization problem while the index q =
1, . . . , 9 ranges over all cartesian components of the defor-
mation gradient. With this notational convention, the gradient
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of the objective functional can be collected in a vector g, for
which the 9Ngr components gQ are given by

gQ := ∂ J

∂ (FK )mn
with Q = Q(K ,m, n) .

Similarly, denote as f̄ the vector representing the 9 compo-
nents of the macroscopic deformation gradient F̄ and denote
as x the vector representing the 9Ngr components of all the
microscopic deformation gradients FK in the set F , i.e.,

f̄q := F̄mn and xQ := (FK )mn

with q = q(m, n) , Q = Q(K ,m, n) .

Accordingly, the multiscale constraint (30)2 can be written
as

Lx = f̄ , (38)

where L is a 9 × 9Ngr (non-square) matrix composed of a
collection of Ngr matrices, each of size 9 × 9 and arranged
as follows:

L := [
θ1I | θ2I | . . . |θNgr I

]
, (39)

where the scalars θN , with N = 1, . . . , Ngr, are the grain
volume fractions defined in (35) and I represents the 9 × 9-
identity matrix. The matrix L may be viewed as a “volume
averaging” operator that maps a microscopic deformation
state x to the macroscopic deformation state f̄.

Projecting the gradient g to the subspace characterized
by the multiscale constraint (38) ensures that the gradient
descent method preserves this constraint for all iterations at
a given loading step. The projection may be achieved using
a basis for the null space N (L) of the matrix L. In view of
(39), it can be shown that the null spaceN (L) has dimension
9Ngr − 9. The gradient descent direction is thus obtained
by first computing the tangent g according to (36) and then
projecting it onto N (L). However, instead of working with
the null space directly, it is convenient to operate first in the
subspace that is the orthogonal complement of the null space,
since this subspace has a dimension that is generally far less
than the dimension of the null space itself, i.e., 9 instead of
9Ngr − 9. Because the projection has to be performed for
every newly calculated tangent vector g in each iteration,
for the efficiency of the computations it is preferable to first
project the tangent vector g to the complementary subspace
N (L)⊥ and then subtract this result from the tangent g. An
orthonormal basis for N (L)⊥ can be constructed by taking
the first nine left-singular vectors obtained from the singular
value decomposition of LTL. Consequently, the projected

gradient descent direction, denoted as gp, is calculated in
accordance with:

gp := g −
9∑

q=1

(
g · uq

)
uq . (40)

Here, uq , with q = 1, . . . , 9, are the first nine left-singular
vectors of the matrix U, as obtained from the singular-value
decomposition of LTL, i.e.,

UDVT = svd
(
LTL

)
,

with D being the diagonal matrix of singular values and V
the matrix of right-singular vectors. Because the multiscale
constraint (38) is linear, the unit vectors uq (q = 1, . . . , 9)

can be expressed in closed-form, such that the components
of the projected gradient follow as:

gp
Q = ∂ J

∂ (FK )mn
− θK

θ̂2
Hmn with Q = Q(K ,m, n),

(41)

where

Hmn :=
Ngr∑

N=1

θN
∂ J

∂ (FN )mn
and θ̂ :=

⎛

⎝
Ngr∑

N=1

θ2
N

⎞

⎠

1
2

. (42)

The tensor H with cartesian components Hmn defined in (42)
represents the volume average of the gradient of J , while the
factor θ̂ reflects the L2 norm of the volume fractions of the
grains.

3.3 Constrained gradient descent algorithm

Suppose that the converged state at loading step s has been
determined and let xs denote the corresponding vector of
deformation gradients in the grains. If the constitutive model
of a grain uses internal variables, it is assumed that these
were determined in the convergence process of the vector xs

by means of an incremental (iterative) update algorithm at
the grain level. This update algorithm also provides the con-
verged stress Ps

N in the grain, which, in view of (34), results
in the update of the macroscopic stress Σ s . In summary,
xs may thus be formally interpreted as the vector with the
main state variables in the grains of the cluster, for which the
corresponding stress and history variables at the grain level
are computed through a user-defined constitutive model. To
determine the converged state xs+1 at loading step s + 1,
the time-like parameter is incremented from t s to t s+1 by
a sufficiently small time step 
t s+1, and the corresponding
macroscopic deformation gradient is incremented from f̄

s
to
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f̄
s+1

. Starting from an initial estimate xs+1,0, the vector of
deformation gradients is updated from iteration i to iteration
i + 1 by using the projected gradient gp as

xs+1,i+1 = xs+1,i − ω
(
gp)i i = 0, 1, . . . . (43)

In (43), the scalar ω > 0 is a suitably-chosen step size that,
for simplicity, is assumed to be constant at a given loading
step. The value of ω can be chosen such that the magnitude
of ω (gp)i is a fraction of the magnitude of xs . The projected
gradient is given in components in (41), and is computed
from the unconstrained gradient (g)i , given in components
in (36) and evaluated at xs+1,i .

The linearity of the constrained subspace characterized
by (38) ensures that the projected gradient always lies within
this subspace, and that all estimatesxs+1,i , with i = 0, 1, . . .,
satisfy the multiscale kinematic constraint (38), independent
of the magnitude of the projected gradient or the value of the
step size. The estimates are iteratively updated until a con-
vergence criterion is satisfied, as represented by the objective
functional J reaching a minimum within a prescribed toler-
ance ε:

|J i+1 − J i |
J i

< ε . (44)

Alternatively, or as a complementary check, the relative mag-
nitude of the projected gradient can be monitored at a given
iteration, where at a converged state it should be confirmed
that
∥∥∥(gp)i+1

∥∥∥
∥∥(gp)0

∥∥ 	 1 . (45)

with (gp)0 the projected gradient at the onset of the iterative
process. If the convergence criterion (44) is not satisfied after
a certain number of iterations, the time step 
t s must be
reduced and the update algorithm needs to be restarted at the
last converged loading step.

The procedure indicated above is repeated for all loading
steps s until the imposed macroscopic deformation gradient
f̄
s

reaches its final value. To start the constrained gradient
descent method at a new loading step s + 1, it is required to
specify an initial estimate xs+1,0 for the vector of micro-
scopic deformation gradients. This issue deserves special
attention and is discussed in the following section.

3.4 Loading step increment satisfying the multiscale
kinematic constraint

Moving from loading step s to s + 1, an initial estimate
xs+1,0 for the microscale deformation gradients needs to be
specified, with the superscript ’0’ indicating the onset of the

iterative process. This initial estimate should satisfy the mul-
tiscale kinematic constraint, i.e.,

Lxs+1,0 = f̄
s+1

, (46)

where f̄
s+1

represents the vectorized form of the macroscopic
deformation gradient F̄s+1 at time t s+1. The system of equa-
tions (46) has more equations than unknown variables and
lacks a unique solution. In order to find an accurate, approxi-
mate solution to this system of equations, the initial estimate
for the microscopic deformation gradients is expressed as

xs+1,0 = xs + ds+1 (47)

where xs denotes the converged solution at the previous
loading step s and ds+1 is a vector of 9Ngr components rep-
resenting an initial estimate for the incremental microscopic
deformation gradients. Substituting (47) in (46) and using
the fact that the converged solution xs at step s meets the
constraint Lxs = f̄

s
, it follows that

Lds+1 = 
f̄
s+1

with 
f̄
s+1 := f̄

s+1 − f̄
s
. (48)

From (48), the solution ds+1 may be generally expressed as

ds+1 = d̃
s+1 − L+ (

Ld̃
s+1 − 
f̄

s+1
)

(49)

where d̃
s+1

is an arbitrarily-chosen vector of 9Ngr compo-
nents and L+ is the (right) Moore–Penrose pseudo-inverse of
L. Since the rows of L are linearly independent, the pseudo-
inverse is given by

L+ := LT
(
LLT

)−1
. (50)

The averaging operator L presented in (39) has a relatively
simple form, as a result of which the pseudo-inverse L+ can
be derived explicitly. This results in a 9Ngr × 9 matrix com-
posed of a collection of Ngr matrices, each of size 9 × 9 and
arranged as follows:

L+ = 1

θ̂2

⎡

⎢⎢⎢⎣

θ1I
θ2I
...

θNgr I

⎤

⎥⎥⎥⎦ , (51)

where, as before, the scalars θN are the grain volume frac-
tions, I represents the 9 × 9-identity matrix and θ̂ is given by
(42)2. It can be confirmed that inserting (49) into (47), fol-
lowed by multiplying the result by L and invoking (50) and
(48), indeed leads to the multiscale kinematic constraint (46)
for the initial estimate xs+1,0 of the microscale deformation
gradients.
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Fig. 3 Schematic representation of the initial estimate xs+1,0 of the
vector of deformation gradients at loading step s + 1, and the subse-
quent constrained gradient descent method. Points in the domain on the
left represents schematically the collection of microscale deformation

gradients for the grain cluster, which are mapped through the averag-
ing operator L to the space of macroscale deformation gradients on the
right

In principle, one may choose any vector d̃
s+1

in (49)
to obtain an increment ds+1 that can in turn be used
in (47) to generate an initial estimate for xs+1,0 in the
constrained minimization procedure. However, since the
material response typically is path-dependent, it may be
expected that the performance of the update algorithm will
significantly depend on this initial estimate. Hence, it is

critical to make a judicious choice for d̃
s+1

in (49), such
that the corresponding initial value xs+1,0 is located close
to the final value obtained after reaching the convergence
criterion (44). Accordingly, it is convenient to impose con-

ditions on d̃
s+1

, under which at the grain boundaries the
kinematic compatibility and/or traction continuity require-
ments are approximately satisfied, see Sect. 3.5 for examples.

Furthermore, to effectively transfer the properties of d̃
s+1

to

ds+1, the term Ld̃
s+1 − 
f̄

s+1
in (49) must be as small as

possible, wherebyds+1 ≈ d̃
s+1

. This requirement can be sat-

isfied by determining the vector d̃
s+1

from a uniform scaling
relation, i.e.,

d̃
s+1 = ηs+1d̂

s+1
. (52)

Here, ηs+1 is a scaling factor and d̂
s+1

is an auxiliary vector,
for which four specific options are discussed in Sect. 3.5.
After inserting (52) in (49), it follows that the L2 norm of

the vector Lηs+1d̂
s+1 − 
f̄

s+1
needs to be minimized for

meeting the condition ds+1 ≈ d̃
s+1

. This simply leads to the
following expression for the scaling factor:

ηs+1 =
(
Ld̂

s+1)T

f̄

s+1

(
Ld̂

s+1)T
Ld̂

s+1
. (53)

A schematic representation of the above incremental/itera-
tive method is shown in Fig. 3. Starting from the converged
statexs at loading step s and a specific choice for the auxiliary

vector d̂
s+1

, the scaling factor ηs+1 and the vector d̃
s+1

are
computed from (53) and (52), respectively, the vector ds+1

containing the initial incremental deformation gradients is
computed from (49) and the initial estimate xs+1,0 for the
deformation gradients is determined from (47). Observe that
xs+1,0 lies within the ”feasible solution space”, as charac-
terized by the space containing the vectors x that satisfy the

multiscale kinematic constraintLx = f̄
s+1

. Subsequently the
constrained gradient is computed from (41) and the estimate
is updated according to (43) until it converges to the final
solution xs+1 within the feasible solution space.

3.5 Possible estimates for the initial deformation
gradient increment

For an optimal performance of the constrained minimiza-
tion algorithm visualized in Fig. 3, it is critical to choose an
appropriate estimate for the vector containing the increments

in the deformation gradient d̃
s+1

, which directly depends on

the auxiliary vector d̂
s+1

through expression (52). Accord-

ingly, four options for d̂
s+1

are discussed below.
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3.5.1 Initial estimate based on uniform deformation
gradient increment

A possible choice for d̂
s+1

is to assume that all grains deform
in accordance with the macroscopic increment of the defor-
mation gradient from step s to step s + 1. In components,
this choice is given by

(
d̂s+1

)

Q
= 
F̄ s+1

mn

with Q = Q(K ,m, n), K = 1, . . . , Ngr. (54)

With this particular choice it can be easily verified that

Ld̂
s+1 − 
f̄

s+1 = 0 ,

from which it follows from (53) that the scaling factor
ηs+1 = 1, and from (49) that the corresponding vector ds+1

is given by

ds+1 = d̃
s+1 = d̂

s+1
. (55)

The incremental estimate indicated in (54) and (55) is the
exact incremental solution to the limit case of a uniform
deformation gradient (Taylor bound), for which α1 = α3 =
0 in expression (27). Hence, it will serve as a good estimate
for cases where the weighting factors α1 and α3 are relatively
small compared to α2, but generally will not provide a suit-
able initial estimate if these weighting factors are relatively
large and the limit case of uniform stress (Sachs bound) is
approached.

3.5.2 Initial estimate based on uniform stress increment

An alternative way to obtain an initial estimate for d̂
s+1

is to incrementally deform the grains in accordance with a
uniform stress increment. This initial estimate satisfies the
equilibrium conditions, and therefore would be particularly
useful if the contribution to J by the equilibrium conditions
(reflected by the weighting factors α1 and α3 in (27)) has a
higher importance than the kinematic compatibility condition
(reflected by the weighting factor α2 in (27)). Suppose that
from step s to step s+1 the average stress tensor in the grain
cluster increases from Σ s to Σ s+1. Although the stress Σ s+1

is unknown at the beginning of step s+1, it can be estimated
based on temporarily assuming that all grains are subjected
to one and the same increment of the deformation gradi-
ent, 
F̄s+1. For computing the corresponding increment in
macroscopic stress, Σ s+1, a frame-indifferent stress mea-
sure based on the Lie derivative of the first Piola–Kirchhoff
stress is considered. The Lie derivative P̊ of the first Piola–
Kirchhoff stress P is given as P̊ = FṠ, where S = F−1P is

the second Piola–Kirchhoff stress and Ṡ denotes its invariant
material time derivative. Correspondingly, the Lie derivative
of P may be formulated as

P̊ = Ṗ − ḞF−1P , (56)

where the superimposed dot indicates a material time deriva-
tive. In analogy with this expression, for a sufficiently small
load increment and under the assumption of an equal defor-
mation increment in the grains, the initial estimate of the
macroscopic stress increment from step s to step s + 1,
denoted as 
Σ s+1,0, may be computed as


Σ s+1,0 := Ā
s
F̄s+1 − 
F̄s+1

(
F̄s+1

)−1
Σ s

with Ā
s :=

Ngr∑

N=1

θNA
s
N . (57)

Here, Ās is the volume average of the cluster’s material tan-
gent stiffness, As

N is the material tangent stiffness of grain
N and Σ s is the macroscopic first Piola–Kirchhoff stress, all
evaluated at the last converged step s. The estimate of the
uniform stress increment, (57), can now be used to compute
an initial estimate of the corresponding non-uniform incre-
ments in the deformation gradient of the grains, 
Fs+1,0

K ,
by formulating a relation similar to (57) for each specific
grain K :

(
A
s
K

)

Fs+1,0

K − 
Fs+1,0
K SsK = 
Σ s+1,0

with SsK := (
Fs
K

)−1 Ps
K K = 1, . . . , Ngr . (58)

Observe that in the above expression the second Piola–
Kirchhoff stress in the grains, SsK , is known from the last
converged loading step s. Hence, (58) represents a linear
system of equations in terms of the initial values of the defor-
mation gradients in the grains, 
Fs+1,0

K , i.e., one set of 9
linear equations for each grain K . For computing the numer-

ical solution of this system of equations, the vectors d̂
s+1
K and

ps+1,0 are invoked, each composed of 9 components. These
vectors incorporate, respectively, the initial estimate of the
incremental deformation gradient in grain K and the estimate
of the increment in the macroscopic first Piola–Kirchhoff
stress, i.e.,

(
d̂s+1
K

)

q
:=

(

Fs+1,0

K

)

mn
;

(
ps+1,0

)

q
:= 
Σ s+1,0

mn

with q=q(m, n), for K =1, . . . , Ngr . (59)

Similarly, define the 9 × 9 material tangent stiffness matrix
As

K of grain K (which corresponds to the converged solution
at the previous step s) as
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(
As
K

)
pq := (

A
s
K

)
i jkl − δik

(
SsK

)
l j

with p= p(i, j), q=q(k, l) for K =1, . . . , Ngr, (60)

where A
s
K and SsK are the material tangent stiffness and the

second Piola–Kirchhoff stress in the K -th grain, respectively,
and δik reflects the Kronecker delta symbol. Employing
the notation in (60), the system of equations (58) can be
expressed in vector-matrix form as

As
K d̂

s+1
K = ps+1,0

for K = 1, . . . , Ngr (no sum onK ) . (61)

The matrix As
K is non-singular for the subspace of (vector-

ized) symmetric tensors but is singular for the subspace of
(vectorized) skew-symmetric tensors. To circumvent this sin-
gularity, the general solution of (61) is formulated as

d̂
s+1
K = ˜̃ds+1

K − (
As

K

)+ (
As

K
˜̃ds+1
K − ps+1,0

)
(62)

where
(
As

K

)+ is the pseudo-inverse of As
K and ˜̃ds+1

K is an
arbitrarily-chosen vector of 9 components. For definiteness,

the components of the vector ˜̃ds+1
K are chosen as zero, which

simplifies (62) into

d̂
s+1
K = (

As
K

)+ ps+1,0 . (63)

The grain cluster vector d̂
s+1

of 9Ngr components can now
be straightforwardly assembled from the grain level vec-

tors d̂
s+1
K for the K = 1, . . . , Ngr grains. Subsequently, the

initial estimate of the deformation gradients xs+1,0 follows
from (53), (52), (49) and (47). Clearly, the determination of
the uniform stress initial increment is computationally more
demanding than the computation of the uniform deformation
gradient initial increment presented in Sect. 3.5.1. Nonethe-
less, as will be demonstrated in detail in Sect. 4, the uniform
stress initial increment has the advantage that it provides an
adequate prediction for a wide range of material responses
and weighting factors αi .

3.5.3 Initial estimate based on previous loading steps

Another option for the calculation of the initial estimate d̂
s+1

is to use the history of converged solutions at previous load-
ing steps. Particularly, one could straightforwardly compute

d̂
s+1

from the difference of the converged solutions at steps
s and s − 1, i.e.,

d̂
s+1 = xs − xs−1 . (64)

Substituting (64) in (53) and noting thatL(xs−xs−1) = 
f̄
s
,

it follows that

ηs+1 =
(

f̄

s
)T


f̄
s+1

(

f̄

s
)T


f̄
s

,

with 
f̄
s+1 := f̄

s+1 − f̄
s
, 
f̄

s := f̄
s − f̄

s−1
.

(65)

The initial guess based on the loading history is proposed
here because of its simplicity, and because it may provide an
accurate and efficient prediction for material systems sub-
jected to proportional loading. Under the latter condition

the vectors 
f̄
s+1

and 
f̄
s

are parallel with respect to each
other, whereby ηs+1 in (65) becomes equal to the relative
change in loading magnitude going from step s to step s+ 1.
However, under strongly non-proportional loading the initial
estimate (64) should be treated with care: Note that in the

extreme case a load increment 
f̄
s+1

may be specified such

that
(

f̄

s
)T


f̄
s+1 = 0, for which ηs+1 becomes zero and

the current estimate would not be applicable.

3.5.4 Initial estimate based on the null vector

The last option presented in this section is included for com-
pleteness, and corresponds mathematically to the most basic

choice for d̂
s+1

, namely the null vector. Although from (53)
it may be concluded that for this case the scaling factor

ηs+1 is not defined, in view of (52) it follows that d̃
s+1 =

0. Correspondingly, from (49) the vector ds+1 simply
becomes

ds+1 = L+
f̄
s+1

. (66)

Using expression (51), expression (66) can be written in com-
ponents as

(
ds+1

)

Q
= θK

θ̂2

F̄ s+1

mn

with Q = Q(K ,m, n), K = 1, . . . , Ngr,

(67)

where θ̂ is given by (42)2. Note that this initial estimate is
based on the grain size only, i.e., the increment in the defor-
mation gradient for a grain K scales proportionally with the
grain volume fraction θK , see (67). Preliminary numerical
tests not presented here have indicated that such an initial esti-
mate, though simple to determine, may result in an inconve-
nient starting point for the incremental-iterative update algo-
rithm, and therefore in a (very) poor convergence behavior.
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Algorithm 1 Algorithm for GGCM
Pre-processing:
Generate cluster’s microstructural geometry, e.g., using a (multilevel) Voronoi algorithm
Assign grain and surface indices N = 1, . . . , Ngr and γ = 1, . . . , MN

Construct global connectivity array I = Î (N , γ )

Compute volumes VN and V , areas AI and Aint and volume fractions θN and θ̂ from (29), (35) and (42)2
Assemble averaging operator L from (39) and its pseudo-inverse L+ from (51) (use compact storage)
Select weighting parameters α1, α2, α3, scaling factor β and step size ω appearing in (27), (28) and (43)
Initialize (s = 0)
for N = 1, . . . , Ngr do

For an unloaded and unstressed initial state, construct x0 from F0
N = I and set P0

N = 0, Σ0 = 0
For inelastic constitutive models, initialize internal variables Ξ0

N
Compute initial constitutive tangents A0

N (see (37)) from the given constitutive model(s) of grain N
end for
Main loop (s ≥ 1)
while s + 1 ≤ Nsteps do

Store converged state at loading step s and increase the time-like process parameter t s+1 = t s + 
t s+1

Update externally-applied macroscopic deformation gradient f̄
s+1 = f̄

s + 
f̄
s+1

Initial deformation gradient xs+1,0

For the method shown in Sect. 3.5.2: (see Sect. 3.5 for other methods)
Compute estimate of stress increment ps+1,0 from (59)2 and (57)
for N = 1, . . . , Ngr do

Compute As
N from (60) and (58)2 and its pseudo-inverse

(
As

N

)+

Compute grain-level increment d̂
s+1
N from (63) and assemble in cluster-level vector d̂

s+1

end for
Compute scaled initial deformation gradient increment d̃

s+1
from (53) and (52)

Compute projected initial deformation gradient increment ds+1 from (49)
Get initial estimate xs+1,0 from (47)
Constrained minimization
i = 0
while Not converged do

Compute (PN ,AN ,Ξ N )s+1,i for N = 1, . . . , Ngr from the grains’ constitutive model(s)
Update the estimate of the macrostress Σ s+1,i from (34)
Compute unconstrained gradient (g)i from (36)
Compute constrained gradient (gp)i from (41) and (42)
Update estimate of deformation gradients xs+1,i+1 from (43)
Check convergence
i ← i + 1

end while
s ← s + 1

end while

3.6 Overview of GGCM algorithm

The incremental-iterative update algorithm for the GGCM
is summarized in Algorithm 1. The algorithm is based upon
the uniform stress initial increment presented in Sect. 3.5.2;
the implementations of the three alternative initial estimates
presented in Sect. 3.5 occurs in a similar fashion, but are
omitted here for brevity reasons. A detailed analysis of the
performance of the different initial estimates is provided in
Sect. 4.3.

It is worth pointing out that user-defined constitutive
models may provide tangent stiffnesses based on stress and
deformation measures different than the first Piola–Kirchhoff
stress and the deformation gradient used in expression (37).
However, these material tangent stiffnesses may be con-
verted to this format using push-forward and pull-backward
relations presented in the literature, see, e.g., [25,28]. Fur-

thermore, the parameters α1, α2, α3, β, ω and the time step

t require a calibration procedure, such as that described in
Sect. 4.5. Representative values of these parameters are used
in the numerical examples treated in the section below.

4 Simulations of clusters of multiphase materials

4.1 Preliminaries

A series of simulations involving microstructures typically
found in low-alloyed multiphase steels is presented in this
section in order to illustrate important features of the gener-
alized grain cluster method. These microstructures consist of
an aggregate of ferritic grains (primary phase) and metastable
retained austenitic grains (secondary phase). Under mechan-
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ical loading, the austenitic grains may partially or totally
transform into a third phase, called martensite. The crys-
tal plasticity model presented in [32] and extended in [33]
and [42] is used to simulate the elasto-plastic deformation in
the ferritic grains. This model is suitable for single-crystal
grains undergoing plastic deformation along slip systems in
a body-centered cubic lattice structure. The model incorpo-
rates the asymmetry typically observed in the twinning and
anti-twinning directions. For incorporating the crystal plas-
ticity model in the GGCM, the deformation gradient FK , for
each ferritic grain K , is decomposed as

FK = Fe
KF

p
K

whereFe
K represents the elastic part of the deformation gradi-

ent andFp
K is the plastic part of the deformation gradient. The

crystal plasticity model includes a so-called ferritic micros-
train as an internal variable, which reflects the local elastic
distortions in the crystalline lattice due to the presence of
dislocations, see [33,42] for more details. For the K -th fer-
ritic grain, the microstrain is denoted as βF

K , and the volume
average over the ferritic grains is indicated as β̄F. The latter
parameter will be used for characterizing the average plas-
tic deformation in the ferritic grains in the simulation results
presented in this section.

The constitutive behavior of the austenitic grains is
simulated using the model developed in [28,35,36] and
extended in [33,42]. This model is suitable for simulat-
ing single-crystal grains simultaneously undergoing a plastic
deformation and a martensitic phase transformation from a
face-centered cubic austenitic lattice structure into a body-
centered tetragonal martensite upon mechanical and/or ther-
mal loading. The model includes the possible transformation
into crystallographically-distinct martensitic phases, referred
to as transformation systems. For the implementation of the
phase transformation model within the GGCM, the deforma-
tion gradientFK for eachaustenitic grain K is decomposed as

FK = Fe
KF

p
KF

tr
K

where, as before, Fe
K and Fp

K represent the elastic and plas-
tic parts of the deformation gradient, respectively, and Ftr

K
corresponds to the transformation part. The model allows
for separately determining the volume fraction of each
crystallographically-distinct martensitic transformation sys-
tem [28,33,35,36,42]. For the K -th austenitic grain, the total
martensitic volume fraction is denoted as ξM

K , which cor-
responds to the sum of volume fractions of the individual
transformation systems. The volume average of the marten-
sitic volume fraction over the austenitic grains is indicated
as ξ̄M. This parameter will be used for quantifying the aver-
age martensitic transformation in the austenitic grains in
the simulation results presented in this section. The mate-

rial parameters used in the numerical simulations for the
ferrite, austenite and martensite can be found in [42]. The
computation of the stress, tangential stiffness and internal
variables in the individual grains is carried out by means of
a fully implicit, incremental-iterative update algorithm for-
mulated within a large deformation framework. The details
of this numerical implementation, which includes a selection
algorithm for the determination of the active transformation
systems and slip systems, can be found in [28].

Using the constitutive models outlined above allows
for testing the GGCM for relatively complex and chal-
lenging material systems, where a large number of inter-
nal variables at each material point inside a grain cap-
ture inelastic phenomena originating from the sub-grain
length scale, i.e., plastic slip and phase transformation
resolved in crystallographically-distinct planes. The peri-
odic microstructures used in the simulations are constructed
from a two-level Voronoi algorithm generating realistic (con-
vex and non-convex) polyhedral grains, see [43] for details.
A randomly-chosen crystal orientation is assigned to each
single-crystal grain in the cluster in order to approach a
macroscopically isotropic material under an increasing num-
ber of grains. Representative pole figures for the orientation
distributions of the samples analyzed in the present study
can be found in [43]. All grain clusters were macroscopi-
cally loaded under simple shear according to

F̄ = I + γ̄ e1 ⊗ e2 ,

where γ̄ is the amount of shear and e1 and e2 are orthonormal
unit vectors perpendicular to the external faces of the cubic
grain cluster. The imposed macroscopic shear rate was ˙̄γ =
10−4s−1, which is in the range of quasi-static loading, i.e., it
was confirmed that the inertial terms in the balance of linear
momentum can be neglected. The samples were deformed
up to a final value of γ̄ = 0.2. Unless indicated otherwise,
the step size for the constrained gradient descent method
equals ω = 20 and the convergence criterion used is provided
by expression (44), with the tolerance prescribed a priori as
ε = 10−3. It is emphasized that the simple shear deforma-
tion mode was chosen for reasons of simplicity, such that
the basic characteristics of the GGCM can be demonstrated
in a consistent and unequivocal fashion. The computation of
sample responses under alternative, more complex deforma-
tion modes falls beyond the scope of this study, although it
may be reasonably expected that these will expose similar
characteristics of the GGCM as for the simple shear mode.

The performance of the GGCM is demonstrated by con-
sidering six microstructures, each composed of a different
number of grains, see Table 1. Note that for all these
microstructures the initial volume fraction of the secondary
austenitic phase is approximately 12 %, which is within the
range of experimental values observed in multiphase TRIP
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Table 1 Composition and volume fraction of different microstructural
samples used in the GGCM simulations and the (finite element-based)
DNS

Sample # Total number
of grains

Austenitic
grains

Ferritic
grains

Volume
fraction of
austenite
(%)

S1 8 1 7 12.0

S2 64 8 56 12.1

S3 100 12 88 12.2

S4 200 24 176 11.9

S5 450 56 394 12.0

S6 600 72 528 12.0

Table 2 List of distinct weighting factors used in the GGCM simula-
tions. In all cases, α1 and α3 were chosen equal to each other. Set W1
approximates the Taylor bound where the deformation gradient is uni-
form across the grains, while set W5 tends to the Sachs bound, for which
the stress in the grains is uniform, within the tolerance provided by the
kinematical multiscale constraint. Sets W2–W4 represent intermediate
cases

Set # α1 = α3 α2 Ratio α2/α1

W1 1.0 × 10−7 1.0 × 100 1.0 × 107

W2 5.0 × 10−6 2.0 × 10−2 4.0 × 103

W3 1.0 × 10−5 1.0 × 10−2 1.0 × 103

W4 2.0 × 10−5 5.0 × 10−3 2.5 × 102

W5 1.0 × 10−4 1.0 × 10−3 1.0 × 101

steels [15,26,27]. A parametric study is carried out using
a wide range of values of the weighting factors αi , with
i = 1, 2, 3, see Table 2. In accordance with (27) and (28), in
the solution procedure the weighting factors α1 and α3 deter-
mine the relative importance of the equilibrium conditions
at the grain boundaries and within each grain, respectively,
while the weighting factor α2 sets the relevance of kinemati-
cal compatibility across grain boundaries. The scaling factor
β that appears in (28) was kept fixed, by setting it equal to
β = 1 (units of stress).

For each grain cluster, the results from a direct numerical
simulation (DNS) performed with an accurate finite element
model were used as a benchmark. The term DNS is borrowed
from its classical context in fluid mechanics to reflect the
analogy between resolving the spatial scales of turbulence
and resolving the micromechanical scales; it thus represents
the full-field numerical solution obtained from determining
the balance of linear momentum at each microscopic material
point. Details of the finite element-based DNS simulations
can be found in [43]. Unless indicated otherwise, all DNS
calculations were performed using a regular 30 × 30 × 30
mesh (27000 hexahedral elements with a reduced integration
scheme) with pointwise periodic boundary conditions, result-

ing in 81021 displacement degrees of freedom. This mesh
size is based on a convergence study where the relative error
in the effective main shear stress is less than 2 % of the value
found for a (substantially) finer 40 × 40 × 40 mesh, see also
[43]. The maximum time step in the DNS was determined as

t = 3.2 s, since larger time steps typically triggered numer-
ical convergence problems. All other parameters used in the
DNS are identical to those in the simulations performed with
the GGCM. For comparison purposes, results are reported in
terms of the Cauchy stress tensor T := (detF)−1PFT.

4.2 Influence of time step size

In order to examine the influence of the size of the time
step on the accuracy and stability of the numerical results
computed with the GGCM, the response of a microstructural
sample loaded under simple shear is analyzed considering
three distinct time steps, namely 
t = 1, 5 and 25 s. The
sample is composed of 24 grains of austenite and 176 grains
of ferrite (sample S4 in Table 1). The corresponding response
curves are shown in Fig. 4, which include the main Cauchy
shear stress component T̄12 averaged over the whole cluster
(Fig. 4a), the average stress component T̄11 (Fig. 4b), the
average martensitic volume fraction ξ̄M (Fig. 4c) and the
average microstrain in the ferrite β̄F (Fig. 4d), all plotted
as a function of the macroscopic amount of shear γ̄ . The
GGCM curves were computed using calibrated weighting
factorsα1 = α3 = 5.0×10−6 andα2 = 2.0×10−2 (set W2 in
Table 2) and an initial estimate for the deformation gradient
based on a uniform stress increment. As shown in the fig-
ure, for the largest time step, 
t = 25 s, the GGCM response
shows significant fluctuations and deviates strongly from the
DNS response represented by the dashed line. In contrast, the
GGCM responses for 
t = 1 and 5 s are relatively smooth and
remain close to each other over the whole deformation range,
thereby approaching the DNS response closely. Hence, it may
be concluded that a specific minimum time step is required for
obtaining a GGCM solution of satisfactory accuracy. Using
an L2 norm of the main shear stress along the complete
deformation path (see also Sect. 4.5, expression (68)), the
relative difference between the responses for 
t = 1 and 5 s
is calculated as 2.5 %. Correspondingly, the results obtained
with the time step 
t = 5 s were considered as sufficiently
accurate, and forthcoming results were computed using this
value.

From the aspect of stability, no specific conclusions on the
maximum time step size can be drawn from the GGCM simu-
lations, since for all three time steps considered the response
remains bounded within the range analyzed. Conversely, as
already indicated in the previous section, the DNS calcula-
tion did encounter convergence problems for time steps larger
than 
t = 3.2 s; hence the DNS is characterized by a smaller
maximum time step than the GGCM simulations.
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Fig. 4 Average (macroscopic) Cauchy shear stress T̄12 (a), stress com-
ponent T̄11 (b), martensitic volume fraction ξ̄M (c) and microstrain in
the ferrite β̄F (d), all plotted as a function of the applied amount of
shear γ̄ , for three distinct time steps in the GGCM: 
t = 1.0, 5.0 and

25.0 s. The sample used is S4 with 200 grains in total, see Table 1, and
the set of weighting factors equals W2, see Table 2. The dashed lines
represent the corresponding DNS responses, obtained from an accurate
30 × 30 × 30 finite element model

4.3 Influence of initial estimate of the deformation
gradients

In Sect. 3.5 several options were described for estimating the

initial incremental microscale deformation gradients d̂
s+1

required at the onset of each new loading step s + 1 of
the constrained minimization algorithm. Due to the load-
ing path dependency of inelastic material models, this initial
estimate may affect the accuracy and efficiency of the gener-
alized grain cluster method. Since GGCM has the general aim
of closely approximating accurate DNS response curves at
(much) lower computational cost, it needs to be examined in
detail what the effect of this estimate is on the numerical accu-
racy and efficiency of the GGCM result. Accordingly, in this
section the numerical responses computed for three different

initial estimates of d̂
s+1

are compared, as based upon (i) a
uniform deformation gradient initial increment (Sect. 3.5.1),
(ii) a uniform stress initial increment (Sect. 3.5.2) and (iii)
previously converged loading steps (Sect. 3.5.3). The ini-
tial estimate based upon the null vector (Sect. 3.5.4) is
left out of consideration in this comparison, since prelim-
inary computations (not presented here) clearly indicated

a deficient performance with respect to the other three
approaches.

In the analysis a sample consisting of 8 grains of austenite
and 56 grains of ferrite (set S2 in Table 1) is subjected to
simple shear, where the GGCM responses calculated with

the three initial estimates of d̂
s+1

are compared against the
response of the accurate benchmark FEM model described in
Sect. 4.1. In the GGCM the weighting factors are α1 = α3 =
5.0×10−6 and α2 = 2.0×10−2 (set W2 in Table 2) and the
time step equals 
t = 5 s. The results of the simulations are
shown in Fig. 5 in terms of the main Cauchy shear stress T̄12

(Fig. 5a), the stress component T̄11 (Fig. 5b), the martensitic
volume fraction ξ̄M (Fig. 5c) and the microstrain in the fer-
rite β̄F (Fig. 5d). All quantities are displayed as a function
of the macroscopic amount of shear γ̄ . It can be observed
that the simulations based on a uniform deformation gradi-
ent initial increment and a uniform stress initial increment are
relatively smooth and remain close to each other. The method
based on a uniform deformation gradient increment predicts a
slightly stiffer response for the main Cauchy shear stress T̄12

compared to the simulation based on a uniform stress incre-
ment, while the opposite occurs for the stress component T̄11,
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Fig. 5 Average (macroscopic) Cauchy shear stress T̄12 (a), stress com-
ponent T̄11 (b), martensitic volume fraction ξ̄M (c) and microstrain in
the ferrite β̄F (b) as a function of the applied amount of shear γ̄ for
distinct initial estimates of the deformation gradient at the beginning of
each GGCM loading step. The three initial estimates for the vector of
deformation gradients within the grains, d̂

s
, are based on (i) auniform

deformation gradient increment, (ii) a uniform stress increment, and
(iii) previously converged loading steps. The sample used is S2 with 64
grains in total, see Table 1, and the set of weighting factors is W2, see
Table 2. The dashed lines represent the corresponding DNS responses,
obtained from an accurate 30 × 30 × 30 finite element model

Table 3 Computational times of GGCM with distinct initial estimates of the microscopic deformation gradient at the onset of each incremental
loading step. The sample is loaded under simple shear

Initial estimate microscopic deformation gradient Section Sample Weighting CPU time (h)

Uniform deformation gradient initial increment 3.5.1 S2 W2 8

Uniform stress initial increment 3.5.2 S2 W2 17

Initial increment by previously converged loading steps 3.5.3 S2 W2 9

see Fig. 5a, b. For the present choice of weighting factors
W2 both methods approach the solution obtained with DNS
closely, although the method based on a uniform stress initial
increment appears to be slightly more accurate. The response
of the secondary phase, expressed in terms of the martensitic
phase transformation, is somewhat underpredicted by both
methods at larger deformation, γ̄ > 0.1, see Fig. 5c, while
the microstrain β̄F in the ferrite is predicted accurately over
the whole deformation range, see Fig. 5d. In contrast, the
simulation based on an initial estimate obtained from previ-
ously converged loading steps is characterized by significant
fluctuations in the stress components and a relatively large

over-prediction of the volume fraction of martensite. More-
over, the step size in the constrained minimization algorithm
had to be reduced here from ω = 20 to ω = 10 in order
to circumvent convergence problems. Consequently, the ini-
tial estimate based on extrapolating previously converged
loading steps was deemed sub-optimal compared to initial
estimates based upon an increment of a uniform deformation
gradient and a uniform stress.

The computational times for the three initial estimates

of d̂
s+1

are compared in Table 3. It is noted that in Sect.
4.6 the computational times of simulations performed with
the GGCM will be also compared objectively to those of
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Fig. 6 Piola Kirchhoff shear stress distribution P12 across sample S2 at a macroscopic shear deformation γ̄ = 0.2 for weighting factors representing
a the uniform deformation gradient limit case (set W1), b an intermediate case (set W2) and c the uniform stress limit case (set W5)

finite element-based DNS. The table shows that the simula-
tions with a uniform deformation gradient initial increment
and an initial increment based on previously converged load-
ing steps are characterized by similar computational times,
which are about half of the computational time obtained for a
uniform stress initial increment. Nonetheless, additional sim-
ulations (not shown here) have indicated that the numerical
results computed with the uniform deformation gradient ini-
tial increment may substantially loose their accuracy under
conditions approaching the uniform stress limit case (i.e., set
W5 in Table 2). Conversely, the numerical results obtained
with the uniform stress initial increment proved to be accu-
rate for both the uniform stress limit case (set W5) and the
uniform deformation gradient limit case (set W1). Hence,
despite its higher computational cost, from the viewpoint of
accuracy all GGCM simulations discussed in the subsequent
sections were carried out using a uniform stress initial incre-
ment. Note, however, that the method based on a uniform
deformation gradient initial increment remains an attractive
alternative under conditions generating negligible to moder-
ate differences between the deformations in individual grains
i.e., sets W1–W3 in Table 2.

4.4 Influence of weighting factors αi and sample
composition

In this section the effects on the GGCM response by the
weighting factors, αi with i = 1, 2, 3, see (27), and the sam-
ple composition are demonstrated. For this purpose, a sample
subjected to simple shear deformation, up to γ̄ = 0.2, is
analyzed for five different sets of weighting factors, W1–
W5, as listed in Table 2, and two different microstructural
compositions, S1 and S4 (of 8 grains and 200 grains in
total, respectively), see Table 1. The samples S1–S6 pre-
sented in Table 1 were recently subjected to an extensive
convergence study using an accurate finite element model
of 30 × 30 × 30 elements, which demonstrated that sam-
ple S4 represents a lower bound for the number of grains
required for reaching a macroscopic representative volume
element (RVE), see [43] for more details. Accordingly, by

comparing the response of the “minimal” RVE sample S4
to the response of the “small sample” S1, the influence by
the discreteness of the microstructure on the overall response
can be highlighted. A detailed analysis of the convergence
behavior of the GGCM responses, including all samples
S1–S6 summarized in Table 1, will be presented in Sect.
4.5.

In order to clearly illustrate some essential features of
the weighting factors, first for sets W1, W2, and W5
the main Piola–Kirchhoff shear stress distribution P̄12 in
sample S2 is considered at the final state of deforma-
tion γ̄ = 0.2, see Fig. 6. As can be observed from
Fig. 6a, in the limit of a uniform deformation gradient
(set W1) the kinematic compatibility between individual
grains is preserved, which occurs at the expense of vio-
lating the equilibrium requirements for the grains, i.e., the
shear stress P12 jumps significantly in value across grain
boundaries. The response shown in Fig. 6c for the limit case
of uniform stress (set W5) indeed satisfies the equilibrium
requirements, but clearly violates kinematic compatibility
between grains. The intermediate case (set W2) shown in
Fig. 6b corresponds to a compromise solution that partially
satisfies both the kinematic compatibility and equilibrium
requirements.

In Fig. 7 the evolutions of macroscopic state and internal
variables of the samples S1 and S4 are compared. The figure
illustrates the main Cauchy shear component T̄12, (Fig. 7a,
b) and the stress component T̄11 (Fig. 7c, d), i.e., grain clus-
ter averages, of the two samples, as a function of the applied
macroscopic shear deformation γ̄ . It further shows the evo-
lutions of the effective martensitic volume fraction ξ̄M in
the secondary, austenitic phase (Fig. 7e, f) and the effective
microstrain β̄F in the ferritic matrix (Fig 7g, h), with the latter
parameter being a measure for the amount of plastic defor-
mation generated. For both samples the GGCM responses
for the five different sets of weighting factors W1–W5 are
plotted together with the response obtained from an accurate
finite element-based DNS described in Sect. 4.1. As men-
tioned before, the GGCM simulations were carried out with
a uniform stress initial increment.
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Fig. 7 Average (macroscopic) Cauchy shear stress T̄12 (a, b), stress
component T̄11 (c, d), martensitic volume fraction ξ̄M (e, f) and micros-
train in the ferrite β̄F (g, h) in samples S1 and S4, respectively, plotted
as a function of the applied amount of shear γ̄ for different sets of

weighting factors W1–W5, see Table 2. The dashed lines represent the
corresponding DNS responses, obtained from an accurate 30×30×30
finite element model
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Table 4 Computational times
(sample loaded under simple
shear) of GGCM for distinct
weighting factors, using a
uniform stress initial increment
and two different samples, S1
and S4

Weighting CPU time sample S1 (h) CPU time sample S4 (h)

W1 (≈ uniform deformation gradient) 13 244

W2 3 39

W3 1.5 16

W4 0.5 7

W5 (→ uniform stress) 4.75 91

Decimals refer to fractions of 60 min

Both for samples S1 and S4 the limit cases of a uniform
deformation gradient (set W1) and a uniform stress (set W5)
provide relatively smooth response curves, which, as may
be expected from basic homogenization principles, respec-
tively overpredict and underpredict the DNS response. For
the intermediate sets with weighting factors W2–W4 the clos-
est resemblance with the DNS response is realized by set W2,
although for the small sample S1 some distinctive drops in
stress are observed, see Fig. 7a, c. These stress drops result
from a competition between the two opposing terms in the
objective functional J given by (27), which are the compat-
ibility term, α2 J2, and the equilibrium term, α1 J1 + α3 J3.
During the minimization procedure both terms occasionally
fluctuate strongly in magnitude, thereby showing a tendency
of compensating each other. Whenever the minimization of
the functional J was dominated by the derivative of the force
equilibrium term (i.e., the term ∂(α1 J1 + α3 J3)/∂ (FK )mn
following from (36) and (33)), the force equilibrium term
α1 J1 + α3 J3 decreased while the compatibility term α2 J2

increased. In contrast, this process was reversed when the
compatibility term α2 J2 became dominant. As demonstrated
by the shear stress response in Fig. 7a, this bifurcation-type
behavior is more apparent for the small sample S1, and
thus can be associated to the level of discreteness of the
microstructure. More discussion on the bifurcation sensitiv-
ity of the microstructural responses can be found in Sect. 5.

Under a stepwise change of the sets of weighting fac-
tors from W1 to W5 the corresponding Cauchy shear stress
responses T̄12 decrease monotonically, see Fig. 7a, b. A sim-
ilar order in the responses for the different sets of weighting
factors can be observed for the ferritic microstrain β̄F, see
Fig. 7g, h. In contrast, the responses of the stress component
T̄11 and the martensitic volume fraction ξ̄M do not follow this
regular order, see Fig. 7c–f. This difference can be explained
as follows. Under the applied isochoric shear deformation γ̄

the secondary austenitic phase transforms into martensite,
whereby the resulting volumetric expansion is compensated
for by the surrounding ferritic matrix under the generation of
normal stresses. Since the number of austenitic grains in sam-
ples S1 and S4 is relatively low (i.e., 1 grain and 24 grains,
respectively, see Table 1), the resulting predictions for the
effective stress component T̄11, and the martensitic volume
fraction, ξ̄M occasionally are sensitive to inaccuracies, and

therefore do not provide the regular order in responses men-
tioned above. Despite this aspect, for sample S4 all 4 response
curves computed with the set of weighting factors W2 follow
the corresponding DNS response curves reasonably well, see
Fig. 7b, d, f, h.

The computational times of the numerical simulations pre-
sented in Fig. 7 are summarized in Table 4. All simulations
were carried out with the uniform stress initial increment
method, since this initial estimate leads to a good balance
between computational accuracy and efficiency, see Sect. 4.3.
It can be observed that the computational times are the largest
for the uniform deformation gradient limit case W1. This
is, because the initial estimate provides a deformation state
that is incompatible at the grain boundaries, as a result of
which in W1 the most dominant term, α2 J2, representing
kinematic compatibility, see (33) and (36), initially is rel-
atively far off its minimum. Consequently, the number of
iterations required for finding a converged state that satisfies
kinematic compatibility is relatively large. Obviously, the
application of the uniform deformation gradient initial incre-
ment method will reduce the number of iterations for set W1,
since it matches the kinematic compatibility requirement and
also satisfies the multiscale kinematic constraint given by (9).
Recall, however, that this initial estimate may become inac-
curate and inefficient under conditions approaching the limit
case W5 of a uniform stress in the sample, see Sect. 4.3.

Table 4 shows that the computational time decreases when
the set of weighting factors is changed stepwisely from W1
to W4. In accordance with this trend and the discussion pre-
sented above, it is somewhat counterintuitive to observe that
the computational time for the uniform stress limit case W5,
instead of being the lowest, is significantly higher than that
of sets W2, W3 and W4. This can be explained, however,
from the correction step that projects the uniform stress initial

estimate for the deformation gradient, d̂
s+1

, given by (63),
within the feasible solution space that satisfies the multi-
scale kinematic constraint (9), leading to the projected initial
deformation gradient increment ds+1, see (49) and (52) as
well as Fig. 3. Accordingly, for step s + 1 the starting val-
ues for the local deformation gradients in the minimization
algorithm xs+1,0 = xs +ds+1, see (47), do not fully reflect a
state of uniform stress. This makes the minimization process
for reaching the uniform stress limit case W5 computation-
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ally more demanding than for the “intermediate” sets W2,
W3 and W4 for which the stress distribution in the sample is
(far) less uniform.

4.5 Calibration procedure

From the results presented in Sect. 4.4 it became clear that
the weighting factors α1, α2 and α3 and the sample size play
a major role in (i) the accuracy and (ii) the computational
efficiency of the generalized grain cluster method. If the ana-
lyst wants to adequately account for these two aspects in the
calibration of the weighting factors, a parametric analysis
similar to that presented in Sect. 4.4 needs to be performed.
By inspection of Fig. 7 it was concluded that the set W2
provides the best agreement with the DNS response; there-
fore the parameters αi (with i = 1, 2, 3) of set W2 may be
referred to as the “calibrated weighting factors”. A sensitivity
analysis of these weighting factors has indicated that differ-
ences in GGCM responses become significant only when the
ratio α2/α1 is modified by at least a factor of 2. For example,
Table 2 illustrates that the change in α2/α1 in the transition
of set W2 to set W3 equals a factor of 4. As further shown in
this table, the method becomes rather insensitive to changes
in the ratio α2/α1 close to the uniform deformation gradi-
ent limit case W1 (α2/α1 approaches infinity) or the uniform
stress limit case W5 (α2/α1 approaches zero). If the exper-
imental data required for calibration is not readily available
or if the analyst wants to “design” a material starting from
its microstructural features, the relation between the micro-
scopic behavior and the effective macroscopic response may
be initially estimated using “default” weighting factors in the
range of set W2.

In principle, the calibration procedure should be carried
out with a grain cluster corresponding to a macroscopic
representative volume element (RVE). Similar to common
procedures used for multiscale simulations based on the finite
element method, the minimally required size of an RVE for
the GGCM may be established from a convergence analysis
of the macroscopic response on grain clusters of increas-
ing size. As mentioned before, the microstructures S1-S6
presented in Table 1 were recently subjected to such a con-
vergence study, performed with an accurate finite element
model of 30×30×30 elements [43]. The results of this con-
vergence study are here compared to that of a convergence
study carried out with the GGCM, by computing the relative
difference in macroscopic response for the individual sam-
ples S1-S6. The macroscopic response is reflected by two
distinct macroscopic variables, which are the main Cauchy
shear stress T̄12 and the martensitic volume fraction ξ̄M. The
main shear stress is representative of the whole grain cluster
whereas the martensitic volume fraction reflects the aver-
age value in the secondary (austenitic/martensitic) phase. As
indicated by Fig. 8a, for both macroscopic variables the rel-

ative difference in response is based on an L2 norm, which
is taken over the complete deformation path from γ̄ = 0 to
γ̄ = 0.2. For an arbitrary scalar function f̄ = f̄ (γ̄ ), this
norm thus may be expressed as

‖ f̄ ‖L2 =
(∫ γ̄=0.2

γ̄=0
f̄ 2dγ̄

)1/2

. (68)

The GGCM response to simple shear for all samples S1-
S6 was computed using the same set of weighting factors
W2. As shown in Fig. 8a, the shear stresses predicted by
GGCM and the accurate finite element-based DNS simula-
tion remain within 5 % difference when the number of grains
grows. Furthermore, the difference between the martensitic
volume fractions calculated by the GGCM and DNS simu-
lations oscillates around 15 % at a larger number of grains.
Hence, the predictions by the GGCM and DNS simulations
appear to have similar rates of convergence, from which it
can be concluded that the minimal macroscopic RVE for
the two methods is identical, i.e., the “minimal” RVE sam-
ple S4 with 200 grains in total. An additional observation
from Fig. 8a is that, once a set of weighting parameters has
been calibrated for a small sample, it can be subsequently
used for an alternative, larger sample without significantly
compromising to the accuracy of the results. Accordingly,
the calibrated weighting factors appear as “objective”, in a
sense that they do not need to be modified when analyzing
alternative microstructures. In addition, by using a sample
that is smaller than the minimal RVE sample, this character-
istic leads to a quick and straightforward calibration of the
weighting factors. For example, in the present study sample
S2 was used for a quick calibration of the weighting factors
W2, see Sect. 4.3, which is composed of about three times
fewer grains than the minimal RVE sample S4, see Table 1.

4.6 Performance assessment of GGCM in comparison
to DNS

Fig. 8b illustrates the overall computational performance of
the GGCM by depicting the CPU time for samples S1–S6
versus the corresponding number of grains in the sample. All
computations were carried out on the same single-processor
computer, using the uniform stress initial increment method
and the set of weighting factors W2. The six data points
depicted are approximated by a linear relation (dashed line)
up to an R2-value of 0.8743 calculated by a least squares
regression. The linear relation between the GGCM compu-
tational time and the total number of grains Ngr in the sample
results from solving the local deformation gradient per grain,
whereby the average computational effort per grain (i.e., the
update of the stress, internal variables and tangential stiff-
ness) is nearly independent of the total number of grains
Ngr . In contrast, the computational time associated to a finite
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12 of sample S4 under simple shear (γ̄ = 0.2), computed for differ-
ent FEM mesh sizes M corresponding to 83, 153, 203 and 303 elements
in total. The DNS reference value T̄12 characterizing the relative L2
error was computed using a fine FEM mesh of 403 elements. For com-

parison, the relative error for the GGCM simulation of sample S4 (also
measured with respect to the DNS reference value T̄12) is specified by
the dashed line. The GGCM simulation uses the set of weighting fac-
tors W2, see Table 2. b Computational time (in CPU hours) of sample
S4 for different mesh sizes of the DNS. For comparison, the GGCM
computational time of sample S4 is indicated by the dashed line

element calculation typically scales with the power n of the
number of elements, where n > 1. Hence, it depends on the
number of grains indirectly by means of the number of ele-
ments per grain required for achieving a converged solution
to within a specific tolerance. Since the finite element models
of the samples S1 to S6 use comparable 30×30×30 meshes,
they are characterized by similar computational times, in the
range of 220 ± 30 CPU hours.

For an objective evaluation of the computational cost
of the GGCM, its computational time should be compared
against that of a finite element model of the same accuracy.
As pointed out in Sect. 4.3, the calibration procedure of the
GGCM under simple shear was efficiently performed using
a relatively small sample S2 (64 grains in total), which led to

the set of weighting factors W2. With these weighting fac-
tors the shear response of the “minimal RVE sample” S4 (200
grains in total) was computed, see Fig. 7 in Sect. 4.4. The
accuracy of this GGCM solution will now be quantified with
respect to a reference DNS solution, calculated using a finer
finite element mesh of 403 = 64, 000 hexahedral elements.
Subsequently, the computational speed of this GGCM solu-
tion will be compared against that of a DNS solution with the
same accuracy. This DNS solution can be traced back from
FEM responses obtained for distinct finite-element meshes
of 83, 153, 203 and 303 hexahedral elements (equipped with
a reduced integration scheme), by evaluating their accura-
cies measured with respect to the reference DNS solution
obtained for the mesh of 403 elements. The accuracies of
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these distinct FEM solutions are plotted in Fig. 9a by means
of the error in the main Cauchy shear stress T̄DNS

12 , measured
with respect to the main Cauchy shear stress T̄12 computed
with the accurate FEM model of 403 elements in terms of an
L2 norm.

The figure also shows the relative L2 error of the GGCM,
which is slightly below 2 %. It can be observed that the errors
of the FEM calculations range from about 6 % for a coarse 83

element mesh to about 1 % for a fine 303 element mesh. By
means of straightforward interpolation, the FEM model with
the same 2 % error as the GGCM turns out to consist of about
243 elements, see Fig. 9a. The computational times for the
various FEM discretizations are shown in Fig. 9b. For com-
parison purposes, the simulations with coarser meshes (83,
153 and 203 elements) were carried out with the same time
step as applied in the GGCM, namely 
t = 5 s. As already
indicated in Sect. 4.1, the time step used for the 303 element
mesh had to be reduced to 
t = 3.2 s to avoid convergence
problems. The GGCM requires 39 CPU hours to complete a
simulation for sample S4. In contrast, through a simple inter-
polation it can be estimated that a finite element simulation
with a 243 element mesh requires about 160 CPU hours for
completing this task, which thus is about 4 times more CPU
time than the GGCM.

It is worth pointing out that by using the uniform defor-
mation gradient increment method (Sect. 3.5.1) instead of
the uniform stress increment method (Sect. 3.5.2), an addi-
tional decrease in the GGCM computational time of about a
factor of 2 can be expected, see Table 3, which then makes
the GGCM about eight times faster than the FEM simulation
with 243 elements. Obviously, for accomplishing this result
a recalibration of the weighting factors is required.

The part of the CPU time spent on iteratively solving
the mathematical equations of the GGCM can be globally
subdivided into (i) the time required at the local level of an
integration point by the implicit update algorithms (for crys-
tal plasticity and crystallographic phase transformations) to
compute the stress and consistent tangent stiffness in each
grain, and (ii) the time required at the global (system) level
by the constrained gradient descent algorithm for minimizing
the objective potential reflecting the equilibrium conditions
and kinematic compatibility conditions of all grains. The
update algorithms used at the integration point level are the
same as used in the integration points of a finite element-
based DNS, where, for the incremental step size and specific
crystallographic models used in the current simulations, con-
vergence is typically reached within 10 iterations. Note that
the GGCM only uses the equivalent of one integration point
per grain, while a representative DNS with a sufficiently fine
mesh of 24 × 24 × 24 elements on average uses 70 inte-
gration points per grain when computing the response for
the minimal RVE size of 200 grains in total (Sample S4,
Table 1). The resulting gain in computational efficiency by

the GGCM is partly lost at the system level due to the rela-
tively large (100–200) iterations required for convergence of
the constrained gradient descent algorithm. Hence, for fur-
ther increasing the efficiency of the GGCM it is worthwhile
investigating the application of faster numerical algorithms
at the system level. This remains a topic for future studies.

5 Concluding remarks

The generalized grain cluster method presented in this
communication can be used for the efficient and accurate sim-
ulation of advanced multiphase microstructures composed of
a large number of grains of arbitrary shape. It was demon-
strated that an accurate calibration of the GGCM can be
performed relatively quickly by using samples smaller than
the “minimal RVE sample”. For samples subjected to sim-
ple shear deformation, a comparison of the computational
results with those obtained from finite element-based direct
numerical simulations indicated that, for a given accuracy,
the computational speed of the GGCM may be up to almost
an order of magnitude lower, i.e., a factor of 8. This moti-
vates the application of the GGCM in multiscale analyses
of large-scale engineering problems, whereby the solution
to the macroscale problem is calculated by the finite ele-
ment method, and the material response at the microscale
is computed by the GGCM. The coupling between the two
methods is rather straightforward; since the GGCM uses
the macroscopic deformation gradient as input for solving
the microscale response of a multiphase material, it can be
naturally included in commercial finite element codes as a
user-supplied subroutine at the integration point level, where
the effective stress and the effective constitutive tangent
stiffness calculated for the multiphase material are returned
by the GGCM to the finite element model. Obviously, the
gain in computational time compared to a multiscale FE2

approach will be considerable for large-scale engineering
problems, since with the GGCM a relative decrease in
computational time up to almost an order of magnitude is
obtained for every macroscopic integration point in the FEM
model.

Due to the overdetermined system of equations that char-
acterize the GGCM, the collection of possible microscale
solutions contains numerous local minima. Accordingly,
under an incremental macroscopic deformation, a stationary
point may jump from one local minimum to another local
minimum. These fluctuations may be activated by numerical
inhomogeneities such as the value of the incremental step
size, the convergence criterion applied or the initial estimates
used in the iterative solution procedure. In the simulation
results presented in this communication, the bifurcation
sensitivity of the solution became manifest through local
variations in some of the responses computed, as observed
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in the variation studies on the time step (see Fig. 4a, b),
the initial estimate for the incremental deformation gradi-
ent (see Fig. 5a–c), and the GGCM weighting factors (see
Fig. 7a, c, e). In addition, the oscillatory convergence behav-
ior of microstructural samples under an increasing number of
grains (see Fig. 8a) also implies a bifurcation sensitivity of
the response. However, the numerical results in Figs. 4, 5, 7
and 8 also show that fluctuations due to bifurcations (substan-
tially) diminish once (the size of) the numerical parameters
and the size of the RVE are adequately determined. A further
reduction of the fluctuations may be obtained by applying
numerical regularization techniques in the iterative update
algorithm applied at the system level, which is a topic for
future research.
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Appendix

Trace of the curl of the composition of two tensor-valued
functions.

To derive the weak formulation of the compatibility equation,
it is required to integrate by parts the curl of the composition
of two tensor-valued functions. A useful formula for this pur-
pose is derived in this appendix. LetG = G(x) andF = F(x)
be two tensor-valued functions of a vector x. The cartesian
components of these functions are denoted as Gi j and Fi j ,
with i, j = 1, 2, 3. Let tr be the trace operator and ∇ × (·) be
the curl with respect to x. Consider the term tr (∇ × (GF)),
which can be written in cartesian components as

tr (∇ × (GF)) −→ εki j
(
GmnFnj

)
,i δkm, (69)

where (·)·,i denotes partial differentiation with respect to
xi and implicit summation is assumed on repeated indices
(see also Sect. 2.3 for additional notation). This term can be
expanded as

εki j
(
GmnFnj

)
,i δkm = εki j

(
Gmn,i Fnj + GmnFnj,i

)
δkm

= εmi jGmn,i Fnj + εmi jGmnFnj,i .

(70)

Using the properties of the alternator (permutation) tensor,
the first term on the right hand side of (70) can be written as

εmi jGmn,i Fnj = −ε j imG
T
nm,i Fnj ,

which can be expressed in direct notation as

−ε j imG
T
nm,i Fnj −→ −

(
∇ × GT

)
· FT . (71)

The second term on the right hand side of (70) can be
formulated in direct notation as

εmi jGmnFnj,i −→ (∇ × F) · G . (72)

Combining (69)-(72) yields the following relation

tr (∇ × (GF)) = −
(
∇ × GT

)
· FT + (∇ × F) · G . (73)
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