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Abstract Delamination is typically modelled using cohe-
sive zone models. In this paper, it is shown that the validity of
most models is limited to small displacements and/or defor-
mations at the interface and the surrounding bulk materials.
A large displacement formulation (LDF) is proposed that
overcomes issues of the classical formulation with large dis-
placements and deformations at the interface. Subsequently,
a 3D cohesive zone element with this LDF is introduced and
its numerical implementation is elaborated. Then, a 3D FEM
model is proposed and the determination of several model
parameters is substantiated. Finally, the implementation is
validated by comparing numerical results with experimental
observations.

Keywords Cohesive zone · Large displacements ·
Delamination · Laminates · Coatings

1 Introduction

Polymer coated metals are used nowadays for an extend-
ing variety of products, e.g., beverage cans and aerosols. A
polymer coating is applied to the metallic substrate prior
to forming a product. Polymer coated metals have several
advantages over uncoated metals. The polymer coating pro-
tects the substrate from corrosion, without influencing the
taste of the beverage or food. Moreover, costs savings are
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possible because there are no emissions of volatile organic
compounds and lacquering is superfluous [5,10].

The polymer coating can delaminate because it is sub-
jected to the same deformation as the metal substrate. This
causes the loss of protective and attractive properties of the
product [3] and is therefore unacceptable. Adequate material
description and process simulations are required to predict
delamination, which allows the adjustment of process param-
eters to prevent it.

In-situ observation of the delamination process of poly-
mer coated steel reveals the presence of large deformations
and displacements in both the interface and the bulk mate-
rials. The delamination occurs by the initiation, growth and
fracture of fibrils at the interface, a process called fibrillation.

In the numerical tool, the delamination process is
described by cohesive zone models, which represent a rela-
tion between the traction and the relative displacement of
associated points of crack surfaces. Cohesive zones are typi-
cally implemented in finite element codes as interface
elements.

Most (2D) cohesive zone models provide a constitutive
relation between the normal opening displacement and the
normal traction and a separate relation between the tangen-
tial opening displacement and the tangential traction (see
a.o. [4,7,18] for an overview). The tractions are sometimes
coupled by making them a function of both the normal and
tangential opening displacement [17,21]. The normal and
tangential direction are defined with respect to a local coor-
dinate basis that is placed inside the cohesive zone element.
This approach is accurate when there are small displacements
present at the interface, e.g., when the cohesive zones are used
to simulate the indentation-induced delamination of a brit-
tle film [1]. Therefore these models are next referred to as
cohesive zone models with a small displacement formulation
(SDF). However, in the presence of large displacements at
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the interface, these models, as shown later, may give unex-
pected results. To overcome the problems of the SDF, a large
displacement formulation (LDF) for fibrillation is proposed.

Large displacement cohesive zone models have already
been developed [14,15]. However, these cohesive zone
models were used to predict crack growth with large dis-
placements in the bulk material but the displacements at the
interface prior to failure were relatively small and should
therefore be considered as SDF models.

In this paper first some experimental results on the delam-
ination of the polymer coating are shown, illustrating the
formation of fibrils. Secondly, the SDF and its problems to
describe large displacements unambiguously are discussed.
Subsequently, the LDF is introduced and it is shown how it
handles large displacements correctly. Then, the formulation
of a 3D cohesive zone element with a LDF is elaborated.
Finally, the constitutive model for the coating is introduced,
on the basis of which a 3D peel model is built and compared
with experiments.

2 Experimental observation of fibrillation

The substrate is a batch annealed steel. It is extrusion coated
on one side with poly-ethylene terephthalate (PET). The sub-
strate is 210µm thick and the PET layer has a thickness of
30µm.

Peel test were performed in-situ inside a scanning electron
microscope (SEM) as shown in Fig. 1 [19]. At the delami-
nation front, the formation, growth and debonding of fibrils
was observed (see Fig. 2). This process is called fibrillation
and is considered to be the main mechanism by which the
coating delaminates from the substrate under the imposed
loading conditions.

3 Small displacement formulation

Most cohesive zone models in literature use a SDF to describe
quasi-brittle fracture. These models may have two or three

Fig. 1 In-situ delamination setup

Fig. 2 SEM micrograph of the delamination front and the presence of
fibrils

constitutive relations (2D/3D), that describe the relations
between the tractions and the opening displacements. Here a
reversible exponential cohesive zone law is used [18]:
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where T represents a traction, φ a work-of-separation, δ a
characteristic cohesive length and ∆ an opening displace-
ment. The subscripts ( )t and ( )n refer to the tangential and
normal directions with respect to a local basis.

Figure 3 shows a quadrilateral cohesive zone element with
four nodal points and two integration points. The opening dis-
placements are determined by decomposing the total open-
ing displacement with respect to a local orthonormal basis
{et , en}. The local basis is commonly defined with respect
to a reference line. In most cases this is the cohesive zone
mid-line, which is line A–B in Fig. 3.

If there are small displacements at the interface, all ref-
erence lines within a cohesive zone element are parallel to
each other, i.e., the choice for a specific reference line will

Fig. 3 Schematical representation of the initial and deformed geom-
etry of a planar cohesive zone element with large displacements and
three possible orientations of a local basis
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Fig. 4 The calculated normal opening displacement (normalized by
the initial cohesive zone length �0) of integration point 1 (ip 1 in Fig. 3)
for three different local bases as a function of the time t normalized by
time τ at which the maximum opening is achieved

not significantly influence the magnitude of the normal and
tangential opening displacement. However, when large dis-
placements are present at the interface, the choice of a refer-
ence line may influence the orientation of the local basis and
hence the decomposition of the total opening displacement
in a normal and tangential contribution [6]. To illustrate this,
a single cohesive zone element is monotonically deformed
in a typical deformation mode shown in Fig. 3. The normal
opening displacements, calculated with respect to the three
local bases, are shown in Fig. 4. From Fig. 4 it is clear that the
normal opening displacement cannot be determined unam-
biguously due to the differences in orientation of the local
bases.

So, the use of a local basis has several consequences when
large displacements occur at the interface. First, the orienta-
tion of the local basis will influence the magnitude of ∆t

and ∆n and consequently the contribution of φt and φn to
the total dissipated energy. Secondly, in most SDF imple-
mentations the integration of the tractions is performed over
the length of the reference line. Upon large displacements in
one of the joined materials, the lengths of the reference lines
will change during deformation and as a result, the integrated
tractions will have different magnitudes.

Since delamination in polymer coated steel is character-
ized by fibrillation and large displacements at the interface,
a solution is required to remedy the inconsistencies that may
result from the choice of the local basis.

4 Large displacement formulation

If there are large displacements present at the interface, it
is no longer physical to uniquely distinguish between a nor-
mal and tangential opening. In the particular case of polymer
coated steels, the interfacial gap is bridged by fibrils that can

Fig. 5 An interface between two materials with an opening displace-
ment ∆ between two points that coincided initially

only transfer a load along their axes. A LDF is therefore pro-
posed to resolve the ambiguity induced by the choice of a
local basis, where no distinction will be made between nor-
mal and tangential loadings. Only a single constitutive rela-
tion between the traction T and the opening displacement �

is proposed:

T = f(�). (3)

The opening displacement is calculated between two points,
on both sides of the interface, which coincided initially as
sketched in Fig. 5. The vectors are no longer decomposed
with respect to a local basis but are resolved globally. There-
fore, the deficiencies of the SDF are overcome, since there
is no need for a local basis. Adopting the geometrically
nonlinear solution procedure proposed in [19], tractions are
resolved as Piola-Kirchhoff tractions. In here, the required
cohesive zone length is the initial length, which can be deter-
mined unambiguously.

The constitutive relation (3) is next explicated on the basis
of the normal traction of the SDF cohesive zone law (Eq. 2).
It relates the traction T = T e to the opening displacement
� = ∆e , where e is the unit vector along the line between
the associated points of the interface:

T = φ

δ
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δ

)
exp
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δ

)
(4)

where φ is the work-of-separation and δ characteristic open-
ing length, see Fig. 6. The maximum traction Tmax is related
to φ and δ by:

Tmax = φ

δ exp(1)
. (5)

As shown in Fig. 6, upon unloading, the cohesive zone law
can show a reversible response (i) or two types of irrevers-
ible behaviour: linear elastic unloading to the origin, i.e.,
elasticity-based damage (ii) and unloading with the initial
stiffness of the cohesive zone, i.e., plastically damaged (iii).
All three cases are shown in Fig. 6.

It has been shown previously that the shape of the cohesive
zone law, even when a large deformation formulation is used,
has no significant influence on the macroscopic response of
the model [19]. In this paper, an exponential cohesive zone
law is used because its traction and derivative are continuous
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Fig. 6 Cohesive zone law of equation (4) with the maximum traction
∆ = δ and three types of unloading behaviour

in forward loading, which is attractive from a computational
point of view.

There are a number of advantages of a LDF cohesive
zone model compared to a SDF one. Firstly, there is no
local basis, rendering the decomposition of the total displace-
ment superfluous. Therefore, the total work-of-separation is
always equal to φ, independent of the mode-mixity. This is a
valid simplification of a mode-dependent cohesive zone law
if there are only fibrils at the interface. Secondly, the cohe-
sive zone law of equation (4) can be derived from a poten-
tial function, which makes the dissipated energy intrinsically
path-independent. Finally, the first Piola-Kirchhoff tractions
are integrated in a consistent unambiguous manner by using
the initial cohesive zone element length.

5 Three-dimensional cohesive zone element

The cohesive zone is implemented in the commercial finite
element code MSC.MARC as a user element in a large dis-
placement framework. The weak form of the weighted resid-
ual integral of the equilibrium equation reads:∫
V

(∇w)c : S dV =
∫
V

w · q dV +
∫
A

w · t d A ∀ w(x) (6)

where ∇ is the gradient operator and w arbitrary continuous
weighting function. The boundary tractions at the external
boundary A are given by t = S · n, whereas the body forces
q apply to the volume V . The sum of the two integrals with the
external load vectors are denoted as the external force inte-
gral fe. The remaining integral on the left hand side is the
internal force integral fi , which expresses the virtual work
of the internal stresses and the cohesive zone tractions. The
weighted residual integral equation is then compactly written
as:

fi (w,S) = fe(w, t,q) ∀ w. (7)

Fig. 7 An eight-noded 3D cohesive zone element with four integration
points

A 3D cohesive zone element is shown in Fig. 7. Both the local
coordinates, ξ and η, span the range [–1 1]. In the deformed
state a traction T connects associated (= with the same (ξ ,η)-
coordinate) points P and Q located on the faces S1 and S2,
respectively. Focussing attention to the cohesive zone ele-
ment, traction equilibrium across the interface involves the
(Cauchy) traction vector σ rather than the full stress tensor
S. Integration over the cohesive zone element volume with
area A yields:

fi =
∫
A

∆w · σ d A (8)

where the weighting function can be considered as a kine-
matically admissible virtual displacement. A pull-back to
the initial undeformed state is performed, where the integra-
tion takes place over the initial area A0. Accordingly, Eq. (8)
becomes:

fi =
∫
A0

∆w · T d A0 (9)

where T is the first Piola-Kirchhoff traction vector. The
weighting function w and the traction T are a function of
the local coordinate η. The integration is expressed in this
coordinate, leading to:

f
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1∫
−1

PT N T (ξ, η) T
˜
(ξ, η) dξ dη (10)

where T
˜
(ξ, η) is the column with the tractions and P is an

operator matrix that transforms the nodal quantities to the
points A,B,C and D:

P = [−I 12 I 12

]
(11)

in which I 12 is a 12 × 12 unity matrix. N (ξ, η) is the matrix
with the interpolation functions:

N (ξ, η) =
⎡
⎣ψ1 0 0 ψ2 0 0 ψ3 0 0 ψ4 0 0

0 ψ1 0 0 ψ2 0 0 ψ3 0 0 ψ4 0
0 0 ψ1 0 0 ψ2 0 0 ψ3 0 0 ψ4

⎤
⎦
(12)
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in which ψi are the four shape functions associated with the
points A, B, C and D:

ψ1 = 1

4
(1 − ξ) (1 − η) ψ2 = 1

4
(1 + ξ) (1 − η)

ψ3 = 1

4
(1 + ξ) (1 + η) ψ4 = 1

4
(1 − ξ) (1 + η).

(13)

Following a standard iterative procedure, similar to the classi-
cal 2D implementations, yields the approximate incremental
value of the internal load integral and the element stiffness
matrix:
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where ( )∗ denotes the incremental value and M is the cohe-
sive tangent operator. Finally, the iterative element equation
reads:

K ∗ δu
˜

= f
˜ e

− f
˜

∗
i

(16)

where δu
˜

is a column with the iterative nodal displacements.

5.1 Contact

A contact algorithm is required to detect the penetration of
surface S1 into S2, or vice versa. The opening displacement
in the LDF is always positive (∆ = ||�||) and can therefore
not be used to detect penetration. The approach presented
here firstly determines a normal vector n to the middle sur-
face Sm of the cohesive zone. Then, it decomposes � to find
the component parallel to n. If this component is negative,
there is penetration and a contact penalization is invoked.

This approach apparently introduces a local basis into the
formulation. However, this only affects the solution in the
case of contact without significant influences on the solution
in relation to other local bases.

Since the surface Sm has four nodes, it can be curved and
there is no consistent normal vector. The normal vector is
determined by taking the cross product of two tangent vec-
tors. The two tangent vectors, tξ and tη, are determined with
respect to the isoparametric coordinate directions in the iso-
parametric mid-point M (ξ = 0, η = 0), as shown in Fig. 8.
The tangent vectors are given by:

tξ = ∂x
∂ξ

∣∣∣∣
M

and tη = ∂x
∂η

∣∣∣∣
M

(17)

Fig. 8 The normal vector n is determined in point M by the cross
product of two tangent vectors

The normal vector is given by the normalized cross product
of the two tangent vectors:

n = tξ × tη
||tξ × tη|| (18)

The magnitude of penetration parallel to the surface normal
n is∆c = � · n, which leads to a contact penetration vector:

�c = ∆c n = (� · n) n. (19)

5.2 Tractions

The adopted constitutive relation that relates the opening vec-
tor � to its corresponding traction is given by the exponential
cohesive zone law [19]:

T = φ

δ

∆

δ
exp

(
−∆
δ

)
(20)

where∆ = ||�|| and φ and δ are the cohesive zone parame-
ters. The traction vector becomes:

T = T m (21)

where m is a unit vector directed along �. In the case con-
tact is present, i.e., ∆c < 0, an extra penetration term Tc is
present, directed along the normal of the plane:

Tc = −kc

(
∆c

δ

)2

and Tc = Tc n (22)

where kc is the contact stiffness. The contact penetration term
is added to the constitutive traction resulting from the phys-
ical opening displacement �. This yields the total traction
vector:

T = T + Tc. (23)

5.3 Tangent operator

The consistent tangent stiffness tensor M relates infinitesimal
variations of the traction vector to infinitesimal variations of
the opening displacement vector:

δT = M · δ�. (24)
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With respect to a Cartesian basis,
{
ex , ey, ez

}
, Eq. 24

becomes:

δT
˜

= M δ∆
˜

(25)

where components are stored in columns δT
˜

and δ∆
˜

and
matrix M . The consistent tangent stiffness matrix M for the
LDF follows from a standard analysis of a 3D truss element
under large displacements and rotations:

M =
(
∂T
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)∗
m
˜

m
˜

T + T ∗

∆∗ m
˜ 2m

˜
T
2 + T ∗

∆∗ m
˜ 3m

˜
T
3 (26)

where m
˜

, m
˜ 2 and m

˜ 3 are columns containing the components
of the vectors m, m2 and m3 that constitute an orthonormal
vector basis. For the exponential cohesive zone law, with
characteristic length δ, it can be verified that:

T ∗
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δ −∆∗
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which leads to:
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∆∗(δ −∆∗)⎡
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x −∆x∆y −∆x∆z
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−∆x∆z −∆y∆z δ∆∗ −∆2
z

⎤
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where ∆i = �∗ · ei , with i the global x , y and z directions.
The tangent operator for the contact penalization equals:

Mc =
(
∂Tc

∂∆c

)∗ (
n
˜
n
˜

T
)
. (29)

So, in the case of contact the total tangent operator becomes:

M = M + Mc. (30)

6 Constitutive modelling

A 3D constitutive model is used for description of large strain,
time dependent mechanical behaviour of the polymer layer.
The constitutive model is a compressible generalization of
the Leonov model [13], proposed by [2]. In the model a
distinction is made between the contribution of secondary
interactions between polymer chains, which determine the
(visco-) elastic properties at small deformations and plastic
flow, and the entangled polymer network, which governs the
strain hardening. Accordingly, based on the original work
of Haward and Thackray [11], the total Cauchy stress S is
decomposed in a driving stress Ss and a hardening stress Sr :

S = Ss + Sr . (31)

The hardening is modelled with a neo-Hookean relation [16]:

Sr = Gr B̃d (32)

(a) (b)

Fig. 9 a Compressible Leonov model. b Schematic true stress–strain
curve of with decomposition of the intrinsic deformation behaviour

where Gr is the strain hardening modulus and B̃d is the devi-
atoric part of the isochoric left Cauchy–Green deformation
tensor. The driving stress is decomposed into a deviatoric
stress Sd

s and a hydrostatic stress Sh
s :

Sd
s = G B̃d

e and Sh
s = κ (J − 1) I (33)

where G is the shear modulus, B̃d
e the deviatoric part of the

isochoric elastic left Cauchy–Green strain tensor, κ the bulk
modulus, J the volume change ratio, and I the unity tensor.
The evolution of J and B̃d

e is given by the following kine-
matical equations:

J̇ = J tr(D) (34)

and
◦
B̃e = (Dd − Dp) · B̃e + B̃e · (Dd − Dp). (35)

Here
◦
B̃e is the objective Jaumann rate of B̃e and Dd the de-

viatoric part of the rate of deformation tensor. The plastic
deformation rate tensor Dp is related to the deviatoric part of
the driving stress Sd

s :

Dp = Sd
s

2η
. (36)

The viscosity η was originally described by an Eyring rela-
tionship [8]. It was extended to incorporate pressure depen-
dency and intrinsic strain softening in [9]:

η(T, p, τ̄ , S) = η0,r (T ) exp

(
µp

τ0

)
exp(S)

τ̄ /τ0

sinh(τ̄ /τ0)

(37)

where η0,r denotes the zero-viscosity for the completely reju-
venated state, T is the temperature, µ is the material param-
eter describing the pressure dependence and S is a parameter
that captures the thermal and mechanical history of the mate-
rial. The hydrostatic pressure p, the characteristic stress τ0

and the equivalent stress τ̄ are defined as:

p = −1

3
tr(S) (38)

τ0 = kT

V ∗ (39)

τ̄ =
√

1

2
tr
(
Sd

s · Sd
s

)
(40)
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Table 1 PET material parameters

E(GPa) ν (–) Sa (–) η0,r (MPas) τ0(MPa)

1.25 0.4 28.4 0.486 0.95

µ (–) Gr (MPa) r0 (–) r1 (–) r2 (–)

0.047 28.2 0.990 200 −4

with k Bolzmann’s constant and V ∗ the activation volume.
The state parameter S is decomposed into a factor Sa , which
captures the thermo-mechanical history of the material, and
Rγ (γ̄p), which describes the softening kinetics [12]:

S(γ̄p) = Sa Rγ (γ̄p) (41)

where γ̄p is the effective plastic strain. The initial value
of S equals Sa since the value of Rγ is normalized at 1
and decreases towards 0 with increasing plastic strain. The
Carreau-Yassuda function describes the softening character-
istic:

Rγ (γ̄p) = (1 + (r0 exp(γ̄p))
r1)(r2−1)/r1

(1 + r0
r1)(r2−1)/r1

(42)

where r0, r1 and r2 are fitting parameters. The material param-
eters for PET have been determined in a previous study [20]
and are given in Table 1.

7 Numerical model

A 3D FEM model of the peel experiment is made. The model
geometry and boundary conditions are shown in
Fig. 10. The model consists of a polymer coating layer, a
cohesive zone layer and a substrate. The steel is modelled
as an isotropic linear elastic solid with a Young’s modulus
of 210 GPa and a Poisson’s ratio of 0.3. The interface has a
initial zero thickness and is modelled with 3D cohesive zones
and the presently proposed LDF. The constitutive model of
the coating layer was outlined in Sect. 6. The coating and sub-
strate are meshed with eight-node hexahedral element with
trilinear interpolation functions. Due to symmetry conditions
the model only encompasses a quarter of the specimen, which
is properly incorporated in the boundary conditions applied.
The model is loaded by a displacement ux on one end of the
polymer coating, as shown in Fig. 10.

Fig. 10 The 3D peel model with boundary conditions

A mesh convergence study is performed to find the
optimum element discretization, which is a compromise
between the accuracy and required computational time. The
mesh is divided into a coarse and a fine region, as depicted
in Fig. 10. Only the part of the coating that delaminates (and
thus deforms) needs to have a fine mesh, whereas the bulk
coating can be handled with a relative coarse mesh. In this
section the discretization of the fine coating part is further
scrutinized.

The number of elements in x, y and z direction are varied
and responses of the models are compared by considering
the quasi-static peel-force, where a fine mesh should provide
the best accuracy. Therefore, the peel-force F is normalized
by the peel-force Fr calculated by the model with the most
refined mesh. Evidently, the resulting conclusions are only
valid for the range of geometries and discretization studied.

In Fig. 11a the influence of the amount of elements in
y-direction (width) of the model is shown for two model
widths. With four elements in y-direction the relative error
is 0.5%, which is considered as acceptable. The two mod-
els with different widths yield almost identical results. This
might indicate that the width of the model has little influ-
ence on its response and that the geometry can be reduced to
plane-strain. This is investigated in Sect. 9.

The amount of elements in z-direction have a more pro-
nounced influence on the peel force, up to 2% when only
a single element over the thickness is used (see Fig. 11b).
An error smaller than 0.5% is achieved with at least nine
elements over the coating thickness.

The influence of the element size in the x-direction is
shown in Fig. 11c, where it is also clear that the character-
istic length, δ, does not have a pronounced influence on the
convergence. An element length of le = 2µm leads to a
maximum error of 0.5%.

The amount of elements in a model approximately equals:
nelem = (1 + nz) nx ny . For the number of degree-of-free-
doms (DOFs) an empirical expression is used: nDOF=4nelem .
The computational time for a single load step is related to
nDOF as: tinc = (nDOF)

n , where n = 1.34 (see Fig. 11d).
Simulations with different load step sizes have been car-

ried out and it was found that the relative error remains well
below 1% for all step sizes. However, with increasing step
sizes, not surprisingly, convergence may be lost. The largest
step size that resulted in a stable simulation was 100 nm/inc.
It was found that this step size is dictated by the stability of
the PET constitutive model.

It may be worth verifying whether the steps are not too
large compared to the characteristic length of the cohesive
zone (δ). Theoretically, a cohesive zone should dissipate the
interfacial energy (per unit area) φ, which is equal to the
area under the curve in Fig. 6. If, however, the incremental
steps are too large, the numerical integration of the traction–
separation law may yield an inaccurate dissipated energy. On
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Fig. 11 The normalized
quasi-static peel forces as a
function of the number of
elements in y-direction (a),
z-direction (b) or element length
(c). The influence of the number
of DOF on the CPU time of a
single increment (d)
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this basis, a simple analysis is performed to estimate the error
as a function of the incremental opening of a cohesive zone.
From this analysis it follows that the incremental cohesive
zone opening should be smaller than 1

3 δ in order to dissipate
more than 99% of φ.

Since the displacement is controlled at the end of the poly-
mer coating and the coating stretches at least 50%, the max-
imum incremental step size increases to 1

2 δ. For a stable
simulation the step size may not be larger than 100 nm/inc.
So, as long as δ > 200 nm, this maximum load step size can
be retained.

8 Application

A 3D peel-off model is made with ten elements in y-direction
and with three elements in z-direction. The elements have
a length of 2µm in the x-direction. The load step size is
0.1µm/inc. Numerical results are here compared qualita-
tively with the experiments. These results will be used in
future work to identify the interfacial parameters also quan-
titatively. Here the interfacial parameters are taken as φ =
200 J m−2 and Tmax = 20 MPa, which are in a realistic range.

In Fig. 12 an image is shown of the peel specimen. The
deformed geometry can be compared with the results of the
simulations, shown in Fig. 13 and a good qualitative agree-
ment is found. The three types of unloading behaviour of the

Fig. 12 Optical microscope image of the tensile specimen during a
peel experiment after 3.7 mm of delamination

cohesive zones (see Fig. 6) do not have a noticeable influence
on the simulation results because of the continuous tensile
loading conditions of the structure.

9 Plane-strain and 3D

Three-dimensional simulations are computational expensive,
so it is worthwhile to investigate the possibility to use a model
with a 2D plane-strain geometry instead. In Fig. 14 the 3D and
2D models are compared by plotting their force–displacement
curves. Clearly, the plane-strain model overestimates the
quasi-static peel force by 4%. This overestimation is
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Fig. 13 Model predictions of the deformed geometry and the equiv-
alent Von Mises stress after a delamination of 1.0 mm. Element edges
and cohesive zones are made invisible
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Fig. 14 The peel force as a function of the displacement as calculated
by a 3D and a plane-strain model

caused by the plane-strain condition, which prevents defor-
mations in y-direction. The advantage of the 2D model with
respect to the 3D model is the significant reduction in calcu-
lation time. Depending on the width of the model and thus the
element discretization in the width direction, the calculation
time is typically reduced by a factor 15–50. This makes a
plane-strain model an attractive alternative to perform qual-
itative parameter studies and useful in the first steps towards
an iterative fitting procedure on quantitative experimental
results.

10 Conclusion

It is shown that delamination in polymer coated steels typi-
cally takes place through a process of fibrillation. This mech-
anism involves large displacements and deformations at the
interface and in the surrounding bulk materials. Cohesive
zone models are a convenient tool to describe this failure
mechanism. However, classical cohesive zone models cannot
cope with large displacements and deformations in a consis-

tent way because these models use a local coordinate basis to
decompose the opening displacement. A LDF is proposed to
overcome the shortcomings of the classical SDF. In the LDF a
global basis is used and only one relation between the traction
and the opening displacement is defined. As a consequence
there is only a single mode-independent work-of-separation,
which is a valid assumption regarding the presence of fibrils
at the interface. A more general LDF cohesive zone model
with a mode-dependent work-of-separation may be more rel-
evant for other material systems.

A 3D cohesive zone element with the LDF is developed
and implemented in a finite element solution framework. The
detection of contact in a cohesive zone element with the LDF
is no longer straightforward and has been solved by defining
a normal vector with respect to the cohesive zone element
mid-plane.

The simulation of a peel experiment with the use of the
presented 3D model illustrates the added value of the devel-
oped 3D cohesive zone element with the LDF. Good qualita-
tive agreement is found between the model predictions and
experimental observations of a peel-off test. Future work con-
sists in quantitative determination of the interface parameters
on the basis of detailed experimental measurements.
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