Skip to main content
Log in

A meshfree weak-strong (MWS) form method for the unsteady magnetohydrodynamic (MHD) flow in pipe with arbitrary wall conductivity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper a meshfree weak-strong (MWS) form method is considered to solve the coupled equations in velocity and magnetic field for the unsteady magnetohydrodynamic flow throFor this modified estimaFor this modified estimaFor this modified estimaugh a pipe of rectangular and circular sections having arbitrary conducting walls. Computations have been performed for various Hartman numbers and wall conductivity at different time levels. The MWS method is based on applying a meshfree collocation method in strong form for interior nodes and nodes on the essential boundaries and a meshless local Petrov–Galerkin method in weak form for nodes on the natural boundary of the domain. In this paper, we employ the moving least square reproducing kernel particle approximation to construct the shape functions. The numerical results for sample problems compare very well with steady state solution and other numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Alfvén H (1942) Existence of electromagnetic-hydrodynamic waves. Nature 150:405–406

    Article  Google Scholar 

  2. Atluri SN (2004) The meshless method (MLPG) for domain and BIE discretizations. Tech Science Press

  3. Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127

    Article  MathSciNet  MATH  Google Scholar 

  4. Atluri SN, Kim HG, Cho JY (1999) A critical assessment of the truly meshless local Petrov–Galerkin (MLPG) and local boundary integral equation (LBIE) methods. Comput Mech 24:348–372

    Article  MATH  Google Scholar 

  5. Atluri SN, Shen S (2002) The meshless local Petrov–Galerkin (MLPG) method: a simple and less-costly alternative to the finite element and boundary element methods. CMES: Comp Model Eng Sci 3:11–51

    MathSciNet  MATH  Google Scholar 

  6. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Meth Eng 37:29–56

    MathSciNet  Google Scholar 

  7. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Intern J Numer Methods Eng 37(2):229–256

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourantas GC, Skouras ED, Loukopoulos VC, Nikiforidis GC (2009) An accurate, stable and efficient domain-type meshless method for the solution of MHD flow problems. J Comput Phys 228:8135–8160

    Article  MathSciNet  MATH  Google Scholar 

  9. Bozkaya C, Tezer-Sezgin M (2007) Fundamental solution for coupled magnetohydrodynamic flow equations. J Comput Appl Math 203:125–144

    Article  MathSciNet  MATH  Google Scholar 

  10. Chang C, Lundgren TS (1961) Duct flow in magnetohydrodynamics. ZAMP 12:100–114

    Article  MathSciNet  MATH  Google Scholar 

  11. Dehghan M (2006) Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math Comput Simul 71:16–30

    Article  MathSciNet  MATH  Google Scholar 

  12. Dehghan M, Shokri A (2008) A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math Comput Simul 79:700–715

    Article  MathSciNet  MATH  Google Scholar 

  13. Dehghan M, Mirzaei D (2009) Meshless local boundary integral equation (LBIE) method for the unsteady magnetohydrodynamic (MHD) flow in rectangular and circular pipes. Comput Phys Commun 180:1458–1466

    Article  MathSciNet  Google Scholar 

  14. Dehghan M, Mirzaei D (2009) Meshless local Petrov–Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity. Appl Numer Math 59:1043–1058

    Article  MathSciNet  MATH  Google Scholar 

  15. Dehghan M, Shokri A (2009) Numerical solution of the nonlinear Klein–Gordon equation using radial basis functions. J Comput Appl Math 230:400–410

    Article  MathSciNet  MATH  Google Scholar 

  16. Dehghan M, Ghesmati A (2010) Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation. Eng Anal Bound Elem 34:324–336

    Article  MathSciNet  MATH  Google Scholar 

  17. Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phys Commun 181:772–786

    Article  MathSciNet  MATH  Google Scholar 

  18. Dehghan M, Sabouri M (2012) A spectral element method for solving the Pennes bioheat transfer equation by using triangular and quadrilateral elements. Appl Math Model 36:6031–6049

    Article  MathSciNet  Google Scholar 

  19. Dehghan M, Nikpour A (2013) The solitary wave solution of coupled Klein–Gordon–Zakharov equations via two different numerical methods. Comput Phys Commun 184:2145–2158

    Google Scholar 

  20. Dragos L (1975) Magneto-fluid dynamics. Abacus Press, England

    Google Scholar 

  21. Duarte CA, Oden JT (1996) H-p clouds-an h-p meshless method. Numer Meth Partial Diff Equ 12(6):673–705

    Article  MathSciNet  MATH  Google Scholar 

  22. Franke R, Nielson G (1980) Smooth interpolation of large sets of scattered data. Int J Numer Meth Eng 15:1691–1704

    Article  MathSciNet  MATH  Google Scholar 

  23. Gingold R, Monaghan J (1977) Smoothed particle hydrodynamics: theory and application to non spherical stars. Mon Not R Astr Soc 181:375–389

    MATH  Google Scholar 

  24. Gold RR (1962) Magnetohydrodynamic pipe flow. Part 1. J Fluid Mech 13:505–512

    Article  MathSciNet  MATH  Google Scholar 

  25. Gosz J, Liu WK (1996) Admissible approximations for essential boundary conditions in the reproducing kernel particle method. Comput Mech 19:120–135

    Article  MATH  Google Scholar 

  26. Gu YT, Liu GR (2005) A meshfree weak-strong (MWS) form method for time dependent problems. Comput Mech 35:134–145

    Article  MathSciNet  MATH  Google Scholar 

  27. Gupta SC, Singh B (1972) Unsteady MHD flow in a rectangular channel under transverse magnetic field. Indian J Pure Appl Math 3:1038–1047

    Google Scholar 

  28. Hartmann J, Hg-Dynamics I (1937) Theory of the laminar flow of an electrically conducting liquid in a homogeneous magnetic field. K Dan Vidensk Selsk Mat Fys Medd 15:1–27

    Google Scholar 

  29. Hartmann J, Lazarus F (1937) Experimental investigations on the flow of mercury in a homogeneous magnetic field. K Dan Vidensk Selsk Mat Fys Medd 15:1–45

    Google Scholar 

  30. Hosseinzadeh H, Dehghan M, Mirzaei D (2013) The boundary element method for magneto-hydrodynamic (MHD) channel flows at high Hartmann numbers. Appl Math Model 37:2337–2351

    Article  MathSciNet  Google Scholar 

  31. Huang Z (2009) Tailored finite point method for the interface problem. Netw Hetergenous Media 4:91–106

    Google Scholar 

  32. Kwon KC, Park SH, Jiang BN, Youn SK (2003) The least-squares meshfree method for solving linear elastic problems. Comput Mech 30:196–211

    Article  MATH  Google Scholar 

  33. Li S, Liu WK (1996) Moving least square reproducing kernel method part II: fourier analysis. Comput Meth Appl Mech Eng 139:159–194

    Article  MATH  Google Scholar 

  34. Li S, Liu WK (2007) Meshfree particle methods. Springer, Berlin

    Google Scholar 

  35. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Intern J Numer Meth Fluids 20(8–9):1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods for structural dynamics. Intern J Numer Meth Eng 38:1655–1679

    Article  MATH  Google Scholar 

  37. Liu WK, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (I) methodology and convergence. Comput Meth Appl Mech Eng 143:113–154

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu WK, Uras RA, Chen Y (1997) Enrichment of the finite element method with the reproducing kernel particle method. J Appl Mech ASME 64:861–870

    Article  MATH  Google Scholar 

  39. Liu GR, Gu YT (2002) A truly meshless method based on the strong-weak form. In: Liu GR (ed) Advances in meshfree and X-FEM methods. World Scientific, Singapore, pp 259–261

  40. Liu GR, Gu YT (2003) A meshfree method: meshfree weak-strong (MWS) form method for 2-D solids. Comput Mech 33:2–14

    Article  MATH  Google Scholar 

  41. Liu GR, Wu YL, Ding H (2004) Meshfree weak-strong (MWS) form method and its application to incompressible flow problems. Int J Numer Meth Fluids 46:1025–1047

    Article  MathSciNet  MATH  Google Scholar 

  42. Loukopoulos VC, Bourantas GC, Skouras ED, Nikiforidis GC (2011) Localized meshless point collocation method for time-dependent magnetohydrodynamics flow through pipes under a variety of wall conductivity conditions. Comput Mech 2:137– 159

    Google Scholar 

  43. Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139(1–4):289–314

    Article  MathSciNet  MATH  Google Scholar 

  44. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318

    Article  MATH  Google Scholar 

  45. Oñate E, Idelsohn S, Zienkiewicz OC, Taylor RL, Sacco C (1996) A finite point method for analysis of fluid mechanics problems. Applications to convective transport and fluid flow. Int J Numer Methods Eng 39:3839–3866

    Article  MATH  Google Scholar 

  46. Salah NB, Soulaimani WG, Habashi WG (2001) A finite element method for magnetohydrodynamic. Comput Methods Appl Mech Eng 190:5867–5892

    Article  MATH  Google Scholar 

  47. Salehi R, Dehghan M (2013) A moving least square reproducing polynomial meshless method. Appl Numer Math 69:34–58

    Article  MathSciNet  Google Scholar 

  48. Shakeri F, Dehghan M (2011) A finite volume spectral element method for solving magnetohydrodynamic (MHD) equations. Appl Numer Math 61:1–23

    Google Scholar 

  49. Shercliff JA (1953) Steady motion of conducting fluids in pipes under transverse magnetic fields. Proc Camb Phil Soc 49:136– 144

    Google Scholar 

  50. Sheu TWH, Lin RK (2004) Development of a convection-diffusion-reaction magnetohydrodynamic solver on nonstaggered grids. Int J Numer Meth Fluids 45:1209–1233

    Article  MathSciNet  MATH  Google Scholar 

  51. Shokri A, Dehghan M (2012) Meshless method using radial basis functions for the numerical solution of two-dimensional complex Ginzburg-Landau equation. Comput Model Eng Sci CMES 34:333–358

    MathSciNet  Google Scholar 

  52. Singh B, Lal J (1982) Finite element method in MHD channel flow problems. Int J Numer Meth Eng 18:1091–1111

    Article  Google Scholar 

  53. Singh B, Lal J (1984) Finite element method of MHD channel flow with arbitrary wall conductivity. J Math Phys Sci 18:501– 516

    Google Scholar 

  54. Tatari M, Dehghan M (2009) On the solution of the non-local parabolic partial differential equations via radial basis functions. Appl Math Model 33:1729–1738

    Article  MathSciNet  MATH  Google Scholar 

  55. Tatari M, Kamranian M, Dehghan M (2011) The finite point method for reaction-diffusion systems in developmental biology. Comput Model Eng Sci CMES 82:1–27

    MathSciNet  Google Scholar 

  56. Tezer-Sezgin M, Köksal S (1989) Finite elemen tmethod for solving MHD flow in a rectangular duct. Int J Numer Meth Eng 28:445–459

    Article  MATH  Google Scholar 

  57. Tezer-Sezgin M (1994) Boundary element methods solution of MHD flow in a rectangular duct. Int J Numer Meth Fluids 18:937–952

    Article  MATH  Google Scholar 

  58. Tezer-Sezgin M, Han Aydin S (2006) Solution of magnetohydrodynamic flow problems using the boundary element method. Eng Anal Bound Elem 30:411–418

    Article  MATH  Google Scholar 

  59. Tezer-Sezgin M, Bozkaya C (2008) Boundary element method solution of magnetohydrodynamic flow in a rectangular duct with conducting walls parallel to applied magnetic field. Comput Mech 41:769–775

    Article  MATH  Google Scholar 

  60. Verardi SLL, Machado JM, Cardoso JR (2002) The element-free Galerkin method applied to the study of fully developed magnetohydrodynamic duct flows. IEEE Trans Magn 38:941–944

    Article  Google Scholar 

  61. Verardi SLL, Machado JM, Shiyou Y (2003) The application of interpolating MLS approximations to the analysis of MHD flows. Finite Elem Anal Des 39:1173–1187

    Google Scholar 

  62. Wang S, Zhang H (2011) Partition of unity-based thermomechanical meshfree method for two-dimensional crack problems. Arch Appl Mech 81:1351–1363

    Google Scholar 

  63. Zahiri S, Daneshmand F, Akbari MH (2009) Using meshfree weak-strong form method for a 2-D heat transfer problem. ASME Conference Proceedings, pp 643–651

Download references

Acknowledgments

The authors are very grateful to the reviewers for carefully reading this paper and for their comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehghan, M., Salehi, R. A meshfree weak-strong (MWS) form method for the unsteady magnetohydrodynamic (MHD) flow in pipe with arbitrary wall conductivity. Comput Mech 52, 1445–1462 (2013). https://doi.org/10.1007/s00466-013-0886-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-013-0886-z

Keywords

Navigation