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Abstract For problems involving rate constitutive equa-
tions, such as rate-independent elasto-plasticity, consistent or
algorithmic tangent moduli (operators) play an important role
in preserving the asymptotic quadratic rate of convergence
of incremental-iterative solution schemes based on New-
ton’s method. Furthermore, consistent (algorithmic) tangent
moduli are required in structural response sensitivity anal-
ysis based on the direct differentiation method. This paper
focuses on the derivation of the consistent tangent moduli for
a pressure independent multi-yield-surface J2 (Von Mises)
plasticity model that has been used extensively in nonlinear
constitutive modeling of soil materials, but can be used for
other materials as well. Application examples are provided
to validate the consistent tangent moduli derived herein, and
to compare the rate of convergence and computational time
of nonlinear incremental-iterative analyses performed using
the consistent and continuum tangent moduli, respectively.
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1 Introduction

As a general class of nonlinear problems in continuum
mechanics, rate-independent elasto-plasticity problems are
typically solved through the finite element method (FEM)
and using Newton’s method. Newton’s method is used in
conjunction with an incremental-iterative solution procedure
which, at each time or load step, reduces the nonlinear prob-
lem to a sequence of linearized problems called iterations.
Thus, at every iteration, a linearized incremental problem
is solved, which requires the tangent stiffness matrix of
the structure. In general, this tangent stiffness matrix can
be computed from the material tangent moduli (operators)
at the material (or integration point) level. In rate-indepen-
dent plasticity, the material constitutive behavior is described
by rate constitutive equations (σ̇ = σ̇(ε̇)). The above
incremental-iterative process requires these rate constitutive
equations to be integrated numerically over a sequence of dis-
crete time or load steps, i.e., �σ = �σ(�ε). Two types of
material tangent moduli can be selected to form the structure
stiffness matrix: continuum tangent moduli and consistent
tangent moduli. Consistent tangent moduli (also called algo-
rithmic tangent moduli) are obtained through differentiation
of the incremental constitutive equations (�σ = �σ(�ε))

with respect to the total incremental strains �ε, while the
continuum tangent moduli are defined as the differentiation
of the rate constitutive equations (σ̇ = σ̇(ε̇)) with respect
to the strain rate ε̇ [1]. Previous studies [1,2] show that use
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of the consistent tangent moduli guarantees the quadratic
rate of asymptotic convergence of Newton’s iterative process.
Furthermore, for parameter sensitivity analysis in nonlinear
mechanics using the direct differentiation method (DDM),
the consistent tangent moduli are also required when dif-
ferentiating the discretized response equations (i.e., static
or dynamic equilibrium equations) with respect to material,
geometric or loading parameters in order to obtain the gov-
erning response sensitivity equations [3–5].

This paper presents the derivation of the consistent tan-
gent moduli for an existing multi-yield-surface J2 plasticity
model. This plasticity model was first developed by Iwan [6]
and Mroz [7], and then applied to soil mechanics by Prevost
[8–10]. It was later modified and implemented in OpenSees
by Elgamal et al. [11] with the tangent stiffness matrix based
on the continuum tangent moduli. OpenSees [12] is an open
source software framework for advanced modeling and simu-
lation of structural and geotechnical systems developed under
the auspice of the Pacific Earthquake Engineering Research
(PEER) Center (http://peer.berkeley.edu). In contrast to the
classical J2 (or Von Mises) plasticity model with a single yield
surface, the multi-yield-surface J2 plasticity model employs
the concept of a field of plastic moduli [6,7] to achieve a
better representation of the material plastic behavior under
cyclic loading conditions. This field is defined by a collec-
tion of nested yield surfaces of constant size (i.e., no isotro-
pic hardening) in the stress space, which define the regions
of constant plastic shear moduli (and constant tangent shear
moduli). At each time or load step, it is not possible to know
a priori which and how many yield surfaces will be reached
(or activated) until convergence (or global equilibrium) is
achieved at this step. Hence, the expression of the consistent
tangent moduli (or operators) at the current stress point (not
necessarily converged at the structure level) depends on all
of those yield surfaces that have contributed to the change of
stress state from the last converged time or load step. In this
paper, a general methodology is presented to compute the
consistent tangent moduli by accumulating the contributions
from all yield surfaces affecting the stress change from the
last converged time/load step to the current stress state.

The work presented in this paper significantly enhances
the algorithmic implementation of the existing multi-yield-
surface J2 plasticity model. Although this material model is
a rather old model, it remains an effective and robust model
to simulate the 3D undrained response of cohesive materi-
als (with elasto-plastic Masing-type behavior) under cyclic
and seismic loading conditions [8–23]. This model has been
validated experimentally [8,10]. Also, it is operational in the
open-source platform OpenSees [12] through which soil–
structure-interaction studies may be conducted by a large
user community. Thus, the present work improves signifi-
cantly the computational efficiency of finite element analysis
when using this soil model in solving a wide class of geo-

technical [19–21] and soil–foundation-structure interaction
problems [13,23] in earthquake engineering. In other words,
when compared with the classical continuum tangent mod-
uli, the use of the newly developed consistent tangent moduli
significantly improves the convergence rate of the Newton
process in analyzing FE models that incorporate this material
model, especially for tight convergence tolerance and large
load/time steps. It is found that in some applications involv-
ing this material model, the use of the consistent tangent
moduli allows convergence of the iterative solution process
which would otherwise not converge when using the con-
tinuum tangent moduli. Furthermore, the newly developed
consistent tangent moduli can be used directly in finite ele-
ment response sensitivity analysis based on the DDM for
systems modeled using this multi-yield-surface J2 plastic-
ity model [24]. Considering that the DDM-based response
sensitivity algorithm is a major tool for gradient-based opti-
mization methods used in various sub-fields of structural
and/or geotechnical engineering such as structural optimiza-
tion, reliability analysis, system identification, and FE model
updating [3,25], the algorithmic enhancement presented in
this paper has a clear impact on these sub-fields.

Development of the consistent tangent moduli presented
in this paper includes the following novel implementation
details that can carry over to other advanced material con-
stitutive models: (1) To the authors’ knowledge, in past
work, the consistent tangent moduli have been developed
for three-dimensional (3D) single surface J2 plasticity mod-
els [1,2] with implicit constitutive law integration schemes.
In this paper, the consistent tangent moduli are developed
for a general 3D elasto-plastic material constitutive model,
in which the multi-yield-surface J2 plasticity approach is uti-
lized. (2) In this plasticity model, the stress state at the current
load/time step is obtained through a non-iterative corrector
scheme, which accumulates contributions from all yield sur-
faces involved, the number of which varies from load/time
step to load/time step [24]. Derivation of the consistent tan-
gent moduli requires differentiating the stress tensor with
respect to the strain tensor by following exactly the stress
computation algorithm. (3) The newly developed consistent
tangent moduli consist of an unsymmetrical fourth-order
tensor (exhibiting only minor symmetries, Cijkl = Cjikl =
Cijlk = Cjilk, but with Cijkl �= Cklij), which is different from
the corresponding symmetric tensor of continuum tangent
moduli. Furthermore, an important contribution of this paper
is to document in detail the constitutive law numerical inte-
gration scheme for the multi-yield-surface J2 plasticity model
considered here. Derivation of the flow rule in discrete form
is presented in Appendix A, and to the authors’ knowledge
does not appear anywhere else in the literature. The concepts
used in this paper to derive the consistent tangent moduli
can be applied to other multi-yield-surface plasticity models
defined in the literature [15].
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The algorithm derived herein to compute the consistent
tangent moduli of the multi-yield-surface J2 soil plasticity
model is then implemented in OpenSees [12]. Application
examples are presented to verify the quadratic rate of asymp-
totic convergence of Newton’s iterative process obtained
when using the derived consistent tangent moduli. Based on
these examples, the convergence rate and computational time
obtained when using consistent and continuum tangent mod-
uli are compared.

Implicit integrationschemesofothermulti-surfaceplastic-
ity models with derivation of the algorithmic/consistent tan-
gent moduli have been presented by several authors [26–28].

2 Continuum and discrete formulations
of multi-yield-surface J2 plasticity constitutive model

In this section, the constitutive model of the multi-yield-
surface J2 plasticity material is presented in detail. It is worthy
to note that in the published literature [8–10,14,15,29], only
the mathematical expression of the yield surfaces and the
flow in continuum form are clearly explained, i.e., Eqs. (1)–
(7). The employed hardening rule was described initially in
[11,30] by Elgamal and co-workers. A complete presenta-
tion of the flow rule in discrete form, Eqs. (8)–(20), is not
presented elsewhere. Furthermore, the plastic stress correc-
tion tensor used in the discretized flow rule is derived inde-
pendently by the authors and after some simplifications and
approximations (see Appendix A) reduces to the same form
as the one given by Parra [30] and Yang [14] and implemented
in OpenSees [12]. The discrete form of the constitutive model
is essential in this paper, since it represents the starting point
to derive the consistent (or algorithmic) tangent moduli.

2.1 Multi-yield surfaces

Each yield surface of this multi-yield-surface J2 plasticity
model is defined in the deviatoric stress space as

f =
{

3

2
(τ − α) : (τ − α)

} 1
2 − K = 0 (1)

where τ denotes the deviatoric stress tensor and α, referred to
as back-stress tensor, denotes the center of the yield surface
{f = 0} in the deviatoric stress space. Parameter K repre-
sents the size (

√
3/2 times the radius) of the yield surface

which defines the region of constant plastic shear moduli.
The dyadic tensor product of tensors A and B is defined as
A : B = AijBij. The back-stress α is initialized to zero at the
start of loading.

In geotechnical engineering, soil nonlinear shear behavior
is described by a shear stress–strain backbone curve [31] as
shown in Fig. 1a. The experimentally determined backbone
curve can be approximated by the hyperbolic formula [32] as

τ = Gγ

1 + γ /γr
(2)

where τ and γ denote the octahedral shear stress and shear
strain, respectively, and G is the low-strain shear modulus.
Parameter γr is a reference shear strain defined as

γr = γmax · τmax

G · γmax − τmax
(3)

where τmax, called shear strength, is the shear stress corre-
sponding to the shear strain γ = γmax (selected sufficiently
large so that τmax ≈ τ(γ = ∞) (Fig. 1).

Within the framework of multi-yield-surface plasticity, the
hyperbolic backbone curve in Eq. (2) is replaced by a piece-
wise linear approximation as shown in Fig. 1a. Each line
segment represents the domain of a yield surface {fi = 0} of
size Ki characterized by an elasto-plastic shear modulus H(i)

for i = 1, 2, . . . , NYS, where NYS denotes the total num-
ber of yield surfaces [8–10]. Parameter H(i) is conveniently

defined as H(i) = 2
(

τi+1−τi
γi+1−γi

)
[33].

2.2 Flow rule (continuum form)

A constant plastic shear modulus H′(i)defined as

1

H′(i) = 1

H(i)
− 1

2G
(4)

is associated with each yield surface {fi = 0}. The plastic
shear modulus associated with the outermost yield surface
is set to zero, i.e., H′(NYS) = 0. An associative flow rule is
used to compute the plastic strain increments. In the deviator-
ic stress space, the plastic strain increment vector lies along
the exterior normal to the yield surface at the stress point. In
tensor notation, the plastic strain increment is expressed as

dεp = 〈L〉
H′ Q (5)

where the second-order unit tensor Q defined as

Q = 1

Q

∂f

∂σ
(6)

in which Q =
{

∂f
∂σ

: ∂f
∂σ

} 1
2
, represents the plastic flow direc-

tion normal to the yield surface {f = 0} at the current stress
point. Parameter L in Eq. (5), referred to as the plastic loading
function, is defined as the projection of the stress increment
vector dτ onto the direction normal to the yield surface, i.e.,

L = Q : dτ (7)

The symbol 〈〉 in Eq. (5) denotes the MacCauley’s brack-
ets defined such that 〈L〉 = max(L, 0). The magnitude of the
plastic strain increment, 〈L〉

H′ , is a non-negative function (from
Eq. (5) and the definition of McCauley’s brackets) which is
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Fig. 1 Yield surfaces of
multi-yield-surface J2 plasticity
model in principal deviatoric
stress space after [8,18]
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assumed to obey the Kuhn–Tucker complementarity condi-
tions expressed as 〈L〉

H′ f (τ,α) = 0, such that the plastic strain
increment is zero in the elastic case (i.e., when f(τ,α) < 0).

2.3 Discretized form of flow rule

The flow rule defined above in differential (continuum) form
is integrated numerically over a trial time step (or load step)
using an elastic predictor-plastic corrector procedure illus-
trated in Fig. 2, which shows, as an illustration, two corrective
iterations before convergence is achieved. In this figure, sub-
script i is attached to the parameters and quantities related to
the i th corrective iteration. Assuming that the current active
yield surface is {fm = 0} with its center at α(m), the elastic
trial (deviatoric) stress τtr

0 is obtained as

τtr
0 = τn + 2G · �e (8)

where τn is the converged deviatoric stress at the last (nth)
time step, and �e denotes the total (from last converged step)
deviatoric strain increment in the current time step. If the trial
stress τtr

0 falls inside the current yield surface {fm = 0}, then
the iteration process for the integration of the material con-
stitutive law is converged, otherwise a plastic correction is
applied as follows. The contact stress τ∗

1, defined as the inter-
section point of vector τtr

0 −α(m) and the current active yield
surface {fm = 0}, can be computed as (Fig. 2)

τ∗
1 = K(m)

K1

(
τtr

0 − α(m)
)

+ α(m) (9)

where K1 is defined as

K1 =
√

3

2

(
τtr

0 − α(m)
) :

(
τtr

0 − α
(m)

)
(10)

which is
√

3/2 times the distance from τtr
0 to α(m).
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Fig. 2 Flow rule of multi-yield-surface J2 plasticity model

The vector normal to the yield surface at τ∗
1 is derived

from Eq. (6) or Fig. 2 as

Q1 =
(
τ∗

1 − α(m)
)

√(
τ∗

1 − α(m)
) : (

τ∗
1 − α(m)

) (11)

The plastic stress correction tensor is defined as

P1 = τtr
0 − τtr

1 (12)

where the plastic stress correction tensor P1 can be expressed
as [14,34] (see Appendix A)

P1 = 2G
Q1 : (

τtr
0 − τ∗

1

)
(
H′(m) + 2G

) Q1 (13)

Then, the trial stress after the first plastic correction for the
current active yield surface{fm = 0} becomes

τtr
1 = τtr

0 − P1 (14)

If the trial stress τtr
1 lies outside the next yield surface {fm+1 =

0}, the subscript for the iteration number is set to i = 2, and
the above plastic correction process is repeated with some
modifications. For the iterations i = 2, 3, . . . (correspond-
ing to the number of the active surface m + 1, m + 2, . . . ,

respectively), Eqs. (9)–(14) are replaced by Eqs. (15)–(20)

below, with the iterations continued until the trial stress τtr
i

falls inside the yield surface {fm+i = 0}. The derivation of
Eq. (19) is provided in Appendix A.

τ∗
i = K(m+i−1)

Ki

(
τtr

i−1 − α(m+i−1)
)

+ α(m+i−1) (15)

Ki =
√

3

2

(
τtr

i−1 − α(m+i−1)
) :

(
τtr

i−1 − α(m+i−1)
)

(16)

Qi =
(
τ∗

i − α(m+i−1)
)

√(
τ∗

i − α(m+i−1)
) : (

τ∗
i − α(m+i−1)

) (17)

Pi = τtr
i−1 − τtr

i (18)

Pi = 2G
Qi : (

τtr
i−1 − τ ∗

i

)
(
H′(m+i−1) + 2G

)
(
H′(m+i−2) − H′(m+i−1)

)
H′(m+i−2)

Qi

(19)

τtr
i = τtr

i−1 − Pi (20)

After “convergence” of the deviatoric stress τtr
i to τ

(referred to as the current stress herein) is achieved following
the above iterative algorithm, the active yield surface index
is updated to m = m + i − 1, and the volumetric stress σ vol

is updated to

σ vol = σ vol
n + B(�ε : I) (21)

where B = elastic bulk modulus, �ε = total strain tensor
increment, and I = second order unit tensor. Then, the new
total stress (at the end of the integration of the material con-
stitutive law over a trial time/load step) referred to as the
current stress point is given by

σ = τ + σvolI (22)

2.4 Hardening Law (both continuum and discretized forms)

A pure deviatoric kinematic hardening rule is employed to
capture the hysteretic cyclic response behavior of real mate-
rials such as cohesionless soils [11]. Accordingly, all yield
surfaces may translate in the deviatoric stress space to the cur-
rent stress point without changing in form (i.e., no isotropic
hardening). In the context of multi-yield-surface plasticity,
translation of the current active yield surface {fm = 0} is
generally governed by the consideration that no overlapping
is allowed between the current and next yield surfaces. The
translation direction μ as shown in Fig. 3 is defined as [11]

μ =
(
τT − α(m)

)
− K(m)

K(m+1)

(
τT − α(m+1)

)
(23)

where τTis the deviatoric stress tensor defining the position
of stress point T, see Fig. 3, as the intersection of {fm+1 = 0}
(the yield surface next to the current active yield surface)
with the vector connecting the center α(m) of the current yield
surface and the current stress state (τ) at the end of the trial
time/load step. The hardening rule defined in Eq. (23) is also
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Fig. 3 Hardening rule of multi-yield-surface J2 plasticity model
(where {fm = 0} represents the current active yield surface, τn is the
converged deviatoric stress at the last time step, and is the current stress
at the end of the trial time/load step) after [11]

based on Mroz conjugate-points concept [7], and guarantees
no overlapping of yield surfaces [11]. Once the translation
direction μ is computed from Eq. (23), the current active
yield surface {fm = 0} is translated in the direction μ until it
touches the current stress point τ.

After the current active yield surface {fm = 0} is updated,
all the inner yield surfaces {f1 =0}, {f2 =0}, . . . , {fm−1 = 0}
are updated such that all yield surfaces {f1 = 0} to {fm = 0}
are tangent to each other at the current stress point τ as shown
in Fig. 4, which is achieved from similarity as [10]

(
τ − α(m)

)
K(m)

=
(
τ − α(m−1)

)
K(m−1)

= · · · =
(
τ − α(1)

)
K(1)

(24)

Equations (24) are solved for α(k) (k = 1, 2, . . . m − 1)

given α(m). The above hardening law controls the movement
of the inner yield surfaces.

It is worth mentioning that the hardening law of the con-
stitutive model considered here is defined only in discrete
form by Eqs. (23) and (24). No continuum form was defined
by the developers of the model for the evolution equations of
the back stress α (i.e., strain hardening law). The hardening
law for α is based on the assumption that the smooth shear
stress–strain backbone curve (which is part of the hardening
law) has already been piecewise linearly approximated (i.e.,

τ

τ

τ

Deviatoric Plane

fNYS

fm – f

fm

Fig. 4 Inner yield surface movements after [8,18]

discretized), otherwise Eqs. (23) and (24) do not hold. The
validation of the hardening law for α is out of the scope of this
paper and the evolution equations for α are not given in detail
herein, but can be found elsewhere [24] for the magnitude of
the movement of α.

3 Continuum tangent operator

The continuum elastoplastic tangent moduli are obtained
through differentiation with respect to dε of the rate consti-
tutive equation dσ = dσ(dε). where dσ and dε denote infin-
itesimal increments in total stress and strain, respectively. In
small strain plasticity, the decomposition of the total strain
into the elastic and plastic parts can be expressed in infini-
tesimal form as

dε = dεe + dεp (25)

where dεe and dεe denote infinitesimal increments of elastic
and plastic (irreversible) strains, respectively. The constitu-
tive equation is based on the relationship between the stress
and the elastic strain, namely

dσ = C : dεe = C : (
dε − dεp) = Cep : dε (26)

where C denotes the tensor of elastic moduli, which in
the case of isotropic elasticity can be expressed as Cijkl =
λδijδkl+μ(δikδjl + δilδjk) where λ and μ are Lamé constants,
and Cep represents the tensor of continuum elasto-plastic tan-
gent moduli. Note that Lamé constant μ is identical to the
low-strain shear modulus G. In multi-yield-surface J2 plas-
ticity, the tensor of continuum elasto-plastic tangent moduli
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can be obtained as [15]

Cep = C − 1

H
H ⊗ H (27)

where the tensor product of two tensors A and B is defined
as [A ⊗ B]ijkl = AijBkl and

H = (12G + 6H′(m))
(

K(m)
)2

H = 6G
(
τ − α(m)

)
(28)

4 Derivation of consistent tangent moduli

Consistent tangent moduli were first introduced by Taylor
and Simo [1,2]. These moduli are obtained by differentiating
directly the discretized constitutive equation �σ = �σ(�ε)

with respect to the strain increment �ε. This ensures that
the tangent operator is ‘consistent’ with the constitutive law
integration scheme, which guarantees the quadratic rate of
asymptotic convergence of iterative solution strategies (at
the structure level) based on Newton’s method. The consis-
tent tangent moduli (also called algorithmic tangent moduli
in the literature) are defined at a material point as

Cep
n+1 = ∂σ

(
σn, εn, ε

p
n . . . , ε − εn

)
∂ε

∣∣∣∣∣
ε=εn+1

(29)

where σ(σn, εn, ε
p
n . . . , ε − εn) denotes the incremental

material response function, and the notation f|ε=εn+1 indi-
cates that the tensor function f is evaluated at ε = εn+1. It
is worth mentioning that the stress σ is not necessarily the
converged one at the structure level at the end of the current
trial time step, i.e., it could be the stress at the end of a non-
converged iteration at the structure level. The material con-
sistent tangent moduli enable to form the consistent tangent
stiffness matrix at both the element and structure levels.

It is important to mention that the consistent tangent
moduli are derived analytically from the constitutive law
numerical integration scheme. Although they can be veri-
fied (which was done extensively during the debugging pro-
cess) or approximated by using numerical differentiation,
the analytically derived consistent tangent moduli cannot be
replaced by their approximation obtained through numerical
differentiation for the following reasons:

1. The solution obtained from numerical differentiation is
subjected to numerical noise. Large perturbations of the
various strain components yield large truncation errors
in the finite difference approximated consistent tangent
moduli, while very small perturbations of the strain com-
ponents give rise to large round-off errors. It is not easy
(if not impossible) to estimate the optimum strain pertur-
bation size in order to minimize the total numerical error
(sum of truncation and round-off errors). In some cases,

there may not be any strain perturbation size which yields
accurate approximations of the consistent tangent mod-
uli. This issue is referred to as “step-size dilemma” in
structural optimization [35]. Furthermore, only the ana-
lytically derived consistent tangent moduli guarantee the
asymptotic rate of quadratic convergence of the Newton
iterative process.

2. Estimation by finite difference of the consistent tangent
moduli at each numerical integration (Gauss) point is
computationally very expensive (in addition of being inac-
curate) as compared to the direct evaluation of the analyt-
ically derived consistent tangent moduli. At each numeri-
cal integration point, it requires perturbing six strain com-
ponents, one at a time, and computing the resulting incre-
ments in the six stress components.

3. Finite element response sensitivity analysis based on the
DDM requires the analytically derived consistent tangent
moduli.

In this section, which represents the heart of this paper,
the consistent tangent moduli are derived for the multi-yield-
surface J2 plasticity material model defined above based on
the algorithmic stress updating process defined in Eqs. (8)
through (22).

1. Differentiation of the elastic trial deviatoric stress with
respect to the current deviatoric strain. From Eq. (8), it
follows that

∂τtr
0

∂en+1
= 2G · I4 (30)

where the derivative of tensor A with respect to tensor

B is defined as ∂A
∂B = ∂Aij

∂Bkl
êi ⊗ êj ⊗ êk ⊗ êl in which

êi denotes the unit (base) vector along the i th axis, and
the 4th order symmetric unit tensor I4 is defined as I4 =
1
2 (δilδjk + δikδjl)êi ⊗ êj ⊗ êk ⊗ êl

2. Differentiation of the contact stress with respect to the
current deviatoric strain. Differentiating Eqs. (16) and
(15) with respect to en+1 yields

∂Ki

∂en+1
= 3

2Ki

(
τ tr

i−1 − α(m+i−1)
)

: ∂τtr
i−1

∂en+1
(31)

∂τ∗
i

∂en+1
= K(m+i−1)

Ki
· ∂τtr

i−1

∂en+1

−K(m+i−1)

K2
i

(
τtr

i−1 − α(m+i−1)
)

⊗ ∂Ki

∂en+1
(i = 1, 2, . . .) (32)

3. Differentiation of the unit vector normal to the yield
surface with respect to the current deviatoric strain.
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Differentiating Eq. (17) with respect to en+1 gives

∂Qi

∂en+1
= 1√(

τ∗
i − α(m+i−1)

) : (
τ∗

i − α(m+i−1)
)

· ∂τ∗
i

∂en+1

− 1√[(
τ∗

i − α(m+i−1)
) : (

τ∗
i − α(m+i−1)

)]3

·
(
τ∗

i − α(m+i−1)
)

⊗
(
τ∗

i − α(m+i−1)
)

: ∂τ ∗
i

∂en+1

(i = 1, 2, . . .) (33)

4. Differentiation of the plastic stress correction tensor with
respect to the current deviatoric strain. From Eqs. (13)
and (19), it follows that

dP1

den+1
= 2G(

H′(m) + 2G
)Q1

⊗
((

τtr
0 − τ ∗

1

) : ∂Q1

∂en+1

+ Q1 :
(

∂τtr
0

∂en+1
− ∂τ∗

1

∂en+1

))

+2G
Q1 : (

τ tr
0 − τ ∗

1

)
(
H′(m) + 2G

) · ∂Q1

∂en+1
(34)

for the first iteration (i = 1)

dPi

den+1

= 2G(
H′(m+i−1)+2G

)
(

H′(m+i−2) − H′(m+i−1)
)

H′(m+i−2)
Qi

⊗
((

τtr
i−1 − τ∗

i

)
: ∂Qi

∂en+1
+ Qi :

(
∂τtr

i−1

∂en+1
− ∂τ∗

i
∂en+1

))

+2G
Qi :

(
τtr

i−1 − τ∗
i

)
(

H′(m+i−1)+2G
)

(
H′(m+i−2) − H′(m+i−1)

)

H′(m+i−2)

× ∂Qi

∂en+1
(35)

and for subsequent iterations (i = 2, 3, . . .)

5. Differentiation of the new trial stress after plastic correc-
tion with respect to the current deviatoric strain. Differ-
entiating Eq. (20) with respect to en+1 gives

dτtr
i

den+1
= ∂τtr

i−1

∂en+1
− dPi

den+1
(i = 1, 2, . . .) (36)

The derivative computations in steps 2 to 5 are repeated until
the trial stress τtr

i falls inside the yield surface {fm+i = 0}.
After “convergence” of the deviatoric stress τtr

i to τ at
the end of the trial time/load step, the material consistent
(or algorithmic) tangent moduli are finally obtained as the
differentiation of the current (total) stress σ with respect to
the current (total) strain εn+1, see Eq. (29), as shown below.
From the relation between the deviatoric strain tensor en+1

and total strain tensor εn+1, i.e., en+1 = εn+1 − 1
3 (ε : I)I, it

follows that

den+1

dεn+1
= I4 − 1

3
I ⊗ I (37)

Then, the differentiation of the current stress τ with respect
to the total strain εn+1 can be expressed as, using the chain
rule of differentiation and Eq. (37),

∂τ

∂εn+1
= ∂τ

∂en+1
: den+1

dεn+1
= ∂τ

∂en+1
:

(
I4 − 1

3
I ⊗ I

)

= ∂τ

∂en+1
− 1

3

(
∂τ

∂en+1
: I

)
⊗ I (38)

The relation between the total stress and deviatoric stress ten-
sors given in Eq. (22) can be re-written as σ = τ + σ volI =
τ + B (ε : I) I. Then

∂σ

∂εn+1
= ∂τ

∂εn+1
+ B (I ⊗ I) (39)

The material consistent tangent moduli given in Eq. (39)
depend on the sensitivities (with respect to the current strain
tensor εn+1) of all trial stresses τtr

i (i = 0, 1, 2, . . .) yield-
ing to the current stress state σ, according to the incremental
process defined by Eqs. (30) through (36) or steps 1 through
5. Thus, in the case of multi-yield-surface plasticity, the con-
sistent tangent moduli cannot be evaluated directly from a
single expression, but need to be computed in an incremen-
tal/additive manner.

The above results for the material consistent tangent mod-
uli, derived in tensor notation, need to be converted into
matrix and vector notation for software implementation pur-
poses. In this paper, the 2nd order and 4th order tensors are
represented as vectors and matrices, respectively, as

σ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

σ23

σ31

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, τ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τ11

τ22

τ33

τ12

τ23

τ31

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

ε =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

ε12

ε23

ε31

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, e =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e11

e22

e33

e12

e23

e31

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(40)
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and

∂σ

∂ε
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂σ11
∂ε11

∂σ11
∂ε22

∂σ11
∂ε33

∂σ11
∂ε12

∂σ11
∂ε23

∂σ11
∂ε31

∂σ22
∂ε11

∂σ22
∂ε22

∂σ22
∂ε33

∂σ22
∂ε12

∂σ22
∂ε23

∂σ22
∂ε31

∂σ33
∂ε11

∂σ33
∂ε22

∂σ33
∂ε33

∂σ33
∂ε12

∂σ33
∂ε23

∂σ33
∂ε31

∂σ12
∂ε11

∂σ12
∂ε22

∂σ12
∂ε33

∂σ12
∂ε12

∂σ12
∂ε23

∂σ12
∂ε31

∂σ23
∂ε11

∂σ23
∂ε22

∂σ23
∂ε33

∂σ23
∂ε12

∂σ23
∂ε23

∂σ23
∂ε31

∂σ31
∂ε11

∂σ31
∂ε22

∂σ31
∂ε33

∂σ31
∂ε12

∂σ31
∂ε23

∂σ31
∂ε31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(41)

It is worth mentioning that the above conversion of
fourth/second order tensors to matrices/vectors was per-
formed as described in [36]. The 2nd order Cauchy stress
tensor is represented and implemented in OpenSees as a
(6 × 1) vector, due to its symmetric property (i.e., σij = σji).
The 4th order consistent tangent tensor, which is unsym-
metrical (i.e., Cijkl �= Cklij) with minor-symmetry (i.e.,
Cijkl = Cjikl = Cijlk = Cjilk), is represented and imple-
mented in OpenSees as a 6×6 matrix. However, the multipli-
cation of two fourth/second order tensors cannot be directly
converted to the multiplication of the corresponding matri-
ces/vectors. For example, the constitutive law for linear elas-
ticity, σij = Cijklεkl, cannot be directly converted in matrix
form as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

σ23

σ31

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

�=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11,11 C11,22 C11,33 C11,12 C11,23 C11,31

C22,11 C22,22 C22,33 C22,12 C22,23 C22,31

C33,11 C33,22 C33,33 C33,12 C33,23 C33,31

C12,11 C12,22 C12,33 C12,12 C12,23 C12,31

C23,11 C23,22 C23,33 C23,12 C23,23 C23,31

C31,11 C31,22 C31,33 C31,12 C31,23 C31,31

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

ε12

ε23

ε31

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(42)

Instead, it should be converted to⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

σ23

σ31

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

C11,11 C11,22 C11,33 2C11,12 2C11,23 2C11,31

C22,11 C22,22 C22,33 2C22,12 2C22,23 2C22,31

C33,11 C33,22 C33,33 2C33,12 2C33,23 2C33,31

C12,11 C12,22 C12,33 2C12,12 2C12,23 2C12,31

C23,11 C23,22 C23,33 2C23,12 2C23,23 2C23,31

C31,11 C31,22 C31,33 2C31,12 2C31,23 2C31,31

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

ε12

ε23

ε31

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(43)

Thus, special functions need to be programmed for the tensor
multiplication purposes.

5 Application examples

5.1 Three-dimensional solid block subjected to quasi-static
cyclic loading

The first application example considered was developed for
the purpose of verifying and validating the newly devel-
oped algorithm to compute the consistent tangent mod-
uli for the multi-yield-surface J2 plasticity model in the
context of a very simple academic example exhibiting 3D
stress–strain response. Thus, a three-dimensional (3D) solid
block of dimensions 1 m × 1 m × 1 m subjected to
quasi-static cyclic loading in both horizontal directions
simultaneously, see Fig. 5, is used as first application and
validation example. The block is discretized into 8 brick ele-
ments defined as displacement-based eight-noded, trilinear
isoparametric finite elements with eight integration points
each. The material properties of the block are taken as sim-
ilar to those of an undrained medium clay [13], i.e., low-
strain shear modulus G = 6.0×104 kPa, elastic bulk modulus
B = 2.4×105 kPa, and maximum shear stress τmax = 30 kPa.
The points (τj, γj) defining the piecewise linear approxi-
mation of the τ − γ backbone curve are defined such that
their projections on the τ axis are uniformly spaced (see
Fig. 1). The bottom nodes of the finite element (FE) model
are fixed and top nodes {A, B, C} and {A, D, E} are sub-
jected to harmonic 90 degrees out-of-phase concentrated hor-
izontal forces Fx1(t) = 2.0 sin(0.2π t) kN and Fx2(t) =
2.0 sin(0.2π t + 0.5π) kN, respectively, as shown in Fig. 5.
The number of yield surfaces is set to 20 unless specified oth-
erwise. A time increment of �t = 1.00 s is used to integrate
the quasi-static equations of equilibrium.

The force Fx1(t)-displacement (at node A in the
X1-direction) response is shown in Fig. 6, while the hysteretic
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Fig. 5 Solid block of clay subjected to horizontal quasi-static cyclic
loading
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Fig. 7 Shear stress–strain response at Gauss point G (see Fig. 5)

shear stress–strain response σ31 − ε31 at Gauss point G (see
Fig. 5) is plotted in Fig. 7. This last figure shows that the
clay material undergoes significant yielding under the cyclic
loading considered.

5.1.1 Comparison of convergence rate and computational
time between the use of consistent and continuum
tangent moduli

This section examines the rate of convergence of the
Newton–Raphson iterations at the “structure” level obtained
when using the material consistent versus continuum tangent
moduli in solving the problem presented in Fig. 5. A toler-
ance of 10−4 kN on the norm of the unbalanced force vector
is used as convergence criterion in the analyses presented in
this section. The comparison result is shown in Fig. 8, and the
computational time is provided in the legend. The computa-
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Fig. 8 Convergence rate comparison (convergence test based on norm
of unbalanced force vector with tol = 10−4 kN)
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Fig. 9 Norm of unbalanced force vector versus iteration number in
load step # 20 (tol = 10−4 kN)

tional time (clock time and not CPU time) depends on the
CPU speed, memory capability, and background processes in
the computer. Since for each comparison, the two problems
are run sequentially on the same computer, the computational
time can be used to compare the speeds of the two Newton–
Raphson iterative algorithms. Figure 9 shows the norm of the
unbalanced force vector as a function of the iteration number
for a representative load step (step # 20) computed using the
material continuum and consistent tangent moduli, respec-
tively.

From the results obtained for this benchmark problem, the
following observations can be made:

• From Fig. 9, it is observed that when using the material
consistent tangent moduli, the norm of the unbalanced
force vector follows an asymptotic rate of quadratic con-
vergence as expected [2], which is not the case when using
the continuum tangent moduli.

• The number of iterations per load step is consistently lower
(by 20–40%) when using the consistent instead of the con-
tinuum tangent moduli.

• The use of either the consistent or continuum tangent mod-
uli leads to about the same computational time. This is
due to the fact that although the use of the consistent
tangent moduli reduces the number of Newton–Raphson
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Fig. 10 Convergence rate comparison (convergence test based on
norm of unbalanced force vector with tol = 10−8 kN)
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Fig. 11 Convergence rate comparison (convergence test based on
norm of incremental displacement vector with tol = 10−12 m)

iterations, it requires more computations to form the tan-
gent stiffness matrix.

5.1.2 Comparison of convergence rate for smaller
convergence tolerance

In this section, the above benchmark problem is solved with
tighter convergence tolerances. The computational condi-
tions are the same, except for the convergence tolerances
that are set to 10−8 kN, 10−12 m, and 10−20 kN. m for the
convergence criteria based on the norm of the unbalanced
force vector, the norm of the incremental displacement vec-
tor, and the energy increment, respectively. The number of
Newton–Raphson iterations needed to reach convergence at
each time or load step when using the material continuum and
material consistent tangent moduli are compared in Figs. 10,
11 and 12. At representative load step # 15, the norm of
the unbalanced force vector, the norm of the incremental
displacement vector and the energy increment as a function
of the iteration number are shown in Figs. 13, 14 and 15,
respectively, when using both the continuum and consistent
tangent material moduli. These results show that the con-
vergence rate is significantly higher and the computational
time significantly lower when using the consistent over the
continuum tangent moduli. The asymptotic rate of quadratic
convergence is again clearly observed in Fig. 13.
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Fig. 12 Convergence rate comparison (convergence test based on
energy increment with tol = 10−20 kN m)
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Fig. 13 Norm of unbalanced force vector versus iteration number in
load step # 15 (tol = 10−8 kN)
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Fig. 14 Norm of incremental displacement vector versus iteration
number in load step # 15 (tol = 10−12 m)
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Fig. 16 Convergence rate comparison for varying number of yield sur-
faces (convergence test based on norm of unbalanced force vector with
tol = 10−4 kN)

By comparing the results in Sects. 5.1.1 and 5.1.2, it is
observed that the advantage of using the consistent over the
continuum tangent moduli becomes more pronounced (in
terms of both the number of N-R iterations per step and the
total computational time) with decreasing convergence tol-
erance. Only when the tolerance is small enough such that
the sequence of trial stresses τtr

i (see Fig. 2) approaches the
solution point from within the convergence region, does the
use of the consistent tangent moduli reach a quadratic rate of
convergence of the Newton–Raphson iterative process.

5.1.3 Convergence rate comparison for varying number
of yield surfaces

This section examines the effect of using 40 versus 20 yield
surfaces in defining the backbone curve of the material con-
stitutive model, on the convergence rate of the Newton–
Raphson iterative process. The comparative results are shown
in Figs. 16 and 17. The convergence criterion used to perform
the simulation for 40 yield surfaces is the same as those in
Sect. 5.1.1 (for 20 yield surfaces), i.e., tolerance = 10−4 kN
for norm of unbalanced force vector. These comparative
results show that the convergence rate is faster when using
the consistent over the continuum tangent moduli, regard-
less of the number of yield surfaces used in the material
constitutive model. In this comparative example, the differ-
ence in the convergence rate obtained by using the consistent
versus continuum tangent moduli is not significant due to
the relaxed convergence tolerance used in the computations.
It is interesting to note that at this time step, the quadratic
convergence rate is not observed in Fig. 17. This is due to
the fact that when the convergence tolerance is too large,
the quadratic convergence rate corresponding to the use of
the consistent tangent moduli is not reached before conver-
gence is achieved.
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Fig. 17 Norm of unbalanced force vector versus iteration number in
load step # 10 (tol = 10−4 kN, 40 yield surfaces)

Table 1 Material properties of various layers of soil column (from top
to bottom)

Material # G (KPa) τmax (KPa)

1 54,450 33
2 33,800 26
3 96,800 44
4 61,250 35
5 180,000 60
6 369,800 86

5.2 Multi-layered soil column subjected to earthquake base
excitation

The second benchmark problem consists of a multi-layered
soil column subjected to earthquake base excitation. This soil
column is representative of the local soil condition at the site
of the Humboldt Bay Middle Channel Bridge near Eureka in
Northern California [13]. A Multi-yield-surface J2 plasticity
model with 20 yield surfaces and different parameter sets
given in Table 1 is used to represent the various soil layers.
The soil column is discretized into a 2D plane-strain finite
element model consisting of 28 four-node quadratic bilinear
isoparametric elements with 4 Gauss points each as shown in
Fig. 18. The soil column is assumed to be under simple shear
condition, and the corresponding nodes at the same depth on
the left and right boundaries are tied together for both hori-
zontal and vertical displacements. The presented method of
modeling the simple shear condition for a 2D soil domain
is commonly used in geotechnical earthquake engineering
[11,33,37]. There are two sources of energy dissipation used
in this soil column model: (1) the hysteretic energy dissipa-
tion through inelastic action of the soil material (as modeled
explicitly using the multi-yield surface J2 plasticity model),
and (2) some numerical/algorithmic damping due to the fact
that γ > 0.5 in the Newmark-beta time integration method
used, with parameters β = 0.275625, γ = 0.55 and a con-
stant time step �t = 0.01 s, for integrating the equations
of motion of the system. The total horizontal acceleration
at the base of the soil column, see Fig. 19, was obtained
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Fig. 19 Total acceleration at the base of the soil column

elsewhere [13] through deconvolution of a ground surface
free field motion. The horizontal displacement response of
the soil column (relative to the base) at the top of each soil
layer is shown in Fig. 20. The shear stress–strain (σxz, εxz)

responses at Gauss points C, D, E, F (see Fig. 18) of the soil
column are shown in Fig. 21. The response simulation results
in Figs. 20 and 21 indicate that the soil materials undergo
significant nonlinear behavior during the earthquake.

5.2.1 Comparison of convergence rate and computational
time between the use of consistent and continuum
tangent moduli

In this section, the number of iterations to reach convergence
at every time step is investigated when using the material
consistent versus continuum tangent moduli. Comparative
results are given in Fig. 22 where the convergence crite-
rion is based on the norm of the unbalanced force vector
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Fig. 20 Relative horizontal displacement response histories at the top
of each layer of the soil column (see Fig. 18)

(tolerance = 10−4 kN). At the representative time step # 800,
the norm of the unbalanced force vector is shown as a func-
tion of the iteration number in Fig. 23, for both cases of using
the consistent and continuum tangent moduli.

From these results, the following observations can be
made:

• From Fig. 23, it is observed that the asymptotic rate of qua-
dratic convergence of the norm of the unbalanced force
vector guaranteed by Newton–Raphson method when
using the consistent tangent moduli is more than achieved.

• The number of iterations per time step is typically lower
(by 0–40%) when using the consistent over the continuum
tangent moduli.

• Using the consistent tangent moduli saves computational
time by about 15%.

5.2.2 Comparison of convergence rate for smaller
convergence tolerance

In this section, the dynamic response analysis presented
above is reconsidered with a tighter (smaller) convergence
tolerance. The computational conditions remain the same,
except for the convergence tolerances which are set to:
10−8 kN, 10−12 m, and 10−20 kN m for the convergence cri-
teria based on the norm of the unbalanced force vector, the
norm of the incremental displacement vector, and the energy
increment, respectively. Results on the number of iterations
required for each time step are given in Figs. 24, 25 and
26. For the representative time step # 700, the norm of the
unbalanced force vector, the norm of the last incremental
displacement vector and the energy increment are plotted in
Figs. 27, 28 and 29, respectively, as a function of the iteration
number.

These results demonstrate that the use of the material
consistent tangent moduli reduces the number of itera-
tions needed to achieve convergence by 20–45% and the
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Fig. 21 Shear stress–strain hysteretic response at Gauss points C, D, E, and F (see Fig. 18)
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Fig. 22 Convergence rate comparison (convergence test based on
norm of unbalanced force vector with tol = 10−4 kN)

computational time by 10–40%, when compared with the
use of the continuum tangent moduli. By comparing results
in Sects. 5.2.1 and 5.2.2, it is observed as in the previous
benchmark problem that the advantage of using the con-
sistent tangent moduli over the continuum tangent moduli
is more pronounced as the convergence tolerance becomes
tighter (smaller).
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Fig. 23 Norm of unbalanced force vector versus iteration number at
time step # 800 (tol = 10−4 kN m)

5.2.3 Comparison of convergence rate for varying time
step size

In this section, the convergence rate and computational time
are compared between the use of the consistent and contin-
uum tangent moduli when the time step is purposely exag-
geratedly increased to �t = 0.05 s, with all other conditions
remaining the same as in Sect. 5.2.1. The comparative results
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Fig. 24 Convergence rate comparison (convergence test based on
norm of unbalanced force vector with tol = 10−8 kN)
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Fig. 25 Convergence rate comparison (convergence test based on
norm of incremental displacement vector with tol = 10−12 m)
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Fig. 26 Convergence rate comparison (convergence test based on
energy increment with tol = 10−20 kN m)
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Fig. 27 Norm of unbalanced force vector versus iteration number at
time step # 700 (tol = 10−8 kN)
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Fig. 28 Norm of incremental displacement vector versus iteration
number at time step # 700 (tol = 10−12 m)
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Fig. 29 Energy increment versus iteration number at time step # 700
(tol = 10−20 kN m)
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Fig. 30 Convergence rate comparison (convergence test based on
norm of unbalanced force vector with tol = 10−4 kN, �t = 0.05 s)

are plotted in Figs. 30, 31 and 32. For the representative time
step # 160 (t = 8.00 s), the norm of the unbalanced force vec-
tor, the norm of the incremental displacement vector and the
energy increment are shown in Figs. 33, 34 and 35, respec-
tively, for both cases of using the consistent and continuum
tangent moduli.

From these results, it is observed that in this case the
use of the consistent tangent moduli reduces the number of
iterations per time step needed to achieve convergence by
18–40%, and the computational time by 10–38%. Compar-
ing the results in Sect. 5.2.3 with their counterparts in Sect.
5.2.1, it is observed that when the time step is increased,
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Fig. 31 Convergence rate comparison (convergence test based on
norm of incremental displacement vector with tol = 10−8 m, �t =
0.05 s)
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Fig. 32 Convergence rate comparison (convergence test based on
energy increment with tol = 10−12, �t = 0.05 s)
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Fig. 33 Norm of unbalanced force vector versus iteration number at
time step # 160 (tol = 10−4 kN, �t = 0.05 s)

the advantage of using the consistent over the continuum
tangent moduli becomes more pronounced. When the time
step size increases, the difference between the constitutive
equations �σ = �σ(�ε) and σ̇ = σ̇(ε̇) becomes more sig-
nificant, as does the difference between the differentiations
d(�σ) = d(�ε) and σ̇/ε̇ = dσ/dε, which are defined as
consistent tangent moduli and continuum tangent moduli,
respectively. As the time step size increases, the continuum
tangent moduli become more ‘inconsistent’ with the New-
ton process, thus leading to the loss of the asymptotic rate of
quadratic convergence characteristic of Newton’s method.
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Fig. 34 Norm of incremental displacement vector versus iteration
number at time step # 160 (tol = 10−8 m, �t = 0.05 s)
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Fig. 35 Energy increment versus iteration number at time step # 160
(tol = 10−12 kN m, �t = 0.05 s)

5.2.4 Convergence rate comparison for varying number
of yield surfaces

This section examines the effect on the convergence rate of
using 40 versus 20 yield surfaces in the constitutive models
of the various soil layers with all other modeling assump-
tions and computational conditions (including the conver-
gence criterion and tolerance) remaining the same as in Sect.
5.2.1. The comparative results are shown in Figs. 36 and 37.
Comparing the results in Sect. 5.2.4 with those in Sect. 5.2.1,
it is noticed that the convergence rate is faster when using the
consistent over the continuum tangent moduli, regardless of
the number of yield surfaces used in the soil material models.

5.3 Three-dimensional pile–soil interaction system
subjected to quasi-static cyclic loading

The last application example consists of a cylindrical con-
crete pile of 0.75 m diameter embedded in a layered clay soil
(see Fig. 38). The segment of the pile above ground is 6 m
long and discretized into 4 beam-column elements, while the
embedded portion of the pile is 6 m long and discretized into
5 beam-column elements. The pile is assumed to be linear
elastic with the following cross-section properties: Young’s
modulus E = 3.00E7 kPa, Area A = 0.44 m2, Moment of
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Fig. 36 Convergence rate comparison (convergence test based on
norm of unbalanced force vector with tol = 10−4 kN, 40 yield sur-
faces)
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Fig. 37 Norm of unbalanced force vector versus iteration number at
time step # 800 (tol = 10−4 kN, 40 yield surfaces)

inertia I = 4.90E−2 m4. The foundation soil is stratified into
four distinct layers of clay materials of thicknesses 2, 3, 3,
and 2 m, respectively, from top to bottom. A computational
soil domain of size 28.8 m (length) by 28.8 m soil (width) by
10 m (depth) is discretized into 576 8-node (displacement-
based) brick elements as shown in Fig. 38. The FE mesh was

created using a finite element user-interface for 3D analysis
of lateral pile–ground interaction system response, OpenS-
eesPL [38]. The soil material in each layer is modeled using a
20-yield-surfaces multi-yield-surface J2 plasticity model
with material parameters varying across layers. The soil prop-
erties are the same as those of the top four layers of soil in
the second application example described in Sect. 5.2; these
properties are given in Table 1 (Material # 1 through 4), and
a Poisson’s ratio of 0.35 was used for all soil materials.

Below ground, sets of 16 radial rigid beam-column links,
normal to the pile longitudinal axis, are used to represent
the geometric space occupied by the pile. The soil 3D brick
element nodes at the periphery of the pile are connected
to the pile geometric configuration at the corresponding
outer nodes of these rigid links using the equalDOF con-
straint in OpenSees for translations only as shown in Fig. 38
[23].

A simple shear condition is used by constraining the lon-
gitudinal/transversal mesh lateral boundaries to undergo the
same vertical and longitudinal/transversal motions, using
the equalDOF constraint in OpenSees. To exercise the 3D
response behavior of the foundation soil as would be the
case for a pile foundation supporting a column of a bridge
subjected to bi-directional horizontal earthquake excitation,
the top of the pile is subjected quasi-statically to two
harmonic 90 degrees out-of-phase concentrated horizontal
(lateral) forces Fx(t) = 2.0 sin(0.2π t) kN and Fy(t) =
2.0 sin(0.2π t + 0.5π) kN, respectively. This loading condi-
tion corresponds to a radial lateral 120 kN force rotating at the
angular velocity of 0.1 cycle per second. The duration of the
loading is 10 s, which corresponds to one cycle of harmonic
loading. To avoid convergence problems in integrating the
quasi-static nonlinear equations of equilibrium, an adaptive

Fig. 38 Three-dimensional
pile–soil interaction system
subjected to quasi-static cyclic
loading

Gauss point G (0.20 m below ground surface)

2m

3m

2m

3m

28.8m
28.8m

x
y

z

Fx
Fy

Pile model

6m

6m

Rigid links
representing
geometric space
occupied by pile

123



114 Comput Mech (2011) 48:97–120

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
−150

−100

−50

0

50

100

150

ground u
x

ground u
y

top of pile u
x

top of pile u
y

F x
 

F,
y

  
k

N
[

]

ux uy m[ ],

Fig. 39 Force–displacement response of top of pile
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Fig. 40 Shear stress–strain responses at Gauss point G (see Fig. 38)

time/load stepping scheme is used with �tmax = 0.5 s and
�tmin = 0.01 s.

The horizontal force-displacement response histories,
Fx − ux and Fy − uy, at the top of the pile and at the center
of the pile at the ground surface level are shown in Fig. 39,
while the hysteretic shear stress–strain responses, σyz − εyz

and σxz − εxz, at Gauss point G (located 0.53 m from the
center of the pile and 0.20 m under the ground surface, see
Fig. 38) are plotted in Fig. 40. A maximum shear stress ratio
of 0.92 was developed at this Gauss point during the quasi-
static push-over. Here, the shear stress ratio is defined as the
octahedral shear stress demand over the shear strength. This
last figure shows that the clay material near the pile and near
the ground surface undergoes significant yielding under the
cyclic loading considered.

5.3.1 Comparison of convergence rate and computational
time between the use of consistent and continuum
tangent moduli

This section examines the rate of convergence of the
Newton–Raphson iterative process at the “structure” level
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Fig. 41 Convergence rate comparison (convergence test based on
norm of unbalanced force vector with tol = 10−3 kN)

obtained when using the material consistent versus contin-
uum tangent moduli in solving the present pile–soil inter-
action problem. A tolerance of 10−3 kN on the norm of the
unbalanced force vector is used as convergence criterion in
the analyses presented in this section. The comparison results
are shown in Fig. 41. Table 2 provides, at a number of repre-
sentative load steps, the norm of the unbalanced force vector
as a function of the iteration number obtained when using
the material consistent versus continuum tangent moduli.
From the results obtained for this benchmark problem, it is
observed that:

• From Table 2, it is observed that when using the mate-
rial consistent tangent moduli, the norm of the unbalanced
force vector exhibits the asymptotic rate of quadratic con-
vergence as expected, which is not the case when using
the continuum tangent moduli. It is noteworthy that at
time step t = 5 s, the convergence rate achieved using
consistent tangent moduli has not reached yet the qua-
dratic rate at the last (converged) iteration (i.e., the unbal-
anced force norm is 4.46 × 10−3 at the 4th iteration, and
only 3.38 × 10−5 at the 5th iteration). This is due to the
fact that the limit of the computational accuracy has been
reached for this problem, which was found (by trial-and-
error) to be 5.0 × 10−5 for the norm of the unbalanced
force vector. This limit is due to various sources of numer-
ical noise in the algorithms involved including round-off
errors.

• The number of iterations per load step required to reach
convergence is consistently lower when using the con-
sistent over the continuum tangent moduli. The average
number of iterations per load step needed when using
the consistent and continuum tangent moduli is 4.5 and
6.3, respectively (i.e., use of the consistent tangent mod-
uli reduces the average number of iterations per time/load
step by 29% in this case).

• The use of the consistent over continuum tangent mod-
uli reduces the computational time by 31% in this
case.
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Table 2 Norm of unbalanced force vector versus iteration number (tol = 10−3 kN)

Pseudo time (s) Iteration # 1 2 3 4 5 6 7 8

1.0 Consistent tangent 5.92 8.14E−1 2.87E−2 3.53E−5
1.0 Continuum tangent 7.49 1.45 2.67E−1 6.27E−2 1.60E−2 5.40E−3 3.84E−3 2.76E−4
3.125 Consistent tangent 1.42E1 2.17 2.16E−1 1.37E−2 2.61E−5
3.125 Continuum tangent 7.12 1.48 3.69E−1 9.63E−2 2.58E−2 7.26E−3 2.13E−3 6.52E−4
5.0 Consistent tangent 7.35 9.86E−1 2.97E−2 4.46E−3 3.38E−5
5.25 Continuum tangent 7.07 1.49 3.87E−1 9.67E−2 2.45E−2 6.57E−3 1.82E−3 5.19E−4
7.0 Consistent tangent 6.56 9.22E−1 3.91E−2 3.72E−4
7.0 Continuum tangent 1.35 7.33E−2 5.57E−3 5.04E−4
9.125 Consistent tangent 1.29E1 1.99 5.31E−1 1.01E−2 4.68E−5
8.9375 Continuum tangent 6.70 1.27 3.63E−1 1.08E−1 1.65E−2 3.66E−3 9.58E−4
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Fig. 42 Convergence rate comparison (convergence test based on
norm of unbalanced force vector with tol = 10−4 kN)

5.3.2 Comparison of convergence rate for smaller
convergence tolerance

In this section, the above considered benchmark problem is
solved using a tighter convergence tolerance. The tolerance
on the norm of the unbalanced force vector is reduced from
1 × 10−3 to 1 × 10−4 kN. The number of Newton–Raphson
iterations needed to reach convergence at each time/load
step when using the consistent and continuum tangent mod-
uli are compared in Fig. 42. The norm of the unbalanced
force vector versus iteration number when using the con-
sistent and continuum tangent moduli is reported in Table 3
for several representative time/load steps. These results show

that the convergence rate is significantly higher (with aver-
age number of iterations per load step reduced by 38%)
and the computational time significantly lower (by 47%)
when using the consistent over the continuum tangent mod-
uli. The asymptotic rate of quadratic convergence obtained
when using the consistent tangent moduli is again clearly
observed in Table 3. It is also observed from this table that
the norm of the unbalanced force vector cannot be reduced
below 1 × 10−5 due to various sources of numerical noise in
the various algorithms involved including round-off errors.
Furthermore, when the convergence tolerance for the norm
of the unbalanced force vector is set to 5×10−5, the Newton
iteration process using the consistent tangent moduli con-
verges almost at the same rate as that shown in Fig. 42, while
it does not converge to the required tolerance when using the
continuum tangent moduli. Thus, in this case, the use of the
consistent tangent moduli enables convergence of the New-
ton process, which cannot be achieved using the continuum
tangent moduli.

By comparing the results in Sects. 5.3.1 and 5.3.2, it is
observed as in the previous examples that the advantage
of using the consistent over the continuum tangent moduli
becomes more pronounced (in terms of both the number of
N-R iterations per step and the total computational time) with
decreasing convergence tolerance.

Table 3 Norm of unbalanced force vector versus iteration number (tol = 10−4 kN)

Pseudo time (s) Iteration # 1 2 3 4 5 6 7 8 9 10

1.0 Consistent tangent 5.92 8.14E−1 2.87E−2 3.53E−5
1.0 Continuum tangent 7.26 1.43 2.63E−1 6.12E−2 1.53E−2 5.22 E−3 3.82 E−3 2.41E−4 6.89E−5
2.8125 Consistent tangent 14.4 2.16 1.87E−1 5.32E−5
3.125 Continunm tangent 2.85 3.68E−1 6.10E−2 1.09E−2 2.10E−3 4.25E−4 9.90 E−5
4.9375 Consistent tangent 1.86 2.56E−1 4.32E−3 2.87E−5
5.0 Continuum tangent 3.35 3.50E−1 5.05E−2 8.31E−3 1.32E−3 2.32 E−4 5.33 E−5
7.0625 Consistent tangent 13.8 2.41 3.06E−1 2.44E−4 3.35E−5
7.1875 Continunm tangent 7.86 1.41 3.17E−1 7.67E−2 2.02E−2 5.73 E−3 1.73 E−3 5.45E−4 1.82E−4 7.02E−5
9.125 Consistent tangent 13.0 1.94 5.97E−1 4.94E−3 3.18E−5
9.0625 Continunm tangent 8.01 1.40 2.99E−1 6.69E−2 1.73E−2 4.90 E−3 1.49 E−3 4.75E−4 1.61E−4 6.41E−5
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6 Conclusions

For nonlinear mechanics problems involving rate constitutive
equations, such as rate-independent elasto-plasticity, consis-
tent (or algorithmic) tangent moduli play an important role
in guaranteeing the quadratic rate of asymptotic convergence
of incremental-iterative solution schemes based on Newton’s
method. Furthermore, consistent tangent moduli are neces-
sary in structural response sensitivity analysis based on the
DDM.

In this paper, the consistent tangent moduli are derived
for the multi-axial, multi-yield J2 (von Mises) plasticity
model, a very versatile material constitutive model used
extensively in geotechnical engineering. The derived consis-
tent tangent moduli and their software implementation in a
nonlinear structural/geotechnical analysis framework are
verified through two application examples, one with quasi-
static loading and the other with dynamic loading. In the con-
text of these examples, comparative studies are performed
between the use of continuum and consistent tangent mod-
uli in terms of convergence rate and computational time of
Newton’s process. Based on the results obtained for these
two examples, the following conclusions can be drawn:

1. For a relatively large (loose) convergence tolerance, New-
ton’s process converges slightly faster when using the
consistent over the continuum tangent moduli. However,
this does not ensure a reduction in computational time
(as compared when using the continuum tangent moduli),
since at each iteration of each load/time step, more com-
putational work is required to form the consistent tangent
moduli than to form the continuum tangent moduli.

2. As the convergence tolerance is tightened (decreased),
use of the consistent tangent moduli reduces significantly
(as compared when using the continuum tangent moduli)
both the number of iterations per load/time step and the
computational time of Newton’s process. When using
the consistent tangent moduli, the decreasing norm of
the unbalanced force vector follows the asymptotic rate
of quadratic convergence characteristic of Newton’s pro-
cess.

3. In dynamic analysis and for relatively large time step size,
the use of the consistent tangent moduli reduces signifi-
cantly both the number of iterations per time step and the
computational time, even for relatively large convergence
tolerance.

4. Increasing the number of yield surfaces in the multi-yield
J2 plasticity model has negligible effect on the compara-
tive results between the uses of consistent and continuum
tangent moduli when considering the convergence rate
and computational time.

5. In some cases, the use of the consistent tangent moduli
alleviates convergence problems (in the Newton iterative

process) encountered when using the continuum tangent
moduli.
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Appendix A: Derivations of plastic stress correction

This appendix provides the derivation of Eqs. (13) and
(19) based on the flowchart of the integration algorithm for
the multi-yield surface J2 plasticity model by Prevost [29].
Although not the focus of this paper, these derivations pro-
vide insight into this model. It is worthy to note that the plastic
stress correction tensor used in the discretized flow rule (i.e.,
P1 and P i in Eqs. (13) and (19)) is derived independently by
the authors and after some simplifications and approxima-
tions reduces to the same form as the one given by Parra [30]
and Yang [14] (i.e., Eqs. (13) and (19)) and implemented in
OpenSees.

A.1 Derivation of stress correction for the first crossed yield
surface

The stress correction for the first crossed yield surface is sim-
ilar to that for classical J2 single surface plasticity. The stress
correction computation is based on the following two sets of
discretized relations.

(a) Incremental stress–strain relation

In small strain plasticity, the decomposition of the total strain
into the elastic and plastic parts can be expressed in discret-
ized form as �ε = �εe + �εp = �εe + �ep. The equal-
ity�εp = �ep stems from the pressure invariant nature of
the plasticity model considered here (i.e., isochoric plastic
deformations). The incremental stress–strain relation for lin-
ear elastic isotropic material can be expressed as

τ − τn = �τ = [
C : �εe]dev = [

C : (
�ε − �ep)]dev

= 2G
(

[�ε]dev − �ep
)

(A1)
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where τn represents the deviatoric stress at the last converged
load/time step and the superscript [. . .]dev denotes the devi-
atoric part of the quantity inside the brackets. The tensor of
elastic moduli C can be expressed as C = λI ⊗ I + 2GI4.
Equation (A1) can be rewritten as

τ = τn + �τ = τn + 2G [�ε]dev − 2G�ep

= τtr
0 − 2G�ep (A2)

Defining the plastic stress correction tensor as (see Fig. 2)

P1 = 2G�ep (A3)

the current deviatoric stress can be expressed as

τ = τtr
0 − P1 = τtr

1 (A4)

(b) Discretized form of flow rule

In incremental form, the continuum flow rule in Eqs. (5) and
(7) becomes

�ep = 〈L〉
H′(m)

Q1 = 〈Q1 : �τ〉
H′(m)

Q1 (A5)

where H′(m) is the plastic shear modulus of the current (or
active) yield surface. The plastic strain increment tensor in
Eq. (A5) must obey the Kuhn–Tucker complementarity con-
ditions expressed as 〈L〉

H′(m) fm (τ,α) = 0 where L = Q1 : �τ.
It can be shown that at the end of the first iterative correc-
tion, 〈Q1 : �τ 〉 can be replaced by 〈Q1 : (τ − τA)〉 where
τA is the intersection of (τtr

0 − τn) with the yield surface
{fm = 0} (see Fig. 2). In addition, for the current plastic
loading case, 〈Q1 : (τ − τA)〉 can be approximated by Q1 :
(τ − τ∗

1). Thus, Eq. (A5) becomes

�ep = 1

H′(m)
Q1 ⊗ Q1 : (

τ − τ∗
1

)
(A6)

Solving Eqs. (A2) and (A6) for the total plastic strain incre-
ment �ep yields

�ep = Q1 : (
τtr

0 − τ∗
1

)
H′(m) + 2G

Q1 (A7)

Then, from Eq. (A3)

P1 = 2G�ep = 2G
Q1 : (

τtr
0 − τ∗

1

)
(
H′(m) + 2G

) Q1 (A8)

A.2 Derivation of stress correction for the second
and successive crossed yield surfaces

After completion of the stress correction for the first yield
surface, if the stress point lies outside the next larger yield
surface, then before continuing the stress correction corre-
sponding to the next yield surface, some small but crucial
correction to the stress τtr

1 must be made in order to account

-
-
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Fig. 43 Flow rule of multi-yield-surface J2 plasticity model

for the fact that the plastic stress correction has actually been
‘overrelaxed’ at the first stress correction step [29].

The total deviatoric strain increment [�ε]dev may be sub-
divided into three parts (E–A, A–B, and B–C, see Fig. 43),
where E is the stress point τn at the last converged time/load
step. Stress path E–A is linear elastic, i.e, fm ≤ 0 and the
equality holds only at point A. A–B is the path of the stress
state between the first yield surface (fm = 0) and the second
yield surface (fm+1 = 0). Stress point B may be obtained by
the ‘elastic predictor A–D, plastic corrector D–B’ process
and by satisfying the consistency condition fm+1 = 0. The
exact position of point B could be obtained iteratively.

The entire elastic predictor E–F has been relaxed plasti-
cally to stress point τtr

1 (point G in Fig. 43) according to the
first yield surface (fm = 0) only. The portion D-F of the
elastic predictor E–F should be relaxed plastically accord-
ing to the second yield surface (fm+1 = 0). Thus, the plastic
stress correction F–G (−P1) must be scaled back to F–H (see
Fig. 44) where the deviatoric plastic strain at point H is the
same as at point B (i.e., ep

H = ep
B). Then, the plastic stress

correction F–H is followed by the plastic stress correction
H–I according to the second yield surface (fm+1 = 0) result-
ing in stress stateτtr

2 . The plastic strain from stress point G to
stress point I can be decomposed as (see Fig. 44)

�ε
p
GI = −�ε

p
HG + �ε

p
HI (A9)
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Note that both �ε
p
HG and �ε

p
HI correspond to the plastic

loading case. The second stress correction (−P2) is obtained
from the following two sets of discretized relations.

(a) Incremental stress–strain relation (from G(τtr
1 ) to I (τtr

2 ))

Since, between stress points G and I (see Fig. 44), the total
strain remains unchanged, i.e., �εGI = 0, it follows that

τtr
2 − τtr

1 = C : (
�εe

GI

) = C : (
�εGI − �ε

p
GI

)
= −C : �ε

p
GI = −2G�ε

p
GI (A10)

where �ε
p
GI = �ep

GI.

(b) Discretized form of flow rule

The plastic strain increment from stress point H to stress point
I is given by the plastic strain increment from stress point B
to stress point I and defined as, according to Eq. (5),

�ε
p
HI = 〈L2〉

H′(m+1)
QH

2 =
〈
QH

2 : �τ2
〉

H′(m+1)
QH

2 (A11)

where �τ2 is defined as the stress change from B to I (see
Fig. 43 and 44). For the plastic loading case,

〈
QH

2 : �τ2
〉

can be approximated with Q2 : (τtr
2 − τ∗

2) (see Fig. 44) in
whichτ∗

2 and Q2 are as defined in Eqs. (15) and (17), respec-
tively. Substituting this approximation as well as QH

2
∼= Q2

into Eq. (A11), which in turn is substituted into Eq. (A9),
yields

�ε
p
HI = �ε

p
HG + �ε

p
GI = 1

H′(m+1)
Q2

(
Q2 : (

τtr
2 − τ∗

2

))
(A12)

The plastic strain increment�ε
p
HG corresponding to the stress

increment H-G by which the stress state was over relaxed
(according to the first yield surface), can be approximated as
(see Eq. (5) and Fig. 44)

�ε
p
HG = 1

H′(m)
Q1

(
Q1 : (

τtr
1 − τB

))

≈ 1

H′(m)
Q1

(
Q1 : (

τtr
1 − τ∗

2

))
(A13)

Substituting Eq. (A13) into Eq. (A12) gives

�ε
p
GI = 1

H′(m+1)
Q2

(
Q2 : (

τtr
2 − τ∗

2

))

− 1

H′(m)
Q1

(
Q1 : (

τtr
1 − τ∗

2

))
(A14)

Solving Eqs. (A10) and (A14) for τtr
2 and �ε

p
GI, it is found

that

�ε
p
GI =

(
H′(m) + 2G · Q1 : Q2

)
H′(m)

(
H′(m+1) + 2G

) Q2 ⊗ Q2 : (
τtr

1 − τ∗
2

)

− 1

H′(m)
Q1 ⊗ Q1 : (

τtr
1 − τ∗

2

)
(A15)

The second plastic stress correction P2 = τtr
1 − τtr

2 can then
be obtained as

P2 = C : �ε
p
GI = 2G

(
H′(m) + 2G · Q1 : Q2

)
H′(m)

(
H′(m+1) + 2G

) Q2

⊗ Q2 : (
τtr

1 − τ∗
2

) − 2G

H′(m)
Q1 ⊗ Q1 : (

τtr
1 − τ∗

2

)
(A16)

After the second plastic stress correction, if the stress lies
outside the next yield surface, the correction process from
Eq. (A9) to Eq. (A16) is repeated with the subscript for
the iteration number set to i = 3. More generally, the plas-
tic stress correction for iteration i (corresponding to yield
surface fm+i−1 = 0) is given by

Pi = 2G

(
H′(m+i−2) + 2G · Qi−1 : Qi

)
H′(m+i−2)

(
H′(m+i−1) + 2G

)
×Qi ⊗ Qi : (

τtr
i−1 − τ∗

i

)
− 2G

H′(m+i−2)
Qi−1 ⊗ Qi−1 : (

τtr
i−1 − τ∗

i

)
(A17)

If the number of yield surfaces used to represent the origi-
nal shear stress–strain backbone curve (see Eq. (2)) is large
enough (say NYS > 20) such that the unit tensors nor-
mal to the two consecutive yield surfaces fm+i−2 = 0 and
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fm+i−1 = 0 corresponding to stress points τtr
i−2 and τtr

i−1,
respectively, are close, then

Qi−1 ≈ Qi (A18)

and Eq. (A17) further simplifies to

Pi = 2G

(
H′(m+i−2) − H′(m+i−1)

)
H′(m+i−2)

(
H′(m+i−1)+2G

)Qi ⊗ Qi : (
τtr

i−1 − τ∗
i

)

= 2G
Qi : (

τtr
i−1 − τ∗

i

)
(
H′(m+i−1) + 2G

)
(
H′(m+i−2) − H′(m+i−1)

)
H′(m+i−2)

Qi

(A19)

It is worth mentioning that the “elastic predictor – plastic
corrector” constitutive law integration method considered in
this paper is an implicit method based on the use of backward
Euler method to discretize the continuous flow rule in Eq. (5).
However, this method does not require iterations. This is due
to (i) the mathematical simplicity of the von Mises yield sur-
faces used here, and (ii) the piecewise linear approximation
of the original smooth (shear stress–strain) backbone curve.
The plastic stress corrections (in Eqs. (A8) and (A19)) cor-
responding to each active yield surface can be solved non-
iteratively as shown in Appendix A. Therefore, the stress at
the current time step n + 1 may be obtained non-iteratively
(i.e., using Eqs. (8) through (22)).
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