
Comput Mech (2012) 50:321–333
DOI 10.1007/s00466-011-0661-y

ORIGINAL PAPER

Comparison of the deflated preconditioned conjugate gradient
method and algebraic multigrid for composite materials

T. B. Jönsthövel · M. B. van Gijzen · S. MacLachlan ·
C. Vuik · A. Scarpas

Received: 31 August 2010 / Accepted: 26 October 2011 / Published online: 16 November 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Many applications in computational science and
engineering concern composite materials, which are char-
acterized by large discontinuities in the material properties.
Such applications require fine-scale finite-element meshes,
which lead to large linear systems that are challenging to
solve with current direct and iterative solutions algorithms.
In this paper, we consider the simulation of asphalt con-
crete, which is a mixture of components with large differ-
ences in material stiffness. The discontinuities in material
stiffness give rise to many small eigenvalues that negatively
affect the convergence of iterative solution algorithms such
as the preconditioned conjugate gradient (PCG) method. This
paper considers the deflated preconditioned conjugate gradi-
ent (DPCG) method in which the rigid body modes of sets of
elements with homogeneous material properties are used as
deflation vectors. As preconditioner we consider several vari-
ants of the algebraic multigrid smoothed aggregation method.

T. B. Jönsthövel (B) · A. Scarpas
Department of Structural Mechanics, Faculty of Civil Engineering,
Delft University of Technology, 2628 CN Delft, The Netherlands
e-mail: t.b.jonsthovel@tudelft.nl

A. Scarpas
e-mail: a.scarpas@tudelft.nl

M. B. van Gijzen · C. Vuik
Department of Applied Mathematical Analysis, Faculty
of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology, 2628 CN Delft, The Netherlands
e-mail: m.b.vangijzen@tudelft.nl

C. Vuik
e-mail: c.vuik@tudelft.nl

S. MacLachlan
Department of Mathematics, Tufts University, Bromfield-Pearson
Building, 503 Boston Avenue, Medford, MA 02155, USA
e-mail: scott.maclachlan@tufts.edu

We evaluate the performance of the DPCG method on a par-
allel computer using up to 64 processors. Our test problems
are derived from real asphalt core samples, obtained using
CT scans. We show that the DPCG method is an efficient
and robust technique for solving these challenging linear
systems.

Keywords Deflation · Algebraic multigrid ·
Preconditioners · Conjugate gradients · Rigid body modes ·
CT scan · Structural mechanics

Mathematics Subject Classification (2000) 65F10 ·
65F08 · 65Z05

1 Introduction

Finite-element (FE) computations are indispensable for the
simulation of material behavior. Recent developments in
visualization and meshing software give rise to high-quality
but very fine meshes, resulting in large systems, with mil-
lions of degrees of freedom, that need to be solved. When
choosing a solver for these systems, we distinguish between
direct solution methods and iterative methods. By now, it is
well established that iterative solution methods are prefera-
ble, due to their potential for better algorithmic and parallel
scalability than is possible with direct methods. In recent
years, parallel computing has become the standard in FE
software packages; therefore, only parallel algorithms are
considered here. In our application, the FE stiffness matrix is
symmetric and positive definite and, therefore, the precon-
ditioned conjugate gradient (PCG) method is the iterative
method of choice from a theoretical point of view. Further-
more, the PCG method is well suited for parallel computing.

123



322 Comput Mech (2012) 50:321–333

This paper focuses on the choice of a parallel preconditioner
for FE problems in structural mechanics.

Many FE computations involve simulations of inhom-
ogenous materials, where the difference in properties of
materials leads to large differences in the entries of the result-
ing stiffness matrices. We have shown in [28] that these
jumps in coefficients slow down the convergence of the PCG
method using a simple preconditioner. By decoupling regions
with homogeneous material properties with a deflation tech-
nique, a more robust PCG method has been constructed: the
deflated preconditioned conjugate gradient (DPCG) method.
The DPCG method proposed in [28] is an extension of the
technique of subdomain deflation, introduced in [36], and
of the preconditioners to matrices with large differences in
the entries, proposed in [50]. There is a correlation between
the number of rigid body modes of sub-bodies of materi-
als contained within the FE mesh and the number of small
eigenvalues of the scaled stiffness matrix. We used rigid
body modes combined with existing deflation techniques to
remove those small eigenvalues from the spectrum of the
scaled stiffness matrix, yielding a stable and robust adapta-
tion of the PCG method. Like the PCG method, the DPCG
method is well suited for parallel computing.

For PDEs with heterogeneous coefficients, there are sev-
eral state of the art (black box) solvers available. Direct
solution methods, the FETI method, and algebraic multi-
grid methods (AMG) are among the most popular solvers
and preconditioners. An important advantage of direct solu-
tion methods is their robustness: they can, to a large extent, be
used as black boxes for solving a wide range of problems, but
they are expensive in terms of computational costs. Several
high quality, well parallelisable public domain direct solvers
exist [32,38,42,10,6]. The FETI and AMG methods are also
robust but are often much less expensive than direct solu-
tion methods and have been discussed in [23] and [49]. As a
comparison to DPCG, we focus on the best AMG adaptation,
smoothed aggregation (SA), as it has been demonstrated to
be a successful parallel preconditioner for a number of struc-
tural mechanics applications [2,4,14]. The two most relevant
studies of SA to the simulations considered here are those of
[4,7], both of which focus on micro-FE modeling of bone
deformation, based on micro-CT scans of human bones.

In this paper, we will compare the performance of SA
using default parameters as a preconditioner for both PCG
and DPCG with that of SA using an optimal choice of param-
eters as a preconditioner to PCG. All methods are imple-
mented within a parallel environment using Trilinos [26].
We will provide an overview of the DPCG method pro-
posed in [28], and discuss the parallel implementation of
the DPCG method into an existing FE software package.
Finally, we present numerical experiments on FE meshes
from real-life cores of asphalt concrete as case studies for
this comparison.

2 Problem definition: composite materials

In this paper, we consider asphalt concrete as an example
of a composite material. Asphalt concrete consists of a mix-
ture of bitumen, aggregates, and air voids. The difference
between the stiffness of bitumen and the aggregates is sig-
nificant, especially at high temperatures. The surge in recent
studies on wheel-pavement interaction show the importance
of understanding the component interaction within asphalt
concrete, demanding high-quality FE meshes.

Until recently, because of the extremely long execution
time, memory, and storage space demands, the majority of
FE simulations of composite materials were performed by
means of homogenization techniques [18]. Unfortunately,
these techniques do not provide an understanding of the
actual interaction between the components of the material.
It is known, however, that component interaction is the most
critical factor in determining the overall mechanical response
of the composite material. We obtain accurate FE meshes of
the asphalt concrete materials by means of computed tomog-
raphy (CT) X-ray scans and additional, specialized software
tools like Simpleware ScanFE [43].

We use the computational framework described in [18] to
simulate the response of a composite material that is sub-
jected to external forces by means of small load steps. We
define the relation between the undeformed (reference) state
of a volume, V , with the deformed (current) state position
vector at a fixed point in time as

x = X + ū, (1)

where x = [
xx , xy, xz

]T is the undeformed state position

vector, X = [
Xx , X y, Xz

]T is the deformed state position

vector, and ū = [
ūx , ū y, ūz

]T represents the change of dis-
placement. Changes of the undeformed and deformed state
over time are given by,

dx = Fd X (2)

where F = I + ∂ ū
∂ X is the deformation gradient. We refer to

[18] for details on the balancing of forces within the mate-
rial. For any given externally applied force, f̄ , the linearized
virtual work equation at equilibrium is given by
∫

V

S : sym
(∇0ūT · ∇0δv

)
dV (3)

+
∫

V

sym
(
FT · ∇0δv

) : C : sym
(
FT · ∇0ū

)
dV

= δv · f̄ −
∫

V

S : sym
(
FT · ∇0δv

)
dV

where δv are the virtual velocities, ∇0ū is the directional
derivative in the reference configuration of the displacement

123



Comput Mech (2012) 50:321–333 323

field, C is the fourth-order constitutive tensor, and S is the
second-order Second Piola–Kirchhoff stress tensor. In this
paper, we consider hyper elasticity, and use the Neo-Hook-
ean constitutive model,

S = μI − μdet(FTF)−α(FTF)−1, (4)

and

C = 2μα

det(FTF)α
(FTF)−1 ⊗ (FTF)−1

− 2μ

det(FTF)α

∂(FTF)−1

∂(FTF)
, (5)

where α = ν
1−2ν

and ν, μ are the Poisson ratio and the Lamé
material constant, respectively. By using the FE method,
using standard linear basis functions on tetrahedral meshes,
we obtain the corresponding stiffness matrix; solving linear
system (6),

K u = f, (6)

is the most time-consuming computation of the FE simula-
tion. In this equation, u represents the change of displacement
of the nodes in the FE meshes, and f is the force unbalance in
the system, which is determined by the difference of the inter-
nal forces within the system and the external forces exerted
on the system. The internal forces are computed by solving
non-linear equations for each finite element. The comput-
ing time and costs for these steps are negligible compared to
solving linear system (6). The stiffness matrix, K , is sym-
metric and positive definite for elastic, constrained systems;
hence, ∀u �= 0 : uT K u > 0 and all eigenvalues of K are
positive. Within the context of mechanics, 1

2 uT K u is the
strain energy stored within the system for displacement vec-
tor u [9]. Energy is defined as a non-negative entity; hence,
the strain energy must be non-negative also.

3 Solvers

3.1 Preconditioned conjugate gradient method

Because K is SPD, CG [27] is the method of choice to solve
(6) iteratively. The CG method is based on minimizing the
energy norm of the error in the k-th approximation to the
solution over the Krylov subspace,

Kk−1(K ; r0) = span{r0, Kr0, . . . , K k−1r0}, (7)

where the energy norm is defined as ‖u‖K = (
uT K u

) 1
2 .

We note that minimizing the error in the K -norm is, in
fact, minimizing the strain energy over the Krylov subspace
Kk−1(K ; r0). This implies that, for a given distributed static
load, we construct a displacement vector that has an optimal
distribution of the force over the material.

Theorem 10.2.6 in [22] provides a bound on the error of
the approximations computed by CG. Denote the i th eigen-
value of K in nondecreasing order by λi (K ) or, simply, λi .
After k iterations of the CG method, the error is bounded by

‖u − uk‖K ≤ 2‖u − u0‖K

(√
κ − 1√
κ + 1

)k

, (8)

where κ = κ(K ) = λn/λ1 is the spectral condition number
of K . While this bound is not always sharp, the error reduc-
tion capability of CG is generally limited when the condi-
tion number is large. The condition number of K typically
increases when the number of elements increases or when
the relative stiffnesses of the materials change. For plastic
and viscous behavior, this can result in a series of increasing
numbers of iterations as the stiffness changes with every load
or time step. Here, we focus on a single load and time step,
although this is an important question for future research as
plasticity and viscosity are key to realistic simulations.

The convergence of CG is dependent not only on the con-
dition number but also on the number and distribution of very
small eigenvalues [48]. The eigenvectors corresponding to
the smallest eigenvalues have a significant contribution to the
global solution but may need a significant number of itera-
tions for convergence locally. Hence, very small eigenvalues
can dramatically increase the number of iterations needed
to generate a good approximate solution. In our application,
the number of aggregates has a direct correlation with the
number of smallest eigenvalues of K . Increasing the num-
ber of aggregates may, therefore, result in more very small
eigenvalues and deterioration of the convergence rates.

To improve the performance of CG, we change the lin-
ear system under consideration, resulting in a problem with
more favorable extreme eigenvalues and/or clustering. The
most efficient way to do this is by preconditioning of the
linear system. Preconditioners are essential for the perfor-
mance of iterative solvers, and no Krylov iterative solver can
perform well for these problems without one [41]. The pre-
conditioned equation reads

M−1 K u = M−1 f, (9)

where matrix M is the left preconditioner, which is assumed
to also be symmetric and positive definite. The CG iteration
bound of Eq. 8 also applies to the preconditioned matrix,
replacing κ(K ) with κ(M−1 K ). Thus, the preconditioning
matrix must satisfy the requirements that it is cheap to con-
struct, and that it is inexpensive to solve the linear system
Mv = w, as preconditioned algorithms need to solve such a
linear system in each iteration step. A rule of thumb is that
M must resemble the original matrix, K , to obtain eigen-
values that cluster around 1. Obviously, M = K would be the
best choice to minimize κ(M−1K ), but this choice is expen-
sive and equivalent to solving the original system. Common

123



324 Comput Mech (2012) 50:321–333

choices of M are the diagonal of K , which is known as diago-
nal scaling, and the Incomplete Cholesky factorization using
a drop tolerance to control the fill-in [41].

Within the field of engineering, the PCG method is widely
used because it is easy to implement, PCG iterations are
cheap, and the storage demands are modest and fixed. How-
ever, there remain pitfalls in its use in practical simulations.
As discussed above, its performance depends on the condi-
tioning and/or spectrum of the matrix. This can be improved
by the use of an appropriate preconditioner, but this adds
to the work and storage required by the algorithm. Conse-
quently, the convergence of low-energy modes can be slow
and, more importantly, poorly reflected in the residual asso-
ciated with an approximate solution. The established alterna-
tive is the use of direct solution methods. For our application,
the choice of direct or iterative methods should not be made
based on the solution of a single linearized system but, rather,
based on the full nonlinear, time-dependent equations to be
solved. When using simple nonlinear constitutive relations,
direct methods may be preferable, if the factorization of one
stiffness matrix can be reused many times. If, on the other
hand, the stiffness matrix changes significantly with every
linearization, the use of PCG may be preferable, particularly
if the number of Newton iterations can be controlled. More-
over, many engineering applications do not use an exact eval-
uation of the Jacobian, hence a relative error of order 10−2

of the solution of Eq. 9 would be sufficient. The study pre-
sented in this paper assumes that a single factorization cannot
be reused enough to make direct methods competitive. This
assumption is supported by the experiments that we pres-
ent in Sect. 5, that show that the costs of factorization are
substantially greater than a single iterative solve and, con-
sequently, that iterative solvers can reduce the total required
computational time.

3.2 Deflated preconditioned conjugate gradient method

We have shown in [28] that the number of iterations for con-
vergence of PCG is highly dependent on the number of aggre-
gates in a mixture as well as the ratio of the Young’s moduli.
Increasing the number of aggregates introduces correspond-
ingly more (clustered) small eigenvalues in stiffness matrix
K . The jumps in the Young’s moduli are related to the size of
the small eigenvalues. We know from [48] that the smallest
eigenvalues correspond to the slow converging components
of the solution. Thus, we look to design a preconditioner that
directly addresses these modes.

For any FE computation, we consider subsets of uncon-
strained elements as rigid bodies. Their corresponding (sub)
stiffness matrices are assemblies of the element stiffness
matrices. In the context of asphalt concrete, the aggregates
are subsets of elements, with their Young’s modulus as a

shared property; the bitumen and the air voids are defined
similarly.

When a matrix, Kunc, represents a rigid body, i.e. an
unconstrained mechanical problem (with no essential bound-
ary conditions), the strain energy equals zero for the rigid
body displacements, as the system remains undeformed, and
the matrix is positive semi-definite, ∀u : uT Kuncu ≥ 0. More
specifically, the number of rigid body modes of any uncon-
strained volume equals the number of zero-valued eigen-
values of its corresponding stiffness matrix. When a matrix
has zero-valued eigenvalues, the kernel N (A) is non-trivial.
Moreover, the basis vectors of the kernel of a stiffness matrix
represent the principal directions of the rigid body modes. In
general, two types of rigid body modes exist: translations
and rotations. In three dimensions, this implies six possible
rigid body modes and, hence, six kernel vectors can be asso-
ciated with the rigid body modes. For the partial differential
equations considered in this paper, the physical analogue to
these kernels are the rigid body modes of the linear elastic
components of the material.

In [28], we conclude that the number of rigid bodies times
the number of rigid body modes (six in three dimensions) is
equal to the number of small eigenvalues of stiffness matrix
K . By using the deflation technique, we deflate the Kry-
lov subspace with pre-computed rigid body modes of the
aggregates and remove all corresponding small eigenvalues
from the system. As a result, the number of iterations of the
DPCG method is nearly not affected by jumps in material
stiffness or by the number of aggregates. This is a significant
improvement over many other preconditioning techniques
whose performance degrades even for simpler heterogenous
problems.

To define the deflation preconditioner, we split the solu-
tion of (6) into two parts [20],

u =
(

I − PT
)

u + PT u, (10)

where P is a projection matrix that is defined as

P = I − K Z(Z T K Z)−1 Z T , for Z ∈ R
n×m, (11)

where R(Z) represents the deflation subspace, i.e., the space
to be projected out of the system, and I is the identity matrix
of appropriate size. We assume that m � n and that Z has
rank m. Under these assumptions, E ≡ Z T K Z is symmet-
ric and positive definite and may be easily computed and
factored. Hence,
(

I − PT
)

u = Z E−1 Z T K u = Z E−1 Z T f (12)

can be computed directly, and the difficult computation is of
PT u. Because K PT is symmetric,

K PT = P K , (13)

123



Comput Mech (2012) 50:321–333 325

Algorithm 1 Deflated preconditioned CG solving K u = f
Select u0. Compute r0 = (f − K u0), set r̂0 = Pr0
Solve My0 = r̂0 and set p0 = y0
for j = 0, 1, . . . until convergence do

ŵ j = P K p j

α j = (r̂ j ,y j )
(ŵ j ,p j )

û j+1 = û j + α j p j
r̂ j+1 = r̂ j − α j ŵ j
Solve My j+1 = r̂ j+1

β j = (r̂ j+1,y j+1)
(r̂ j ,y j )

p j+1 = y j+1 + β j p j
end for
u = Z E−1 Z T f + PT û j+1

and P is a projection, we solve the deflated system,

P K û = P f, (14)

for û using the PCG method and multiply the result by PT

giving u = Z E−1 Z T f + PT û. We note that (14) is singular;
however, the projected solution PT û, is unique, as it has no
components in the null space, N (P K ) = span{Z}. More-
over, from [30,48], the null space of P K never enters the
iteration process, and the corresponding zero-eigenvalues do
not influence the solution. The DPCG method [46] is given
as Algorithm 1.

To obtain a useful bound for the error of DPCG for pos-
itive semi-definite matrices, we define the effective condi-
tion number of a semi-definite matrix D ∈ R

n×n with rank
n − m, m < n, to be the ratio of the largest and smallest
positive eigenvalues; analogous to Eq. 8,

κeff(D) = λn

λm+1
. (15)

Theorem 2.2 from [20] implies that a bound on the effective
condition number of P K can be obtained.

Theorem 3.1 Let P be defined as in (11), and suppose there
exists a splitting K = C + R, such that C and R are sym-
metric positive semi-definite with null space of C,N (C) =
span{Z}. Then for ordered eigenvalues λi ,

λi (C) ≤ λi (P K ) ≤ λi (C) + λmax(P R). (16)

Moreover, the effective condition number of P K is bounded
by,

κeff(P K ) ≤ λn(K )

λm+1(C)
. (17)

Proof See [20] (p. 445). 
�
While the large discontinuities in matrix entries due to
strongly varying material properties in the FE discretiza-
tion induce unfavorable eigenvalues (either large or small)
in the spectrum of stiffness matrix K , the effective condition
number of P K is bounded by the smallest eigenvalue of C

and the largest eigenvalue of K . To remove the discontinu-
ities and, thus, eliminate those unfavorable eigenvalues, we
decouple the sub-matrices of stiffness matrix K that corre-
spond to different materials by finding the correct splitting.
The eigenvalues of the decoupled sub-matrices then deter-
mine the spectrum of P K . However, due to the large dif-
ferences in stiffness, the values of the eigenvalues for the
different sub-matrices can still vary over several order of
magnitudes. To achieve a scalable solution algorithm, we
couple this deflation procedure with another preconditioner
to map the spectra of the sub-matrices onto the same region,
around 1. This deflation technique can be used in conjunction
with any ordinary preconditioning technique, giving a two-
level approach, treating the smallest and largest eigenvalues
by deflation and preconditioning, respectively. By choosing
a favorable combination of deflation and preconditioning,
a better spectrum is obtained, yielding a smaller effective
condition number and fewer iterations. For a symmetric pre-
conditioner M = L LT , e.g. diagonal scaling, the result of
Theorem 3.1 extends [20, Thm 2.3] to

κeff(L−1 P K L−T ) ≤ λn(L−1 K L−T )

λm+1(L−1C L−T )
. (18)

Thus, as discussed above, we construct our deflation space Z
from the null spaces of the (unconstrained) stiffness matrices
of chosen sets of elements. In [29], an algorithm is given for
computing rigid body modes of sets of elements. The matrix,
C , is then defined by the assembly of all finite elements that
belong to each body of material. The matrix, R, consists of
the assembly of all finite elements that share nodes with the
elements on the boundary of a body of material but that are
not contained within the sub-mesh. We note that if some
elements of a less stiff material are assigned to the element
set of a stiffer material, the material stiffness matrices are
not decoupled. So, for instance, when a node belongs to two
elements and two different materials and is assigned to the
wrong (less stiff) element with respect to the splitting of K ,
then the preconditioning step will reintroduce the coupling,
nullifying the effect of the deflation operator.

The DPCG method extends PCG, enhancing stability and
robustness when solving for symmetric, and positive definite
systems, but requires extra storage for the deflation matrix
Z . Moreover, P K u in Algorithm 1 needs to be computed
in every iteration, but the Cholesky decomposition of matrix
E and the computation of the matrix-matrix product K Z
are done before entering the iteration loop, saving compu-
tation time. The unfavorable eigenvalues, due to the discon-
tinuities in the stiffness matrix, are treated by the deflation
method, making these costs worthwhile. The convergence of
the DPCG method is assured for even highly ill-conditioned
problems, and the method yields more accurate solutions than
the PCG method.

123



326 Comput Mech (2012) 50:321–333

3.3 Algebraic multigrid method

Multigrid methods [15,47,51] are among the most efficient
iterative methods for the solution of the linear systems that
arise from the FE discretization of many PDEs. They achieve
this efficiency due to the use of two complementary pro-
cesses, relaxation and coarse-grid correction. In the relaxa-
tion phase, a simple stationary iteration, such as the Jacobi
or Gauss-Seidel iterations, is used to efficiently damp large-
energy errors. Errors associated with small-energy modes are
corrected through a coarse-grid correction process, in which
the problem is projected onto a low-dimensional subspace
(the coarse grid), and these errors are resolved through a
recursive approach. This decomposition is, in many ways,
the same as that in deflation, u = (I − PT )u + PT u;
the relationship between deflation and multigrid has been
explored in [46,45]. For homogeneous PDEs discretized on
structured grids, the separation into large-energy and small-
energy errors is well-understood, leading to efficient geomet-
ric multigrid schemes that offer both optimal algorithmic and
parallel scalability.

For PDEs with heterogeneous coefficients that are dis-
cretized on unstructured meshes, algebraic multigrid (AMG)
approaches [40,44,49] offer similar scalability, although at a
higher cost per iteration (see, for example, [34] for a compar-
ison of structured and unstructured multigrid approaches).
While the fundamental complementarity of the multigrid
approach doesn’t change within AMG, the way in which the
coarse-grid problems are defined does. In geometric multi-
grid schemes, the coarse-grid operators and intergrid trans-
fer operators (interpolation and restriction) are determined
based on explicit knowledge of the grid geometry and discret-
ized PDE. In contrast, interpolation operators for AMG are
defined in matrix-dependent ways [5,40], while the restric-
tion and coarse-grid operators are given by variational condi-
tions (when K is symmetric and positive definite) [35]. Thus,
the challenge in achieving efficient multigrid performance is
focused on the definition of appropriate matrix-dependent
interpolation operators.

In the case of scalar PDEs, there are a wide variety of
possible approaches for defining AMG-style interpolation
operators [40,49,13,11,33,37]. These approaches are largely
based on assumptions about the ellipticity of the underly-
ing differential operator and, for scalar PDEs, they typically
result in defining interpolation to closely match a given vec-
tor (often the constant vector) with the range of interpolation.
For systems of PDEs, such as those that model the displace-
ment of the composite materials considered here, more care
must be taken, as the ellipticity of the equations of linear
elasticity, for example, depends strongly on both the bound-
ary conditions and Lamé coefficients of the system. As a
result, there has been much research into the development of
efficient AMG approaches for problems in solid mechanics.

For systems of PDEs, there are several possible AMG
approaches. Within the setting of classical AMG (often called
Ruge-Stüben AMG) [40,12], these approaches are com-
monly labeled as the variable-based, point-based (or, equiv-
alently, node-based), and unknown-based approaches [16].
The variable-based approach applies AMG as a black-box,
ignoring the structure of the PDE system and, as such, is
understood to be effective only for very weakly coupled sys-
tems (such as systems with no differential coupling) [16].
The unknown-based approach applies scalar AMG to each
component of the system, in a block Jacobi or block Gauss-
Seidel manner, and was originally applied to systems of linear
elasticity in [39]. Most commonly used is the point-based
or node-based approach, where all variables discretized at
a common spatial node are treated together in the coars-
ening and interpolation processes. This approach was first
proposed for linear elasticity in [39] and has been extended
in [24,31]. An extension framework to improve AMG for
elasticity problems was proposed in [8], which uses a hybrid
approach with nodal coarsening, but interpolation based on
the unknown-based approach.

Despite these recent developments in the use of classical
AMG for structural mechanics problems, a much more com-
mon algebraic multigrid approach for elasticity problems is
in the framework of smoothed aggregation multigrid [49]. In
smoothed aggregation, the coarse grid is created by aggregat-
ing degrees-of-freedom nodewide, through a greedy process
that aims to create aggregates of size 3d for a d-dimensional
problem. Such an aggregation is used to define a partition
of unity on the grid. A tentative interpolation operator is
then defined in groups of six columns (for three-dimensional
mechanics) by restricting the set of global rigid body modes
to each aggregate based on this partition. Smoothed aggrega-
tion improves this tentative interpolation operator by apply-
ing a single relaxation step (or smoother) to it, leading to an
overlapping support of the block-columns of interpolation
and giving much more robust performance than unsmoothed
(or plain) aggregation. As smoothed aggregation has been
demonstrated as a successful parallel preconditioner for a
number of structural mechanics applications [2,4,14], we
focus on this approach here.

4 Parallel computing

4.1 Parallel paradigm: domain decomposition

We use parallelism based on domain decomposition as found
in [17]. Global domain 	 is divided into D subdomains,
yielding 	 = ⋃D

d=1 	d . Domain 	 holds E elements, each
subdomain holds Ed elements, hence E = ∑D

d=1 Ed . Ele-
ments can share nodes and the associated degrees of freedom
that lie in multiple subdomains, but no element is contained

123



Comput Mech (2012) 50:321–333 327

in more than one subdomain. Elementwise operations can be
done independently for each subdomain, but the values of any
quantity at shared nodes must be synchronized between sub-
domains after finishing the operation. The synchronization
yields communication between the boundaries of the subdo-
mains. Examples of elementwise operations are numerical
integration, matrix–vector multiplications etc.

4.2 Parallel implementation of PCG

The PCG algorithm is constructed from basic linear algebraic
operations. The matrix–vector operation and inner product
require communication between neighboring and all subdo-
mains respectively. All other linear algebraic operations (e.g.,
vector scaling and addition) can be done locally; i.e., there
is no communication with other subdomains. This makes the
PCG method easy to parallelize. The other operation that
needs to be taken care of explicitly is the preconditioner. In
this research, we consider AMG and for comparison also
diagonal scaling. We note that diagonal scaling is an inher-
ently parallel operation. We elaborate on the parallel imple-
mentation of AMG below.

4.3 Parallel implementation of DPCG

The DPCG method given by Algorithm 1 is similar to the
standard PCG algorithm, but the parallelization of the DPCG
method involves two extra steps. First, the construction of
the deflation matrix, Z , on each subdomain and, second, the
evaluation of P K p j for each iteration of DPCG.

Obviously, the mapping of the deflation matrix, Z , onto
the subdomains is defined by the partitioning of elements
over the subdomains. The computation of rigid body modes
only requires the element matrices; hence, no communica-
tion is needed for the assembly of the distributed deflation
matrix. We only store the non-zero elements of Z , giving a
small memory overhead.

The evaluation of P K p j can be optimized. Consider

P K p j = K p j − K Z E−1 Z T K p j ,

where K ∈ R
n×n, Z ∈ R

n×k . Here, K p j = y is computed
as usual, while K Z = Z̃ ∈ R

n×k and E−1 = (Z T K Z)−1

are computed only once, before entering the Krylov process
(iteration loop). Hence, for each iteration of DPCG, we have
three extra operations compared to PCG, computing

Z T y = ỹ, ỹ ∈ R
k×1,

E−1 ỹ = ŷ, ŷ ∈ R
k×1,

Z̃ ŷ = ȳ, ȳ ∈ R
n×1.

Communication between subdomains is needed for the com-
putation of K Z , E , and Z T . The entries of the k ×k matrix E
are distributed over the subdomains, and its decomposition

is determined in parallel. The computation of Z T y requires
one communication involving all subdomains to compute the
k parallel inner products of k × 1 vectors.

4.4 Parallel AMG

In recent years, two general-purpose parallel algebraic multi-
grid codes have been developed, alongside a number of other
codes aimed at specific applications. One of these codes,
BoomerAMG [25] (included in the Hypre package [19]),
focuses on classical (Ruge–Stüben) AMG algorithms and
their variants, while the other, ML [21] (included in the Trili-
nos project [26]), focuses on the smoothed aggregation set-
ting. In our experiments below, we make use of ML and
Trilinos for the parallel SA implementation.

There have been a number of studies of the performance
of parallel AMG codes for solid mechanics operations. Ini-
tial two-dimensional results were reported in [52], based on
an AMG treatment that first coarsens appropriately along
boundaries shared between processors and then treats the
processor interiors. Scalability studies for a simplified AMG
approach, based on maximal independent set coarsening of
nodes, remeshing the coarse node set, and using geometric
grid-transfer operators, for both linear elasticity and nonlin-
ear elastic and plastic solid mechanics are detailed in [1].
This method was compared with smoothed and unsmoothed
aggregation in [2], where it was found that the simplified
approach was less robust than the aggregation approaches,
and that smoothed aggregation was most robust and typically
not much more expensive than the other two approaches.
A comparison of Ruge–Stüben AMG, smoothed aggre-
gation, and a generalized smoothed aggregation approach
(using information from local eigensolves to complement
the restricted rigid-body modes) was performed in [14],
where smoothed aggregation was shown to generally outper-
form Ruge–Stüben AMG. The generalized form offers even
greater robustness, but relies on an expensive preprocessing
step. One important issue is the choice of parallel smoother;
this was studied in depth in [3], comparing parallel hybrid
Gauss-Seidel orderings with polynomial (Chebyshev) smoo-
thers and concluding that polynomial smoothers offer many
advantages.

For our study, we investigate primarily two options within
the ML software. In the first, denoted by SA (AMG), we
treat the smoothed aggregation solver as a “black box”, pro-
viding the minimal amount of information required and fol-
lowing the default software options. In this case, we provide
just the matrix (in node-ordered form) and the geometric
coordinates of the mesh nodes. In the second, denoted by SA
(AMG) / VBMetis, we explicitly provide complete informa-
tion about the PDE structure and null space. In particular, we
provide the degree-of-freedom to node map, including full
details about eliminated degrees of freedom due to boundary

123



328 Comput Mech (2012) 50:321–333

conditions, and we give directly the rigid body modes of the
entire solid body. In both cases, we make use of Chebyshev
smoothers.

5 Numerical experiments

The meshes of experiments 1 and 2, given by Figs. 1 and 5 are
derived from real-life samples of asphaltic material obtained
by CT scan. Both experiments involve different mesh sizes,
yielding 230.000 and 2,9 million degrees of freedom, respec-
tively. The meshes contain a mixture of materials that are
subjected to an external force applied to the upper bound-
ary of the volume. Zero displacement boundary conditions
are imposed on three sides of the volume; that is, homoge-
nous Dirichlet boundary conditions are given for all degrees
of freedom in the x, z-, x, y- and y, z- planes for y = 0,
z = 0 and x = 0, respectively. These materials give rise
to the coupled partial differential equations given in [18]. In
both experiments, we make use of the same set of material
parameters. We distinguish between three materials: aggre-
gates, bitumen, and air voids. The corresponding stiffness
coefficients (Young’s moduli) are given in Table 1 and are the
dominating contributions to the entries of the stiffness matrix.

As described in Sect. 2, the underlying PDEs of both
experiments come from the computational framework in
[18]. In this paper, only hyperelastic materials are considered.
The constitutive model involves non-linear material behav-
ior; hence, the stiffness matrix of Eq. 6 is a tangential stiff-
ness matrix derived from the linearization of the virtual work
equation.

Fig. 1 Experiment 1: FE mesh representing cube of asphaltic mate-
rial containing aggregates (yellow), bitumen (red) and air voids (blue).
(Color figure online)

Table 1 Young’s moduli for different materials

Aggregate Bitumen Air voids

69,000 5,000 100

The deflation vectors are constructed by computing the
rigid body modes of the aggregation of stones, bitumen, and
air voids, as proposed in [28]. The number of deflation vec-
tors for the experiments are 162 and 342, respectively. All
vectors are sparse and Z is of full rank. As described in
Sect. 4.3, the parallel implementation involves the distribu-
tion of the degrees of freedom, thus vectors; hence, the rigid
body modes of an arbitrary aggregation of materials may be
spread over multiple domains. Apart from variations due to
the round-off errors induced by the domain decomposition,
the parallel implementation should yield the same number
of iterations as a sequential implementation given the same
deflation space. As a result, the number of iterations of the
DPCG method for a given problem should be invariant under
an increasing number of subdomains.

The aim of the experiments is to compare the performance
and robustness of our deflation method and (optimized) SA
for mechanical problems with heterogeneous material coef-
ficients. In Sect. 3.2, we have argued that DPCG is a two-
level approach, and that we need a preconditioner to treat
both ends of the spectrum of the stiffness matrix. We have
seen that SA is designed to solve homogeneous elastic equa-
tions in an optimal way. A natural choice for preconditioning
of DPCG would be using a “black box” implementation of
SA for the “decoupled” stiffness matrices. Hence, we com-
pare PCG and DPCG preconditioned by SA (AMG) as well
as PCG preconditioned by SA (AMG) / VBMetis. We also
include diagonal scaling as preconditioner to have a point of
reference from which to compare all methods. The stopping
criterion for all computations is ‖ri ‖‖r0‖ < 10−6 where ri is
the residual vector at i th iteration. Although we have argued
that direct solution algorithms are not the methods of choice
for solving these large, 3D problems, we have included the
run time of the decomposition of the stiffness matrix using
SuperLU 2.5 (distributed memory) [32]. For a fair compari-
son of PCG and DPCG, we have implemented the methods
in Trilinos [26]. All experiments were done at Tufts Univer-
sity (USA) on an IBM 60-node cluster with over 500 64-bit
cores (16–48 GB RAM per node, Infiniband interconnect).
Due to the complexity of the meshes and limitations of our
meshing software, we only take into consideration the strong
scaling effect of the solvers. In Experiment 1, we compare
results for 4, 16 and 64 subdomains, where each subdomain
corresponds to a computing core. In Experiment 2, we com-
pare results for 4, 8 and 64 subdomains, because of memory
limitations of the SA (AMG) / VBMetis solver.

5.1 Experiment 1

This experiment involves a slice of asphaltic material, repre-
sented by a mesh containing 315270 4-noded tetrahedral ele-
ments yielding roughly 230000 DOF. The wall clock times as
well as the number of iterations of all solvers for all domain

123



Comput Mech (2012) 50:321–333 329

Fig. 2 Experiment 1: Wall
clock time and number of
iterations of (D)PCG

PCG - diag, 4 CPUs
DPCG - diag, 4 CPUs
PCG - diag, 16 CPUs

DPCG - diag, 16 CPUs
PCG - diag, 64 CPUs

DPCG - diag, 64 CPUs

PCG - SA (AMG), 4 CPUs
DPCG - SA (AMG), 4 CPUs
PCG - SA (AMG), 16 CPUs

DPCG - SA (AMG), 16 CPUs
PCG - SA (AMG), 64 CPUs

DPCG - SA (AMG), 64 CPUs

PCG - SA (AMG) / VB, 4 CPUs
PCG - SA (AMG) / VB, 16 CPUs
PCG - SA (AMG) / VB, 64 CPUs

0% 20% 40% 60% 80% 100%

set up: defl.
set up: p recon.
krylv accl: defl.

krylv accl: p recon.
krylov iter

109 (s) / 4644 (iter)
73 / 1665
58 / 4642
37 / 1665
16 / 4643
17 / 1663

150 / 635
66 / 214
85 / 631
36 / 214
58 / 637
26 / 217

120 / 298
51 / 317
59 / 324

decompositions are given in Fig. 2. Running with 64 sub-
domains, the PCG and DPCG solver with diagonal scaling
are the fastest methods, requiring 16 and 17 seconds respec-
tively. The number of iterations for PCG and DPCG for both
diagonal scaling and SA (AMG) is essentially invariant with
the number of subdomains, as expected. The strong scal-
ing is clearly not optimal for this number of unknowns. For
instance, the wall clock time for DPCG with diagonal scaling
goes from 73 to 37 and down to 17 seconds, reducing by a
factor of two when the number of subdomains increases by a
factor of four. The costs of the deflation operator for diago-
nal scaling are almost equal to the costs of the matrix–vector
products together with the inner products. The setup time of
the deflation operator lies around 20% of the total cost and
does not significantly increase when increasing the number
of subdomains.

The DPCG method combined with the SA (AMG) precon-
ditioner has a good performance in terms of iterations, but
shows poor parallel performance. Going from 16 subdomains
to 64 subdomains gains very little in terms of speed-up. Also,
the SA (AMG) preconditioner has three times the setup cost
and ten times the operational cost compared to the deflation
operator.

The PCG method combined with the SA (AMG) / VBMe-
tis preconditioner performs worse than the DPCG method
with SA (AMG) in terms of iterations as well as wall clock
time. Although the ratio between setup time and cost per
iteration is almost equal for both methods, the overall cost
of the SA (AMG)/VBMetis preconditioner is much higher.
Again, due to the small problem size, there is no bene-
fit from the parallel implementation. Overall, these results
are not surprising. In terms of iterations, we see strong
improvement as we improve the preconditioner for PCG,
from over 4,600 iterations for diagonal scaling, to about 630
for SA(AMG), to about 320 for SA(AMG)/VBMetis. Simi-
larly, we see uniform improvements adding deflation to PCG,
reducing the iteration counts for both the diagonal scaling
and SA(AMG) preconditioners by almost a factor of three.
In terms of wall-clock time to solution, however, the much

0 100 200 300 400 500 600 700 800
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

real slice of asphalt
230.000 DOF, 162 deflation vectors

residuals (64 domains)

Fig. 3 Experiment 1: L2 norms of the residuals

simpler approach of diagonal scaling becomes the clear win-
ner over the approaches based on SA for this example; even
though many more iterations of PCG or DPCG are needed,
the lack of a setup cost and the much lower cost per iteration
of the simpler approach pay off in the end.

The L2 norms of the residuals of Experiment 1 are given
in Fig. 3. We observe that without deflation, i.e., PCG pre-
conditioned by SA (AMG) or SA (AMG)/VBMetis, not all
unfavorable eigenvalues have been removed from the spec-
trum of M−1 K . This can also be seen from Fig. 4, where the
50 smallest Ritz values of M−1 K and M−1 P K are given.
Clearly, the deflated systems have no clustering of very small
(approximated) eigenvalues whereas the non-deflated sys-
tems, even when preconditioned by SA (AMG)/VBMetis,
still contain some unfavorable eigenvalues.

5.2 Experiment 2

This experiment involves a slice of asphaltic material, repre-
sented by a mesh containing 4531353 4-noded tetrahedral
elements, yielding roughly 3 million degrees of freedom
shown in Fig. 5. The wall clock time as well as the number

123



330 Comput Mech (2012) 50:321–333

0 5 10 15 20 25 30 35 40 45 50

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

real slice of asphalt
230.000 DOF, 162 deflation vectors

Ritz values (4 domains)

DPCG − diagonal scaling
DPCG − SA (AMG)
PCG − diagonal scaling
PCG − SA (AMG)
PCG − SA (AMG) / VBMETIS

Fig. 4 Experiment 1: Ritz values derived from (D)PCG

Fig. 5 Experiment 2: mesh representing cube of asphaltic material
containing aggregates (light green), bitumen (dark green) and air voids
(blue). (Color figure online)

of iterations of all solvers for all domain decompositions are
given in Fig. 6. Again, we see expected performance from
the iteration counts. For PCG, these improve from not con-
verging (within 10,000 iterations) with diagonal scaling, to
roughly 2,000 iterations with SA (AMG), to roughly 380
iterations with SA (AMG)/VBMetis. Here, the added costs
of SA(AMG)/VBMetis are very notable, giving an out-of-
memory error on four CPUs. Also as before, we see the
immediate advantage of DPCG, leading to convergence in
about 9,000 iterations for diagonal scaling, and about 1,200
iterations for SA (AMG). In this case, however, the added
expense of SA (AMG)/VBMetis pays off, yielding about a
50% speedup over DPCG with diagonal scaling on 64 CPUs
(and a greater speedup on eight CPUs). We note that the SA
(AMG)/VBMetis approach is far from a “black-box” pre-
conditioner, and is available only as beta software within the
ML package; as such, further improvement may be possible
by refining this software and addressing memory issues that
were encountered in obtaining these results.

Several interesting observations are possible about the par-
allel scaling. For the DPCG approaches, the relative cost of
the deflation operator increases with the number of subdo-
mains, becoming as expensive the total cost of matrix–vector
and inner products; however, the setup time decreases, due to
the parallel Cholesky decomposition of E. Excellent strong
scaling is observed for DPCG with diagonal scaling, giv-
ing speedup of 1.8 and 8.0 for increases in the number of
subdomains by factors of 2 and 8, respectively. Slightly less
impressive speedup of DPCG preconditioned by SA (AMG)
is observed, with factors of 1.87 and 6.54 for increases in the
number of subdomains by factors of 2 and 8, respectively.
This sub-optimal speed-up is due to the SA (AMG) precon-
ditioner, which involves an extra set-up phase that scales
poorly. The speedup of the SA (AMG)/VBMetis approach
shows the poorest results, with a factor of only 2.45 when
the number of subdomains increases by a factor of eight.
This, again, is due to poor scaling of the SA(AMG)/VBMetis

Fig. 6 Experiment 2: Wall
clock time and number of
iterations of (D)PCG

PCG - diag, 4 CPUs
DPCG - diag, 4 CPUs

PCG - diag, 8 CPUs
DPCG - diag, 8 CPUs
PCG - diag, 64 CPUs

DPCG - diag, 64 CPUs

PCG - SA (AMG), 4 CPUs
DPCG - SA (AMG), 4 CPUs

PCG - SA (AMG), 8 CPUs
DPCG - SA (AMG), 8 CPUs
PCG - SA (AMG), 64 CPUs

DPCG - SA (AMG), 64 CPUs

PCG - SA (AMG) / VB, 4 CPUs
PCG - SA (AMG) / VB, 8 CPUs

PCG - SA (AMG) / VB, 64 CPUs

0% 20% 40% 60% 80% 100%

set up: defl.
set up: precon.
krylv accl: defl.

krylv accl: precon.
krylov iter

3516 (s) / n.c. (iter)
9883 / 9018
3627 / n.c.
5456 / 9017
461 / n.c.
680 / 9015

6687 / 2018
9450 / 1210
6906 / 2016
5043 / 1206
1123 / 1942
771 / 1199

- / o.o.m.
1118 / 376
455 / 379

123



Comput Mech (2012) 50:321–333 331

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

real asphalt core
2.976.627 DOF, 342 deflation vectors

residuals (8 domains)

Fig. 7 Experiment 2: L2 norms of the residuals

0 5 10 15 20 25 30 35 40 45 50
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

100

real asphalt core
2.976.627 DOF, 342 deflation vectors

Ritz values (8 domains)

DPCG − diagonal scaling
DPCG − SA (AMG)
PCG − diagonal scaling
PCG − SA (AMG)
PCG − SA (AMG) / VBMETIS

Fig. 8 Experiment 2: Ritz values derived from (D)PCG

preconditioner, although better scaling might be observed
with more degrees-of-freedom per subdomain on the 64 CPU
scale.

The L2 norms of the residuals of Experiment 2 are given
in Fig. 7, and the Ritz values of the preconditioned stiffness
matrix derived form the (D)PCG iterations are given in Fig. 8.
We observe that the stiffness matrix preconditioned by SA
(AMG)/VBMetis yields a more favorable spectrum of eigen-
values compared to preconditioning with the deflation oper-
ator combined with SA (AMG). This can also be observed
in Fig. 7, as the residual curve of PCG preconditioned by SA
(AMG)/VBMetis is steeper than the curve of DPCG precon-
ditioned by SA (AMG), which indicates that the eigenvalues
of the spectrum of preconditioned K lie relatively closer to
one. However, compared to PCG preconditioned by diago-
nal scaling and SA (AMG), all unfavorable eigenvalues have
been removed from the spectrum by DPCG and by PCG
preconditioned by SA (AMG)/VBMetis. For this reason we

Table 2 Experiment 1 & 2: wall-clock times (s) using SuperLU, dis-
tributed memory version 2.5

4 CPUs 8 CPUs 16 CPUs 64 CPUs

Experiment 1 317 114 69 56

Experiment 2 o.o.m o.o.m o.o.m 3979

do not consider the obvious combination of DPCG and SA
(AMG)/VBMetis; there are no small eigenvalues left to be
treated by DPCG.

Remark The results for a direct solver for both experiments
are given in Table 2. Using the parallel direct solver, wall-
clock times are uniformly worse than those of DPCG for the
smaller test problem; for the larger test problem, memory
issues prevented convergence on all but the largest numbers
of cores, where the wall-clock time was again substantially
worse than all of the iterative approaches considered here.

6 Conclusion

We have compared the PCG method and the DPCG method
for the solution of large linear systems from mechanical
problems with strongly varying stiffnesses of materials. We
have compared three preconditioners with PCG and two with
DPCG, using two implementations of smoothed aggrega-
tion (SA), an adaptation of algebraic multigrid designed for
solving elasticity equations, and diagonal scaling. For one
implementation of SA, we choose the default parameter set
and, for the other implementation, we choose an optimal
parameter set for the experiments involved. DPCG offers
clear enhancements over standard PCG in terms of both the
number of iterations required for convergence and the wall-
clock time to solution. It is well-suited for parallel comput-
ing and can be easily implemented within any existing FE
software package with basic parallel linear algebraic opera-
tions. The combination of DPCG with diagonal scaling offers
an exceptionally low cost per iteration, giving much better
wall-clock performance than PCG, even with the SA (AMG)
preconditioner. We suspect that DPCG and diagonal scaling
combine so well because deflation and scaling are comple-
mentary operations, working on the lower and upper part
of the spectrum respectively. DPCG with the SA (AMG)
preconditioner strongly improves the iteration counts over
diagonal scaling but, for our experiments, does not improve
the wall-clock time to solution. For our larger test prob-
lem, the optimized SA (AMG)/VBMetis preconditioner does
outperform the much simpler DPCG with diagonal scaling
approach; however, this approach requires significantly more
software development effort and, as such, may not be readily
available for all simulation codes. Thus, we have demon-
strated that the DPCG approach is efficient, scalable, and

123



332 Comput Mech (2012) 50:321–333

robust and, as such, is an effective tool in large-scale simu-
lation of the mechanics of composite materials.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Adams MF (2000) Parallel multigrid solvers for 3d unstructured
finite element problems in large deformation elasticity and plastic-
ity. Int J Numer Methods Eng 48(8):1241–1262

2. Adams MF (2002) Evaluation of three unstructured multigrid
methods on 3D finite element problems in solid mechanics. Int
J Numer Methods Eng 55(5):519–534

3. Adams M, Brezina M, Hu J, Tuminaro R (2003) Parallel multi-
grid smoothing: polynomial versus Gauss-Seidel. J Comput Phys
188:593–610

4. Adams MF, Bayraktar HH, Keaveny TM, Papadopoulos P (2004)
Ultrascalable implicit finite element analyses in solid mechanics
with over a half a billion degrees of freedom. In: ACM/IEEE pro-
ceedings of SC2004: high performance networking and computing.
Institute of Biomedical Engineering, Umeå

5. Alcouffe RE, Brandt A, Dendy JE, Painter JW (1981) The multi-
grid method for the diffusion equation with strongly discontinuous
coefficients. SIAM J Sci Stat Comput 2:430–454

6. Amestoy PR, Duff IS, L’Excellent J-Y (1998) Multifrontal parallel
distributed symmetric and unsymmetric solvers. Comput Methods
Appl Mech Eng 196(8), 1429–1435

7. Arbenz P, Harryvan Lenthe G, Mennel U, Müller R, Sala M
(2008) A scalable multi-level preconditioner for matrix-free μ-
finite element analysis of human bone structures. Int J Numer Meth-
ods Eng 73(7):927–947

8. Baker AH, Kolev TZV, Yang UM (2010) Improving algebraic mul-
tigrid interpolation operators for linear elasticity problems. Numer
Linear Algebra Appl 17(2–3):495–517

9. Bathe KJ (1995) Finite element procedures. Prentice Hall, Upper
Saddle River

10. Bollhöfer M, Saad Y (2006) Multilevel preconditioners con-
structed from inverse-based ilus. SIAM J Sci Comput 27(5):1627–
1650

11. Brandt A, Brannick J, Kahl K, Livshits I (2011) Bootstrap AMG.
SIAM J Sci Comput 33(2):612–632

12. Brandt A, McCormick SF, Ruge JW (1984) Algebraic multigrid
(AMG) for sparse matrix equations. In: Evans DJ (ed) Sparsity
and its applications. Cambridge University Press, Cambridge

13. Brannick J, Zikatanov L (2007) Algebraic multigrid methods based
on compatible relaxation and energy minimization. In: Domain
decomposition methods in science and engineering XVI. Lect
Notes Comput Sci Eng 55:15–26. Springer, Berlin

14. Brezina M, Tong C, Becker R (2006) Parallel algebraic multigrids
for structural mechanics. SIAM J Sci Comput 27(5):1534–1554

15. Briggs WL, Henson VE, McCormick SF (2000) A multigrid tuto-
rial, second edn. SIAM Books, Philadelphia

16. Clees T (2005) AMG strategies for PDE systems with applications
in industrial semiconductor simulation. PhD thesis, Universität zu
Köln, Köln

17. Douglas CC, Haase G, Langer U (2003) A tutorial on elliptic
Pde solvers and their parallelization (software, environments, and
tools). Society for Industrial and Applied Mathematics, SIAM
Books, Philadelphia

18. Drescher A, Kringos N, Scarpas T (2009) On the behavior of a par-
allel elasto-visco-plastic model for asphaltic materials, mechanics
of materials. Delft University of Technology, Delft

19. Falgout RD, Yang UM (2002) Hypre: a library of high performance
preconditioners. In computational science—ICCS 2002: interna-
tional conference, Amsterdam. In: Proceedings, part III, number
2331 in lecture notes in computer science. Springer, New York,
pp 632–641

20. Frank J, Vuik C (2001) On the construction of deflation-based pre-
conditioners. SIAM J Sci Comput 23(2):442–462

21. Gee MW, Siefert CM, Hu JJ, Tuminaro RS, Sala MG (2006) ML
5.0 smoothed aggregation user’s guide. Technical Report SAND
2006–2649. Sandia National Laboratories, Sandia

22. Golub GH, Van Loan CF (1996) Matrix computations (Johns Hop-
kins studies in mathematical sciences). The Johns Hopkins Univer-
sity Press, Baltimore

23. Graham IG, Scheichl R (2007) Robust domain decomposition
algorithms for multiscale pdes. Numer Methods Part Differ Equ
23:859–878

24. Griebel M, Oeltz D, Marc Alexander S (2003) An algebraic mul-
tigrid method for linear elasticity. SIAM J Sci Comput 25(2):385–
407

25. Henson VE, Yang UM (2002) BoomerAMG: a parallel algebraic
multigrid solver and preconditioner. Appl Numer Math 41:155–
177

26. Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda
TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET, Salinger
AG, Thornquist HK, Tuminaro RT, Willenbring JW, Williams A,
Kendall SS (2005) An overview of the trilinos project. ACM Trans
Math Softw 31(3):397–423

27. Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for
solving linear systems. J Res Natl Bur Stand 49:409–436

28. Jönsthövel TB, van Gijzen MB, Vuik C, Kasbergen C, Scarpas
A (2009) Preconditioned conjugate gradient method enhanced by
deflation of rigid body modes applied to composite materials. Com-
put Model Eng Sci 47:97–118

29. Jönsthövel TB, van Gijzen MB, Vuik C, Scarpas A (2011) On
the use of rigid body modes in the deflated preconditioned conju-
gate gradient method. Technical Report 11-04. Delft University of
Technology, Delft

30. Kaasschieter EF (1988) Preconditioned conjugate gradients for
solving singular systems. J Comput Appl Math 24(1-2):265–275

31. Karer E, Kraus JK (2010) Algebraic multigrid for finite element
elasticity equations: determination of nodal dependence via edge-
matrices and two-level convergence. Int J Numer Methods Eng
83(5):642–670

32. Li X, Demmel JW (2003) Superlu dist: a scalable distributed-mem-
ory sparse direct solver for unsymmetric linear systems. ACM
Trans Math Softw 29:110–140

33. MacLachlan S, Manteuffel T, McCormick S (2006) Adaptive
reduction-based AMG. Numer Linear Algebra Appl 13:599–620

34. MacLachlan SP, Tang JM, Vuik C (2008) Fast and robust solvers
for pressure-correction in bubbly flow problems. J Comput Phys
227(23):9742–9761

35. Nicolaides RA (1979) On some theoretical and practical aspects
of multigrid methods. Math Comput 33:933–952

36. Nicolaides RA (1987) Deflation of conjugate gradients with appli-
cations to boundary value problems. SIAM J Numer Anal
24(2):355–365

37. Olson LN, Schroder JB, Tuminaro RS (2011) A general interpo-
lation strategy for algebraic multigrid using energy minimization.
SIAM J Sci Comput 33(2):966–991

38. Polizzi E, Sameh AH (2005) A parallel hybrid banded system
solver: the spike algorithm abstract. Parallel Comput 32:177–194

39. Ruge J (1986) Amg for problems of elasticity. Appl Math Comput
19(1–4):293–309

123



Comput Mech (2012) 50:321–333 333

40. Ruge JW, Stüben K (1987) Algebraic multigrid (AMG). In:
McCormick SF (ed) Multigrid methods, volume 3 of frontiers in
applied mathematics. SIAM, Philadelphia, pp 73–130

41. Saad Y (2003) Iterative methods for sparse linear systems, second
edn. Society for Industrial and Applied Mathematics, Philadelphia

42. Schenk O, Gärtner K, Fichtner W, Stricker A (2001) Pardiso: a
high-performance serial and parallel sparse linear solver in semi-
conductor device simulation. Future Gener Comput Syst 18(1):69–
78

43. Simpleware (2009). http://www.simpleware.com. Accessed 11
December 2009

44. Stüben K (2001) An introduction to algebraic multigrid. In: Trot-
tenberg U, Oosterlee C, Schüller A (eds) Multigrid. Academic
Press, San Diego, pp 413–528

45. Tang JM, MacLachlan SP, Nabben R, Vuik C (2010) A compari-
son of two-level preconditioners based on multigrid and deflation.
SIAM J Matrix Anal Appl 31:1715–1739

46. Tang JM, Nabben R, Vuik C, Erlangga YA (2009) Comparison of
two-level preconditioners derived from deflation, domain decom-
position and multigrid methods. J Sci Comput 39:340–370

47. Trottenberg U, Oosterlee CW, Schüller A (2001) Multigrid. Aca-
demic Press, London

48. Van der Sluis A, Van der Vorst HA (1986) The rate of convergence
of conjugate gradients. Numer Math 48(5):543–560

49. Vaněk P, Mandel J, Brezina M (1996) Algebraic multigrid by
smoothed aggregation for second and fourth order elliptic prob-
lems. Computing 56:179–196

50. Vuik C, Segal A, Meijerink JA (1999) An efficient preconditioned
cg method for the solution of a class of layered problems with
extreme contrasts in the coefficients. J Comput Phys 152:385–403

51. Wesseling P (1992) An introduction to multigrid methods. Wiley,
Chichester

52. Wriggers P, Boersma A (1998) A parallel algebraic multigrid
solver for problems in solid mechanics discretisized by finite ele-
ments. Comput Struct 69(1):129–137

123

http://www.simpleware.com

	Comparison of the deflated preconditioned conjugate gradient method and algebraic multigrid for composite materials
	Abstract
	1 Introduction
	2 Problem definition: composite materials
	3 Solvers
	3.1 Preconditioned conjugate gradient method
	3.2 Deflated preconditioned conjugate gradient method
	3.3 Algebraic multigrid method

	4 Parallel computing
	4.1 Parallel paradigm: domain decomposition
	4.2 Parallel implementation of PCG
	4.3 Parallel implementation of DPCG
	4.4 Parallel AMG

	5 Numerical experiments
	5.1 Experiment 1
	5.2 Experiment 2

	6 Conclusion
	References


