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Abstract The present paper solves numerically the prob-
lem of vibrations of infinite structures under a moving load. A
velocity formulation of the space–time finite element method
was applied. In the case of simplex shaped space–time finite
elements, the ‘steady state’ dynamic behaviour of the system
was obtained. A properly performed discretization allowed
of propagating information in a given direction at a limited
velocity. The solutions were obtained under the assumption
that the deformation is quasi-stationary, i.e., stationary in the
coordinate system that moves with the load. The unbounded
Timoshenko beam subjected to a distributed moving load
was used as a test example. The dynamical system is placed
on an elastic foundation. The matrices describing an infinite
dynamical system subjected to a moving load are derived
and the stability of the numerical scheme is analysed. The
numerical results are compared with the analytical solutions
in the literature and the classical numerical method.

Keywords Vibrations · Moving load · Steady-state ·
Space–time element method · Simplex shaped elements ·
Infinite systems

1 Introduction

Simulations of a moving load travelling along a periodic
structures are extensively performed in modern transporta-
tion, robotics, industry, etc. The velocities of moving objects,
such as a train, can grow rapidly. As a result, we can observe
a new phenomenon that has not been properly investigated.
Particularly important are wave problems when the train
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velocity gets close to the characteristic wave velocities gen-
erated in a railroad track. This results in an increasing stress
in the rail, which can cause a buckling of the track [13,
17,18]. Waves phenomena are also important in catenary–
pantograph dynamic interaction problems [2,11,15]. Broad
overview of the numerical methods is presented in the paper
[25]. It discuss in detail the ways of modeling of pantographs
and overhead contact lines. The results of numerical simula-
tions and experimental studies are also presented.

In literature we can find different models of generation
and propagation of vibration in an unbounded structure. In
the case of simple structures for the track or catenary and the
moving loads, analytical solutions of the problem are known.
The solution can be found in a moving coordinate system,
and then the complex Fourier transform must be applied.
Finally, we obtain the structural response in the form of stand-
ing waves [10,21] or travelling waves [1,8,9]. Broad review
of analytical solutions of the load moving along an infinite
beam on an elastic foundation was presented in [16]. In more
complex models numerical methods can be used. Numerical
description of the loads travelling along a string, beams or
plates have been widely presented in the literature [3,14,27].
This concerns both the classical FEM with spatial discretiza-
tion as well as space–time discretization. Recent paper of
numeric calculations concern mainly inertial loads. In [12]
the multiplex shaped space–time finite element approach
applied to general description of a moving inertial load.

In numerical simulations an infinite structure is replaced
by a finite one. In order to minimize the influence of wave
reflections from the ends of the structure, the numerical meth-
ods require the simulation of large sections of a track or a cate-
nary. This approach results in a task with a large number of
degrees of freedom and this significantly increases the com-
putational time. Different methods of eliminating adverse
phenomena have been used [19,20,28]. Artificial boundary
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Fig. 1 Information flow in methods with full inertia matrix

conditions applied to the edges of the structure have been
designed to suppress the reflected waves. These methods are
acceptable in problems where we can predict the shape of
the reflected wave.

Presented in mainstream literature numerical simulations
of dynamic systems are based on the explicit and implicit
methods of the integration at time. Due to the form of the
inertia matrix various methods of calculation have important
feature in wave problems. It is the way of the information
flow in space–time mesh during the step-by-step calcula-
tions. Propagation of information is a kind of wave unrelated
to physical system but associated with the numerical sys-
tem. According to [22] the schematic information flow in the
classical schemes of the numerical integration is presented
in Fig. 1.When the matrix of inertia is consistent or band, the
information is transferred from node to node in the succes-
sive time step with an infinitely high speed. This mechanism
of information flow is presented on Fig. 1. A disturbance F
at one point of the structure is influences to every node of
the system. An impulse applied to a node of the mesh results
in non-zero values in the entire space–time mesh in succes-
sive time steps. This is not a physical feature in the case of
wave problems. The infinite information speed in space–time
mesh occurs both in explicit and implicit methods. This fea-
ture is characteristic for multiplex shaped space–time finite
element approaches. If the inertia of the structure can be pro-
vided as a diagonal matrix of inertia, the calculation scheme
is simplified. We obtain a system of the separated algebraic
equations. According to Fig. 2 in each successive time step
an initial single impulse of the external force F propagates
to the neighboring nodes in the spatial mesh at a rate of one
node in one step. Therefore, the information propagates at
a finite speed in both directions. Thus the type of the space–
time mesh and the time integration scheme influences results.
The limited velocity of the information flow is characteristic
for hyperbolic problems while the infinite speed is typical
for parabolic problems. This parabolic-like behaviour of the
wave solutions is considered as a serious disadvantage, since
wave reflections from boundaries of the mesh influence sig-
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Fig. 2 Information flow in explicit methods with diagonal inertia
matrix
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Fig. 3 Simplex shaped finite elements

nificantly the region moving along the theoretically infinite
domain.

In order to avoid these disadvantages, we will use the sim-
plex shaped space–time finite element method. This special
type of space–time finite elements has an interesting prop-
erty. It allows the flow of numerical information in one direc-
tion at a limited speed. It results in triangular matrices of
resulting systems of algebraic equations. Examples of one-
dimensional simplex elements are depicted in Fig. 3. In the
case (a) the information flows from left to right while in the
case of (b)–oppositely. In the further sections of the paper
we consider the case (a). The property of one-way informa-
tion flow can be successfully used in moving load problems.
If we use triangular elements with its slope sides directed
to the moving load, the specific selection of the space–time
element size (b/h ratio) allows us to coincide the character-
istic line of the speed of numerical information wave with
the speed of external moving load in the structure. Therefore
a properly performed discretization allows the propagation of
information in a given direction at a reduced velocity (Fig. 4).
Nodes of the mesh before the front of the moving load are
not disturbed by non-physical informations in the successive
time steps, as in conventional numerical methods. Thus infor-
mation, and consequently the reflected waves following the
subjected nodes, never reach the moving load. The area of
disturbances caused by the load allows us to limit the obser-
vations to a region located in a closed neighbourhood of the
load position (Fig. 5).
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Fig. 4 Information flow in a simplex shaped space–time finite element
mesh
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Fig. 5 Subsystem of finite elements around the moving load

Isolation of the subsystem of finite elements allows us to
bind the reference system and a moving load. Therefore, if
in the physical system a stationarity of a phenomenon occurs,
we can simply assume it in our considerations. The steady-
state problem can not be solve by conventional numerical
methods without artefacts.

In this paper, we focus on numerical approach with the
propagation of information in a given direction at a reduced
velocity. Considered solution of a simplified model of some
systems that can be directly related to engineering problems.
An unbounded Timoshenko beam resting on elastic supports
was taken as a reference problem and solved numerically.
The stationary solutions are considered. Elementary matri-
ces describing the beam, the boundary conditions, and the
distributed moving load are derived. Then a comparison with
the literature examples and the discussion of numerical and
analytical solutions are given. The next section includes notes
on the stability of the numerical approach. Finally, some con-
cluding remarks will summarize all these considerations.

2 Formulation of the problem and analytical solution

Let us consider an unbounded Timoshenko beam resting on
an elastic foundation (Fig. 6). The equations of motion are
written in following form

w,θ EI, kGA
vP

x

0 0

Fig. 6 Timoshenko beam under moving load

ρAẅ − kG A
(
w′′ − θ ′) + cw = H(x − v0t)P0,

ρ I θ̈ − E Iθ ′′ − kG A
(
w′ − θ

) = 0 ,
(1)

where dot and prime denote the differentiation with respect
to t and with respect to x . The coordinate x is fixed to the
beam, t is time variable, and c is the elastic coefficient of
the foundation. A uniformly distributed load travelling along
the beam with a constant speed of v0 is described by the
Heaviside step function H . The remaining parameters of a
Timoshenko beam with a constant cross-sectional area A,
moment of inertia I , mass density ρ, Young’s modulus E ,
shear modulus G, and shear coefficient k are known. The
motion of the structure is completely described by the set of
Eq. (1).

This problem was solved analytically in [8] and examples
given there were used to verify our numerical solutions. The
analytical solution describes the stationary case. According
to moving coordinate system

x̄ = x − v0t (2)

fixed with the front of the load the equations of motion (1)
can be written in the ordinary differential form with respect
to spatial variable. Let us introduce the following notation:

v∗
1 = √

kG/ρ , v∗
2 = √

E/ρ , l∗ = √
I/A ,

v∗ = l∗
√

c/(ρA) , V = v0/v∗ ,
W = w/ l∗, � = θ/ l∗, X = x̄/ l∗ ,
Vi = v∗

i /v
∗ (i = 1, 2) , P = P0

√
A/(I c2).

v∗
1 and v∗

2 are the bending wave speed and shear wave speed
in the Timoshenko beam, respectively. The set of Eq. (1) is
reduced to a fourth order differential equation in terms of
displacements or rotations. In the case of rotation we obtain

D (V2)d4
�

dX4 + [
V2

(
V2

1 + 1
) − V2

2

] d2
�

dX2 + V2
1�

= PV2
1δ(X)

(3)

in which

D(V2) =
(
V2 − V2

1

) (
V2 − V2

2

)
. (4)

Contrary to the displacement case, the form of (3) enables
the Fourier transformation and simple return to the spa-
tial domain. According to (1) and the explicit form of the
rotational solution we can derive the displacements of the
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beam. The coefficients of Eq. (3) depend on the character-
istic dimensionless velocities. Due to the coefficients, the
equation of the Timoshenko beam (3) can assume hyper-
bolic or parabolic type of the differential equation. So, these
characteristic dimensionless velocities V1 and V2 are impor-
tant for qualitative properties of the solutions. Two cases:
V2

2 > V2
1(V

2
1 + 1) (hyperbolic type) and V2

2 < V2
1(V

2
1 + 1)

(parabolic type) are considered. They result in particular
forms of the solution of (1). Distinction between these two
types of the solutions can be important for calculation of engi-
neering structures such as railway tracks. When the simpli-
fied model is taken into account, the partial weight of the bal-
last is associated with the mass of the rail. Properly designed
classic railway track fulfills the hyperbolic type of the dif-
ferential equation. The increase of the ballast weight, that
can occur in the case of hydration, the transverse wave speed
increases. The type of the problem starts to be parabolic.
Both cases of analytical solution exhibit different responses
of the system to the same velocities of the moving load. In the
space–time finite element solution the split of the differen-
tial equation of Timoshenko beam to hyperbolic or parabolic
type has no direct relevance. However, both cases were con-
sidered since numerical results are compared with analytical
solutions. More detailed discussion of the presented analyt-
ical solutions can be found in [8].

3 Simplex shaped space–time approach

The conception of symplectic elements was proposed for
the first time in [23]. In [4], a displacement variant of the
triangular space–time finite element method was successfully
applied to beams. A velocity variant was presented in [3].
Simplex shaped elements have been used in contact problems
[5] and tested in the context of advection–diffusion Eq. [7].

This continuous Galerkin method discretizes the spatial
variables and time variable simultaneously. Therefore, we
can postulate a balance of energy over the interval of time,
not only at some moments. In the formulation of the method,
we integrate the physical quantities analytically in the time
interval rather than numerically, as in the classical finite ele-
ment method. The numerical method presented will be used
to solve the evolutionary processes of the vibrations. In this
paper, the velocity formulation of the space–time finite ele-
ment method is used. The equations of motion are discretized
both in space and time. This means that in the present numer-
ical scheme the velocity is distributed in a finite space–time
element according to interpolation functions and nodal veloc-
ities in two adjacent time layers used as parameters. The ana-
lytic form of the velocity function in space and time allows the
integration and differentiation with respect to these variables.
Functions of displacement and acceleration determined in
this way, however, still depend on the nodal velocities. Thus,

as the result we have both inertia and stiffness matrices mul-
tiplied by velocities. The integration of the velocity function
with respect to time results in the displacement function and
contains the term with initial displacements in time layer. Ini-
tial displacements in each time step of time stepping scheme
in the final equation of force equilibrium express nodal forces
at the beginning of time interval. According to the equations
of motion (1) calculated acceleration and displacement func-
tions allow the analytical determination of the energy of the
system. The energy of the external forces is derived from the
right hand side of the Eq. (1). Classical energy minimization
and assembly of the global system leads to the following
matrix solution scheme

(
Mg + Kg

) {
vi

vi+1

}
+ Eg wi = Fg . (5)

Here, i and i + 1 denote the known and calculated state,
respectively. The problem is reduced to the numerical solu-
tion of the system of algebraic Eq. (5). The vector v contains
the velocity of the nodal displacements and angles of rota-
tion, and the vector w contains the nodal displacements and
the angles of rotation. Mg , Kg , and Eg are the global matri-
ces of inertia, stiffness, and nodal forces. Fg is the global
vector of external forces. The global matrices are assembled
from the local matrices M, K, and E, which will be derived
further. These elemental matrices are merged in appropriate
locations of the global matrices, based on the topology of the
mesh. Similarly, the global load vector is assembled from
elemental force vectors F. This vector can assume zero val-
ues or values describing the distributed external load in finite
elements. According to the current position of the moving
load, the vector Fg varies in each time step. The vector Fg

has zero components at the beginning and in each successive
time step gains new non-zero values contributed by vectors
F. The current vector of displacements and rotation angles
can be computed using

wi+1 = wi + hvi+1 . (6)

The partition of the space–time area into elements of simplex
shape allows us to obtain the stationary solution numerically.
In order to demonstrate the properties of the method, let us
consider a single simplex finite element as depicted in Fig. 3a.
In this case, two space–time subdomains �A ={(x, t): 0 ≤
x ≤ b, hx/b ≤ t ≤ h} and �B ={(x, t): 0 ≤ x ≤ b, 0 ≤
t ≤ hx/b} are defined. We assume a linear distribution of
the velocity displacements v = ẇ and the velocity rotation
angles ψ = θ̇ inside the triangular element:

v = ẇ(x, t) = a1x + a2t + a3,

ψ = θ̇ (x, t) = a1x + a2t + a3.
(7)
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In the finite element shown in Fig. 3a, the interpolation of
nodal velocities can be written

vA(x, t) = (1 − t/h) v1 + (t/h − x/b) v3 + (x/b) v4,

vB(x, t) = (1 − x/b) v1 + (x/b − t/h) v2 + (t/h) v4 .

(8)

The same shape functions were assumed for the velocities
of the nodal rotations. Below, calculations for part A of the
space–time finite element are presented. We must emphasize
here that in the case of part B, the procedure will be totally
analogous. Nodal displacements and rotation angles can be
written as the integrals of the velocities:

wA(x, t) = wA0(x)+ ∫
vA(x, t) dt,

θA(x, t) = θA0(x)+ ∫
ψA(x, t) dt .

(9)

In order to determine the virtual energy of the problem, we
multiply the equations of motion (1), by the virtual functions
v∗

A and ψ∗
A and integrate the resulting power over the space–

time domain�A. We consider a distributed load and assume
that the load is moved in each time step from one finite ele-
ment to another, without intermediate steps. The Heaviside
step function describing the external load is replaced by a
constant function. Thus, virtual energy of the part A of the
space–time is given by the following form

ρA
∫
�A
v∗

Av̇A d�A − kG A
∫
�A
v∗

A

(
w′′

A − θ ′
A

)
d�A

+c
∫
�A
v∗

AwA d�A = P0
∫
�A
v∗

Ad�A,

ρ I
∫
�A
ψ∗

Aψ̇A d�A − E I
∫
�A
ψ∗

Aθ
′′
Ad�A

−kG A
∫
�A
ψ∗

A

(
w′

A − θA
)

d�A = 0 .

(10)

The proper choice of virtual functions is a fundamental ques-
tion of the space–time approach. Various functions in time
result in solution schemes of different accuracy and stabil-
ity. Virtual function review in the case of multiplex shaped
space–time finite element approach is presented in [6]. In
this case the virtual linear shape function is assumed. After
integration by parts, we have

ρA
∫
�A
v∗

Av̇A d�A + kG A
∫
�A

(
v∗

A
′w′

A + v∗
Aθ

′
A

)
d�A

+c
∫
�A
v∗

AwA d�A = P0
∫
�A
v∗

Ad�A,

ρ I
∫
�A
ψ∗

Aψ̇A d�A + E I
∫
�A
ψ∗

A
′θ ′

Ad�A

−kG A
∫
�A
ψ∗

A

(
w′

A − θA
)

d�A = 0 .

(11)

The classical energy minimization of (11) leads us to the
matrices MA, KA, and EA for part A of the simplex element.
We do the same for part B. After aggregating the matrices of
parts A and B, we get the local matrices of inertia, stiffness,
and nodal forces:

M = ρb

6h

⎡

⎢⎢
⎣

−A 0 0 0
0 −I 0 0

−A 0 −A 0
0 −I 0 −I

∣∣∣
∣∣∣∣∣

A 0 0 0
0 I 0 0
A 0 A 0
0 I 0 I

⎤

⎥⎥
⎦ ,

(12)

K = E I h

3b

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

∣∣
∣∣∣∣∣∣

0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

⎤

⎥⎥
⎦

+ cbh

120

⎡

⎢⎢
⎣

9 0 0 0
0 0 0 0
11 0 5 0
0 0 0 0

∣∣∣∣∣
∣∣∣

2 0 4 0
0 0 0 0
−2 0 11 0
0 0 0 0

⎤

⎥⎥
⎦

+ kG Ah

384

⎡

⎢⎢
⎣

0 0 0 0
0 23b 0 0
0 −16 0 16
16 52b −16 5b

∣
∣∣∣∣∣∣
∣

144/b −40 −144/b 40
40 −3b −40 20b
−144/b −72 144/b 72
72 −8b −72 39b

⎤

⎥
⎥
⎦ , (13)

E = E I

2b

⎡

⎢⎢
⎣

0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

⎤

⎥⎥
⎦

cb

24

⎡

⎢⎢
⎣

3 0 1 0
0 0 0 0
3 0 5 0
0 0 0 0

⎤

⎥⎥
⎦

+kG A

16

⎡

⎢⎢
⎣

8/b −2 −8/b 2
2 b −2 b
−8/b −6 8/b 6
6 3b −6 3b

⎤

⎥⎥
⎦. (14)

The stiffness matrix K (13) and nodal forces matrix E (14)
can be split into three parts: a part related to bending, a part
related to foundation, and a part related to shear. Assum-
ing the linear shape function (7) in virtual energy (11), we
indicate that the bending strain component is constant and
the shear strain component varies linearly. In this case the
exact integration of the shear strain components in virtual
energy (11) results in the element which is too stiff. This
over-stiffness of the element is known and is called locking.
The shear components in relation with the bending compo-
nent are high. A reduced integration of the shear part is a clas-
sical literature remedy. Bending terms are integrated exactly
while shear terms are integrated with only one point of the
Gauss quadrature. More details can be found in [24,26], e. g.
As mentioned previously, the matrices (12), (13), and (14)
were assembled into the global matrices Mg , Kg , and Eg .

As a result of the space–time integration of the right hand
side of (11), the local vector of external force takes the fol-
lowing form
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Fig. 7 Characteristic form of the displacement wave at dimensionless
speed V2 = 4

F = P0b

6

⎡

⎢⎢
⎣

1
0
2
0

⎤

⎥⎥
⎦ . (15)

Finally, according to the current position of the travelling
distributed load, we fill up the global external load vector
Fg with the local vectors (15), based on the subjected nodes.
These nodes alter from step to step.

4 Numerical results

As mentioned in Sect. 2 the numerical results was compared
with analytical solution from [8]. We present two examples
that depend on the dimensionless shear wave speed V1 and
dimensionless bending wave speed V2. Each example consid-
eres three characteristic ranges of the dimensionless velocity
V of the moving load with qualitatively different solutions.
The resulting dimensionless displacements W are presented
in a dimensionless coordinate system, X, fixed to the beam.
According to the assumptions the stationary case is consid-
ered. The shape of the Timoshenko beam can be observed
in the moving frames of reference, i. e. the moving coordi-
nate system. The number of steps of calculation relates to
the velocity of the moving load. Properly selected number of
time steps allows us to plot accurately the curve of displace-
ment wave of the deformed Timoshenko beam. This number
of steps is required for the formation of displacement wave
in a region located in the neighbourhood of the front of the
load. In our case for V2 = 4 we used 40 steps while for V2 =
55 we used 16 steps.

4.1 The case of V2
2 > V2

1(V
2
1 + 1)

The characteristic form of the displacement wave at dimen-
sionless velocity V2 = 4 was captured and depicted in Fig. 7.
This velocity of the moving load is in the range described
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Fig. 8 Characteristic form of displacement wave at dimensionless
speed V2 = 8
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Fig. 9 Characteristic form of displacement wave at dimensionless
speed V2 = 55

by the condition V2 < V2
1. The solution tends monotoni-

cally to the asymptotes W = 0 and W = 1. In the range
V2

1 < V2 < V2
2, the dimensionless speed V2 = 8 was used.

The solution is illustrated by the curve in Fig. 8. The solu-
tion vanishes monotonically before the load front. If the load
is moving faster than the bending wave in the beam, i.e.,
V2 > V2

2, the characteristic form of the displacement wave
at dimensionless velocity V2 = 55 was presented in Fig. 9.
The displacements are equal to zero before the load front.

4.2 The case of V2
2 < V2

1(V
2
1 + 1)

Within the range V2 < V2
1, the solution at dimensionless

speed V2 = 4.5 is presented in Fig. 10. Some differences
between the analytical and numerical solutions are can be
seen. In this range the solution substantially changes its quan-
titative feature. In the analytical case, the solution consists
then of two noticeable waves. One wave with a low ampli-
tude and a short wavelength is placed in front of the load.
The second wave is characteristic of higher amplitude and
longer wavelength. It appears behind the load front. Prepared
numerical solution revealed deficiencies of plots of analytical
solution in the literature. The wave with a constant amplitude
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Fig. 10 Characteristic form of displacement wave at dimensionless
speed V2 = 4.5
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Fig. 11 Characteristic form of displacement wave at dimensionless
speed V2 = 6

behind and ahead the load front occurs but with a significantly
lower amplitude. In fact these waves are not visible in prac-
tice. Perhaps the author of the figure presenting the analytical
solution in [8] was going to highlight qualitative features of
his solution. The solutions for the range V2

1 < V2 < V2
2 and

V2 > V2
2 exhibit similar features to the solutions in subsec-

tion 4.1. The characteristic form of the displacement wave at
dimensionless speeds V2 = 6 and V2 = 15 are depicted in
Figs. 11 and 12, respectively.

The resulting numerical solutions were compared with the
classical implicit Newmark method. Characteristic forms of
the displacement wave are depicted in Figs. 13 and 14. Figure
13 corresponds to the hyperbolic case 4.1, whereas Fig. 14
corresponds to the parabolic case 4.2. A comparison between
the simplex shaped space–time finite element approach
and the classical Newmark approach revealed non–physical
response of the classically solved problem. We can observe
waves behind and ahead the load front which are results of
reflections from the end of the beam. The properties of the
presented numerical method allow the simulation of the infi-
nite structure. The results coincides with the analytical solu-
tions.
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Fig. 12 Characteristic form of displacement wave at dimensionless
speed V2 = 15
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Fig. 13 Displacement of the Timoshenko beam at dimensionless speed
V2 = 4 (hyperbolic case)
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Fig. 14 Displacement of the Timoshenko beam at dimensionless speed
V2 = 4.5 (parabolic case)

5 Notes on stability

This stability analysis is based on the assumption that the
numerical method can not transfer the error with increasing
amplitude from step to step. In order to investigate the stabil-
ity of the method, the characteristic set of equations binding
the nodal displacements with the velocities was built. Using
(5) and (6), we obtain
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Fig. 15 Influence of the space–time finite element size on the spectral
radius

{
vi+1

wi+1

}
= T

{
vi

wi

}
+ d, (16)

where T is the transition matrix. The Neumann necessary
condition is used as a stability criterion:

det (T − λI) = 0 . (17)

The eigenvalues of the transition matrix T must be within the
unit circle. Their moduli satisfy the inequality

ρ ≤ 1. (18)

The analysis of a single space–time element of the Timo-
shenko beam (Fig. 3a) was carried out. According to (16),
the element with four degrees of freedom leads to a matrix
T of size 8 x 8. Thus, a characteristic polynomial of high
order was obtained, and its roots can be calculated numer-
ically. Generally, they are complex numbers. For the case
V2

2 > V2
1(V

2
1 +1) discussed in subsection 4.1, the analysis of

the influence of the ratio size of the space–time element on
the spectral radius ρ was computed. The results of the calcu-
lations for the nodal displacements are shown in Fig. 15. The
horizontal axis shows the dimensionless length of the finite
element b which is related to the characteristic length l∗. The
vertical axis describes the dimensionless time step h, related
to the characteristic length l∗ and the velocity v∗. Both para-
meters are given using the notations in Sect. 2. According
to Fig. 15, the numerical method exhibits damping at higher
time step h. However, the stability region of the solution can
provide propagation of information at a limited velocity with
a wide range.

6 Conclusions

The space–time simplex shaped finite element approach sim-
ulates an unbounded system under a moving load. We consid-
ered the feature of the limited speed of information propaga-
tion in the finite element mesh. A special arrangement of the

mesh allows us to avoid wave reflections from boundaries.
This novelty can be used in practical engineering problems,
especially in transportation. The time anisotropic property of
the method allows us to reduce a large scale problem with
a multi-node mesh to a small system that in a few steps settles
down to a quasi-stationary solution. The reduced infinite sys-
tems, tested without the numerical tricks that others apply to
suppress the reflected waves from the boundaries of the struc-
ture, exhibit very good coincidence of the numerical results
with the analytical ones. Moreover, in the numerical analy-
sis, we can observe properties of the solutions identical with
those previously published that were obtained analytically.
Thus, the space–time anisotropy affects on the correctness
of the results of the numerical wave problems. The phenom-
enon of a limited speed of information propagation in the
space–time mesh can be used in multidimensional problems
of structures subjected to moving loads.
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